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Congruences between modular forms
modulo prime powers

Maximiliano Camporino and Ariel Pacetti

Abstract. Given a prime p ≥ 5 and an abstract odd representation ρn
with coefficients modulo pn (for some n ≥ 1) and big image, we prove the
existence of a lift of ρn to characteristic 0 whenever local lifts exist (under
minor technical conditions). Moreover, our results allow to chose the lift’s
inertial type at all primes but finitely many (where the lift is of Steinberg
type).

We apply this result to the realm of modular forms, proving a level
lowering theorem modulo prime powers and providing examples of level
raising. An easy application of our main result proves that given a modular
eigenform f whose Galois representation is not induced from a character
(i.e., f has no inner twists), for all primes p but finitely many, and for all
positive integers n, there exists an eigenform g �= f , which is congruent
to f modulo pn.

1. Introduction

The aim of the present article is to deal with congruences between modular forms
(even more generally between abstract Galois representations) modulo prime pow-
ers. For that purpose we adapt the arguments of [13] and [14] with the extra care of
the problems coming from semisimplification issues. Let F be a finite field of resid-
ual characteristic p, W (F) its ring of Witt vectors and ρn : GQ → GL2(W (F)/pn)
be a continuous representation. We denote by ρn its reduction modulo p.

Theorem A. Let F be a finite field of characteristic p ≥ 5. Let ρn : GQ →
GL2(W (F)/pn) be a continuous representation ramified at a finite set of primes S
satisfying the following properties :

• the image of ρn is big, i.e., SL2(F) ⊆ Im(ρn) and Im(ρn) = GL2(F) if p = 5,

• ρn is odd,
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• the restriction ρn|Gp is not twist equivalent to the trivial representation nor
the indecomposable unramified representation given by ( 1 ∗

0 1 ),

• ρn does not ramify at 2.

Let P be a finite set of primes containing S, and for every � ∈ P , � �= p, assume
there exists a local deformation ρ� : G� →W (F) of ρn|G�

. At the prime p, assume
there exists a local deformation ρp of ρn|Gp which is ordinary or crystalline with
Hodge–Tate weights {0, k}, with 2 ≤ k ≤ p− 1.

Then there is a finite set Q of auxiliary primes q �≡ ±1 (mod p) and a modular
representation

ρ : GP∪Q −→ GL2(W (F)),

such that :

• the reduction modulo pn of ρ is ρn,

• ρ|I� 	 ρ�|I� for every � ∈ P , � �= p,

• ρ|Gp has the same type as ρp, i.e., if ρp is ordinary, ρ|Gp is ordinary while
if ρp is crystalline, ρ|Gp is crystalline with the same Hodge–Tate weights,

• ρ|Gq is a ramified representation of Steinberg type for every q ∈ Q.

Although for the applications we have in mind, we focused in the case of odd
representations (which by Serre’s conjectures are modular), with some extra hy-
potheses as in [13] one can get a result for any abstract representation with big
image.

Remark 1.1. The main theorems of this article concern global representations
modulo pn, and their deformations. We do not consider the problem of classifying
local representations modulo pn nor the problem of determining which ones do lift
to characteristic zero, which are very subtle problems. The hypothesis that a local
lift exists and is given for each ramified prime plays a crucial role in our proofs.

Remark 1.2. In the work [9], while trying to give another proof of the Taylor–
Wiles theorem, they do consider lifts of the reduction modulo pn of a global repre-
sentation ρ, so their Step 1 is a weaker version of our Theorem A. Since they only
need a lift to exist, they can choose the inertia type at all primes but the auxiliary
ones which makes the computations much easier. Sections 4, 5 and 6 of the present
article deal with the difficulties that arise while allowing any local deformation at
inertia.

Remark 1.3. Theorem A is in the same spirit as Theorem 3.2.2 of [1], where
only residual representations are considered. The advantage of working with the
deformation ring itself (instead of constructing the deformation) is that no auxiliary
set of primes is needed (i.e., one can take Q = ∅ in the main theorem) but one loses
control on the coefficient ring (so the deformation obtained might have coefficients
in a finite extension ofW (F)). This phenomena only works while working modulo a
prime ideal. For example, the elliptic curve 329a1 is unramified at 7 modulo 9, but
there are no newforms of level 47 congruent to it modulo 9 (see for example [6]).
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Let f ∈ Sk(Γ0(N), ε) (k ≥ 2) be a newform, with coefficient field Kf . Denote
by Of the ring of integers of Kf . If p is a prime number, let p denote a prime
ideal in Of dividing p, Kp denote the completion of Kf at p and Op its ring
of integers. Finally let ρf,p : Gal(Q/Q) → GL2(Kp) denote its associated p-adic
Galois representation. If n is a positive integer, let

ρn : GQ → GL2(Op/p
n)

be its reduction modulo pn.

Theorem B. In the above hypothesis, let n > 0 be an integer and p > max(k, 3)
be a prime such that :

• p � N or f is ordinary at p,

• SL2(Op/p) ⊆ Im(ρf,p), and Im(ρf,p) = GL2(Op/p) if p = 5,

• p does not ramify in the field of coefficients of f ,

• ρn does not ramify at 2.

Let R be the set of ramified primes of ρn. If N
′ =

∏
�∈R �

v�(N), then there exist
an integer r, a set {q1, . . . , qr} of auxiliary primes prime to N satisfying qi �≡ 1
(mod p) and a newform g, different from f , of weight k and level N ′q1 · · · qr such
that f and g are congruent modulo pn. Furthermore, the form g can be chosen
with the same restriction to inertia as that of f at the primes of R.

A direct application of Theorem B is a lowering the level result modulo prime
powers. Such result is proven in [9] (Proposition 1, while proving the main theo-
rem), and in [6] (Theorem 1), under the assumption that the primes losing rami-
fication are not congruent to ±1 modulo p.

Corollary 1.4 (Lowering the level). Let f ∈ Sk(Γ0(M), ε) be a newform, let p be
a prime of Of above p ∈ Q, and let ρn : GQ → GL2(Of/p

n) be the reduction of its
p-adic representation modulo pn. Suppose that :

• p ≥ 5,

• 2 ≤ k ≤ p− 1,

• SL2(Of/p) ⊆ Im(ρn) and Im(ρn) = GL2(Of/p) if p = 5,

• p does not ramify in Of ,

• ρn does not ramify at 2.

If � |M is such that ρn is unramified at �, then the Hecke map factors through
the �-old quotient T�-oldk (M, �), i.e., if M = �rM ′, with � � M ′, then there exists a
representation ρn : Tk(M

′) → GL2(O/p
n) isomorphic to ρn.

Proof. The proofs of [9] and [6] give the result for primes � where ramification is
lost and satisfy � �≡ 1 (mod p). Theorem B allows us to move the ramification to
some auxiliary set of controlled Steinberg primes. More concretely, if there exist
some primes � with � ≡ ±1 (mod p) loosing ramification, Theorem B implies the
existence of a form g congruent modulo pn with f , with good reduction at the
primes � and bad reduction at some extra set of Steinberg primes q �≡ ±1 (mod p).
The form g is now in the hypothesis of Dummigan’s theorem, and the result follows.
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Note that Theorem 1 in [6], as explained in Section 9 of the same article, takes
a Galois representation as an input and returns a Hecke map from a subgroup with
one prime � removed from the level. Since we need to make repeated use of it (to
remove all auxiliary primes), we need a similar statement that allows a Hecke map
as an input. As was pointed out by Professor Dummigan, Theorem 1 of [6] holds
in this more general situation with exactly the same proof. �

Corollary 1.5. Let k ≥ 2, N odd, and let f ∈ Sk(Γ0(N), ε) be a newform whose
Galois representation is not induced from a character (i.e., it has no inner twists).
Then for all but finitely many prime numbers p, and for all positive integers n,
there exists a weight k newform g (depending on p and n) different from f , which
is congruent to f modulo pn.

Proof. Since f does not have inner twists, by Ribet’s result ([16], Theorem 3.1) the
residual image of the p-adic Galois representation attached to f is big modulo p for
all but finitely many primes p. Then the set of primes p where any of the following
properties hold is finite:

• p ≤ k,

• the residual image of ρf,p is not big,

• p divides N (or if it does, f is not ordinary at p),

• p is ramified in the coefficient field of f ,

All the other primes are in the hypothesis of Theorem B and the result follows. �

The proof of Theorem A follows the ideas of [14] and involves solving two
different problems. One consists on constructing a finite set of auxiliary primes that
converts the problem of lifting a global representation into the one of lifting many
local ones. The other consists in solving the somewhat easier local lifting problems.
Following the logical structure of [14], we deal with the local considerations first.

To solve the local lifting problems, for every prime � ∈ P we need to find a set C�
of deformations of ρn|G�

toW (F) containing ρ� and a subspace N� ⊆ H1(G�,Ad
0ρ̄)

of the right codimension such that: elements of N� preserve the reductions of C�
(i.e., whenever ρm is the reduction of some ρ ∈ C� modulo pm and u ∈ N� then
(1 + pm−1u)ρm is the reduction of some other ρ′ ∈ C�) and any deformation ρm
can be modified by an element not in N� to lie in C�. Furthermore, we also need
all the deformations in C� to be isomorphic when restricted to I�. For each prime
� ∈ P the restriction of the global representation to a decomposition group at �
provide a mod pn representation ρn and a local representation ρ� lifting ρn|G�

. We
proceed as follows:

1. We classify all the possible ρ� up to Zp-isomorphism and all the possible ρn
up to F-isomorphism.

2. For each pair of isomorphism classes for ρ� and ρn we try to construct a
set C� (depending on the class of ρ�) of deformations with coefficients in
W (F) which are congruent to ρ� mod pn and the corresponding subspace
N� ⊆ H1(G�,Ad

0ρ̄) (depending on the class of ρn|G�
) preserving it.
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While pursuing the second objective one flaw appears. There is one case (la-
beled Case 4 (1) in Section 4) for which the pair (C�, N�) satisfies the desired
properties not modulo pm for all m ≥ n but for all m ≥ n0 > n (depending on
ρn|G�

). To overcome this problem, we construct a lift of ρn to W (F)/pn0+1 (via a
completely different argument explained in Section 6) and then we follow the ideas
explained earlier.

Once the right local deformations classes are chosen (and the case of small
exponents is handled), we need to construct two auxiliary sets of primes Q1 and Q2

(together with their respective sets Cq and subspaces Nq as for the primes in P )
with the following roles:

• The set Q1 has two main properties (see Fact 16 in [14]): it kills the global
obstructions, that is, it is such that III1S∪Q1

((Ad0ρ̄)∗) = 0 (and therefore

III2S∪Q1
(Ad0ρ̄) = 0 by global duality), and it is such that the inflation map

H2(GS ,Ad
0ρ̄) → H2(GS∪Q1 ,Ad

0ρ̄),

is an isomorphism.

• The set Q2 gives an isomorphism

H1(GS∪Q1∪Q2 ,Ad
0ρ̄) →

⊕
�∈S∪Q1∪Q2

H1(G�,Ad
0ρ̄)/N�,

without adding global obstructions, i.e., III2S∪Q1∪Q2
= 0.

These auxiliary primes are essentially Ramakrishna’s Q and T sets (in [14], with
the same sets Cq and subspace Nq). Just some extra care needs to be taking while
proving that ρn|Gq is the reduction of some ρ ∈ Cq for every q ∈ Q1 ∪Q2.

With the local conditions and the auxiliary primes, the inductive method starts
to work since each step only depends on hypotheses about the mod p reduction of
our representation.

The inductive method works as follows: in virtue of III2S∪Q1
(Ad0ρ̄) = 0, a

global deformation to W (F)/pm lifts to W (F)/pm+1 if and only if its restrictions
to the primes of P ∪Q1 ∪Q2 lift to W (F)/pm+1. For m = n the local condition is
automatic so there exists a lift ρn+1 of ρn toW (F)/pn+1. The problem is that ρn+1

may not lift again, as it can be locally obstructed. In order to remove these local
obstructions we use the fact that any local deformation for primes � ∈ P ∪Q1∪Q2

can be modified by some element not in N� in order to be a reduction of some
element of C� and therefore unobstructed. We will often refer to this as adjusting a
local deformation. As we have an isomorphism between the global first cohomology
group and the coproduct of the local first cohomology groups modulo N�, we can
find an element u ∈ H1(GQ,Ad

0ρ̄) that adjusts ρn+1 locally for every prime in
P ∪ Q1 ∪ Q2 making (1 + pnu)ρn+1 an unobstructed lift of ρn satisfying all the
required local hypothesis (its restriction to G� lies in C� for all primes � ∈ P )
and in particular it satisfies the condition at inertia. From here we can repeat the
process of lifting and adjusting indefinitely, obtaining a lift to W (F).
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Theorem A follows from these ideas and some appropriate modularity lifting
theorem (which explain the conditions imposed at p). Theorem B is an immediate
consequence of Theorem A.

Notations and conventions. Throughout this work GQ denotes the Galois
group Gal(Q/Q). If � is a prime number, G� denotes a decomposition group of �
inside GQ. Inside this Galois group, σ and τ will stand for a Frobenius element and
a tame inertia generator respectively. Whenever we need to make the dependency
on q explicit, we will name a Frobenius element in Gq by Frobq. We will denote
by F a finite field of characteristic p and by W (F) its ring of Witt vectors.

Regarding representations, ρn denotes a continuous representation ρn : GQ →
GL2(W (F)/pn), ρ a continuous representation with coefficients in W (F) ramifying
at finitely many primes and ρ a representation modulo p. If ω is a character
from GQ to F we denote ω̃ its Teichmüller lift.

We will denote by χ the p-adic cyclotomic character. If det ρ = ωχk, with ω
unramified at p, we will consider only deformations with fixed determinant ω̃χk

which allows to consider Ad0ρ̄ instead of Ad ρ̄. If ρ is any continuous represen-
tation, Q(ρ) denotes the field fixed by its kernel. Given ρ, after twisting it by a
character of finite order we may, and will, suppose that ρ and Ad0ρ̄ ramify at the
same set of primes S. Finally, for a ring of integers O of a finite extension of Qp,
v will stand for the valuation that has value 1 at the uniformizer.

Acknowledgments. Special thanks go to Luis Dieulefait, for proposing us the
problem of Corollary 1.5 (the starting point of the present article) as well as many
discussions and suggestions he made which improved the exposition, and to Ravi
Ramakrishna for many suggestions which not only improved the exposition, but
also allowed to remove some technical conditions in a first version of this article.
We thank Professor Dummigan for explaining us how to adapt his lowering the
level results needed in Corollary 1.4, and Gabor Wiese for many corrections and
comments, Panagiotis Tsaknias for pointing out the application of Theorem A to
Corollary 1.4, and John Jones and Bill Allombert for helping us with the com-
putational part of the example. At last, we would like to consider the referee for
his/her suggestions and comments that improved the article quality.

2. Classification of residual representations and types of re-
duction

Recall the classification of mod p representations of G�, when � �= p (see for exam-
ple [4], Chapter XVII, Section 2).

Proposition 2.1. Let � �= 2, be a prime number, with � �= p. Then up to twist by
a character of finite order any representation ρ : G� → GL2(F) belongs to one of
the following three types :

• Principal Series: ρ 	 (
φ 0
0 1

)
or ρ 	 (

1 ψ
0 1

)
.

• Steinberg: ρ 	 ( χ μ0 1 ) , where μ ∈ H1(G�,F(χ)) and μ|I� �= 0.
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• Induced: ρ 	 IndG�

GM
(ξ), whereM/Q� is a quadratic extension and ξ : GM →

F
×

is a character not equal to its conjugate under the action of Gal(M/Q�).

Here φ : G� → F
×

is a multiplicative character and ψ : G� → F is an unramified
additive character.

Remark 2.2. Any unramified representation is Principal Series, and can be of
the form ρ 	 (

φ 0
0 1

)
, with φ unramified or of the form ρ 	 (

1 ψ
0 1

)
, with ψ : G� → F

an additive unramified character.

The same classification applies to continuous representations ρ : G� → GL2(Qp)
modulo GL2(Qp) equivalence, but to deal with reductions modulo prime powers we
need a classification of representations with integer coefficients modulo GL2(Zp)
equivalence. Let L be the coefficient field of ρ, OL its ring of integers, and π be a
local uniformizer. Let also μ ∈ H1(G�,Zp(χ)) denote a generator of this.

Theorem 2.3. Let ρ : G� → GL2(Zp) be a continuous representation. Then, up to
twist (by a finite order character times powers of the cyclotomic one) and GL2(Zp)
equivalence, we have:

• Principal Series: ρ 	 (
φ πr(φ−1)
0 1

)
, with r ∈ Z≤0 satisfying πr(φ − 1) ∈ Zp

or ρ 	 (
1 ψ
0 1

)
.

• Steinberg: ρ 	 (
χ πrμ
0 1

)
, with r ∈ Z≥0.

• Induced: There exists a quadratic extensionM/Q� and a character ξ : GM →
Zp

×
not equal to its conjugate under the action of Gal(M/Q�) such that

ρ 	 〈v1, v2〉OL
, where for α a generator of Gal(M/Q�) and β ∈ GM , the

action is given by

β(v1) = ξ(β)v1, β(v2) = ξα(β)v2, α(v1) = v2 and α(v2) = ξ(α2)v1,

or

ρ(β) =

(
ξ(β) (ξ(β) − ξα(β))/πr

0 ξα(β)

)
and ρ(α) =

(−a (ξ(α2)− a2)/πr

πr a

)
,

where ξα is the character of GM defined by ξα(g) = ξ(αgα−1) and a ∈ O×
L .

Observe that when M/Q� is ramified we can take α and β to be a Frobenius
element and a generator of the tame inertia of G�, respectively.

Proof. Suppose that ρ is irreducible, and that the image lies in GL2(OL) for L/Qp
finite. There exists a quadratic extension M/Q� and a character ξ : GM → O×

L

such that ρ 	 Ind
GQ�

Gm
ξ (modulo GL2(Q�) equivalence). Let {v1, v2} be a basis of

the underlying 2-dimensional Q� vector space, where v2 = α(v1) for α a generator
of Gal(M/Q�). Let T be one invariant lattice for ρ. There exists a minimum s ∈ Z
such that w1 = πsv1 ∈ T . Re-scaling T we can assume that s = 0 (re-scaling the
lattice does not affect the representation). Since α(T ) ⊆ T , 〈v1, v2〉OL ⊆ T . If
equality holds we get the first case.
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Otherwise, we can extend v1 to a basis of T by adding a vector w ∈ T with
w /∈ 〈v1, v2〉OL . Write w = λ1v1 + λ2v2 with λ1, λ2 ∈ Qp. Notice that necessarily
vπ(λ1) = vπ(λ2) < 0 (since α(v2) = ξ(α2)v1, and ξ(α2) ∈ O×

L ). Changing v1
and v2 by a unit we can assume that w = π−r(−av1+ v2), with r < 0. The matrix
giving the action of α in the basis {v1, w} is

ρ(α) =

(−a π−r(ξ(α2)− a2)
πr a

)
.

The computation for the action of β is similar.
If ρ is reducible (as a representation in GL2(Qp)), take an eigenvector in T ,

and extend it to a basis of T . Then the representation becomes (up to twist)

ρ 	
(
φ ∗
0 1

)
.

If φ is trivial, then ∗ is an additive character, and we are in the first case. Otherwise,
if ρ is principal series, it is equivalent (modulo GL2(L)) to

(
φ 0
0 1

)
, hence is of the

form
(
φ u(φ−1)
0 1

)
. Since we want our representation to have integral coefficients we

get the stated result. Finally, in the Steinberg case, our representation is GL2(L)-
equivalent to ( χ μ0 1 ). An easy computation shows it lies in our list. �

Remark 2.4. In the Principal Series case, if we take r = 0 we get ρ 	 (
φ φ−1
0 1

)
,

which is equivalent to
(
φ 0
0 1

)
. We will consider this last class representative .

Although the possible reductions from types of GL2(Zp)-equivalent represen-
tations to types of representations with coefficients in GL2(Fp) is well known to
experts and most of the claims are in [2], the change of types are not explicitly
described in that article, so we just give a short self contained description.

Recall the condition for a character to lose ramification:

Lemma 2.5. Let ξ : G� → Qp
×

be a character and ξ its mod p reduction. If
Ker(ξ|I�) � Ker(ξ|I�) then � ≡ 1 (mod p).

Remark 2.6. If g ∈ I� satisfies that ξ(g) �= 1 and ξ(g) = 1 then ξ(g)�−1 = 1.

Proposition 2.7. Let ρ be as above. Then we have the following types of reduction :

• If ρ is Principal Series, then ρ is Principal Series or Steinberg, and the latter
occurs only when � ≡ 1 (mod p).

• If ρ is Steinberg, then ρ is Steinberg or Principal Series, and the latter occurs
only when ρ is unramified.

• If ρ is Induced, then ρ is Induced, Steinberg or an unramified Principal Series.
For the last two cases we must have � ≡ −1 (mod p).

Proof. If ρ is reducible, its reduction cannot be irreducible, which already excludes
the case of a Principal Series or a Steinberg reducing to an Induced one. Besides
this trivial observation, we study each case in detail.
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• ρ Principal Series: in this case ρ 	 (
φ λ(φ−1)
0 1

)
or

(
1 φ
0 1

)
. If ρ̃ 	 (

φ λ(φ−1)
0 1

)
,

the uniqueness of the semisimplification of the reduction implies that ρss 	 (
φ 0
0 1

)
.

If the reduction is of Steinberg type we need to have φ = χ, so a character is losing
ramification and this implies (by Lemma 2.5) that � ≡ 1 (mod p).

If ρ 	 (
1 φ
0 1

)
then it is unramified and so is its reduction, implying that it can

only be Principal Series.

• ρ Steinberg: in this case ρ 	 (
χ λu
0 1

)
where u ∈ H1(G�,Zp(χ)) is the generator

of the group. Its semisimplification is
(
χ 0
0 1

)
, which implies that if ρ is Principal

Series then it is unramified.

• ρ Induced: in this case ρ = Ind
GQ�

GM
(ξ), where M/Q� is a quadratic extension

and ξ is a character of GM that does not descend to GQ�
. If the character ξ does

not descend, then ρ is also irreducible hence Induced.

Suppose then that ξ does descend and, for a moment, that ρ ramifies (which im-
plies, by assumption, that Ad0ρ̄ ramifies). In this case the type of ρ changes when
reducing. The semisimplification of the reduction we are considering is therefore

ρss 	
(
ξε 0

0 ξ

)
= ξ ⊗

(
ε 0
0 1

)
,

where ε is the quadratic character associated to M/Q�.
If ρ is Principal Series, then ε has to be ramified, as we are assuming that

Ad0ρ̄ is ramified at �, so M/Q� is ramified. We claim (and will prove in the next
lemma) that this case cannot happen, i.e., if M/Q� is ramified, any character

ξ : GM → Zp
×

that does not extend to G� satisfies that its reduction does not
extend to G� either. Then the only case left is when ρ is Steinberg. In this is case,
by looking at the semisimplifications we see that ε = χ, which only happens when
M/Q� is unramified and � = −1 (mod p).

If ρ is unramified then ε has to be unramified as well, hence M/Q� is an un-
ramified extension. In this case, using the same argument as in Lemma 2.5, we
conclude that �2 ≡ 1 (mod p). It is easy to prove that if � ≡ 1 (mod p) then the
character ξ extends to G�, therefore we necessarily have � ≡ −1 (mod p). �

Lemma 2.8. Let M/Q� be a quadratic ramified extension and ξ : GM → Zp
×

be
a character and ξ its reduction. If ξ extends to G�, then ξ does as well.

Proof. Let L/Qp be a finite extension that contains the image of ξ, and π an
uniformizer of this extension. Let α ∈ G� be an element not in GM and define
ξα(x) = ξ(αxα−1). We know that ξ extends to G� if and only if ξ = ξα.

Via local class field theory, the character ξ corresponds to a character ψ defined
over M× and ξα corresponds to ψα(x) = ψ(α(x)), so ξ extends to G� if and only
if ψ factors through the norm map NM/Q�

: M× → Q×
� . Recall that by hypotheses

ψ = ψα (mod π) and we want to prove that ψ = ψα. Let φ be the factorization
of ψ through the norm map.

If we restrict to the inertia subgroup we have the following picture:
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Kerψ

N

��

ψ| ��

���
��

��
��

� 1 + πOL

��
Kerφ

���
��

��
��

��

φ|
����������

O×
M

N

��

ψ ��

ψ ���
��

��
��

��
O×
L

��
Z×
�

φ

�� F×
L

We are going to construct the dashed arrow φ| of the diagram above. Observe
that ψ| factors through Kerψ/(Kerψ ∩ (1 + �Z�)) ⊆ F×

� (since 1 + πOL is a pro-
p-group), so we have

Kerψ ��

N

��

Kerψ

Kerψ∩(1+�Z�)

ψ| ��

f

��

1 + πOL

Kerφ �� Kerφ

Kerφ∩(1+�Z�)

φ|
���

�
��

�
�

where the down arrow f is f(x) = x2 (since M/Q� is ramified). So we can define
the dashed arrow φ| as φ|(x) =

√
ψ|(x) where

√
: 1 + πOL → 1 + πOL is the

morphism that assigns to every x ∈ 1 + πOL its square root in 1 + πOL (which
exists and is unique by Hensel’s lemma). This makes the diagram commutative
and proves that φ can be extended in Kerφ.

To prove that ψ factors through the norm map, define ι(x) = ψαψ−1. We
know that ι : O×

M → 1 + πOL and that ι(Ker ξ) = 1. Then it factors through
ι : O×

M/Kerψ → 1 + πOL, but O×
M/Kerψ ⊆ F×

L and the only element of order
pn−1 inside 1+πOL is 1, so ι must be trivial and therefore ψ = ψα when restricted
to O×

M . To deduce that ψ = ψα from this, we need to check it for the uniformizer,

which is
√
δ� with δ equal to 1 or to a non-square in Q�. But

ψα(
√
δ�) = ψ(α(

√
δ�)) = ψ(−

√
δ�) = ψ(−1)ψ(

√
δ�) = ψ(

√
δ�),

where the last equality follows from ψ(−1) = φ(N(−1)) = φ(1) = 1, because
−1 ∈ O×

M . Then ξ extends to G�. �

Remark 2.9. Since we are only considering representations with unramified co-
efficient field, and p ≥ 5, this rules out most change of type cases while reducing.

Proposition 2.10. Let p ≥ 5 and let ρ : G� → GL2(W (F)) be a continuous repre-
sentation.

• If ρ has type a ramified Principal Series, then ρss is ramified.

• If ρ has type an Induced representation, then ρss is ramified.
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Proof. For the first case, assume that ρss is unramified, and ρ is Principal Series
with character φ. Then φ|I� = 1 and Remark 2.6 implies that � ≡ 1 (mod p)
and φ(τ) has order a power of p. Therefore the eigenvalues of ρ(τ) generate a
totally ramified extension of Qp of degree at least p−1, which is clearly impossible
as they also have to satisfy a polynomial of degree 2 over some unramified extension
of Qp and p > 3.

For the second case, assume that ρss is unramified and ρ is induced with char-
acter ξ. Then necessarily ξ = ξσ, implying that the character ψ = ξ/ξσ loses all
of its ramification when reduced. Again Remark 2.6 implies that ψ(τ) has order
a power of p implying that it generates a totally ramified extension of degree at
least p− 1 > 2. But ψ(τ) is the quotient of the eigenvalues of ρ(τ), so it lies in an
extension of degree 2 of some unramified extension of Qp which is absurd. �

3. Local cohomological dimensions

To apply Ramakrishna’s method in our situation, we need to compute di =
dimHi(G�,Ad

0ρ̄) for i = 1, 2. For each mod p representation type we choose a basis
of the underlying space and compute d0 and d∗0 (where d∗i = dimHi(G�, (Ad

0ρ̄)∗)).
By local Tate duality, d2 = d∗0, and then we can derive d1 from the local Euler–
Poincaré characteristic (which is zero).

Ramified Principal Series case: ρ =
(
φ 0
0 1

)
with φ a ramified multiplicative

character. It easily follows that Ad0ρ̄ 	 F⊕F(φ)⊕ F(φ−1). As φ is ramified, F(φ)
(resp. F(φ−1)) is not isomorphic to F nor F(χ). So we have two cases:

(1) � ≡ 1 (mod p) then d0 = 1, d2 = 1 and therefore d1 = 2.

(2) � �≡ 1 (mod p) then d0 = 1, d2 = 0 and therefore d1 = 1.

The Steinberg case: taking {e01, e10, e00 − e11} as a basis for the space of trace
zero matrices and explicitly computing the action of Ad0ρ̄ on them, we obtain the
following values for di:

(1) If � ≡ 1 (mod p) then d0 = 1, d2 = 1 and therefore d1 = 2.

(2) If � ≡ −1 (mod p) then d0 = 0, d2 = 1 and therefore d1 = 1.

(3) If � �≡ ±1 (mod p) then d0 = 0, d2 = 0 and therefore d1 = 0.

The Induced case: recall the following lemma (see [14], Lemma 4).

Lemma 3.1. Let M/Q� be a quadratic extension and ρ : G� → GL2(Fp) be twist-

equivalent to IndG�

GM
ξ, with ξ a character of GM which is not equal to its con-

jugate under the action of Gal(M/Q�). Then Ad0ρ̄ 	 A1 ⊕ A2, with Ai an ab-
solutely irreducible G�-module of dimension i and H0(G�,Ad

0ρ̄) = 0. Moreover,
H2(G�,Ad

0ρ̄) = 0 unless M/Q� is not ramified and � ≡ −1 (mod p), in which case
it is one dimensional.

So for the Induced case we have two possibilities:
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(1) If � ≡ −1 (mod p) andM/Q� is unramified then d0 = 0, d2 = 1 and therefore
d1 = 1.

(2) If � �≡ −1 (mod p) or M/Q� is ramified then d0 = 0, d2 = 0 and therefore
d1 = 0.

Unramified case: if ρ is unramified, we consider the following three cases ac-
cording to the image of Frobenius:

(1) ρ(σ) = ( 1 0
0 1 ). In this case Ad0ρ̄ 	 F3, thence we have two possibilities:

• � ≡ 1 (mod p) then d0 = 3, d2 = 3 and therefore d1 = 6.

• � �≡ 1 (mod p) then d0 = 3, d2 = 0 and therefore d1 = 3.

(2) ρ(σ) = ( α 0
0 1 ) with α �≡ 1 (mod p). We have that Ad0ρ̄ 	 F⊕F(φ)⊕F(φ−1),

with φ �= 1 and φ = χ only if α ≡ � (mod p). We distinguish the cases:

• � ≡ −1 (mod p) and � ≡ α, α−1 (mod p) then d0 = 1, d2 = 2 and
therefore d1 = 3.

• � ≡ −1 (mod p) and � �≡ α, α−1 (mod p) then d0 = 1, d2 = 0 and
therefore d1 = 1.

• � �≡ −1 (mod p) and � ≡ α, α−1 or 1 (mod p) then d0 = 1, d2 = 1 and
therefore d1 = 2.

• � �≡ −1 (mod p) and � �≡ α, α−1 or 1 (mod p) then d0 = 1, d2 = 0 and
therefore d1 = 1.

(3) ρ(σ) = ( 1 1
0 1 ). An easy computation shows that:

• If � ≡ 1 (mod p) then d0 = d2 = 1 and therefore d1 = 2.

• If � �≡ 1 (mod p) then d0 = 1, d2 = 0 and therefore d1 = 1.

4. The sets C�

In order to apply Ramakrishna’s method we need to define for each prime � ∈ P a
set C� of deformations of ρn|G�

(containing ρ�) and a subspace N� ⊆ H1(G�,Ad
0ρ̄)

of dimension d1 − d2 such that ρn|G�
can be successively deformed to an element

of C� by deforming from W (F)/pm to W (F)/pm+1 with adjustments at each step
made only by a multiple of an element h /∈ N�. Extra care must be taken to pick
the set C� such that all its elements restricted to the inertia subgroup agree up to
isomorphism with ρ�.

As mentioned in the introduction it is enough to do this for each possible
pair of GL2(Zp) and GL2(F)-isomorphism classes for ρ� and ρ respectively and
construct the set C� containing ρ� in such a way that all its members are congruent
modulo pn. Note that all the deformations of C� must have coefficients in W (F)
(and not in a bigger ramified extension). If the image of ρ� is not irreducible
(like in the Principal Series case) the classification representatives of Theorem 2.3
might live in a bigger extension than W (F). This will force us to do some extra
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calculations in the Principal Series case. In the Steinberg case this is not a problem
since the representatives have coefficients in Zp and a change of basis matrix can
be found with coefficients in W (F), while in the Induced case the definition of C�
and N� is trivial (so it does not depend on the representative chosen).

The main difference with [14] is that in Case 4 (1) we can only construct the pair
(C�, N�) for exponents higher than a certain n0, so the inductive method of [14]
works from n0 on. We take a different approach for lifting ρn between pn and pn0

(see Section 5).

Remark 4.1. During the process of lifting and adjusting, we need to work with
local deformations, as well as with the restriction to local Galois groups of repre-
sentations modulo pm. To avoid extra notation, we make some abuse of notation:
we say a that representation ρm modulo pm restricted to G� belongs to C� if there
exists a deformation in C� congruent to it modulo pm.

Remark 4.2. Whenever d2 = 0 or d2 = d1 the problem is trivial. In the first case
we need dim(N�) = d1−d2 = d1, so the only possible choice is N� = H1(G�,Ad

0ρ̄).
With this subspace we cannot adjust at all (as we have to take an element not
in N�) but this is not a problem as d2 = 0 implies that all the deformations of ρ
are unobstructed and we can take C� as the set of all possible deformations of ρn
to W (F). We still have to check that these deformations agree when restricted to
inertia. In the second case, we need dim(N�) = d1 − d2 = 0, hence N� = {0}.
This means that we have the whole group H1(G�,Ad

0ρ̄) available to adjust at
every step. Then we can take any set C� and the N�-preserving-C� condition will
automatically hold. We take C� = {ρ�}.
Lemma 4.3. If there exists a subspace N� ⊂ H1(G�,Ad

0ρ̄) of codimension d2
which preserves reduction of elements in C� the second condition is automatically
fulfilled, i.e., given a deformation ρm modulo pm which is the reduction modulo
pm−1 of an element in C� but is not the reduction of an element in C� modulo pm,
there exists h′ �∈ N� such that h′ · ρm ∈ C�.

Proof. By hypothesis ρm ≡ ρ′ (mod pm−1), with ρ′ ∈ C�. Then there exists
h + h′ ∈ H1(G�,Ad

0ρ̄), with h ∈ N� and h′ �∈ N�, such that (h + h′) · ρm ≡ ρ′

(mod pm). But then h′ · ρm ≡ −h · ρ′ (mod pm), so the claim follows from the
hypothesis on N�. �

Case 1: ρ is ramified Principal Series. When ρ is ramified Principal Series,
ρ� can only be Principal Series. Nevertheless, the cohomology groups are different
depending on whether � ≡ 1 (mod p) or not. Recall that the representatives for
the equivalence classes were (up to twist) ρ� 	

(
φ πr(φ−1)
0 1

)
with r ≤ 0 such that

πr(φ−1) lies in Zp. If r �= 0, π | (φ−1) and therefore its reduction is not a ramified
Principal Series (the residual case ( 1 ∗

0 1 ) is unramified or Steinberg according to
our classification). Then up to twist ρ� 	

(
φ 0
0 1

)
over GL2(Zp) which implies that

ρ� 	
( ψ1 0

0 ψ2

)
over GL2(Zp) and we have the following cases:

(1) If � �≡ 1 mod p, d0 = d1 = 1 and d2 = 0. Then, as explained in Remark 4.2,
N� = H1(G�,Ad

0ρ̄) and C� is the full set of deformations to characteristic zero. To
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check that all the elements of C� agree up to isomorphism when restricted to I�, we
need to describe the set C�. If we define a morphism η : G� → G�/I� 	 Ẑ → Z/pZ,
then the element

h(g) =

(
η(g) 0
0 −η(g)

)
generates H1(G�,Ad

0ρ̄) and this implies that every lift is Principal Series, as the
set λh · ψs, where ψ is the Teichmüller lift of ρ and λ is a scalar, exhausts all the
possible reductions. In particular, the restriction to inertia is the same for all of
them.

(2) If � ≡ 1 (mod p) the picture is slightly different since d0 = 1, d1 = 2 and
d2 = 1 so N� is one dimensional. Observe that the isomorphism between ρ� and
the representative of its GL2(Zp)-equivalence class may not be realized overW (F).

If the image of ψ1 lies inW (F), then the isomorphism is realized overW (F) and
the same element h defined above lies inside H1(G�,Ad

0ρ̄). We take N� = 〈h〉, and
C� =

{( ψ1γ 0

0 ψ2γ
−1

)
: γ unramified character

}
. Clearly ρ� ∈ C� and N� preserves

reduction of elements of C� (which is enough by Lemma 4.3). Note that all the
elements in C� have the same restriction to inertia.

If the image of ψ1 does not lie in W (F) then ρ� is not isomorphic to
( ψ1 0

0 ψ2

)
over W (F) and we cannot use the previous choice. Instead, we take a canonical
form for ρ� over W (F). Assume that ψ1(σ) = α and ψ2(σ) = β, then the matrix

C =
(−β −α

1 1

)
conjugates

( ψ1(σ�) 0
0 ψ2(σ�)

)
into

( 0 −αβ
1 α+β

) ∈ GL2(W (F)). Therefore

we can assume (applying a change of basis) that ρ�(σ) =
( 0 −αβ
1 α+β

)
. Let N� =

〈(α − β)ChC−1〉, where h is the element defined before, and let C� be the set

of deformations to W (F) of the form C
( ψ1γ 0

0 ψ2γ
−1

)
C−1, with γ : G� → Zp an

unramified character. The factor α − β forces the element generating N� to have
coefficients in W (F). It can be easily checked that whenever ρm is the reduction
of some element in C� and u ∈ N� then (1 + pm−1u)ρm is again the reduction of
an element of C�.

Case 2: ρ is Steinberg. If ρ is of Steinberg type then Proposition 2.7 and
Proposition 2.10 imply that ρ� can only be Steinberg.

(1) If � �≡ ±1 (mod p), d0 = d1 = d2 = 0, so there is only one deformation at
each pn. We take C� = {ρ�}, which is the only deformation of ρ to W (F).

(2) If � ≡ −1 (mod p), d1 = d2 = 1 and d0 = 0. As explained in Remark 4.2,
N� = {0} and C� = {ρ�}.

(3) If � ≡ 1 (mod p), we take the element j ∈ H1(G�,Ad
0ρ̄) given by 0 at the

wild inertia subgroup and by

j(σ) =

(
0 1
0 0

)
, j(τ) =

(
0 0
0 0

)
.

Let N� = 〈j〉 and C� the set of lifts ρ satisfying

ρ(σ) =

(
� ∗
0 1

)
and ρ(τ) =

(
1 ∗
0 1

)
.
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This set is formed by deformations which are isomorphic when restricted to inertia,
and N� preserves its reductions.

Case 3: ρ is Induced. If ρ is Induced then the only possibility for ρ� is also
being of Induced type.

(1) If � ≡ −1 (mod p) and M/Q� is unramified, d0 = 0, d1 = d2 = 1 so
Remark 4.2 applies.

(2) If � �≡ −1 (mod p) or M/Q� is ramified, d0 = d1 = d2 = 0, so there is only
one lift at every step (the reduction of ρ�). We take C� = {ρ�}.
Case 4: ρ is unramified. If ρ� is also unramified, we simply take C� to be all
the unramified lifts of ρ and N� the unramified part of H1(G�,Ad

0ρ̄). It can be
easily checked that N� has the correct dimension.

It remains to define the sets C� for the primes at which ρ� ramifies and ρ
does not. By Proposition 2.10 this can only happen when ρ� is Steinberg, i.e.,
ρ� = ( χ ∗

0 1 ), with ∗|I� �= 0 (mod pn). The sets C� depend on the image of σ. Recall
that the eigenvalues of ρ(σ) are 1 and �.

(1) If ρ(σ) = ( 1 0
0 1 ), � ≡ 1 (mod p) so d1 = 6 and d2 = 3. Therefore N� has

dimension 3. In the previous cases, we have built sets C� of deformations of ρn
that depend on d2−d1 parameters, which in this case does not seem to be possible.
However, as pointed to us by Ravi Ramakrishna, one can construct elements which
are not cohomologically trivial for the residual representation, but give isomorphic
lifts modulo big powers of p that depend on the lift ρ�, as in Section 4 of [7]. Let C�
be the set of deformations of ρn satisfying

ρ(σ) =

(
� ∗
0 1

)
and ρ(τ) =

(
1 ∗
0 1

)
.

This set is preserved by the elements u1, u2 ∈ H1(G�,Ad
0ρ̄) defined by

u1(σ) =

(
0 1
0 0

)
, u1(τ) =

(
0 0
0 0

)
,

and

u2(σ) =

(
0 0
0 0

)
, u2(τ) =

(
0 1
0 0

)
.

We still need one extra element of H1(G�,Ad
0ρ̄) preserving C�. Recall that ρ�

satisfies

ρ�(σ) =

(
� x
0 1

)
and ρ�(τ) =

(
1 y
0 1

)
,

with y �= 0. Let n0 = min(v(x), v(y), v(� − 1)).

Lemma 4.4. There exists an element ν ∈ H1(G�,Ad
0ρ̄) not in 〈u1, u2〉 such that

whenever ρm is the reduction modulo pm of some element in C�, with m ≥ n0 +1,
then (1 + pm−1ν)ρm is the same deformation as ρm.
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Proof. The proof is divided into several cases.

We first define g1, g2, g3 ∈ H1(G�,Ad
0ρ̄) as

g1(σ) =

(
0 0
1 0

)
, g1(τ) =

(
0 0
0 0

)
,

g2(σ) =

(
1 0
0 −1

)
, g2(τ) =

(
0 0
0 0

)
,

g3(σ) =

(
0 0
0 0

)
, g3(τ) =

(
1 0
0 −1

)
.

We now enumerate a list of cases (depending on the valuations of x, y and �−1)
and for each of them specify an element ν and a matrix C congruent to the identity
modulo p such that C−1ρmC = (1 + pm−1ν)ρm. Write C =

( 1+pα pβ
pγ 1+pδ

)
. In each

case we will give the values of α, β, γ and δ and leave to the reader to check that
C−1ρmC = (1 + pm−1ν)ρm in each of them.

• If v(y) < v(x) and v(y) < v(� − 1): take ν = g3 and C satisfying α = δ,
β = 0, γy = pm−2 (mod pm−1) and γx = γ(�− 1) = 0 (mod pm−1).

• If v(x) < v(y) and v(x) < v(� − 1): take ν = g2 and C satisfying α = δ,
β = 0, γx = pm−2 (mod pm−1) and γy = γ(�− 1) = 0 (mod pm−1).

• If v(� − 1) < v(x) and v(� − 1) < v(x): take ν = g1 and C satisfying α = δ,
β = 0, γ(�− 1) = −pm−2 (mod pm−1) and γx = γy = 0 (mod pm−1).

• If v(y) = v(� − 1) and v(y) < v(x): then y = λ(� − 1). Take ν = g1 − λg3
and C satisfying α = δ, β = 0, γ(� − 1) = −pm−1 (mod pm−1) and γx = 0
(mod pm−1).

• If v(y) = v(x) and v(y) < v(� − 1): then y = λx. Take ν = g2 + λg3
and C satisfying α = δ, β = 0, γx = pm−2 (mod pm−1) and γ(� − 1) = 0
(mod pm−1).

• If v(x) = v(� − 1) and v(x) < v(y): then x = λ(� − 1). Take ν = g1 − λg2
and C satisfying α = δ, β = 0, γ(� − 1) = −pm−2 (mod pm−1) and γy = 0
(mod pm−1).

• If v(x) = v(� − 1) = v(y): then x = λ1(� − 1) and y = λ2(� − 1). Take
ν = g1 − λ1g2 − λ2g3 and C satisfying α = δ, β = 0, γ(� − 1) = −pm−2

(mod pm−1). �

Let N� = 〈u1, u2, ν〉, for the element ν of Lemma 4.4. It preserves the set C�
for all exponents m > n0. For smaller exponents, the reduction of ρ� modulo pm

is trivial, and as the trivial deformation does not have any equivalent deformation
other than itself, it is impossible to find an element ν as before in those cases.

(2) If ρ(σ�) = ( α 0
0 1 ), with α �= 1, necessarily � ≡ α (mod p) so d1 = 3 and

d2 = 2 if � ≡ −1 (mod p) and d1 = 2 and d2 = 1 otherwise. In both cases, let
u ∈ H1(G�,Ad

0ρ̄) be given by u(σ�) = ( 0 0
0 0 ) and u(τ�) = ( 0 1

0 0 ), and take N� = 〈u〉.
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Define the set C� of deformations ρ that satisfy

ρ(σ�) = ρ�(σ�) and ρ(τ�) =

(
1 ∗
0 1

)
.

Clearly N� preserves C�.

(3) If ρ(σ�) = ( 1 1
0 1 ) , necessarily � ≡ 1 (mod p), so d1 = 2 and d2 = 1. Let

u ∈ H1(G�,Ad
0ρ̄) be given by u(σ�) = 0 and u(τ�) = ( 0 1

0 0 ) and take N� = 〈u〉.
This subspace preserves the set C� of deformations ρ satisfying

ρ(σ�) = ρ�(σ�) and ρ(τ�) =

(
1 ∗
0 1

)
.

Remark 4.5. If we allow ramification in the coefficient field then the cases ruled
out by Proposition 2.10 may happen. Most of them correspond to cases like the first
unramified case, where a trick like in [7] needs to be used. It is worth pointing out
that in such cases we can construct the corresponding sets C� and subspacesN� but
the global arguments below do not adapt well to that situation. See Remark 5.10.

4.1. The case � = p

In this case we will pick Cp exactly as in [14] (local at p considerations), with the
observation that in the supersingular case, it follows from the work done in [12] that
the lifts picked have the same Hodge–Tate weights as ρp (which lie in the interval
[0, p−1]) and are crystalline. Note that in each case considered by Ramakrishna, ρp
is always trivially contained in Cp.

5. Auxiliary primes

The sets Q1 and Q2 mentioned in the introduction consist of nice primes with
some extra conditions. Recall that nice primes (as introduced in [10]) are primes
q �≡ ±1 (mod p) such that ρ is not ramified at q and ρ(σ) has different eigen-
values of ratio q, i.e., ρ̄(σ) =

(
qx 0
0 x

)
and ρ̄(τ) = ( 1 0

0 1 ). For these primes the

cohomological dimensions are dimH0(Gq,Ad
0ρ̄) = 1, dimH1(Gq,Ad

0ρ̄) = 2 and
dimH2(Gq,Ad

0ρ̄) = 1. The set Cq consists of deformations ρ such that

(5.1) ρ(τ) =

(
1 px
0 1

)
and ρ(σ) =

(
q py
0 1

)
.

These two conditions define a tamely ramified deformation of ρ. Clearly the set Cq
is preserved by a subspace Nq ⊆ H1(Gq,Ad

0ρ̄) of codimension 1 given by j(σ) =
( 0 0
0 0 ) and j(τ) = ( 0 1

0 0 ).
There are two main goals we want to achieve in this section. Firstly, we would

like to prove that auxiliary primes do exist for representations with coefficients in
W (F)/pn. In particular we need to check that there are primes q such that ρn|Gq

sends a Frobenius and a generator of the tame inertia to the matrices defined
in (5.1) modulo pn.
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Secondly, we need to reprove the properties of the auxiliary primes we are going
to use in our context, although they look similar to the arguments in [14].

5.1. Existence of auxiliary primes modulo pn

We claim that there are infinitely many nice primes. Following [13] and [14], let μp
be a primitive p-th root of unity, D = Q(Ad0ρ̄) ∩ Q(μp), K = Q(Ad0ρ̄)Q(μp),
D′ = Q(Ad0ρn) ∩ Q(μp) and K ′ = Q(Ad0ρn)Q(μp), which fit in the following
diagram:

K ′

���
�� ���

��
K

���
�� ���

��

Q(Ad0ρn)

			
			

Q(μp)








Q(Ad0ρ̄)

���
��

Q(μp)

��
��

D′ D

Q Q

Via the Artin map, the properties of a nice prime translate into the following:

• q �≡ ±1 (mod p) is equivalent to Frobq not being the identity nor complex
conjugation in Gal(Q(μp)/Q),

• q being an auxiliary prime is equivalent to being unramified in Q(Ad0ρn),
q �≡ ±1 (mod p) and Frobq lies in the conjugacy class of an element M ∈
Im(Ad0ρn), where M is a diagonal matrix with elements of ratio q in the
diagonal.

Therefore, if we prove that there is an element α ∈ Gal(K ′/Q) such that
α|Gal(Q(μp)/Q) = t �= ±1 and α|Gal(Q(Ad0ρn)/Q) = M where M is diagonal with
elements of ratio t in its diagonal, then Chebotarev’s theorem implies the result.

Proposition 5.1. There exists c = a × b ∈ Gal(K ′/Q) ⊆ Gal(Q(Ad0ρn)/Q) ×
Gal(Q(μp)/Q) such that a comes from an element M ∈ Im(ρn) 	 Gal(Q(ρn)/Q)
which has different eigenvalues with ratio b ∈ F×

p 	 Gal(Q(μp)/Q), b �= ±1.

The proof mimics the arguments given in [13] for finding such elements with a
slightly modification on their proof of the so-called Theorem 2. Recall the following
result (Lemma 3, IV-23 in1 [18]).

Lemma 5.2. Let p ≥ 5 and let F be a finite field of characteristic p. Let H ⊆
GL2(W (F)) be a closed subgroup and let H be its projection to GL2(F). If SL2(F) ⊆
H then SL2(W (F)) ⊆ H.

This has the following easy consequences:

Corollary 5.3. If SL2(F) ⊆ Im(ρ) then SL2(W (F)/pn) ⊆ Im(ρn).

Proof. Denote by π : W (F) →W (F)/pn the projection, then this follows applying
Lemma 5.2 with H = π−1(Im(ρn)) ⊆W (F), which is closed as GQ is compact. �

1Actually, Lemma 3 is stated and proved in [18] for F = Fp but the same proof holds for an
arbitrary finite field of characteristic p.
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The following lemma gives the existence of the element c.

Lemma 5.4. Let D′ be the field defined before. If SL2(F)⊆ Im(ρ), then [D′ : Q]≤2,
and moreover PSL2(F) ⊆ Gal(Q(Ad0ρ̄)/D′).

Proof. Observe that [Q(Ad0ρn) : Q(Ad0ρ̄)] = p∗ which is coprime with [Q(μp) : Q].
This implies that D′ = Q(Ad0ρn) ∩ Q(μp) = Q(Ad0ρ̄) ∩ Q(μp). Now both
PSL2(F) ⊆ Gal(Q(Ad0ρ̄)/D′) and [Q(Ad0ρ̄) ∩ Q(μp) : Q] = 1 or 2 follow from
Lemma 18 of [13], as we have proved that the field D′ is the same as the field D
of that lemma. �

Proof of Proposition 5.1. If F �= F5, let x ∈ F× be any element such that x2 ∈ F×
p

and x2 �= ±1 (observe that this exists for any F �= F5). Let x̃ ∈W (F)/pn be a lift of
x, b ∈ {1, . . . , p− 1} ⊆W (F)/pn be congruent to x2 modulo p and M =

(
x̃ 0
0 x̃−1

) ∈
SL2(W (F)/pn) ⊆ Im(ρn). Then c = (M, b) ∈ Gal(Q(Ad0ρn)/D

′)×Gal(Q(μp)/D
′)

is such an element.
For p = 5, we imposed ρ to be surjective. We have two possible scenarios:

• If D′ = Q then Gal(K/Q) 	 Gal(Q(Ad0ρ̄)/Q) × Gal(Q(μp)/Q) and we can
find the element c by taking a pair (M, b) where M =

(
q 0
0 1

) ∈ GL2(W (F)/pn) =
Im(ρn) and b ≡ q �= ±1 (mod 5).

• If D′ �= Q then [D′ : Q] = 2. Then PSL2(F5) ⊆ Gal(Q(Ad0ρ̄)/D′), from
Lemma 5.1. As PSL2(F5)⊂ PGL2(F5) with index 2, PSL2(F5)= Gal(Q(Ad0ρ̄)/D′).
On the other hand, Gal(Q(μp)/D

′) ⊆ Gal(Q(μp)/Q) 	 F×
5 with index 2, so

Gal(Q(μp)/D
′) 	 {±1}. With this information we know that the pair (M, b),

for M = ( 3 0
0 1 ) and b = 3, defines an element in Gal(K ′/Q), as both elements

coincide when restricted to D′ (both act non trivially). �

Remark 5.5. The element c constructed in Proposition 5.1 is not the same as
the one in [13]. In fact they live in different Galois groups, the first one lying in
Gal(K ′/Q) and the second one in Gal(K/Q). However, it is true that the projection
of the element we constructed through the map Gal(K ′/Q) → Gal(K/Q) is an
element like the one defined by Ramakrishna. In particular, both elements act in
the same way on Ad0ρ̄ (as the action of our c is through this projection). To avoid
confusion we denote the projection by c̃ .

5.2. Properties of auxiliary primes

The auxiliary primes must also fulfill some requirements like the ones in Fact 16 and
Lemma 14 of [14]. Concretely, for different non-zero elements f ∈ H1(GP ,Ad

0ρ̄)
and g ∈ H1(GP , (Ad

0ρ̄)∗), the auxiliary prime q should satisfy f |Gq = 0 or
f |Gq /∈ Nq and g|Gq �= 0 at the same time.

If f ∈ H1(GP ,Ad
0ρ̄), then f |Gal(Q/Q(Ad0ρ̄)) is a homomorphism, so we can asso-

ciate an extension L̃f/Q(Ad0ρ̄) fixed by its kernel. Also let Lf = L̃fK = L̃f (μp).
Analogously, for g ∈ H1(GP , (Ad

0ρ̄)∗) we define Mg/Q((Ad0ρ̄)∗) as the fixed
field by the kernel of g|Gal(Q/Q((Ad0ρ̄)∗)). Notice that we can obtain information
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about f |Gq or g|Gq by looking at the conjugacy class of Frobq in Gal(Lf/Q) or
Gal(Mg/Q).

Let f1, . . . , fr1 and g1, . . . , gr2 be bases for H1(GP ,Ad
0ρ̄) and H1(GP , (Ad

0ρ̄)∗)
respectively. Define L to be the composition of the fields Lfi , M the composition
of the Mgj , and F = LM . The following lemma is a summary of results about
these extensions from [13].

Lemma 5.6. Let fi and gj as above.

(1) For every fi, we have Gal(Lfi/K) 	 Ad0ρ̄ as GQ-modules, and for every gj,
we have Gal(Mgj/K) 	 (Ad0ρ̄)∗.

(2) Gal(L/K) 	 ∏
Gal(Lfi/K) 	 (Ad0ρ̄)r1 and Gal(M/K) 	 ∏

Gal(Mgj/K) 	
((Ad0ρ̄)∗)r2 . Also M ∩ L = K so Gal(F/K) 	 Gal(L/K)×Gal(M/K).

(3) The exact sequences

1 −→ Gal(L/K) −→ Gal(L/Q) −→ Gal(K/Q) −→ 1,

and

1 −→ Gal(M/K) −→ Gal(M/Q) −→ Gal(K/Q) −→ 1,

both split, hence Gal(F/Q) 	 Gal(F/K)�Gal(K/Q).

Proof. The first claim is Lemma 9, the second is Lemma 11 and the last one is
Lemma 13 of [13] with two remarks:

− In [13] these results are proved for the representation Ãd
0
ρ̄, which is the

descent of Ad0ρ̄ to its minimal field of definition. As we are assuming that SL2(F) ⊆
Im(ρ), we have that Ad0ρ̄ is already defined in its minimal field of definition,
because of Lemma 17 of [13].

− In [13] these lemmas are proved for P = S the set of ramification of Ad0ρ̄,
but the same proofs work for any P ⊇ S. �

Finally, we can read properties of f |Gq ∈ H1(Gq,Ad
0ρ̄) from the class of

Frobq in Gal(Lf/Q) 	 Gal(Lf/K) � Gal(K/Q). Recall that the element c ∈
Gal(K ′/Q) constructed in the previous section acts on Ad0ρ̄ through the projec-
tion to Gal(Q(Ad0ρ̄)/Q).

Proposition 5.7. Let q ∈ Q be a prime, let f ∈ H1(GP ,Ad
0ρ̄) and let g ∈

H1(GP , (Ad
0ρ̄)∗).

(1) If Frobq lies in the conjugacy class of 0� c̃ ∈ Gal(Lf/Q) then f |Gq = 0. The
same holds for g in Gal(Mg/Q).

(2) There are nontrivial elements α ∈ Ad0ρ̄ on which c acts trivially and if Frobq
lies in the conjugacy class of α� c̃ ∈ Gal(Lf/Q) then f |Gq /∈ Nq.

(3) There are nontrivial elements β ∈ (Ad0ρ̄)∗ on which c acts trivially and if
Frobq lies in the conjugacy class of β � c̃ ∈ Gal(Mg/Q) then g|Gq �= 0.
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Proof. See Lemmas 14, 15 and 16, and Corollaries 1 and 2 of [13], noting that

in our setting Ad0ρ̄ = Ãd
0
ρ̄, so the proof of the existence of α and β is almost

trivial. �

Corollary 5.8. There exists primes q such that ρ(Frobq) has different eigenvalues
of ratio q and such that for the basis elements any of the following conditions can
be achieved: fi|Gq = 0 or fi|Gq /∈ Nq and gj |Gq = 0 or gj|Gq �= 0.

Proof. Pick an element

Ω = ω � c̃ ∈ Gal(F/Q) 	
( r1∏
i=1

Gal(Lfi/Q)×
r2∏
j=1

Gal(Mgj/Q)
)
�Gal(K/Q),

where ω has coordinates 0 or α whether we want fi|Gq to be 0 or not in Nq in the
first product and 0 or β whether we want gj |Gq to be 0 or not 0 in the second one.
Then any q such that Frobq lies in the conjugacy class of Ω works. �

We need the same to hold for ρn, i.e., the auxiliary primes q must satisfy the
same conditions and ρn(Frobq) must have different eigenvalues of ratio q. Propo-
sition 5.1 implies that any q whose Frobenius element lies in the conjugacy class
of c satisfies this extra condition. Therefore, we only need to check that there is
an element θ in Gal(K ′F/Q) such that θ|K′ = c and θ|F = Ω.

Observe that Ω|K = c̃ = c|K , a necessary condition. It is enough to prove that
K ′ ∩ F = K, as any pair of elements in Gal(K ′/Q) and Gal(F/Q) that are equal
when restricted to K ′ ∩ F define an element in Gal(K ′F/Q).

Lemma 5.9. K ′ ∩ F = K.

Proof. Let H = Gal(K ′/K) ⊆ PGL2(W (F)/pn) and π1 : PGL2(W (F)/pn) →
PGL2(F). Observe that H consists of the classes of matrices in Im(ρn) which are
trivial in PGL2(F), i.e., H = Im(Ad0ρn) ∩Ker(π1).

Let PSL2(W (F)/pn) denote the image of SL2(W (F)/pn) in PGL2(W (F)/pn).
By hypotheses PSL2(W (F)/pn) ⊆ Im(Ad0ρn) ⊆ PGL2(W (F)/pn), and therefore
PSL2(W (F)/pn)∩Ker(π1)⊆ H ⊆ Ker(π1). As [PSL2(W (F)/pn) : PGL2(W (F)/pn)]
= 2 and Ker(π1) is a p group, we have that H = Ker(π1).

Recall that Gal(F/K) 	 (Ad0ρ̄)r×(Ad0ρ̄∗)s as Z[GQ]-module and by Lemma 7
of [13], this is its decomposition as Z[GQ] simple modules. This implies that if
K ′ ∩ F �= K then Ad0ρ̄ or (Ad0ρ̄)∗ appear as a quotient of Gal(K ′/K).

Assume thatK ′∩F �= K and that there is a surjective morphism� : H → Ad0ρ̄.
Let π2 : PGL2(W (F)/pn) → PGL2(W (F)/p2) and let N = ker(π2) ⊂ H. We claim
that �(N ) = 0. Any matrix Id+ p2M ∈ GL2(W (F)/pn) is the p-th power of some
matrix Id + pN ∈ GL2(W (F)/pn). Therefore, if Id + p2M ∈ N we have that

�(Id + p2M) = �((Id + pN)p) = p�(Id + pN) = 0.

This implies that � factors through Gal(Q(Ad0ρ2)/K), where Ad0ρ2 is the reduc-
tion mod p2 of Ad0ρn. Since #Gal(Q(Ad0ρ2)/K) = #(Im(Ad0ρ2) ∩ Ker(π1)) ≤
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(#F)3 and #Ad0ρ̄ = (#F)3 we necessarily have Gal(Q(Ad0ρ2)/Q) = Gal(Lf/Q)
for some f ∈ H1(GQ,Ad

0ρ̄). But this cannot happen since it would imply that
the image of Ad0ρ2 splits, which is impossible as it contains PSL2(W (F)/p2) when
p ≥ 7 or PGL2(W (F)/p2) when p = 5.

The case where there is a surjection π : H → (Ad0ρ̄)∗ works the same. �

Remark 5.10. As we mentioned before, this global argument does not adapt to
the cases when the coefficient field is ramified. Specifically, Lemma 5.9 above is no
longer true if we allow the coefficients to ramify, as the extension corresponding
to Ad0ρ2 corresponds to an element of H1(GQ,Ad

0ρ̄). Then we cannot apply
Chebotarev’s theorem to find auxiliary primes which are nontrivial in the element
of the cohomology corresponding to Ad0ρ2, so we do not get an isomorphism
between local and global deformations.

We end this section with a key property about auxiliary primes that will allow
us to get the desired local to global isomorphism for H1. For an element τ ∈
Gal(L/K) we define the Chebotarev set Tτ as the set of nice primes for ρn such
that Frobq ∈ Gal(K/Q)�Gal(L/K) has its second coordinate equal to τ (the first
one is determined as we are asking q to be nice for ρn).

Proposition 5.11. For any τ ∈ Gal(L/K) as above we have that

H1(GP∪Tτ ,Ad
0ρ̄) −→

⊕
�∈P

H1(G�,Ad
0ρ̄)

is a surjection.

Proof. This is essentially Proposition 10 of [14], except that we are asking for a
condition on Gal(K ′/Q) rather than Gal(K/Q) (the set Tτ is composed by primes
that are nice for ρn). Nevertheless, the same proof applies as the main argument
is that for any g ∈ H1(GP∪Tτ , (Ad

0ρ̄)∗) there are primes q ∈ Tτ such that g|Gq �= 0
and this is Proposition 5.7. �

6. The small exponent case

So far we have focused on constructing an appropriate set of deformation conditions
and auxiliary primes for the inductive method to work, but as was already noticed,
the set C� and subspace N� of Case 4 (1) only work for powers pm such that ρ� is
not trivial modulo pm−1.

It might be the case that there is a prime � such that ρn is trivial (not only un-
ramified) at �, but the local deformation ρ� is ramified. In this case, the argument
fails. To bypass this obstacle, we rely on a result by Khare, Larsen and Ramakr-
ishna (the main idea appeared first in [10] but it is better explained in [15]), where
they prove that given ρn a global mod pn deformation, one can lift ρn a finite
number of powers of p, controlling local types at a finite set of primes, at the cost
of adding at each lifting step a finite number of ramified primes.
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Proposition 6.1. Let ρn : GP → GL2(W (F)/pn), with big image (i.e., SL2(F) ⊆
Im(ρ)) and z = (z�)�∈P ∈ ⊕�∈P H1(G�,Ad

0ρ̄) be any element. Then one of the
following holds :

• There is a nice prime q and an element h ∈ H1(GP∪{q},Ad
0ρ̄) such that the

image of h in ⊕�∈P H1(G�,Ad
0ρ̄) is z and h|Gq ∈ Nq.

• There are two nice primes q1 and q2, and an element h∈ H1(GP∪{q1,q2},Ad
0ρ̄)

such that the image of h in ⊕�∈P H1(G�,Ad
0ρ̄) is z and h|Gqi

∈ Nqi .

Proof. See Proposition 3.6 of [15]. �

The application of this result to our setting is the following.

Proposition 6.2. Let ρn : GS → GL2(W (F)/pn) and ρ� : G� → GL2(W (F)) for
� ∈ P as in Theorem A. Assume that III2P (Ad

0ρ̄) = 0. Then for any exponent
s > n there is a finite set of primes P ′ (depending on s) containing P and a
deformation

ρs : GP ′ → GL2(W (F)/ps)

such that :

• ρs lifts ρn,

• ρ� ≡ ρs|G�
(mod ps),

• the primes q ∈ P ′\P are nice for ρn and ρs|Gq is a reduction of a member
of Cq.

Proof. By induction in s. If s = n the statement is trivial. Assume that the result
holds for an exponent s. We want to prove that it is also true for s+ 1.

Let ρn and ρ� for every � ∈ P as in the statement of the proposition. Ap-
plying our inductive hypothesis we get a deformation ρs : GP ′ → GL2(W (F)/ps)
lifting ρn and satisfying the local conditions. As ρ� mod ps lifts to W (F)/ps+1 for
all � ∈ P and ρs|Gq is the reduction of some member of Cq for all q ∈ P ′\P , the
deformation ρs is locally unobstructed and the hypothesis III2P (Ad

0ρ̄) = 0 implies
that ρs lifts to a ρ̃s+1 : GP ′ → GL2(W (F)/ps+1).

We need to adjust ρ̃s+1 such that ρs+1|G�
≡ ρ� (mod ps) for all � ∈ P . Since ρ�

are deformation, there exists an element z = (z�)�∈P ∈ ⊕�∈P H1(G�,Ad
0ρ̄) that

such that, for all

(Id+psz�)ρ̃s+1|G�
= ρ� (mod ps+1) ∀� ∈ P, and (Id+pszq)ρ̃s+1|Gq ∈ Cq ∀q ∈ P ′\P.

Then by Proposition 6.1 there exists a global element to adjust by as claimed. �

Remark 6.3. During the lifting process (as in the last proposition), the ramifica-
tion set P could get bigger at each step into a new ramification P ′. A crucial fact
that we widely used is that if P ⊂ P ′ then III2P (Ad

0ρ̄) = 0 implies III2P ′(Ad0ρ̄) = 0.
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7. Proof of main theorems

Proof of Theorem A. For each prime � ∈ P such that ρ� is ramified let n0 be the
least exponent such that ρ� modulo pn0 is non-trivial. In Section 4 we constructed
for each � ∈ P a pair (C�, N�) such that N� preserves the modulo pm reductions
of elements in C� for all m > n0. If n0 �= n, i.e., if there exists a prime � for
which ρn|G� is trivial but ρ� is ramified, we apply Proposition 6.2 to lift ρn to
exponent n0 + 1. From this exponent, the inductive method does work, so we can
mimic the proof of Theorem 1 of [14].

Let

r = dimF III
2
P (Ad

0ρ̄) = dimF III
1
P ((Ad

0ρ̄)∗),

and let {g1, . . . , gr} be a basis of III1P ((Ad
0ρ̄)∗). Let {f1, . . . , fr} be a linearly

independent set in H1(GP ,Ad
0ρ̄). For each i = 1, . . . , r let qi be a nice prime such

that:
fi|Gqi

/∈ Nqi , gi|Gqi
�= 0, fj|Gqi

= gj|Gqi
= 0 for j �= i.

Such primes exists by virtue of Corollary 5.8 and Lemma 5.9. Let Q1 = {q1, . . . , qr}
so that III2P∪Q1

(Ad0ρ̄) = 0 = III1P∪Q1
((Ad0ρ̄)∗). With this choice, the inflation

map H1(GP ,Ad
0ρ̄) → H1(GP∪Q1 ,Ad

0ρ̄) is an isomorphism by the same dimension
counting as in the proof of Fact 16 in [14]. Let P ′ = P ∪Q1.

Next we need a set of auxiliary primes Q2 such that the restriction map

H1(GP ′∪Q2 ,Ad
0ρ̄) →

⊕
�∈P ′∪Q2

H1(G�,Ad
0ρ̄)/N�,

is an isomorphism. Let {f1, . . . , fd} be a basis of the preimage of⊕�∈P ′N� under the
restriction map H1(GP ′ ,Ad0ρ̄) → ⊕l∈P ′ H1(G�,Ad

0ρ̄) . Using the identification of
Lemma 5.6, for 1 ≤ i ≤ d, let αi be an element of Gal(L/K) all whose entries are
0 except the i-th which is a nonzero element in which c̃ acts trivially. Let Ti be the
Chebotarev set attached to αi (i.e., the set of nice primes whose Frobenius class
in Gal(L/Q) lies in the class of c� αi). Proposition 5.11 implies that the map

H1(GP ′∪Ti ,Ad
0ρ̄) → ⊕�∈P H1(G�,Ad

0ρ̄)

is surjective. By Lemma 14 in [14], we can pick a prime qi ∈ Ti such that if
Q2 = {q1, . . . , qd}, then the map

H1(GP ′∪Q2 ,Ad
0ρ̄) → ⊕�∈P ′ H1(G�,Ad

0ρ̄)/N�,

is surjective. It is easy to see that with this set Q2 is the desired one. Then
the process of lifting and adjusting proves the existence of the lift ρ : GP∪Q →
GL2(W (F)).

To prove modularity, we know that ρ is odd and has big residual image hence
it is residually modular (by Serre’s conjectures), so we can use the appropriate
modularity lifting theorem: the ordinary case follows from Theorem 5.2 of [19]
while the supersingular case follows from Theorem 3.6 of [5].
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Regarding the conditions at inertia of the lift, for every � ∈ P the lift ρ satisfies
ρ|G�

∈ C�. For primes � where ρn|G�
is ramified, the condition holds automatically

since all deformations in C� have isomorphic restrictions to inertia. In the case
where ρn is unramified and ρ� is Steinberg, observe that the set C� contains a unique
unramified deformation. Since ρ is modular, if it were not ramified at �, then the
eigenvalues of ρ(Frob�) should have the same absolute value but all deformations
in C� have Frobenius eigenvalues q and 1. �

Recall the hypothesis of our second result: let f ∈ Sk(Γ0(N), ε) be a newform,
eigenform for the Hecke operators, with coefficient field Kf and ring of integers Of .
Let p a prime ideal in Of dividing a rational prime p andKp and Op their respective
completions at p. Let

ρn : Gal(Q/Q) → GL2(Op/p
n),

be the reduction modulo pn of one of its p-adic Galois representation (which de-
pends on the choice of a basis).

Proof of Theorem B. We want to apply Theorem A to ρn, with local deforma-
tions ρf,p|I� at the primes dividing N ′. Clearly the second and third hypothesis of
Theorem A hold (from the fact that p > k) and the hypothesis p � N or f being
ordinary at p implies that ρf,p|Ip can be taken as a deformation at p. Then by
Theorem A there exists a modular representation ρ which is congruent to ρf,p mod-
ulo pn, and of conductor dividing N ′q1 . . . qr. By the choice of the inertia action,
the conductor of ρ has the same valuation as the ρn one at the primes dividing N ′,
so we only need to show that all the primes qi are ramified ones. But if this is not
the case, by the choice of the sets Cqi , and looking at the action of Frobenius, it
would contradict Weil’s conjectures, since the roots of the Frobenius’ characteristic
polynomial would be 1 and q, which do not have the same absolute value.

If ρf does not lose ramification while reduced modulo pn it might happen that
r = 0 so the newform g obtained would be equal to f . If this is the case, we apply
Theorem A with P = S ∪ {q}, q being in the hypotheses of auxiliary primes and

ρq =

(
χ ∗
0 1

)
with ∗ ramified (up to twist). �

8. An example

We end this article with an explicit example of Theorem A for level raising mod-
ulo p2. For an elliptic curve E/Q of prime conductor q and full image at p = 5,
i.e., Gal(Q(E[5])/Q) 	 GL2(F5), we construct a newform in S2(Γ0(qr)) (for some
prime r) which is congruent to E modulo 25. The choices p = 5 and prime con-
ductor are used to make the cohomological dimensions as small as possible.

Let ρ5 be the 5-adic Galois representation attached to E (by looking at the
Galois action on the Tate module). The adjoint representation of its residual
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representation is isomorphic to PGL2(F5) which is isomorphic to S5, the symmetric
group in 5 elements. We need to compute H1(GS ,Ad

0ρ̄) and H2(GS ,Ad
0ρ̄) for

S = {5, q}. Recall the following results:

• If � �≡ ±1 (mod p) then H2(G�,Ad
0ρ̄) = 0 (see Section 3, or [13] Proposi-

tion 2).

• If ρ5 is flat, and ρ5|G5 is indecomposable, then H2(G5,Ad
0ρ̄) = 0 (see [14],

Table 3).

Let r = dim III1S((Ad
0ρ̄)∗), and let s be the number of primes for which

H2(G�,Ad
0ρ̄) �= 0. Then

• dimH1(GS ,Ad
0ρ̄) = r + s+ 2,

• dimH2(GS ,Ad
0ρ̄) = r + s.

(See Lemma in page 139 of [14].)

8.1. Some group theory

Recall from Lemma 9 (of [13]) that the elements in H1(GS ,Ad
0ρ̄) (respectively,

in H1(GS ,Ad
0ρ̄∗)) give extensions M of Q(Ad0ρ̄) (respectively, Q(Ad0ρ̄∗)) whose

Galois group over Q is isomorphic to PGL2(F5)�M0
2 (F5) (the 2× 2 matrices with

zero trace). The problem is that PGL2(F5) has order 120 and is very non-abelian
(nor solvable), hence nowadays we cannot do class field theory in such extensions.
To overcome this problem we study the groups involved so as to work with smaller
extensions of Q.

Lemma 8.1. Let H be a subgroup of S5 and let V ⊆ M0
2 (F5) be an H-stable

subspace. Then H � V is a subgroup of S5 �M0
2 (F5). Furthermore, if V ⊆ W ,

then H�V is a normal subgroup of H�W if and only if H acts trivially on W/V .

Proof. The first claim is clear from the definition of a semi-direct product. For the
second claim, note that conjugation acts in the following way

(h,w)(g, v)(h,w)−1 = (hgh−1, w + h · v − (hgh−1) · w).
Since hgh−1 varies over all elements of H , the subgroup is normal if and only if
w − h · w ∈ V for all h ∈ H . �

Let H be the unipotent subgroup of PGL2(F5) given by matrices of the form
( 1 ∗
0 1 ) and let B ⊂ PGL2(F5) the Borel subgroup (of upper triangular matrices).

Clearly |H | = 5, |B| = 20 and H�B. For both H and B, M0
2 (F5) has the following

stable submodules filtration:

0 ⊆ U0 ⊆ U1 ⊆M0
2 (F5),

where U1 is the subspace of upper triangular matrices and U0 is the subspace of
strictly upper triangular matrices. The group H acts trivially on all quotients of
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this filtration and B acts trivially on U1/U0. Using Lemma 8.1 we get the following
Hasse diagram:

(8.1) M

���
���

���
���

���
���

���
���

���
���

���
���

���
���

MH�{0}

Galois

5

���
���

���
�

MH�U0

Galois

5

���
���

���
�

MB�{0}

5

non-Galois���
���

���
�

Q(Ad0ρ̄)

5

MH�U1

5

Galois���
���

���
��

MB�U0

5

Galois���
��
��
��
�

Q(Ad0ρ̄)H

4Galois

MB�U1

5

non-Galois���
���

���
��

Q(Ad0ρ̄)B

6

Q

Remark 8.2. The Galois closure of MH�U1

is M , since it is easy to check that
the intersection of all Galois conjugates of H � U1 in S5 �M0

2 (F5) is trivial.

We also consider the subgroup S3 × C2 (where Cn denotes the cyclic group of
order n). If we identify

S3 × C2 =
〈(

1 2
2 0

)
,
(
4 2
1 1

)〉
×
〈(

3 2
2 2

)〉
in PGL2(F5), the action decomposes as〈( 3 1

0 2

)
,
( 3 0
1 2

)〉
⊕
〈( 4 1

1 1

)〉
.

The action in the 1-dimensional subspace (which can be identified with the quo-
tient) is non-trivial. Nevertheless its restriction to the cyclic subgroup of order
6 is trivial (such group is the stabilizer of the matrix ( 4 1

1 1 )). It is clear that the
intersection of its conjugates is trivial (since A5 is the only normal subgroup of S5

and the action of S5 in M0
2 (F5) is irreducible).

Lemma 8.3. (C3 × C2)� V2 � (S3 × C2)�M0
2 (F5).

Proof. Lemma 8.1 implies that

(C3 × C2)� V2 � (C3 × C2)�M0
2 (F5),

but since C3 � S3, the same proof gives the statement. �
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For such group, we get the following Hasse diagram:

M









Q(Ad0ρ̄) MC6�V2

Galois���
���

���
���

�

Q(Ad0ρ̄)C6 M (S3×C2)�V2

non-Galois���
���

���
���

�

Q(Ad0ρ̄)S3×C2

Q

To compute with the adjoint representation, we must add the 5-th roots of
unity. The Hasse diagram is the following:

(8.2) Q(Ad0ρ̄, ξ5)




���
���

Q(Ad0ρ̄)

���
���

Q(ξ5)

���
��

Q(
√
5)

Q

Then Gal(Q(Ad0ρ̄∗)/Q) 	 Gal(Q(Ad0ρ̄, ξ5)/Q) 	 C4 � A5, where the action is
through the projection C4 → C2, and the latter action is the classical isomorphism
S5 	 C2 � A5. This Galois group also acts on M0

2 (F5), where the C4 part acts
as F×

5 (which corresponds to the mod 5-cyclotomic character action), and A5 as
before. To compute the Shafarevich group III1(GS ,Ad

0ρ̄∗), we do a similar trick as
before, we consider the subgroup C4�C3 (which also satisfies that the intersection
of its conjugates is trivial), which is an extension of the previous cyclic group of
order 6, and get exactly the same degree 20 extension.

8.2. A specific example

In this section we will use many computations that were done using PARI/GP [11].
Consider the elliptic curve

E89b1 : y2 + xy = x3 + x2 − 2

Let ρE,5 denote the representation attached to the 5-adic Tate module of E. The
residual representation has full image (using Sage [17]), so if we look at the repre-
sentation on the 52 torsion points, we get a representation that is in the hypothesis
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of Theorem A. The residual adjoint representation corresponds to a Galois exten-
sion ofQ with Galois group isomorphic to PGL2(F5) 	 S5 and ramified at 5 and 89.
We can search for such extensions (they are the Galois closure of a degree 5 exten-
sion) in Jones–Roberts tables (see [8]), and get 12 such extensions, given by the
polynomials:

x5 − x4 + 5x3 − x2 + 6x+ 1, x5 + 10x3 − 20x2 + 45x− 148,

x5 − 5x3 − 5x2 − 5x− 6, x5 − 30x2 − 30x− 97,

x5 − 125x2 + 375x+ 425, x5 + 445x− 445,

x5 − 890x2 − 4005x− 5429, x5 − 890x2 + 9790x+ 10591,

x5 − 445x2 + 20915x+ 159132, x5 + 50x3 − 125x2 + 350x− 680,

x5 − 50x3 − 325x2 − 375x− 5220, x5 + 200x3 − 1625x2 + 9575x− 176395,

x5 − 200x3 − 375x2 + 22925x− 81155.

To know which one corresponds to our elliptic curve, we just compute the order
of Frobenius at 3, 7, 11 and 13, which are 6, 4, 3 and 6 respectively. If we compute
the inertial degree at those primes in the above extensions, we see that the only
extension with those inertial degrees is the one corresponding to x5 + 445x− 445.

Lemma 8.4. The representation ρE,5 satisfies the following properties :

• The extensions corresponding to its image and the adjoint image ramify at 89.

• If we restrict the representation to the decomposition group at 5, it is ordinary
and indecomposable.

Proof. The first fact can be checked by computing the field discriminant (note that
the scalar matrices correspond to an extension unramified at 89). Nevertheless, this
is a more general statement, since if the residual representation is unramified at 89,
by Ribet’s lowering the level theorem, there should exist a weight 2 and level 1
modular form, which is not the case. To prove the second statement, we know that
the representation is ordinary because a5(E) = −2 (it is not divisible by 5). If the
restriction to inertia at 5 were decomposable, then the order of inertia would be 4,
but 5 ramifies completely in the degree 5 extension computed above. �

The degree 20 subextension of Q(Ad0ρ̄E) is given by the polynomial

P (x) = x20 + 45822985000 x16 + 245086878906250 x14 + 535483380861855000000 x12

+ 6701700495283613720703125 x10 + 232361959662822291573095703125 x8

+ 25962085250952507779173217773437500 x6

− 403189903768430226056054371193847656250 x4

+ 4640939013548409613939783894070434570312500 x2

+ 96689369817657701380917597046902374542236328125.

Lemma 8.5. dimH2(G{5,89},Ad
0ρ̄E,5) = 0 and dimH1(G{5,89},Ad

0ρ̄E,5) = 2.
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Proof. Recall that dimH2(GS ,Ad
0ρ̄E) = r + s and dimH1(GS ,Ad

0ρ̄E) = r +
s + 2, where r = dim III1S((Ad

0ρ̄E)
∗) and s is the number of � ∈ S such that

dimH2(G�,Ad
0ρ̄E) �= 0.

It can be checked that E has split multiplicative reduction at 89, implying that
the residual representation is Steinberg at 89.

As 89 ≡ −1 (mod 5), the comments at the beginning of Section 8 imply
H2(G89,Ad

0ρ̄E) = 0 and since ρE,5|G5 is indecomposable H2(G5,Ad
0ρ̄E) = 0

and s = 0. On the other hand, elements of III1S((Ad
0ρ̄E)

∗) give rise to unramified
degree 5 abelian extensions of Q((Ad0ρ̄E)

∗) where the primes above 5 and 89 split
completely. In particular, they are unramified extensions of Q(Ad0ρ̄E)

C6 (see Di-
agram (8.2) and the discussion after it). Using PARI/GP [11] one can check that
the class number of such degree 20 extension is 24, which is not divisible by 5, so
Sha is trivial and r = 0. �

Remark 8.6. The same argument proves that dimH1(G{5},Ad
0ρ̄E) = 2, and by

the inflation-restriction exact sequence, H1(G{5,89},Ad
0ρ̄E) 	 H1(G{5},Ad

0ρ̄E) so
we restrict to elements which are unramified at 89.

Remark 8.7. In our hypothesis, the local H1(G5,Ad
0ρ̄E) has dimension 3, and

the subspace N5 is that of finite flat group schemes which is 1 dimensional (by
Table 3 of [14]).

Consider the map

(8.3) H1(G{5,89},Ad
0ρ̄E) �→ H1(G5,Ad

0ρ̄E)/N5 ×H1(G89,Ad
0ρ̄E)/N89.

Recall that N89 = H1(G89,Ad
0ρ̄E), so we can just discard this term. Both spaces

have dimension 2, so we need to compute the kernel of the map. Elements on
the left give rise to degree 5 extensions of L = Q(Ad0ρ̄E)

H that are unramified
outside 5 and 89. A polynomial defining L is

x24 − 9901250 x21 − 2291149250 x20 − 110151406250 x19 + 38233553109375 x18

+ 23557750800468750 x17 + 11619555204080093750 x16 − 19413331678164062500 x15

− 125423983759758052890625 x14 − 51488038276826726562500000 x13

− 10523678241093366455173828125 x12 − 106130857077478716288232421875 x11

− 175263255660771553472759091796875x10+44232966417342564073908569335937500x9

+ 22607278096633010862335357756591796875 x8

+ 491899359571950166587262640405273437500 x7

+ 286726776632710222559712771240091552734375 x6

+ 61254459616385605854391463803496704101562500 x5

+ 5346974474154298521538612265233075720214843750 x4

+ 333024482268238924643917008136132488250732421875 x3

+ 53735066160353981335257513593580636940002441406250 x2

+ 4715974971592347401743210281496148224925994873046875 x

+ 183669060144793707552717959489774709476947784423828125



Congruences between modular forms modulo prime powers 1639

In order to replicate the proof of Theorem A, we need to understand the mor-
phism (8.3). We thank Ravi Ramakrishna for the following observation.

Lemma 8.8. The morphism (8.3) has one dimensional kernel.

Proof. The domain of the morphism (8.3) is of dimension 2. We will see that
its kernel is neither 0 nor 2 dimensional. The kernel gives the tangent space of
the deformation problem corresponding to minimally ramified lifts of ρE . If the
morphism were injective, then the universal deformation ring should be isomorphic
to Z5, and there should be a unique lift to any coefficient ring. However, it can be
checked that there is a modular form of level 89 and weight 2 which is congruent
to E modulo 5, therefore the kernel of the morphism (8.3) is not trivial.

On the other hand, since N89 = H1(G89,Ad
0ρ̄E), the kernel consists of cocycles

mapping to N5 in H1(G5,Ad
0ρ̄E). As the elements in H1(G{5,89},Ad

0ρ̄E) are only
ramified at 5, if two linearly independent cocycles map to N5 (which is one dimen-
sional) we can take a linear combination of them mapping to zero. In particular,
there exists an unramified extension of Q(Ad0ρ̄E) which is not the case. �

Lemma 8.8 tells us that there is a cocycle κ in H1(G5,89,Ad
0ρ̄E) that maps

to H1
flat(G5,Ad

0ρ̄). We want to compute this extension. The following lemma
describes the corresponding extensions.

Lemma 8.9. A cocycle κ lies in H1
flat(G5,Ad

0ρ̄) if and only if there is a prime

above 5 in Q(Ad0ρ̄)B that does not ramify in MB�U0

.

Proof. Let F = Q(Ad0ρ̄)B and F ′ = MB�U0

. Recall that to a cocycle κ ∈
H1(G{5,89},Ad

0ρ̄) we attached the field M fixed by Kerκ|G
Q(Ad0 ρ̄)

= κ|−1
G

Q(Ad0 ρ̄)
(0).

Since F is the field fixed by GF = κ|−1
GF

(Ad0ρ̄) it can be easily seen that F ′ is the
field fixed by κ|−1

GF
(U0). Let I5 be a inertia group at 5 in Gal(M/Q). By definition,

H1
flat(G5,Ad

0ρ̄) = Ker
(
H1(G5,Ad

0ρ̄) → H1(I5,Ad
0ρ̄/U0)

)
,

so κ ∈ H1
flat(G5,Ad

0ρ̄) if and only if there is a representative of the class such
that κ(I5) ⊆ U0 which happens if and only if I5 ⊆ κ−1(U0). We claim that
I5 ⊆ κ−1(U0) if and only if I5∩GF ⊆ κ|−1

GF
(U0) if and only if κ|GF (I5∩GF ) ⊆ U0.

This follows from the following facts:

• κ factors through Gal(Q(Ad0ρ̄)/Q)�Gal(M/Q(Ad0ρ̄)).

• The image of I5 in Gal(Q(Ad0ρ̄)/Q)�Gal(M/Q(Ad0ρ̄)) is ρ(I5)� κ(I5).

• κ(I5 ∩Gal(Q(Ad0ρ̄)/Q)� 1) = ρ(I5)� 1 = Gal(Q(Ad0ρ̄)/F ) 	 B � 1.

• U0 is stable under Gal(Q(Ad0ρ̄)/F ) 	 B.

Summing up, κ ∈ H1
flat(G5,Ad

0ρ̄) if and only if I5 ∩GF ⊆ κ|−1
GF

(U0) if and only if

(since F ′ is the field fixed by κ|−1
GF

(U0)) the prime in F above 5 does not ramify
in F ′. �
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Remark 8.10. The cocycle κ gives a non-abelian degree 25 extension of F (see
Diagram (8.1)). Instead we compute it as a degree 5 abelian extension of L (which
has degree 24) using the fact that it is unramified at a prime above 5 with ramifi-
cation degree 4 in L/Q.

To use class field theory, we bound the modulus exponent e(p) with the follow-
ing result.

Proposition 8.11. Let L/K be an abelian extension of prime degree p and p a
prime ideal of K. Let e(p|p) denote the ramification degree of p over the rational
prime p. If p ramifies in L/K, then{

e(p) = 1 if p � p,

2 ≤ e(p) ≤ ⌊pe(p|p)
p−1

⌋
+ 1 if p | p.

Proof. See Propositions 3.3.21 and 3.3.22 in [3]. �

The prime 5 factors as p205,1p
4
5,2 in L, where each prime ideal p5,i has inertial

degree 1. By Remark 8.6 we do not need to allow ramification at the prime 89.
Recall that the extension attached to κ is unramified at p5,2. Proposition 8.11 gives
the modulus p255,1p

0
5,2 whose class group (using PARI/GP [11]) is isomorphic to

C100 × C5 × C5 × C5 × C5 × C5 × C5 × C5 × C5.

From all these degree 5 extensions, we need to identify the ones that correspond
to elements in H1(G{5,89},Ad

0ρ̄E) (which give extensions isomorphic to M0
2 (F5)).

Let L̃ denote the abelian degree 5 extension MH�U1

of L attached to an exten-
sion M in H1(G{5,89},Ad

0ρ̄E).

Lemma 8.12. If a rational prime p is unramified in Q(Ad0ρ̄E) and has a prime
ideal of L over it with inertial degree 5, then it has inertial degree 5 in M .

Proof. Let p be a prime in M dividing the prime with inertial degree 5 in L. Since
the maximal 5-Sylow subgroup of S5 is cyclic of order 5, the decomposition group
of p in Q(Ad0ρ̄E) is cyclic of order 5. Then the decomposition group D(p) is a
subgroup C5 �M0

2 (F5). Since a cyclic group cannot be written as a semidirect
product of groups whose orders are divisible by 5, D(p) = C5. �

Test 1: for each prime p check whether it has inertial degree 5 in Q(Ad0ρ̄E) or
not (by looking how the degree 5 polynomial splits modulo p). If it does, search
for all primes in L with inertial degree 5, and restrict to the subspace of characters
in the class group which are trivial on them.

This first test lowers the dimension drastically. With primes up to 300, we find
that the subspace V which passes the test has dimension 2.

Lemma 8.13. Let L/K be a Galois extension, and M/L be a Galois extension of
prime degree p corresponding to a character χ. Consider the vector space obtained
by evaluating the Galois conjugates of χ at all different prime ideals, and let r
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denote its dimension (as an Fp vector space). Then the Galois closure ofM over K
has degree pr.

Proof. This is an easy exercise of Galois theory. �

Test 2: consider each character of V as a character on Q(Ad0ρ̄E) by compos-
ing with the norm map to L. To compute the action of Gal(Q(Ad0ρ̄E)/Q) on
it, it is enough to determine its values at prime ideals which split completely in
Q(Ad0ρ̄E)/Q (they have density 1 in Q(Ad0ρ̄E)) where the Galois action becomes
simpler. To compute the conjugates of the character, we compute the values that
the character takes on the conjugates of these primes. Let α1, . . . , α5, be the
the roots of Q(x) = x5 + 445x − 445 (so Q(Ad0ρ̄E) = Q(α1, . . . , α5)) and let
L = Q(β), where β = P (α1, . . . , α5) (in our case, we can take P (x1, . . . , x5) =
x21 x2 + x22 x3 + x23 x4 + x24 x5 + x25 x1). Recall that any prime ideal q ∈ OL which
splits completely can be presented in the form q = 〈β − aq, q〉OL where q = N (q)
and aq ∈ Fq. In particular, aq is the unique element in Fq which satisfies that
vq(β − aq) ≥ 1.

Note that since Q(x) factors linearly modulo q (with roots α̃1, . . . , α̃5), there is a
match between {αi} and {α̃i} which makes aq = P (α̃1, . . . , α̃5) (since αi−α̃i ∈ (q)).
Then if σ ∈ Gal(Q(Ad0ρ̄E)/Q) (which we identify with S5), its action on q is given
by sending the ideal q to the unique ideal q̃ such that aq̃ equals P (α̃σ(1), . . . , α̃σ(5)).

With this procedure, we loop over all characters of V (up to powers, i.e., we can
think of them as elements in P2(F5)) and compute the number of Galois conjugates
of it at a finite list of primes (the first 5 splitting primes work) discarding the ones
giving a vector space of dimension greater than 3. There are only 2 elements
in P4(F5) whose vector space has dimension smaller than 4. One of these elements
corresponds to our cocycle κ.

To identify it, we need to run a not so rigorous test. Recall that we are searching
for extensions whose Galois group is S5 �M0

2 (F5). Since we cannot compute the
Galois closure of our degree 5 extensions, we use Chebotarev density theorem.
If M is such an extension, and a prime number has inertial degree 6 in Q(Ad0ρ̄E),
then it might have inertial degree 6 or 30 in M . Furthermore, once we fixed an
element in S5 of order 6, it is easy to see that there are 100 choices (out of the 125)
of elements in S5 �M0

2 (F5) of order 30 and 25 of order 6 whose projection to S5

gives the chosen order 6 element, giving a density of 0.8.

Test 3: for the two characters, we check whether they are trivial or not at all
primes with inertial degree 6 in Q(Ad0ρ̄E) up to a given bound, say 10.000. For
the first character, we find that 156 out of 208 primes have inertial degree bigger
than 6 while in the second case the same happens for 24 out of 208 primes. This
implies that the first character corresponds to the extension we are looking for.

Remark 8.14. One can make the third test complete by using some explicit
version of Chebotarev density theorem but the range of computation will take too
long without assuming for example Artin’s conjectures.

We know that the image of (8.3) has dimension 1. In particular just one extra
prime is enough to get an isomorphism. We search for a prime q �≡ ±1 (mod 5) and
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such that aq ≡ ±(q + 1) (mod 25). The prime q = 293 satisfies both conditions,
since a293 = −6 ≡ −(293 + 1) (mod 25).

Theorem 8.15. There exists a weight 2 modular form of level 89 · 293 which is
congruent modulo 52 to the modular form attached to E89b1.

Proof. In view of the previous discussion, we just need to check that 293 is the
right choice for the map

H1(G{5,89,293},Ad
0ρ̄E)

�→ H1(G5,Ad
0ρ̄E)/N5 ×H1(G89,Ad

0ρ̄E)/N89 ×H1(G293,Ad
0ρ̄E)/N293,

to be an isomorphism. Since 293 �≡ ±1 (mod 5), dimH1(G{5,89,293},Ad
0ρ̄E) = 3.

Let κ293 denote a non-zero element not in H1(G{5,89},Ad
0ρ̄E), and let κ1, κ2 be a

basis of H1(G{5,89},Ad
0ρ̄E), such that κ2 = κ (the cycle unramified at p5,2). Then

in the basis {κ1, κ2, κ3} the linear transformation matrix looks like
(
a 0 b
c 0 d
e f g

)
. To

prove it is invertible, it is enough to prove that
(
a b
c d

)
is invertible, and that f is

non-zero.
Since the image of H1(G{5},Ad

0ρ̄E) in H1(G5,Ad
0ρ̄E) is two dimensional,

if κ293 restricted to G5 is not linearly independent with them, there should ex-
ist an extension of Q(Ad0ρ̄E) which is unramified outside 293, but using CFT one
easily sees that there are no such extensions (the ray class group is isomorphic to
C3504 × C12 × C2). Then

(
a b
c d

)
is invertible.

To prove that f �= 0, we need to check that the prime 293 does not split com-
pletely in the extension attached to the cocycle κ. Using the complete description
of such cocycle (as a character of a class group) we evaluate it at the primes divid-
ing 293 and see that it is trivial at 2 primes, and not trivial at the other 4 ones,
which implies that 293 does not split completely from Q(Ad0ρ̄E) to M . This ends
the proof. �

Remark 8.16. In this particular case, searching for the particular form is out of
computational reach, as the level 89 · 293 is too big to compute the corresponding
space.
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