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Topological complexity and efficiency of motion
planning algorithms

Zbigniew B�laszczyk and José Carrasquel

Abstract. We introduce a variant of Farber’s topological complexity, de-
fined for smooth compact Riemannian manifolds, which takes into account
only motion planners with the lowest possible “average length” of the out-
put paths. We prove that it never differs from topological complexity by
more than 1, thus showing that the latter invariant addresses the problem
of the existence of motion planners which are “efficient”.

1. Introduction

A motion planner in a topological space X is a section of the path fibration
π : XI → X × X given by π(γ) :=

(
γ(0), γ(1)

)
. When X is the configuration

space of a mechanical system S (i.e., the space of all of its possible states), the
space XI of continuous paths in X can be interpreted as the space of motions of S,
and a section of π is then an algorithm describing how to navigate between any
two given states of S.

The study of motion planners in the above setting was initiated by Farber [3],
[4], [5]. He observed that a continuous motion planner on X exists if and only if X
is contractible. This resulted in the introduction of the following invariant, which
gives a way of measuring complexity of the motion planning problem.

Definition. A family σ = {σi : Gi → XI}mi=0 of continuous local sections of π is
called an m-motion planner on X if:

(1) each domain of continuity Gi is a locally compact subset of X ×X ,

(2) Gi ∩Gj = ∅, i �= j, and

(3) X ×X = G0 ∪G1 ∪ · · · ∪Gm.

The topological complexity of X , denoted TC(X), is the minimal integer m ≥ 0
such that there exists an m-motion planner on X .
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In the remaining part of the paper, we take the term “motion planner” to mean
an m-motion planner for some m ≥ 0. We refer the reader to Chapter 4 of [5] for
an elaboration of the notion of topological complexity. In particular, we note that
TC is typically defined differently, by requiring the family {Gi}mi=0 to be an open
cover of X × X instead. However, if X is an Euclidean neighbourhood retract,
which is the only case we will be interested in, the definitions coincide.

A shortcoming of Farber’s approach to complexity of the motion planning prob-
lem is that it does not take into consideration any notion of efficiency, e.g. measured
in terms of covered distance or spent energy. It is very natural that, given a motion
planner, one would like to somehow quantify its efficiency and then, possibly even
more urgently, understand how far-off of the most efficient planner it is.

Figure 1: Paths between states p and q issued by two different 0-motion plan-
ners, σ1 and σ2. The first one is clearly the more efficient one and, intuitively,
the most efficient it can be. The question is, how to make this distinction in
more complicated situations?

The aim of this note is to show that TC actually addresses the problem hinted
at above. In order to do this, we introduce the notion of efficient topological
complexity of a Riemannian manifold, denoted �TC, which takes into account only
motion planners with the lowest possible “average length” of paths, and then prove
that it never differs from TC by too much, at least for nice spaces:

Theorem 1. If X is a smooth closed Riemannian manifold, then

TC(X) ≤ �TC(X) ≤ TC(X) + 1.

2. Efficient topological complexity

Fix once and for all a smooth compact Riemannian manifold X and write d for its
Riemannian metric. Given a path α ∈ XI , let �(α) denote its length, understood
in the metric sense for paths which are merely continuous, as explained e.g. in
Chapter 5 of [10]. We do not assume that α is rectifiable, hence it is possible
that �(α) = ∞.
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Definition. (1) The length of a motion planner σ : X ×X → XI is

�(σ) :=

∫
X×X

� ◦ σ.

Each domain of continuity of σ is measurable and each �◦σi is continuous, thus �(σ)
is well-defined. Moreover, it is clear that

∫
X×X

d ≤ �(σ). (If X is non-orientable,
integrate with respect to measure corresponding to the Riemannian density.)

(2) The efficient topological complexity of X , denoted �TC(X), is the minimal
integer m ≥ 0 such that there exists an m-motion planner σ on X with �(σ) =∫
X×X d. Such a motion planner σ will be called efficient.

It is not a priori clear whether efficient motion planners always exist. This will
follow from our proof of Theorem 1, which we briefly prepare for now.

Additionally assume that X has no boundary. Write Up for the maximal normal
neighbourhood in TpX and Cut(p) for the cut locus of a point p ∈ X . (See
Subsection 2.C.7 of [7] for these notions.) Let

V :=
{
(p, q) ∈ X ×X | q /∈ Cut(p)

}
.

Lemma 2. (1) The map exp: TX → X ×X given by

exp(p, v) :=
(
p, expp(v)

)
restricts to a diffeomorphism

⋃
p∈X{p} × Up → V.

(2) The set V is open in X ×X.

(3) The complement of V in X ×X is a measure-zero subset.

Proof. Denote

U :=
⋃
p∈X

{p} × Up

in order to shorten notation.

(1) In view of Corollary 3.77 in [7], expp : Up → X \Cut(p) is a diffeomorphism
for any p ∈ X , hence exp is a bijection from U onto V and, furthermore, its
derivative is invertible at any point (p, v) ∈ U . Consequently, exp restricted to U
is a bijective local diffeomorphism, hence a diffeomorphism.

(2) The argument above shows that U is open in TX , hence the claim is a
consequence of invariance of domain.

(3) Since (X × X) \ V =
{
(p, q) ∈ X × X | q ∈ Cut(p)

}
and Cut(p) is a

measure-zero subset for any p ∈ X by Lemma 3.96 in [7], the conclusion follows
immediately from Theorem 1 of Section 42 in [1]. �

We can now give the proof of our main result.

Proof of Theorem 1. It is clear that TC(X) ≤ �TC(X). We will show that
�TC(X) ≤ TC(X)+1. Let TC(X) = m−1 and choose an (m−1)-motion planner
{ωi : Gi → XI}mi=1 on X . Set

P0 := V =
{
(p, q) ∈ X ×X | q /∈ Cut(p)

}
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and define σ0 : P0 → XI by assigning

σ0(p, q)(t) := expp
(
t · proj2

(
exp−1(p, q)

))
,

where proj2 is the projection onto the second coordinate. Note that σ0(p, q) is the
unique minimal geodesic from p to q, so that �

(
σ0(p, q)

)
= d(p, q). It follows from

Lemma 2 that P0 ⊆ X × X is locally compact and σ0 : P0 → XI is continuous.
Now set, for i = 1, . . . ,m,

• Pi := (X ×X \ P0) ∩Gi, and

• σi := ωi|Pi
.

Then σ = {σi : Pi → XI}mi=0 constitutes an m-motion planner on X . Again by
Lemma 2, the complement of P0 is a measure-zero subset, hence so are the sets Pi,
i = 1, . . . ,m. Therefore

�(σ) =

∫
X×X

� ◦ σ =

∫
P0

� ◦ σ0 =

∫
P0

d =

∫
X×X

d,

which concludes the proof. �

Remark. The proof of Theorem 1 shows that in order to estimate topological
complexity of X , it is enough to understand how to motion plan between pairs
of cut points, i.e., pairs (p, q) ∈ X × X with q ∈ Cut(p). This observation can
be formalized through the notion of relative topological complexity. Namely, if
A ⊆ X ×X , then TCX(A) is expressed in terms of local sections of the fibration
π−1(A) → A. Therefore, by Proposition 4.24 in [5], setting Vc = X ×X \ V , we
obtain

TCX(Vc) ≤ TC(X) ≤ �TC(X) ≤ TCX(Vc) + 1.

This is, in fact, Farber’s approach to motion planners on spheres (Example 4.8
in [5]): recall that if Sn is embedded in R

n+1 in the usual manner, the cut locus of
any point p ∈ Sn consists precisely of the antipode of p. The difficulty thus boils
down to estimating TCSn

({
(p,−p) | p ∈ Sn

})
.

Theorem 1 shows that, perhaps a little surprisingly, �TC(X) depends on the
choice of a Riemannian metric on X only in a very restricted manner. A natural
question to consider is whether it depends on that choice at all? The following
simple example sheds some light on this problem in the case when X has a non-
empty boundary, which, admittedly, is not covered by Theorem 1.

Example. Let D2 be the two-dimensional unit disk in R
2. Straight line seg-

ments give rise to a continuous efficient motion planner on D2, hence �TC(D2) =
TC(D2) = 0. Now consider D2 embedded in R

3 as the upper hemisphere S2
+ of

the two-dimensional unit sphere. Suppose that �TC(S2
+) = 0. Then there exists a

continuous motion planner σ : S2
+ × S2

+ → (S2
+)

I with
∫
X×X(� ◦ σ − d) = 0. This

and continuity of �◦σ−d implies that �◦σ = d. Thus σ(p, q) traverses the arc of a
minimal geodesic from p to q for all p, q ∈ S2

+ by Corollary 3.9 of Chapter 3 in [2].
This, however, is absurd, because such a motion planner cannot be continuous
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on the set A of pairs of antipodal points from the boundary circle. On the other
hand, it is easy to construct an efficient motion planner on S2

+ with two domains
of continuity. Indeed, σ is continuous on S2

+ × S2
+ \ A, and in order to navigate

on A it suffices to fix orientation of the boundary circle.

We would also like to point out the fact that the motion planner σ0 : V → XI

defined almost everywhere on X ×X in the proof of Theorem 1 has the following
desirable properties:

• Provided that the initial and terminal states coincide, the output path is
constant (cf. [8], [9]).

• The path from p to q is the same as that from q to p, only traversed in the
opposite direction (cf. [6]).

• Re-evaluating a motion while it is underway does not change the choice of
navigation arc, i.e., if t0 ∈ I is the re-evaluation instant, then

σ0

(
σ0(p, q)(t0), q

)
(t) = σ0(p, q)

(
t0 + (1− t0)t

)
.

The last property draws attention to the problem of algorithmically finding a
vector in TpX pointing in the direction of a minimizing geodesic from p to q, rather
than deciding on the whole motion at once. This approach highlights the concept
of autonomy of a mechanical system, allowing it to plan its motion on-the-fly,
perhaps making it possible to correct the path in case obstacles appear.
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