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Isolated singularities for a semilinear equation

for the fractional Laplacian arising
in conformal geometry

Azahara DelaTorre and Maŕıa del Mar González

Abstract. We consider radial solutions with an isolated singularity for
a semilinear equation involving the fractional Laplacian. In conformal
geometry, this is equivalent to the study of singular metrics with constant
fractional curvature (singular fractional Yamabe problem). Our main ideas
are: first, to set up the problem into a natural geometric framework; and
second, to reduce the problem to a non-local ODE for which we are able
to perform some kind of phase portrait study.

1. Introduction and statement of results

We consider the problem of finding radial solutions for the fractional Yamabe
problem in Rn, n ≥ 2, with an isolated singularity at the origin. This means to
look for positive, radially symmetric solutions of

(1.1) (−Δ)γw = cn,γ w
n+2γ
n−2γ in Rn \ {0},

where cn,γ is any positive constant that, without loss of generality, will be normal-
ized as in Proposition 2.7. Unless we state the contrary, γ ∈ (0, n/2). In geometric
terms, given the Euclidean metric |dx|2 on Rn, we are looking for a conformal
metric

(1.2) gw = w
4

n−2γ |dx|2, w > 0,

with positive constant fractional curvature Qgw
γ ≡ cn,γ , that is radially symmetric

and has a prescribed singularity at the origin.
The first question we address here is to make sense of (−Δ)γ in the presence of

singularities, since it is a nonlocal operator. Because of the well-known extension
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theorem for the fractional Laplacian [18], [19], [20], in the case γ ∈ (0, 1) we take
equation (1.1) to be equivalent to the boundary reaction problem

(1.3)

⎧⎪⎪⎨⎪⎪⎩
− div(ya∇W ) = 0 in Rn+1

+ ,

W = w on Rn \ {0},
−d̃γ lim

y→0
ya∂yW = cn,γ w

n+2γ
n−2γ on Rn \ {0},

where a = 1−2γ and the constant d̃γ is defined in (2.4). It will turn out that this is
the right framework from the geometric point of view. We note that it is possible
to write W = Kγ ∗x w, where Kγ is the Poisson kernel (2.3) for this extension
problem.

It is known that w1(r) = r−(n−2γ)/2, together withW1 = Kγ∗xw1, is an explicit
solution for (1.3); this fact will be proved in Proposition 2.7 and as a consequence
we will obtain our normalization for the constant cn,γ . Therefore, w1 is the model
solution for isolated singularities; it corresponds to the cylindrical metric.

In the recent paper [16], Caffarelli, Jin, Sire and Xiong characterize all the
nonnegative solutions to (1.3). Indeed, let W be any nonnegative solution of (1.3)
in Rn+1

+ and suppose that the origin is not a removable singularity. Then, writing
r = |x| for the radial variable in Rn, we must have that

W =W (r, y) and ∂rW (r, y) < 0 for all 0 < r <∞.

In addition, they provide its asymptotic behavior. More precisely, if w = W (·, 0)
denotes the trace of W at y = 0, then near the origin one must have that

(1.4) c1 r
−(n−2γ)/2 ≤ w(x) ≤ c2 r

−(n−2γ)/2,

where c1, c2 are positive constants.
We remark that if the singularity at the origin is removable, all the entire

solutions for (1.3) have been completely classified by Jin, Li and Xiong [52] and
Chen, Li and Ou [24], for instance. In particular, they must be the standard
“bubbles”

(1.5) w(x) = c
( λ

λ2 + |x− x0|
)(n−2γ)/2

, c, λ > 0, x0 ∈ Rn.

In this paper we initiate the study of positive radial solutions for (1.1). It is
clear from the above that we should look for solutions of the form

(1.6) w(r) = r−(n−2γ)/2 v(r) in Rn \ {0},
for some function 0 < c1 ≤ v ≤ c2. In the classical case γ = 1, equation (1.1)
reduces to a standard second order ODE. However, in the fractional case (1.1)
becomes a fractional order ODE, so classical methods cannot be directly applied
here.

Our objective here is two-fold: first, to use the natural geometric interpretation
of problem (1.1) as a equation in the cylinder in order to obtain information about
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isolated singularities for the operator (−Δ)γ from the scattering theory definition.
And second, to take a dynamical system approach to explore how much of the
standard ODE study can be generalized to the PDE (1.3).

Then, in a second paper [29], that is joint together also with M. del Pino and
J. Wei, we conclude this study by using a (completely analytic) variational method
directly to construct solutions to (1.1) that generalize the well-known Delaunay
(sometimes called Fowler) solutions for the scalar curvature problem. Both papers
complement each other.

Before stating our results we need to introduce the geometric setting. On
a general Riemannian manifold (Mn, g), the fractional curvature Qg

γ is defined
from the conformal fractional Laplacian P g

γ as Qg
γ = P g

γ (1), and it is a nonlocal
version of the scalar curvature (which corresponds to the local case γ = 1). The
conformal fractional Laplacian P g

γ is constructed from scattering theory on the
conformal infinity Mn of a conformally compact Einstein manifold (Xn+1, g+) as
a generalized Dirichlet-to-Neumann operator for the eigenvalue problem

(1.7) −Δg+U − s(n− s)U = 0 in X, s = n/2 + γ,

and it is a (non-local) pseudo-differential operator of order 2γ. This construc-
tion is a natural one from the point of view of the AdS/CFT correspondence in
Physics ([2], [73]).

The main property of P g
γ is its conformal invariance; indeed, for a conformal

change of metric gw = w4/(n−2γ)g on M , we have that

(1.8) P gw
γ (f) = w− n+2γ

n−2γ P g
γ (fw), for all f smooth,

which, in particular when f = 1, reduces to the fractional curvature equation

(1.9) P g
γ (w) = Qgw

γ w
n+2γ
n−2γ .

The fractional Yamabe problem for equation (1.9) on compact manifolds, i.e., to
construct a conformal metric with constant Qγ curvature, was considered in [42]
and [44], while the fractional Nirenberg problem was introduced in [52], [53],
and [34]. In addition, the study of the singular version for the fractional Yam-
abe problem was initiated in [41], where the authors construct model singular
solutions. Here we look at the case of an isolated singularity.

We note that, in the Euclidean case, P
|dx|2
γ coincides with the standard frac-

tional Laplacian (−Δ)γ , and thus, imposing the (positive) constant curvature con-
dition in equation (1.9) yields our original problem (1.1). Moreover, one can check
that the extension problem (1.3) comes from the scattering problem (1.7) when
we take g+ to be the hyperbolic metric g+ = (dy2 + |dx|2)/y2. See Section 2 for a
review of the known results on the fractional conformal Laplacian.

We present now the natural coordinates for studying isolated singularities
of (1.1). Let M = Rn\{0} and use the Emden–Fowler change of variable r = e−t,
t ∈ R in (1.6); with some abuse of the notation, we write v = v(t). Then, in
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radial coordinates,M may be identified with the manifold R×Sn−1, for which the
Euclidean metric is written as

(1.10) |dx|2 = dr2 + r2 gSn−1 = e−2t [dt2 + gSn−1 ] =: e−2tg0.

This g0 is the cylindrical metric. Since the metrics |dx|2 and g0 are confor-
mally related, we prefer to use g0 as a background metric and thus any conformal
change (1.2) may be rewritten, using relation (1.6), as

gv = w
4

n−2γ |dx|2 = v
4

n−2γ g0.

Looking at the conformal transformation property for P g
γ given in (1.8), it is clear

that

(1.11) P g0
γ (v) = r(n+2γ)/2 P |dx|2

γ (r−(n−2γ)/2 v) = r(n+2γ)/2 (−Δ)γw,

and thus the original problem (1.1) is equivalent to the following one: fixed g0 as
a background metric on R × Sn−1, find a conformal metric gv = v4/(n−2γ)g0 of
positive constant fractional curvature Qgv

γ , i.e., find a positive smooth solution v
for

(1.12) P g0
γ (v) = cn,γ v

n+2γ
n−2γ on R× Sn−1.

The point of view of this paper is to consider the new equivalent problem (1.12)
instead of (1.1), since it allows for a simpler analysis. In our first theorem we com-
pute the principal symbol of the operator P g0

γ on R×Sn−1 using the spherical har-
monic decomposition for Sn−1. With some abuse of notation, let μk = −k(k+n−2),
k = 0, 1, 2, . . . be the eigenvalues of ΔSn−1 , repeated according to multiplicity.
Then any function on R×Sn−1 may be decomposed as

∑
k vk(t)Ek, where {Ek} is

a basis of eigenfunctions. We show that the operator P g0
γ diagonalizes under such

eigenspace decomposition, and moreover, we calculate the Fourier symbol of each
projection. Let

(1.13) v̂(ξ) =
1√
2π

∫
R

e−iξ·t v(t) dt

be our normalization for the one-dimensional Fourier transform.

Theorem 1.1. Fix γ ∈ (0, n/2) and let P k
γ be the projection of the operator P g0

γ

over each eigenspace 〈Ek〉. Then

P̂ k
γ (vk) = Θk

γ(ξ) v̂k,

and this Fourier symbol is given by

(1.14) Θk
γ(ξ) = 22γ

∣∣Γ(1/2 + γ/2 + 1
2

√
(n/2− 1)2 − μk + i ξ/2

)∣∣2∣∣Γ(1/2− γ/2 + 1
2

√
(n/2− 1)2 − μk + i ξ/2

)∣∣2 .
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Since we are mainly interested in radial solutions v = v(t), in many computa-
tions we will just need to consider the symbol for the first eigenspace k = 0 (that
corresponds to the constant eigenfunctions):

Θ0
γ(ξ) = 22γ

|Γ(n/4 + γ/2 + i ξ/2)|2
|Γ(n/4− γ/2 + i ξ/2)|2 .

Now we look at the question of finding smooth solutions v = v(t), 0 < c1 ≤
v ≤ c2, for equation (1.12); we expect to have periodic solutions. The local case
γ = 1, presented below, provides some motivation for this statement and as we
have mentioned, in the paper [29] we construct such periodic solutions from the
variational point of view. Here we look at the geometrical interpretation of such
solutions and provide a dynamical system approach for this problem.

First, note that

(1.15) −Δw = cn,1 w
n+2
n−2 , w > 0,

is the constant scalar curvature equation for the metric gw. It is well known
([15], [55]) that positive solutions of equation (1.15) in Rn\{0} must be radially
symmetric and, if the singularity at the origin is not removable, then the solution
must behave as in (1.4). After the change (1.6), our equation (1.15) reduces to a
standard second order ODE for the function v = v(t):

(1.16) − v̈ +
(n− 2)2

4
v =

(n− 2)2

4
v

n+2
n−2 , v > 0,

where we have denoted v̇ = d
dtv. This equation it is easily integrated and the

analysis of its phase portrait gives that all bounded solutions must be periodic
(see, for instance, the lecture notes [68]). More precisely, the Hamiltonian

(1.17) H1(v, v̇) :=
1

2
v̇2 +

(n− 2)2

4

( (n− 2)

2n
v

2n
n−2 − 1

2
v2
)

is preserved along trajectories. Thus looking at its level sets we conclude that there
exists a family of periodic solutions {vL} of periods L ∈ (L1,∞). Here

(1.18) L1 =
2π√
n− 2

is the minimal period and it can be calculated from the linearization at the equi-
librium solution v1 ≡ 1. These {vL} are known as the Fowler ([37]) or Delaunay
solutions for the scalar curvature.

Delaunay solutions are, originally, rotationally symmetric surfaces with con-
stant mean curvature and they have been known for a long time ([30], [31]). In
addition, let Σ ∈ R3 be a noncompact embedded constant mean curvature surfaces
with k ends. It is known that any of such ends must be asymptotic to one of the
Delaunay surfaces ([54], [63]), which is very similar to what happens in the con-
stant scalar curvature setting (see, for instance [55]), where any positive solution
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of the constant scalar curvature equation (1.15) must be asymptotic to a precise
deformation of one of the vL. Delaunay-type solutions have been also shown to
exist for the first eigenvalue in Serrin’s problem [70].

Let us comment here that the constant mean curvature case is very related to
the constant Q1/2 case. This is because, fixed (Xn+1, ḡ) a compact manifold with
boundary Mn such that there exists a defining function ρ so that g+ = ḡ/ρ2 is
asymptotically hyperbolic and has constant scalar curvature Rg+ = −n(n + 1),
then the conformal fractional Laplacian on M with respect to the metric g = ḡ|M
is given by P g

1/2 = ∂/∂ν + n−1
2 Hg, where ∂/∂ν is the Neumann derivative for

the harmonic extension and Hg the mean curvature of the boundary ([49], [20]).
Thus Qg

1/2 coincides in this particular setting with Hg up to a multiplicative con-

stant. However, there is a further restriction since in the present paper the ambient
metric is fixed and we only consider rotationally symmetric metrics on the bound-
ary; thus not allowing full generality for the original constant mean curvature
problem.

Going back to (1.16), we would like to understand how much of this picture is
preserved in the non-local case, so we look for radial solutions of equation (1.1),
which becomes a fractional order ODE. On the one hand, we formulate the problem
through the extension (1.3). This point of view has the advantage that the new
equation is local (and degenerate elliptic) but, on the other hand, it is a PDE with
a non-linear boundary condition. Note that because we will be using the extension
from Theorem 2.4 for the calculation of the fractional Laplacian, we need to restrict
ourselves to γ ∈ (0, 1) at this stage.

The first difficulty we encounter with our approach is how to write the original
extension equation (1.3) in a natural way after the change of variables r = e−t.
Looking at the construction of the conformal fractional Laplacian from the scat-
tering equation (1.7) on a conformally compact Einstein manifold (Xn+1, g+), we
need to find a parametrization of hyperbolic space in such a way that its confor-
mal infinity Mn = {ρ = 0} is precisely (R × Sn−1, g0). The precise metric on the
extension is g+ = ḡ/ρ2 for

(1.19) ḡ = dρ2 +
(
1 +

ρ2

4

)2

dt2 +
(
1− ρ2

4

)2

gSn−1 ,

where ρ ∈ (0, 2) and t ∈ R. The motivation for this change of metric will be made
clear in Section 3. In the language of Physics, g+ is the Riemannian version of AdS
space, a model solution of Einstein’s equations which is important in the setting of
the AdS/CFT correspondence since AdS space-time is the right background when
studying thermodynamically stable black holes [50], [73].

Rewriting the equations in this new metric, our original equation (1.3), written
in terms of the change (1.6), is equivalent to the extension problem

(1.20)

⎧⎪⎪⎨⎪⎪⎩
− divḡ(ρ

a∇ḡV ) + E(ρ)V = 0 in (Xn+1, ḡ),

V = v on {ρ = 0},
−d̃γ lim

ρ→0
ρa∂ρV = cn,γ v

n+2γ
n−2γ on {ρ = 0},



Isolated singularities for the fractional Laplacian 1651

where the expression for the lower order term E(ρ) will be given in (5.2). We
look for solutions V to (1.20) that only depend on ρ and t, and that are bounded
between two positive constants.

We show first that equation (1.20) exhibits a Hamiltonian quantity that gen-
eralizes (1.17).

Theorem 1.2. Fix γ ∈ (0, 1). Let V be a solution of (1.20) only depending on t
and ρ. Then the Hamiltonian quantity

(1.21) Hγ(t) :=
1

2

∫ 2

0

ρa
{
e1(ρ)(∂tV )2 − e(ρ)(∂ρV )2 − e2(ρ)V

2
}
dρ+Cn,γ v

2n
n−2γ ,

is constant with respect to t. Here we write

e1(ρ) =
(
1 +

ρ2

4

)−1 (
1− ρ2

4

)n−1

,

e2(ρ) =
n− 1 + a

4

(
1− ρ2

4

)n−2 (
n− 2 + n

ρ2

4

)
,

e(ρ) =
(
1 +

ρ2

4

)(
1− ρ2

4

)n−1

,

(1.22)

and the constant is given by

(1.23) Cn,γ =
n− 2γ

2n

cn,γ

d̃γ
.

Hamiltonian quantities for fractional problems have been recently developed
in the setting of one-dimensional solutions for fractional semilinear equations of
the form (−Δ)γw + f(w) = 0. The first reference where we find a conserved
Hamiltonian quantity for this type of non-local equations is the paper by Cabré and
Solá-Morales [13] for the particular case γ = 1/2. The general case γ ∈ (0, 1) was
carried out by Cabré and Sire in [14]. On the one hand, in these two papers ([14]
and [13]), the authors impose a nonlinearity coming from a double-well potential
and look for layers (i.e., solutions that are monotone and have prescribed limits
at infinity), and they are able to write a Hamiltonian quantity that is preserved.
In addition, if one considers the same problem but on hyperbolic space, one finds
that the geometry at infinity plays a role and the analogous Hamiltonian is only
monotone (see [43]).

On the other hand, if, instead, one looks for radial solutions for semilinear
equations, then Cabré and Sire in [14] and Frank, Lenzman and Silvestre in [38]
have developed a monotonicity formula for the associated Hamiltonian. In the
setting of radial solutions with an isolated singularity for the fractional Yamabe
problem, our Theorem 1.2 states that, if one uses the metric (1.19) to rewrite the
problem, then the associated Hamiltonian (1.21) is constant along trajectories.

If one insists on performing an ODE-type study for the PDE problem (1.20),
a possibility is to look for some kind of phase portrait of the boundary values (at
ρ = 0), while keeping in mind that the equation is defined on the whole extension.
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From this point of view, one can prove the existence of two critical points: the
constant solutions v0 ≡ 0 and v1 ≡ 1. Moreover, there exists an explicit homoclinic
solution v∞, whose precise expression will be given in (6.1); it corresponds to the
n-sphere (1.5).

The next step is to consider the linearized problem. As we will observe in
Section 7, the classical Hardy inequality, rewritten in terms of the background
metric g0, decides the stability of the explicit solutions v0, v1 and v∞. Stability
issues for semilinear fractional Laplacian equations have received a lot of atten-
tion recently. Some references are: [11] for the half-Laplacian, [67] for extremal
solutions with exponential nonlinearity, [33] for semilinear equations with Hardy
potential. In the particular case of the fractional Lane–Emden equation, stability
was considered in [28], [35], for γ ∈ (0, 1) and [36] for γ ∈ (1, 2). We believe that
our methods, although still at their initial stage, would provide tools for a unified
approach for all γ ∈ (0, n/2).

Finally, we consider the linearization of equation (1.12) around the equilibrium
v1 ≡ 1:

P g0
γ v = n+2γ

n−2γ v on R× Sn−1,

and look at the projection over each eigenspace 〈Ek〉, k = 0, 1, . . .,

(1.24) P k
γ vk = n+2γ

n−2γ vk.

Although we will not provide a complete calculation of the spectrum, we can say
the following:

Theorem 1.3. For the projection k = 0, equation (1.24) has periodic solutions
v(t) with period Lγ = 2π/

√
λγ , where λγ is the unique positive solution of (7.3).

In addition,
lim
γ→1

Lγ = L1,

so we recover the classical case (1.18) as γ → 1.

Remark 1.4. We also give some motivation to show that the projection on the
k-eigenspace of (1.24) does not have periodic solutions if k = 1, 2, . . .

Theorem 1.3 gives the existence of periodic radial solutions for the linear prob-
lem. In addition, the existence of a conserved Hamiltonian hints that the original
non-linear problem has periodic solutions too. Based on the results presented here,
we will show in the second paper [29] that for every period L > Lγ , there exists a
periodic solution vL (Delaunay solution) for the non-nonlinear problem (1.12).

The construction of Delaunay solutions allows for many further studies. For
instance, one obtains the non-uniqueness of the solutions for the fractional Yamabe
problem in the positive curvature case, since it gives different conformal metrics
on S1(L) × Sn−1 that have constant fractional curvature. This is well known in
the scalar curvature case (see the lecture notes [68] for an excellent review, or the
paper [69]). In addition, this gives some motivation to define a total fractional
scalar curvature functional, which maximizes the standard fractional Yamabe quo-
tient ([42]) across conformal classes. We hope to return to this problem elsewhere.
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From another point of view, Delaunay solutions can be used in gluing problems.
Classical references are, for instance, [58] and [61] for the scalar curvature, and [59]
and [60] for the construction of constant mean curvature surfaces with Delaunay
ends. In the paper [7] we use Delaunay solutions to construct metrics of constant
fractional curvature with isolated singularities at a prescribed number of points.
Other gluing results for the fractional curvature can be found in [6], [8].

There is an alternative notion of fractional curvature and fractional perimeter
defined from the singular integral definition of the fractional Laplacian which gives
a different quantity than our Qg

γ . [17] introduces the notion of nonlocal mean cur-
vature for the boundary of a set in Rn (see also the review [72]), and it has also
received a lot of attention recently. Finding Delaunay-type surfaces with constant
nonlocal mean curvature has just been accomplished in [12]. For a related non-
local equation, but different than nonlocal mean curvature, the recent paper [26]
establishes variationally the existence of Delaunay-type hypersurfaces.

Other non-local problems for which one can show existence of periodic solutions
can be found in [4], [3], [5].

In the negative fractional curvature case, we find the work of [23], where they
consider singular solutions for the problem (−Δ)γw+ |w|p−1w = 0 in a domain Ω
with zero Dirichlet condition on ∂Ω. This setting is very different from the positive
curvature case because the maximum principle is valid here. We also cite the
work [65], where they consider singular solutions of ΔW = 0 in a domain Ω with
a nonlinear Neumann boundary condition ∂νW = f(x,W )−W on ∂Ω.

The paper will be structured as follows: in Section 2 we will recall some stan-
dard background on the fractional Yamabe problem. In particular we present the
equivalent formulation as an extension problem coming from scattering theory. In
Section 3 we will give a geometric interpretation of the problem. Next, in Section 4
we will analyze the scattering equation to give a proof for Theorem 1.1. That is,
we will compute the Fourier symbol for the conformal fractional Laplacian. In
Section 5 we face the problem from an ODE-type point of view which gives us two
equilibria and the existence of a Hamiltonian quantity conserved along trajectories
for the extension problem (1.20). Moreover we will find in Section 6 an explicit
homoclinic solution, which corresponds to the n-sphere. Finally, in Section 7 we
will perform a linear analysis close to the constant solution which corresponds to
the n-cylinder.

2. Preliminaries

The conformal Laplacian operator for a Riemannian metric g on a n-dimensional
manifold M is defined as

(2.1) Lg = −Δg + cnRg, where cn =
n− 2

4(n− 1)
,

and Rg is the scalar curvature. The conformal Laplacian is a conformally covari-
ant operator, indeed, given gw and g two conformally related metrics with gw =
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w4/(n−2)g, w > 0, then the operator Lg satisfies

Lgw(f) = w− n+2
n−2 Lg(wf),

for every f ∈ C∞(M). In the case f = 1 we obtain the classical scalar curvature
equation

−Δgw + cnRgw = cnRgw w
n+2
n−2 ,

which, in the flat case, is precisely equation (1.15).

The fractional Laplacian on Rn is defined through Fourier transform as

̂(−Δ)γw = |ξ|2γ ŵ, ∀γ ∈ R.

Note that we use the Fourier transform defined by

ŵ(ξ) = (2π)−n/2

∫
Rn

w(x) e−iξ·x dx.

Let γ ∈ (0, 1) and u ∈ L∞ ∩ C2 in Rn, the fractional Laplacian in Rn can also be
defined by

(−Δ)γw(x) = κn,γ P.V.

∫
Rn

w(x+ y)− w(x)

|y|(n+2γ)
dy,

where P.V. denotes the principal value, and the constant κn,γ (see [56]) is given by

κn,γ = π−n/2 22γ
Γ(n/2 + γ)

Γ(1− γ)
γ.

Caffarelli–Silvestre introduced in [18] a different way to compute the fractional
Laplacian in Rn for γ ∈ (0, 1). Take coordinates x ∈ Rn, y ∈ R+. Let w be
any smooth function defined on Rn and consider the extension W : Rn × R+ → R

solution of the following partial differential equation:

(2.2)

{
div(ya∇W ) = 0, x ∈ Rn, y ∈ R,

W (x, 0) = w(x), x ∈ Rn,

where a = 1− 2γ. Note that we can write W = Kγ ∗x w, where Kγ is the Poisson
kernel

(2.3) Kγ(x, y) = c
y1−a

(|x|2 + y2)(n+1−a)/2
,

and c = c(n, γ) is a multiplicative constant which is chosen so that, for all y > 0,∫
Kγ(x, y) dx = 1. In addition,

(−Δ)γw = −d̃γ lim
y→0+

ya∂yW,
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for the constant

(2.4) d̃γ = −22γ−1 Γ(γ)

γ Γ(−γ) .

One can generalize this construction to the curved setting. Let Xn+1 be a
smooth manifold of dimension n+1 with smooth boundary ∂X =Mn. A defining
function in X for the boundary M is a function ρ which satisfies:

(2.5) ρ > 0 in X, ρ = 0 on M and dρ �= 0 on M.

A Riemannian metric g+ on X is conformally compact if (X, ḡ) is a compact
Riemannian manifold with boundary M for a defining function ρ and ḡ = ρ2g+.
Any conformally compact manifold (X, g+) carries a well-defined conformal struc-
ture [g] on the boundary M , where g is the restriction of ḡ|M . We call (M, [g]) the
conformal infinity of the manifold X . We usually write these conformal changes
on M as gw = w4/(n−2γ)g for a positive smooth function w.

A conformally compact manifold (X, g+) is called conformally compact Einstein
manifold if, in addition, the metric satisfies the Einstein equation Ricg+ = −ng+,
where Ric represents the Ricci tensor. One knows [45] that given a conformally
compact Einstein manifold (X, g+) and a representative g in [g] on the conformal
infinity Mn, there is an unique defining function ρ such that one can find coor-
dinates on a tubular neighborhood M × (0, ε) in X in which g+ has the normal
form

(2.6) g+ = ρ−2(dρ2 + gρ),

where gρ is a family on M of metrics depending on the defining function and
satisfying gρ|M = g.

Let (X, g+) be a conformally compact Einstein manifold with conformal infinity
(M, [g]). It is well known from scattering theory [47], [57], [48] that, given w ∈
C∞(M) and s ∈ C, if s(n−s) does not belong to the set of L2-eigenvalues of −Δg+

then the eigenvalue problem

(2.7) −Δg+U − s(n− s)U = 0 in X,

has a unique solution of the form

(2.8) U =Wρn−s +W1ρ
s, W,W1 ∈ C∞(X), W |ρ=0 = w.

Taking a representative g of the conformal infinity (M, [g]) we can define a family
of meromorphic pseudo-differential operators S(s), called scattering operators, as

(2.9) S(s)w =W1|M .

The case that the order of the operator is an even integer was studied in [47]. More
precisely, suppose thatm ∈ N andm ≤ n/2 if n is even, and that (n/2)2−m2 is not
an L2-eigenvalue of −Δg+ , then S(s) has a simple pole at s = n/2+m. Moreover,
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if P g
m denotes the conformally invariant GJMS-operator on M constructed in [46]

then
cm P g

m = −Ress= n
2+m

S(s), cm = (−1)m [22mm! (m− 1)!]−1,

where Ress=s0 S(s) denotes the residue at s0 of the meromorphic family of oper-
ators S(s). In particular, if m = 1 we have the conformal Laplacian P g

1 = Lg

from (2.1), and if m = 2, the Paneitz operator

P g
2 = (−Δg)

2 + δ(anRg + bnRicg) d+
n− 4

2
Qg,

where Qg is the Q-curvature and an, bn are dimensional constants ([64]).

It is also possible to define conformally covariant fractional powers of the Lapla-
cian in the case γ �∈ N. For the rest of the paper, we set γ ∈ (0, n/2) not an integer,
s = n/2 + γ. In addition, assume that s(n− s) is not an L2-eigenvalue for −Δg+

and that the first eigenvalue λ1(−Δg+) > s(n− s). In this setting:

Definition 2.1. We define the conformally covariant fractional powers of the
Laplacian as

(2.10) P g
γ [g

+, g] = dγS (n/2 + γ) , where dγ = 22γ
Γ(γ)

Γ(−γ) .

As a pseudodifferential operator, its principal symbol coincides with the one
of (−Δg)

γ . In the rest of the paper, once g+ is fixed, we will use the simplified
notation:

P g
γ := Pγ [g

+, g].

These operators satisfy the conformal property

(2.11) P gw
γ f = w− n+2γ

n−2γ P g
γ (wf), ∀f ∈ C∞(M),

for a change of metric

gw := w
4

n−2γ g, w > 0.

Definition 2.2. We define the fractional order curvature as

Qg
γ := P g

γ (1).

Note that up to multiplicative constant, Q1 is the classical scalar curvature,
and Q2 is the so called Q-curvature.

Remark 2.3. The conformal property (2.11) yields the fractional curvature equa-
tion

(2.12) P g
γ (w) = w

n+2γ
n−2γ Qgw

γ .

Explicit formulas for P g
γ are not known in general, however, Branson [10], gave

an explicit formula for the conformal Laplacian on the standard sphere, i.e.,

(2.13) P gSn

γ =
Γ(B + γ + 1/2)

Γ(B − γ + 1/2)
,
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where B =
√−ΔgSn

+ ((n− 1)/2)2. For example,

P gSn

1 = −ΔgSn
+
n(n− 2)

4
, P gSn

1/2 =

√
−ΔgSn

+
(
n−1
2

)2
.

From (2.13) we can compute the fractional curvature on the unit sphere as

(2.14) QgSn

γ = P gSn

γ (1) =
Γ(n/2 + γ)

Γ(n/2− γ)
.

It is proven in [20] (see also the more recent paper [19]) that the conformal
fractional Laplacian is the Dirichlet-to-Neumann operator for an extension problem
that generalizes (2.2):

Theorem 2.4. Let γ ∈ (0, 1) and (X, g+) be a conformally compact Einstein
manifold with conformal infinity (M, [g]). For any defining function ρ of M satis-
fying (2.6) in X, the scattering problem (2.7)–(2.8) is equivalent to

(2.15)

{
− div(ρa∇W ) + E(ρ)W = 0 in (X, ḡ),

W = w on M,

where
ḡ = ρ2g+, W = ρs−nU, s = n/2 + γ, a = 1− 2γ.

and the derivatives in (2.15) are taken with respect to the metric ḡ. The lower
order term is given by

E(ρ) = −Δḡ(ρ
a/2) ρa/2 + (γ2 − 1/4) ρ−2+a +

n− 1

4n
Rḡρ

a,

or written back in the metric g+,

(2.16) E(ρ) = ρ−1−s(−Δg+ − s(n− s))ρn−s.

In addition, we have the following formula for the calculation of the conformal
fractional Laplacian :

P g
γw = −d̃γ lim

ρ→0
ρa∂ρW,

where d̃γ is defined in (2.4).

Remark 2.5. If X is the hyperbolic space Hn+1, identified with the upper half
space R

n+1
+ with the metric g+ = (dy2 + |dx|2)/y2, then the conformal infinity

is simply M = Rn with the standard Euclidean metric |dx|2 and therefore, prob-
lem (2.15) is precisely the extension problem considered by Caffarelli–Silvestre (2.2).
As a consequence, the conformal fractional Laplacian reduces to the standard frac-

tional Laplacian without curvature terms, i.e., P
|dx|2
γ = (−Δ)γ .

Now we are going to choose a suitable defining function ρ∗, in order to transform
the problem (2.6) into one of pure divergence form. We follow [20], [19]:
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Theorem 2.6. Set γ ∈ (0, 1). Let (X, g+) be a conformally compact Einstein man-
ifold with conformal infinity (M, [g]), and such that λ1(−Δg+) > n2/4 − γ2. As-
suming that ρ is a defining function satisfying (2.5), there exists another (positive)
defining function ρ∗ on X such that, for the term E(ρ) defined in (2.16), we have

E(ρ∗) = 0.

The asymptotic expansion of this new defining function is

ρ∗ = ρ
(
1 +

2Qg
γ

(n− 2γ)dγ
ρ2γ +O(ρ2)

)
.

In addition, the metric g∗ = (ρ∗)2g+ satisfies g∗|ρ=0 = g and has asymptotic
expansion

g∗ = (dρ∗)2[1 +O((ρ∗)2γ)] + g[1 +O((ρ∗)2γ)].

The scattering problem (2.8)–(2.7) is equivalent to the following one :{
− div((ρ∗)a∇W ) = 0 in (X, g∗),

W = w on M,

where the derivatives are taken with respect to the metric g∗ and W = (ρ∗)s−nU .
Moreover,

(2.17) P g
γw = −d̃γ lim

ρ∗→0
(ρ∗)a∂ρ∗W + wQg

γ .

The fractional Yamabe problem is, for γ ∈ (0, n/2), to find a new metric gw =
w4/(n−2γ)g on M conformal to g, with constant fractional curvature Qgw

γ . Using
the conformal property (2.12) the Yamabe problem is equivalent to find a smooth
function w on M satisfying

(2.18) P g
γ (w) = cw

n+2γ
n−2γ , w > 0.

In this paper we are interested in the positive curvature case, and the constant
c = cn,γ will be normalized as in Proposition 2.7 below.

Thanks to Theorem 2.4, (2.18) is equivalent to the existence of a strictly posi-
tive C∞ solution for extension problem:

(2.19)

⎧⎪⎪⎨⎪⎪⎩
− div(ρa∇W ) + E(ρ)W = 0 in (X, ḡ),

W = w on M,

−d̃γ lim
ρ→0

ρa∂ρW = cn,γ w
n+2γ
n−2γ on M.

Using the special defining function from Theorem 2.6, the fractional Yamabe prob-
lem (2.19) may be rewritten as

(2.20)

⎧⎪⎪⎨⎪⎪⎩
− div((ρ∗)a∇W ) = 0 in (X, g∗),

W = w on M,

−d̃γ lim
ρ∗→0

(ρ∗)a∂ρ∗W + wQg
γ = cn,γ w

n+2γ
n−2γ on M.
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Indeed we only need to rewrite the equation for the Yamabe problem (2.18) using
the expression of P g

γ from (2.17). Without danger of confusion, note that in general
the solutions W for (2.19) and (2.20) are different, but in the sequel they will be
denoted by the same letter.

Proposition 2.7. The fractional curvature of the cylindrical metric

(2.21) gw1 = w1
4

n−2γ |dx|2, where w1(x) = |x|−n−2γ
2 ,

is the constant

cn,γ = 22γ
(Γ(12 (n/2 + γ))

Γ(12 (n/2− γ))

)2

> 0.

Proof. The value is calculated using the conformal property (2.12), as follows:

Q
gw1
γ = w1

− n+2γ
n−2γ P |dx|2

γ (w1) = w1
− n+2γ

n−2γ (−Δ)γ(w1) =: cn,γ .

The last equality follows from the calculation of the fractional Laplacian of a power
function; it can be found in [41], [66]. �

3. Geometric setting

We give now the natural geometric interpretation of problem (1.1) and the ex-
tension formulation (1.3). Thanks to Theorem 2.4 and Remark 2.5, the initial
extension problem (1.3) can be transformed into the scattering equation (2.7) in
hyperbolic space, denoted by X1 = Hn+1, with the metric g+ = (dy2 + |dx|2)/y2.
Our point of view is to use the metric g0 from (1.10) as the representative of
the conformal infinity Rn\{0} instead of the Euclidean one |dx|2. Let us intro-
duce some notation now. The conformal infinity (with an isolated singularity) is
M1 = Rn\{0}, which in polar coordinates can be represented as M1 = R+ × Sn−1

and |dx|2 = dr2 + r2gSn−1 , or using the change of variable r = e−t, the Euclidean
metric may be written as

(3.1) |dx|2 = e−2t[dt2 + gSn−1 ] =: e−2tg0.

Thus we need to rewrite the hyperbolic metric in a different normal form

(3.2) g+ =
dρ2 + gρ

ρ2
with gρ|ρ=0 = g0,

for a suitable defining function ρ. We consider now several models for hyperbolic
space, identified with the Riemannian version of AdS space-time. These models
are well known in cosmology since they provide the simplest background for the
study of thermodynamically stable black holes (see [73], [50], for instance, or the
survey paper [21]). Thus we write the hyperbolic metric as

(3.3) g+ = dσ2 + cosh2 σ dt2 + sinh2 σ gSn−1 ,
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where t ∈ R, σ ∈ (0,∞) θ ∈ Sn−1. Using the change of variable R = sinhσ,

g+ =
1

1 +R2
dR2 + (1 +R2) dt2 +R2gSn−1 .

This metric can be written in the normal form (3.2) as

(3.4) g+ = ρ−2
[
dρ2 +

(
1 +

ρ2

4

)2

dt2 +
(
1− ρ2

4

)2

gSn−1

]
,

for ρ ∈ (0, 2), t ∈ R, θ ∈ Sn−1. Here we have used the relations

(3.5) ρ = 2e−σ and 1 +R2 =
(4− ρ2

4ρ

)2

.

Let ḡ = ρ2g+ be a compactification of g+. Note that the apparent singularity at
ρ = 2 in the metric (3.4) is just a consequence of the polar coordinate parametriza-
tion and thus the metric is smooth across this point.

We define now X2 = (0, 2) × S1(L) × Sn−1, with coordinates ρ ∈ (0, 2), t ∈
S1(L), θ ∈ Sn−1, and the same metric given by (3.4). The conformal infinity
{ρ = 0} is M2 = S1(L)× Sn−1, with the metric given by g0 = dt2 + gSn−1 .

Note that (X1, g
+
Hn+1) is a covering of (X2, g

+). Indeed, X2 is the quotient
X2 = Hn+1/Z ≈ Rn × S1(L) with Z the group generated by the translations, if we
make the t variable periodic. As a consequence, also (M1, |dx|2) is a covering of
(M2, g0) after the conformal change (3.1).

Summarizing, we denote X = (0, 2)× R× Sn−1 and M = R× Sn−1 and recall
that the metric ḡ = ρ2g+ is given by

(3.6) ḡ = dρ2 +
(
1+

ρ2

4

)2

dt2 +
(
1− ρ2

4

)2

gSn−1 , and g0 = ḡ|M = dt2 + gSn−1 .

Equality (3.1) shows that the metrics |dx|2 and g0 are conformally related and
therefore using (1.6), we can write any conformal change of metric on M as

(3.7) gv := w
4

n−2γ |dx|2 = v
4

n−2γ g0.

Our aim is to to find radial (in the variable |x|), positive solutions for (1.3) with
an isolated singularity at the origin. Using g0 as background metric on M , and
writing the conformal change of metric in terms of v as (3.7), this is equivalent to
look for positive solutions v = v(t) to (1.12) with 0 < c1 ≤ v ≤ c2, and we hope to
find those that are periodic in t.

Finally, we check that the background metric g0 given in (3.6) has constant
fractional curvature Qg0

γ ≡ cn,γ . This is true because of the definition of cn,γ
given in Proposition 2.7, and the conformal equivalence given in (3.1). Thus, by
construction, the trivial change v1 ≡ 1 is a solution to (1.12).
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4. The conformal fractional Laplacian on R × Sn−1

In this section we present the proof of Theorem 1.1, i.e., the calculation of the
Fourier symbol for the conformal fractional Laplacian on R× Sn−1. This compu-
tation is based on the analysis of the scattering equation given in (2.7)-(2.8) for
the extension metric (3.4). We recall that the scattering operator is defined as

(4.1) P g
γw = S(s)w =W1|ρ=0,

and s = n/2 + γ.
We also remark that the proof of formula (1.14) is inspired in the calculation

of the Fourier symbol for the conformal fractional Laplacian on the sphere Sn

from [10] (see also the survey [40]). The method is, after projection over spherical
harmonics, to reduce the scattering equation (2.7) to an ODE that can be explicitly
solved. Note that this idea of studying the scattering problem on certain Lorentzian
models has been long used in Physics papers, but in general it is very hard to
obtain explicit expressions for the solution and the majority of the existing results
are numeric (see, for example, [32], [25]).

For the calculations below it is better to use the hyperbolic metric given in the
coordinates (3.3). Then the conformal infinity corresponds to the value {σ = +∞}.
The scattering equation (2.7) can be written in terms of the variables σ ∈ (0,∞),
t ∈ R and θ ∈ Sn−1 as

(4.2) ∂σσU +Q(σ)∂σU + cosh−2(σ)∂ttU + sinh−2(σ)ΔSn−1U +
(n2

4
− γ2

)
U = 0,

where U = U(σ, t, θ), and

Q(σ) =
∂σ(coshσ sinh

n−1 σ)

coshσ sinhn−1 σ
.

With the change of variable

(4.3) z = tanh(σ),

equation (4.2) reads:

(1− z2)2∂zzU +
(n− 1

z
− z

)
(1 − z2)∂zU + (1− z2) ∂ttU

+
( 1

z2
− 1

)
ΔSn−1U +

(n2

4
− γ2

)
U = 0.

(4.4)

We compute the projection of equation (4.4) over each eigenspace of ΔSn−1 . Given
k ∈ N, let Uk(z, t) be the projection of U over the eigenspace 〈Ek〉 associated to
the eigenvalue μk = −k(k + n− 2). Each Uk satisfies the following equation:

(4.5) (1− z2) ∂zzUk +
(n− 1

z
− z

)
∂zUk + ∂ttUk + μk

1

z2
Uk +

n2/4− γ2

1− z2
Uk = 0.
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Taking the Fourier transform (1.13) in the variable t, we obtain

(4.6) (1− z2) ∂zzÛk +
(n− 1

z
− z

)
∂zÛk +

[
μk

1

z2
+
n2/4− γ2

1− z2
− ξ2

]
Ûk = 0.

Fixed k and ξ, we know that

(4.7) Ûk = ŵk(ξ)ϕ
ξ
k(z),

where ϕ := ϕξ
k(z) is the solution of the following ODE problem:

(4.8)

⎧⎪⎨⎪⎩
(1− z2)∂zzϕ+

(
n−1
z − z

)
∂zϕ+

(
μk

z2 + n2/4−γ2

1−z2 − ξ2
)
ϕ = 0,

has the expansion (2.8) with w ≡ 1 near the conformal infinity z = 1,

ϕ is regular at z = 0.

This ODE has only regular singular points z. The first equation in (4.8) can be
explicitly solved:

ϕ(z) = A (1− z2)n/4−γ/2 z1−n/2+
√

(n/2−1)2−μk
2F1(a, b; c; z

2)

+B (1− z2)n/4−γ/2 z1−n/2−
√

(n/2−1)2−μk
2F1(ã, b̃; c̃; , z

2),
(4.9)

for any real constants A,B, where

• a = −γ/2 + 1/2 + 1
2

√
(n/2− 1)2 − μk + i ξ/2,

• b = −γ/2 + 1/2 + 1
2

√
(n/2− 1)2 − μk − i ξ/2,

• c = 1 +
√
(n/2− 1)2 − μk,

• ã = −γ/2 + 1/2− 1
2

√
(n/2− 1)2 − μk + i ξ/2,

• b̃ = −γ/2 + 1/2− 1
2

√
(n/2− 1)2 − μk − i ξ/2,

• c̃ = 1−√
(n/2− 1)2 − μk,

and 2F1 denotes the standard hypergeometric function introduced in Lemma 4.3.
Note that we can write ξ instead of |ξ| in the arguments of the hypergeometric

functions because a = b̄, ã = b̃ and property (4.19) given in Lemma 4.3.

The regularity at the origin z = 0 implies B = 0 in (4.9). Moreover, prop-
erty (4.18) from Lemma 4.3 makes it possible to rewrite ϕ as

ϕ(z) = A
[
α(1 + z)n/4−γ/2 (1 − z)n/4−γ/2 z1−n/2+

√
(n/2−1)2−μk

· 2F1(a, b; a+ b− c+ 1; 1− z2)

+ β (1 + z)n/4+γ/2 (1− z)n/4+γ/2 z1−n/2+
√

(n/2−1)2−μk

· 2F1(c− a, c− b; c− a− b+ 1; 1− z2)
]
,

(4.10)
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where

α =
Γ
(
1+

√
(n/2−1)2−μk

)
Γ(γ)

Γ
(
1/2+γ/2+

1
2

√
(n/2−1)2−μk−i ξ/2

)
Γ
(
1/2+γ/2+

1
2

√
(n/2−1)2−μk+i ξ/2

) ,(4.11)

β =
Γ
(
1+

√
(n/2−1)2−μk

)
Γ(−γ)

Γ
(
−γ/2+1/2+

1
2

√
(n/2−1)2−μk+i ξ/2

)
Γ
(
−γ/2+1/2+

1
2

√
(n/2−1)2−μk−i ξ/2

) .

The constant coefficient A will be fixed from the second statement in (4.8). From
the definition of the scattering operator in (4.1), ϕ must have the asymptotic
expansion near ρ = 0

(4.12) ϕ(ρ) = ρn−s(1 + · · · ) + ρs(Ŝk(s) 1 + · · · ),
where Sk(s) is the projection of the scattering operator S(s) over the eigenspace 〈Ek〉.

We now use the changes of variable (4.3) and (3.5), obtaining

(4.13) z = tanh(σ) =
4− ρ2

4 + ρ2
= 1− 1

2
ρ2 + · · · .

Therefore, substituting (4.13) into (4.10) we can express ϕ as a function on ρ as
follows:

ϕ(ρ) ∼ A
[
α ρn/2−γ

2F1(a, b; a+ b− c+ 1; ρ2)

+ β ρn/2+γ
2F1(c− a, c− b; c− a− b+ 1; ρ2)

]
, as ρ→ 0.

Using property (4.17) from Lemma 4.3 below, we have that near the conformal
infinity,

ϕ(ρ) � A
[
αρn/2−γ + β ρn/2+γ + · · · ].(4.14)

Comparing (4.14) with the expansion of ϕ given in (4.12), we have

(4.15) A = α−1,

and

(4.16) Ŝk(s) = β α−1.

Recalling the definition of the conformal fractional Laplacian given in (2.10), and
taking into account (4.7), we can assert that the Fourier symbol Θk

γ(ξ) for the

projection P k
γ of the conformal fractional Laplacian P g0

γ satisfies

Θk
γ(ξ) =

Γ(γ)

Γ(−γ) 2
2γ Ŝk(s).

From here we can calculate the value of this symbol and obtain (1.14); just
take (4.16) into account and property (4.20) from Lemma 4.4. This completes
the proof of Theorem 1.1.
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Remark 4.1. When γ = m, an integer, we recover the principal symbol for the
GJMS operators P g0

m . Indeed, from Theorem 1.1 we have that for any dimension
n > 2m, the Fourier symbol of P g0

m is given by

Θk
m(ξ) = 22m

|Γ(1/2 +m/2 + 1
2

√
(n/2− 1)2 − μk + i ξ/2)|2

|Γ(1/2−m/2 + 1
2

√
(n/2− 1)2 − μk + i ξ/2)|2

= 22m
m∏
j=1

([
4(m− j)−m+ 1 +

√
(n/2− 1)2 + k(k + n− 1)

]2
/4 + ξ2/4

)
= Ψ(m,n, k, ξ, ξ2, . . . , ξ2m−1) + ξ2m,

where we have used the property (4.21) of the Gamma function given in Lemma 4.4.
Note that Ψ is a polynomial function on ξ of degree less than 2m.

For instance, for the classical case m = 1,

Θk
1(ξ) = ξ2 +

(n− 2)2

4
− μk, k = 0, 1, . . . ,

so we recover the usual conformal Laplacian P g0
1 given, in Fourier decomposi-

tion, by

P k
1 (v) = −v̈ +

[ (n− 2)2

4
− μk

]
v, k = 0, 1, . . .

Note that P 0
1 is precisely the operator appearing in (1.16) for radial functions

v = v(t).

This proof also allows us to explicitly calculate the special defining function ρ∗

from Theorem 2.6.

Corolary 4.2. We have

(ρ∗)n−s = α−1
( 4ρ

4 + ρ2

)n/2−γ

2F1

(n
4
− γ

2
,
n

4
− γ

2
;
n

2
,
(4− ρ2

4 + ρ2

)2)
,

where α is the constant from (4.11). As a consequence, ρ∗ ∈ (0, ρ∗0) where we have
defined (ρ∗0)

n−s = α−1.

Proof. From the proof of Theorem 2.6, which corresponds to Lemma 4.5 in [20],
we know that

ρ∗ = (ϕ0
0)

1
n−s (z),

where ϕ is the solution of (4.8). Thus from formula (4.9) for B = 0 and the
relation between z and ρ from (4.13) we arrive at the desired conclusion. The
behavior when ρ→ 2 can be calculated directly from (4.9) and, as a consequence,
(ρ∗0)

n−s = ϕ(0) = α−1. �

Lemma 4.3 ([1], [71]). The hypergeometric function is defined for |z| < 1 by the
power series

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
=

Γ(c)

Γ(a) Γ(b)

∞∑
n=0

Γ(a+ n) Γ(b + n)

Γ(c+ n)

zn

n!
.
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It is undefined (or infinite) if c equals a non-positive integer. Some properties are :

(1) The hypergeometric function evaluated at z = 0 satisfies

(4.17) 2F1(a+ j, b− j; c; 0) = 1; j = ±1,±2, . . .

(2) If |arg(1 − z)| < π, then

2F1(a, b; c; z) =
Γ(c) Γ(c− a− b)

Γ(c− a) Γ(c− b)
2F1 (a, b; a+ b− c+ 1; 1− z)

+(1− z)c−a−b Γ(c) Γ(a+ b− c)

Γ(a) Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− z).(4.18)

(3) The hypergeometric function is symmetric with respect to first and second
arguments, i.e.,

(4.19) 2F1(a, b; c; z) = 2F1(b, a; c; z).

Lemma 4.4 ([1], [71]). Let z ∈ C. Some properties of the Gamma function Γ(z)
are :

Γ(z̄) = Γ(z),(4.20)

Γ(z + 1) = z Γ(z),(4.21)

Γ(z) Γ(z + 1/2) = 21−2z √π Γ(2z).(4.22)

Let ψ(z) denote the Digamma function defined by

ψ(z) =
d ln Γ(z)

dz
=

Γ′(z)
Γ(z)

.

This function has the expansion

(4.23) ψ(z) = ψ(1) +

∞∑
m=0

( 1

m+ 1
− 1

m+ z

)
.

Let B(z1, z2) denote the Beta function defined by

B(z1, z2) =
Γ(z1) Γ(z2)

Γ(z1 + z2)
.

If z2 is a fixed number and z1 > 0 is big enough, then this function behaves

(4.24) B(z1, z2) ∼ Γ(z2)(z1)
−z2 .

We end this section with a remark on the classical fractional Hardy inequality.
On Euclidean space (Rn, |dx|2), it is well known that, for all w ∈ C∞

0 (Rn) and
γ ∈ (0, n/2),

cH

∫
Rn

|w|2
|x|2γ dx ≤

∫
Rn

|ξ|2γ |ŵ(ξ)|2 dξ

=

∫
Rn

|(−Δ)γ/2 w|2 dx =

∫
Rn

w(−Δ)γw dx.

(4.25)
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Moreover, the constant cH is sharp (although it is not achieved) and its value is
given by

cH = cn,γ ,

which is the constant in Proposition 2.7. This is not a coincidence, since the
functions that are used in the proof of the sharpness statement are suitable ap-
proximations of (2.21). This constant was first calculated in [51], but there have
been many references [74], [9], [39], for instance.

A natural geometric context for the fractional Hardy inequality is obtained by
taking g0 as a background metric, and using the changes (1.6) and (1.10). Indeed,
using the conformal relation given by expression (1.11), we conclude that (4.25) is
equivalent to the following:

(4.26) cn,γ

∫
R×Sn−1

v2 dvolg0 ≤
∫
R×Sn−1

v(P g0
γ v) dvolg0 ,

for every v ∈ C∞
0 (R× Sn−1).

5. ODE-type analysis

In this section we fix γ ∈ (0, 1). As we have explained, the fractional Yamabe
problem with an isolated singularity at the origin is equivalent to the extension
problem (1.3). We look for radial solutions of the form (1.6). Based on our
previous study, it is equivalent to consider solutions V = V (t, ρ) of the extension
problem (1.20), for the metric (1.19). In this section we perform an ODE-type
analysis for the PDE problem (1.20).

Firstly we calculate

divḡ(ρ
a∇ḡV ) =

∑
i,j

1√|ḡ| ∂i(ḡ
ijρa

√
|ḡ|∂jV )

=
1

e(ρ)
∂ρ (ρ

ae(ρ)∂ρV ) +
ρa

(1 + ρ2/4)2
∂ttV +

ρa

(1− ρ2/4)2
ΔSn−1V,(5.1)

where

e(ρ) =
(
1 +

ρ2

4

)(
1− ρ2

4

)n−1

.

Using the expression given in (2.16),

(5.2) E(ρ) =
n− 1 + a

4
ρa

n− 2 + nρ2/4

(1 + ρ2/4) (1− ρ2/4)
.

Remark 5.1. Let V be the (unique) solution of (1.20). If v does not depend on
the spherical variable θ ∈ Sn−1, then V does not either. Analogously, if v is inde-
pendent on t and θ, then V is just a function of ρ. The proof is a straightforward
computation using that the variables in (5.1) are separated.
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As a consequence of the previous remark, it is natural to look for solutions V
of (1.20) that only depend on ρ and t, i.e., solutions of

(5.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 1

e(ρ)
∂ρ (ρ

a(e(ρ)∂ρV )− ρa

(1+ρ2/4)2
∂ttV+E(ρ)V = 0 for ρ ∈ (0, 2), t ∈ R,

V = v on {ρ = 0},
−d̃γ lim

ρ→0
ρa∂ρV = cn,γ v

n+2γ
n−2γ on {ρ = 0}.

Now we take the special defining function ρ∗ given in Theorem 2.6, whose ex-
plicit expression is given in Corollary 4.2. Then we can rewrite the original prob-
lem (1.20) in g∗, defined on the extension X∗ = {ρ ∈ (0, ρ∗0), t ∈ R, θ ∈ Sn−1}, as

(5.4)

⎧⎪⎪⎨⎪⎪⎩
− divg∗((ρ∗)a∇g∗V ) = 0 in (X∗, g∗),

V = v on {ρ∗ = 0},
−d̃γ lim

ρ∗→0
(ρ∗)a∂ρ∗V + cn,γ v = cn,γ v

n+2γ
n−2γ on {ρ∗ = 0},

where g∗ = (ρ∗)2

ρ2 ḡ, for ρ∗ = ρ∗(ρ).

Note that Proposition 2.7 calculates the value Qg0
γ ≡ cn,γ . The advantage

of (5.4) over the original (1.20) is that it is a pure divergence elliptic problem and
has nicer analytical properties.

Next, if we look for radial solutions (that depend only on t and ρ∗), then the
extension problem (5.4) reduces to:

(5.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

e∗(ρ)
∂ρ∗ ((ρ∗)ae∗(ρ)∂ρ∗V ) +

(ρ∗)a

(1 + ρ2/4)
2 ∂ttV = 0 for t ∈ R, ρ∗ ∈ (0, ρ∗0),

v = V on {ρ∗ = 0},
−d̃γ(ρ∗)a∂ρ∗V + cn,γ v = cn,γ v

n+2γ
n−2γ on {ρ∗ = 0},

where

e∗(ρ) =
(ρ∗
ρ

)2

e(ρ).

Summarizing, we will concentrate in problems (5.3) and (5.5). In some sense, (5.5)
is closer to the local equation (1.16) and shares many of its properties. For instance,
it has two critical points: v0 ≡ 0 and v1 ≡ 1, since these are the only constant
solutions of the boundary condition v = v(n+2γ)/(n−2γ) on ρ∗ = 0. Moreover, by
uniqueness of the solution and Remark 5.1, the only critical points in the extension
are simply V0 ≡ 0 and V1 ≡ 1.

Remark 5.2. The calculation of the critical points v0 ≡ 0 and v1 ≡ 1 also
holds for any γ ∈ (0, n/2), since the corresponding extension problem shares many
similarities with (5.5) (cf. [20], [19], [22]).

The linearization at V1 ≡ 1 will be considered in Section 7.
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5.1. A conserved Hamiltonian

Here we give the proof of Theorem 1.2. The idea comes from [14], where they
consider layer solutions for semilinear equations with fractional Laplacian and a
double-well potential. Multiply the first equation in (5.3) by e(ρ)∂tV , and integrate
with respect to ρ ∈ (0, 2), obtaining

−
∫ 2

0

∂ρ (ρ
ae(ρ)∂ρV ) ∂tV dρ−

∫ 2

0

ρae1(ρ)∂ttV ∂tV dρ+

∫ 2

0

ρae2(ρ)V ∂tV dρ = 0,

where we have defined e, e1, e2 as in (1.22). We realize that ∂ttV ∂tV = 1
2∂t((∂tV )2)

and V ∂tV = 1
2∂t(V

2), thus integrating by parts in the first term above we get∫ 2

0

ρae(ρ)∂ρV ∂tρV dρ+ (ρae(ρ)∂ρV ∂tV ) |ρ=0

− ∂t

(1
2

∫ 2

0

ρae1(ρ)(∂tV )2 dρ
)
+ ∂t

(1
2

∫ 2

0

ρae2(ρ)V
2 dρ

)
= 0.

Here we have used the regularity of V at ρ = 2. Again we note that ∂ρV ∂tρV =
1
2∂t((∂ρV )2) and using the boundary condition, i.e., the third equation in (5.3), we
have

1

2
∂t

(∫ 2

0

ρae(ρ)(∂ρV )2 dρ
)
− 1

2
∂t

(∫ 2

0

ρae1(ρ)(∂tV )2 dρ
)

+
1

2
∂t

(∫ 2

0

ρae2(ρ)V
2 dρ

)
=
cn,γ

d̃γ
v

n+2γ
n−2γ ∂tv.

(5.6)

Define
G(v) = Cn,γ v

2n
n−2γ ,

where the constant is defined in (1.23). In this way, we have from (5.6) that

1

2
∂t

∫ 2

0

{
ρae(ρ)(∂ρV )2 − ρae1(ρ)(∂tV )2 + ρae2(ρ)V

2
}
dρ− ∂t(G(v)) = 0.

So we can conclude that the Hamiltonian

−Hγ(t) :=
1

2

∫ 2

0

ρa
{
e(ρ)(∂ρV )2 − e1(ρ)(∂tV )2 + e2(ρ)V

2
}
dρ−G(v),

is constant respect to t. This concludes the proof of Theorem 1.2.

Remark 5.3. One can rewrite the Hamiltonian in terms of the defining func-
tion ρ∗. For this, we may follow similar computations as above but starting with
equation (5.5). Indeed, let V be a solution of (5.4), then the new Hamiltonian
quantity

H∗
γ (t) :=

cn,γ

d̃γ

(n− 2γ

2n
v

2n
n−2γ − 1

2
v2
)

+
1

2

∫ ρ∗
0

0

(ρ∗)a
{
e∗1(ρ)(∂tV )2 − e∗(ρ)(∂ρ∗V )2

}
dρ∗

(5.7)
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is constant respect to t. Here

e∗(ρ) =
(ρ∗
ρ

)2

, e∗1(ρ) =
(ρ∗
ρ

)2

e1(ρ).

This quantity H∗
γ is the natural generalization of (1.17).

Now we observe that in the local case, the Hamiltonian (1.17) is a convex
function in the domain we are interested, thus its level sets are well defined closed
trajectories around the equilibrium v1 ≡ 1. We would like to have the analogous
result for the Hamiltonian quantity H∗

γ from (5.7). This is a very interesting open
question that we conjecture to be true. In any case, the second variation for H∗

γ

near this equilibrium is:

d2

dε2

∣∣∣
ε=0

H∗
γ (V1 + εV ) =

cn,γ

d̃γ

4γ

n− 2γ
v2

+
1

2

∫ ρ∗
0

0

(ρ∗)a
(ρ∗)2

ρ2
{
e1(ρ)(∂tV )2 − e(ρ)(∂ρ∗V )2

}
dρ∗.

6. The homoclinic solution

For this section we will take γ ∈ (0, n/2), since it does not depend on the ex-
tension problem (1.3). It is clear that the standard bubble (1.5) is a solution of
equation (1.1) that has a removable singularity at the origin. Note that, because
of our choice of the constant cn,γ , we need to normalize it by a positive multiplica-
tive constant. We prove here that, on a boundary phase portrait, the equilibrium
v1 ≡ 1 stays always bounded by this homoclinic solution. More precisely:

Proposition 6.1. The positive function

(6.1) v∞(t) = C(cosh t)−(n−2γ)/2, with C =
(
cn,γ

Γ(n/2− γ)

Γ(n/2 + γ)

)−n−2γ
4γ

> 1 ≡ v1,

is a smooth solution of the fractional Yamabe problem (1.20). The value of cn,γ is
given in Proposition 2.7.

Proof. The canonical metric on the sphere, rescaled by a constant, may be writ-
ten as

gC = C
4

n−2γ gSn = [C(cosh t)−
n−2γ

2 ]
4

n−2γ g0.

We choose C such that the fractional curvature of the standard sphere is normal-
ized to

(6.2) QgC
γ ≡ cn,γ .

Now we use the conformal property (2.12) for the operator P gSn

γ :

(6.3) P gSn

γ (C) = C
n+2γ
n−2γ QgC

γ .
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One checks that the fractional curvature is homogeneous of order γ under rescaling
of the metric. Indeed, because of (6.3) and the linearity of the operator Pγ

QgC
γ = C− n+2γ

n−2γ P gSn

γ (C) = C− (n+2γ)
n−2γ +1P gSn

γ (1) = C− 4γ
n−2γ QgSn

γ .(6.4)

Comparing equalities (6.2) and (6.4), together with the value of the curvature on
the standard sphere (2.14) we find the precise value of C as claimed in (6.1).

Next, let us check that the value of the constant C is larger than one. Because
of Proposition 2.7 we have to test that

22γ
(Γ(12 (n/2 + γ))

Γ(12 (n/2− γ))

)2 Γ(n/2− γ)

Γ(n/2 + γ)
< 1.

Using the property (4.22) of the Gamma function, given in Lemma 4.4, we only
need to verify that

X(n, γ) :=
Γ(12 (n/2 + γ))

Γ(12 (n/2− γ))

Γ(12 (n/2− γ) + 1/2)

Γ(12 (n/2 + γ) + 1/2)
< 1.

Thanks to Lemma 6.2 below, it is enough to see that

X(n, 0) ≤ 1 ∀n,
which holds trivially. �

Lemma 6.2. The function X(n, γ) defined as

X(n, γ) :=
Γ(12 (n/2 + γ))

Γ(12 (n/2− γ))

Γ(12 (n/2− γ) + 1/2)

Γ(12 (n/2 + γ) + 1/2)
,

is increasing in n, and decreasing in γ.

Proof. If we denote ψ(z) the Digamma function from Lemma 4.4, we can use the
expansion (4.23) to study the growth of the function X(n, γ) with respect to n
and γ. First,

∂

∂n
(logX(n, γ)) =

1

4

(
ψ
(n
4
+
γ

2

)
+ ψ

(n
4
− γ

2
+
1

2

)
− ψ

(n
4
− γ

2

)
− ψ

(n
4
+
γ

2
+
1

2

))
=
γ

4

∞∑
m=0

m+ n/4 + 1/4

[(m+ n/4)2 − γ2/4] [(m+ n/4 + 1/2)2 − γ2/4]
> 0.

and

∂

∂γ
(logX(n, γ)) =

1

2

(
ψ
(n
4
+
γ

2

)
− ψ

(n
4
− γ

2
+
1

2

)
+ ψ

(n
4
− γ

2

)
− ψ

(n
4
+
γ

2
+
1

2

))
= −1

2

∞∑
m=0

[ (m+ n/4 + 1/2)(m+ n/4) + γ2/4

((m+ n/4 + 1/2)2 − γ2/4)((m+ n/4)2 − γ2/4)

]
< 0.(6.5)

�
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7. Linear analysis

Let us say a few words about stability. Let v∗ be a solution of (1.12). The
corresponding linearized equation is

P g0
γ v = cn,γ

n+ 2γ

n− 2γ
v

4γ
n−2γ∗ v.

We say that v∗ is a stable solution of (1.12) if

(7.1)

∫
M

v(P g0
γ v) dvolg0−cn,γ

n+ 2γ

n− 2γ

∫
M

v
4γ

n−2γ∗ v2 dvolg0 ≥ 0, for all v ∈ C∞
0 (M).

We observe here that the equilibrium v1 ≡ 1 is not a stable solution for (1.12) just
by comparing the constants appearing in (7.1) and in the Hardy inequality (4.26).
In addition, one easily checks that the equilibrium solution v0 ≡ 0 is stable.

But it is more interesting to look at the explicit solution v∞ given in (6.1).
It follows from the Hardy inequality (4.26) that this explicit solution is not sta-
ble. The kernel of the linearization at v∞ is calculated in [27], where they show
that, although non-trivial, is non-degenerate, i.e., is generated by translations and
dilations of the standard bubble.

Let us look more closely at the spectrum of the operator P g0
γ . It is well known

that P g0
γ is self-adjoint ([47]), and then we can compute its first eigenvalue through

the Rayleigh quotient. Thus we minimize

inf
v∈C∞

0 (M)

∫
M vP g0

γ v dvolg0∫
M v2 dvolg0

,

where M = R×Sn−1. We can apply Theorem 4.2 and Corollary 4.3 in [42] (or the
Hardy inequality (4.26)) to conclude that P g0

γ is positive-definite. Moreover, the
first eigenspace is of dimension one.

Now we consider the linear analysis around the equilibrium solution v1 ≡ 1. In
order to motivate our results, let us explain what happens in the local case γ = 1
for the linearization (see [58], [62], [55]). In these papers the authors actually
characterize the spectrum for the linearization of the equation

P g0
1 v =

(n− 2)2

4
v

n+2
n−2 ,

given by (after projection over each eigenspace 〈Ek〉, k = 0, 1, . . .)

−v̈ − [n− 2 + μk] v = 0.

Note that this equation has periodic solutions only for k = 0, of period L1 =
2π/

√
λ0 for λ0 = n − 2. Thus we recover (1.18). For the rest of k = 1, . . . , the

corresponding λk = n− 2 + μk < 0, so we do not get periodic solutions.

For the fractional case, the linearization of equation (1.12) around the equilib-
rium v1 ≡ 1 is given by

P g0
γ v = cn,γ

n+ 2γ

n− 2γ
v(7.2)
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Here we will calculate the period of solutions for this linearized problem (for the
projection k = 0), as stated in Theorem 1.3, by the method of separation of
variables. We also conjecture that there are not periodic solutions for the linearized
problem (1.24) for the rest of k = 1, . . . , as it happens in the classical clase.

Therefore, we consider the projection of equation (4.2) over each eigenspace
〈Ek〉, k = 0, 1, . . .. Let

Uk(z, t) = T (t)Z(z),

be a solution of (4.5). Then

(1− z2)
Z ′′(z)
Z(z)

+
( (n− 1)

z
− z

) Z ′(z)
Z(z)

+
n2/4− γ2

1− z2
+
μk

z2
= −T

′′(t)
T (t)

= λk,

for a constant λk := λk(γ) ∈ R. We are only interested in the case λ > 0, which
is the one that leads to periodic solutions in the variable t. The period would be
calculated from Lk := Lk(γ) = 2π/

√
λk.

Note that the equation for Z(z) is simply (4.6) with ξ2 replaced by λk. From
the discussion in Section 4, in particular (4.10), (4.15) and (4.16) we have that

Z(z) = (1 + z)n/4−γ/2 (1− z)n/4−γ/2 z1−n/2+
√

(n/2−1)2−μk

· 2F1(a, b; a+ b− c+ 1; 1− z2)

+ κ(1 + z)n/4+γ/2 (1− z)n/4+γ/2 z1−n/2−
√

(n/2−1)2−μk

· 2F1(c− a, c− b; c− a− b+ 1; 1− z2),

where

a = −γ
2
+

1

2
+

1

2

√
(n/2− 1)2 − μk + i

√
λk

2

b = −γ
2
+

1

2
+

1

2

√
(n/2− 1)2 − μk − i

√
λk

2
,

c = 1 +
√
(n/2− 1)2 − μk,

κ =
Γ(−γ) ∣∣Γ(1/2 + γ/2 + 1

2

√
(n/2− 1)2 − μk + i

√
λk/2

)∣∣2
Γ(γ)

∣∣Γ(1/2− γ/2 + 1
2

√
(n/2− 1)2 − μk + i

√
λk/2

)∣∣2 .

We use the change of variable (4.13) to analyze the asymptotic behavior of Z near
the conformal infinity ρ = 0

Z ∼ ρn/2−γ + κ ρn/2+γ .

From the definition of the scattering operator (2.8), (2.9), and the definition of the
conformal fractional Laplacian, we have that

P k
γ vk = 22γ

∣∣Γ(1/2 + γ/2 + 1
2

√
(n/2− 1)2 − μk + i

√
λk/2

)∣∣2∣∣Γ(1/2− γ/2 + 1
2

√
(n/2− 1)2 − μk + i

√
λk/2

)∣∣2 v.
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Imposing the boundary condition (7.2) and the value of cn,γ given in (2.7), the
unknown λk must be a solution of

(7.3)

∣∣Γ(1/2 + γ/2 + 1
2

√
(n/2− 1)2 − μk +

√
λk

2 i)
∣∣2∣∣Γ(1/2− γ/2 + 1

2

√
(n/2− 1)2 − μk +

√
λk

2 i)
∣∣2 =

n+ 2γ

n− 2γ

∣∣Γ (
1
2 (n/2 + γ)

) ∣∣2∣∣Γ (
1
2 (n/2− γ)

) ∣∣2 .
Note that for the canonical projection k = 0, equality (7.3) simplifies to

(7.4)

∣∣Γ(n/4 + γ/2 + i
√
λ0/2

)∣∣2∣∣Γ(n/4− γ/2 + i
√
λ0/2

)∣∣2 =
n+ 2γ

n− 2γ

∣∣Γ(12 (n/2 + γ))
∣∣2∣∣Γ (

1
2 (n/2− γ)

)∣∣2 .
This equation (7.4) lets us recover the value of λ0 for the classical case γ = 1.
Indeed, using property (4.21) we get λ0 = n − 2 and we recover (1.18), where
L1 := L0(1).

Going back to equation (7.3), the value of λk can not be zero and it is unique
for each k. Indeed if λ = 0 we get a contradiction, and if λ > 0 we may proceed
as follows. Define

F (β) =

|Γ(αk+βi)|2
|Γ(α̃k+βi)|2

n+2γ
n−2γ

|Γ( 1
2 (n/2+γ))|2

|Γ( 1
2 (n/2−γ))|2

,

where

αk = 1
2+

γ
2 +

1
2

√
(n2 − 1)2 − μk, α̃k = 1

2− γ
2 +

1
2

√
(n2 − 1)2 − μk and β =

√
λk

2 .

Note that equation (7.3) is written as F (β) = 1, for some β > 0. We derive this
expression with respect to β,

(logF (β))′ = 2�[ψ(α̃k + βi)− ψ(αk + βi)].

Here � represents the imaginary part of a complex number and ψ(z) the Digamma
function from Lemma 4.4. We can use the expansion (4.23) to arrive at

(logF (β))′

= c

∞∑
m=0

γ β
(
2m+ 1 +

√
(n/2− 1)2 − μk

)[ (
m+ 1

2 +
1
2

√
(n2 −1)2 − μk

)2 −β2− γ2

4

]2
+
[(
2m+1+

√
(n2 −1)2−μk

)
β
]2 ,

for some positive constant c. Therefore F (β) is an increasing function of β.
Next, note that

lim
β→+∞

F (β) = +∞,

for all k = 0, 1, . . .. This follows easily writing

n+ 2γ

n− 2γ
F (β) =

B(αk + βi, n/4− γ/2)

B(α̃k + βi, n/4 + γ2)
,

and the asymptotic behavior for the Beta function (4.24) from Lemma 4.4.
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Now we look at the projection k = 0. One immediately calculates

F (0) =
n− 2γ

n+ 2γ
< 1,

so there exists (and it is unique) a solution λ0 = λ0(γ) > 0 for the equation
F (β) = 1. From the proof one also gets that

lim
γ→1

λ0(γ) = n− 2.

This concludes the proof of Theorem 1.3.

We believe that, as in the classical case F (β) = 1 does not have any positive
solution for k = 1, 2, . . .. This is a well supported conjecture that only depends on
making more rigorous some numerical analysis. In order to motivate this conjec-
ture, let us try to show that fk > 1 for k = 1, 2, . . ., where we have defined

F (0) =
(n− 2γ) |Γ(αk)|2

∣∣Γ (
1
2 (n/2− γ)

) ∣∣2
(n+ 2γ) |Γ(α̃k)|2

∣∣Γ (
1
2 (n/2 + γ)

) ∣∣2 =: fk.

Using the same ideas as above, one checks that fk is an increasing function of k,
and it is enough to show that

f1 =
(n− 2γ) |Γ(1/2 + γ/2 + n/4) Γ(n/4− γ/2)|2
(n+ 2γ) |Γ(1/2− γ/2 + n/4) Γ(n/4 + γ/2)|2 =

n− 2γ

n+ 2γ
X(n, γ)−2 > 1,

where X(n, γ) is defined in Lemma 6.2. We have numerically observed that f1 =
f1(γ) is an increasing function in γ. Since for γ = 0 we already have that f1(0) = 1,
we would conclude that fk > f1 ≥ 1, as desired.
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[34] Fang, Y. and González, M. d.M.: Asymptotic behaviour of Palais–Smale se-
quences associated with fractional Yamabe type equations. Pacific J. Math 278
(2015), no. 2, 369–405.

[35] Fazly, M. and Wei, J.: On stable solutions of the fractional Hénon–Lane–Emden
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