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Existence of isovolumetric S
2-type stationary

surfaces for capillarity functionals

Paolo Caldiroli and Alessandro Iacopetti

Abstract. Capillarity functionals are parameter invariant functionals de-
fined on classes of two-dimensional parametric surfaces in R

3 as the sum
of the area integral and a non homogeneous term of suitable form. Here
we consider the case of a class of non homogenous terms vanishing at
infinity for which the corresponding capillarity functional has no volume-
constrained S

2-type minimal surface. Using variational techniques, we
prove existence of extremals characterized as saddle-type critical points.

1. Introduction

Surfaces of constant mean curvature are critical points of the area functional for
volume-preserving variations. They constitute a nice model for describing closed
capillarity surfaces, i.e., soap bubbles, when the surface energy of the liquid is
regarded as isotropic, the liquid is homogeneous and no external force is considered.
In this case the surface energy is proportional to the surface area, and soap bubbles
correspond to extremal solutions of the isoperimetric problem.

If external forces are taken into account, then the surface energy has to be
modified in a suitable way, by considering a generalized area functional

(1.1) Aw(Σ) =

∫
Σ

w(p) dΣ ,

where w : R3 → R is a regular and positive weight.
Functionals of the form (1.1) have been extensively studied from the viewpoint

of geometric measure theory (as in [4], for instance). Correspondingly, in the same
direction, also isoperimetric problems with weights have been recently studied, in
some cases (see [20], [21]).

Here we are interested in investigating some issues about a class of generalized
area functionals, from a different perspective, in the frame of differential geometry.
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With this approach we are allowed to prescribe the topological type of the surfaces
we deal with. In particular, we focus on parametric surfaces of the type of the
sphere. This means that we identify surfaces with (the range of) maps from S2

to R3. Moreover we consider functionals of the kind

F (u) =

∫
S2

(1 +Q(u) · ν) dΣ ,

where ν is the Gauss map, dΣ is the area element of S2 induced by u, and Q : R3 →
R3 is a prescribed smooth vector field such that

(1.2) ‖Q‖∞ < 1 .

These functionals are known as “capillarity functionals” (see [18]) and they can be
seen as a correction of the area functional by a non homogeneous and non-isotropic
term. The bound (1.2) is a sufficient (and necessary) condition in order that an
isoperimetric inequality for capillarity functionals holds true. We are interested
in looking for critical points for these kinds of functionals in the Sobolev space
H1(S2,R3), for volume-preserving variations, assuming that the non homogeneous
term vanishes at infinity, namely

(1.3) Q(p) → 0 as |p| → ∞ .

Actually, we can state the precise assumptions just on the scalar field K = divQ,
because capillarity functionals depend on the vector field Q only by its divergence.

In fact, the datum of our problem is a regular enough, scalar field K : R3 → R

satisfying:

(K1) supp∈R3 |K(p)p| =: k0 < 2 for every p ∈ R3.

(K2) K(p)p→ 0 as |p| → ∞.

Then it is possible to construct a vector field QK ∈ C1(R3,R3) such that
div QK = K on R3 and satisfying (1.2) and (1.3) which are direct consequences
of (K1) and (K2), respectively (see Remark 2.7). For this reason, assumptions (K1)
and (K2) seem to be reasonably natural to deal with situations with non homoge-
neous terms vanishing at infinity.

In general, even if the non homogeneous term vanishes at infinity, its presence in
the capillarity functional has important consequences on the issue of the existence
of extremals for the corresponding isoperimetric inequality. In [7] one can find some
results concerning both existence and non-existence of critical points corresponding
to minima for the isoperimetric problems

SK(t) := inf
{FK(u) | u ∈ H1(S2,R3), V(u) = t

}
,

where FK(u) :=

∫
S2

(1 +QK(u) · ν) dΣ(1.4)

and V(u) is the algebraic volume functional, defined as the unique continuous
extension to H1(S2,R3) of the integral functional

V(u) = 1

3

∫
S2

u · ν dΣ for u ∈ H1(S2,R3) ∩ L∞.
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For future convenience, let us state some results proved in [7], about prob-
lems (1.4) with t > 0.

Theorem 1.1. Let K ∈ C1(R3) satisfy (K1)–(K2). Moreover assume that

(1.5) K(p) < 0 at some p ∈ R
3

and that the constant k0 appearing in (K1) satisfies

(1.6) 22/3(2 + k0) < (2− k0)
2 .

Then there exists t+ > 0 such that for every t ∈ (0, t+) the minimization problem
defined by (1.4) admits a minimizer.

The value t+ can be characterized as follows

t+ := sup
{
t ≥ 0 | K ≤ 0 and K 	≡ 0 in some ball of radius 3

√
3t/4π

}
.

In particular, t+ = ∞ if K ≤ 0 everywhere (but also if K ≤ 0 on the tail of an
open cone). Other conditions on K, different from (1.6) and regarding the radial
oscillation of K are also considered in [7]. Moreover in [7] it is proved that

Theorem 1.2. Let K ∈ C0(R3) satisfy (K1)–(K2). If

(1.7) K(p) > 0 for every p ∈ R
3,

then there exists τ > 0 such that for every t ∈ (0, τ) the minimization problem
defined by (1.4) has no minimizer. Moreover SK(t) = St2/3 for t ∈ (0, τ), where
S = 3

√
36π is the isoperimetric constant.

The present paper is a continuation and a completion of [7]. Here we focus on
the issue of existence of critical points in the case of nonexistence of minima.

Theorem 1.3. Let K ∈ C1,α(R3) satisfy (K1)–(K2). Moreover assume (1.7) and
that the constant k0 appearing in (K1) satisfies

(1.8) k0 < 2(21/3 − 1).

Then there exists a sequence tn → 0+ such that the set of constrained critical points
of FK at volume tn, denoted CritFK (tn), is non empty.

The proof of this result is mainly based on a minimax argument and on degree
theory, in the spirit of a procedure introduced in [3] for certain semilinear elliptic
equations in RN .

More precisely, arguing by contradiction, if there are no volume-constrained
critical points, we can construct a suitable minimax level c for the functional which
lies between two consecutive levels, corresponding to the the energy at infinity, i.e.,
the area, of one and two identical spheres at fixed volume. On the other hand,
if there are no volume-constrained critical points, then constrained Palais–Smale
sequences have a limit configuration made by a finite number of spheres, each
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one carrying the same energy. This fact comes out by some key results obtained
in [11] and [6]. Hence the contradiction follows by proving the existence of volume-
constrained Palais–Smale sequences at the minimax level c (see Proposition 4.3).

We stress that the existence of volume-constrained Palais–Smale sequences at
the minimax level c is a delicate and rather technical step. In fact, in general, FK

is not C1 and not even Gateaux differentiable. To our knowledge, a similar result is
only available in the context of minimax levels for the free functionals (see [19]) and
only for C1 functionals. Furthermore, a constrained version of Proposition 4.3 can
be obtained through a deformation-lemma argument, but it requires the functional
to be of class C1 and the constraint to be a Finsler manifold of class C1,1. Instead
our proof is just based on the Ekeland’s variational principle (see, e.g., [15]) and
fine estimates.

We also point out that capillarity functionals are particularly meaningful be-
cause of their connection with the H-bubble problem. In fact, volume-constrained
extremals parametrize S2-type surfaces with volume t and mean curvature H(p) =
1
2 (K(p) − λ), where K = div Q is prescribed, and λ is a constant corresponding
to the Lagrange multiplier due to the constraint. Differently from previous results
obtained for the H-bubble problem, the mean curvature is prescribed up to a con-
stant, while in [8], [12] the mean curvature is of the form H(p) = 1

2 (K(p) − λ0),
where λ0 is a given constant but no information is provided on the volume of those
surfaces. In addition, it is important to note that in our paper we just assume (K1)
with (1.8) and (K2) (see Theorem 5.2), while in [8] and [12], for analogous results
one needs more restrictive assumptions, involving the radial derivative of K.

We also point out that even though we obtain an existence result only for a
sequence tn → 0+, we believe that our result is relevant in view of the techniques
applied for the proof. We suspect that other methods, as the finite-dimensional
reduction method, could be used to get an existence result for all t in a small inter-
val (0, ε). By the way, this strategy, already employed for the H-bubble problem
(see, e.g., [5], [9], [16], [22]), has not been investigated so far for the generalized
isoperimetric problem.

A great part of the tools we use in the present paper is contained in [7] and
for the sake of convenience we recall them in Section 2. Sections 3, 4 and 5 are
devoted, respectively, to the construction of the minimax scheme, to the existence
of constrained Palais–Smale sequences and to the proof of Theorem 1.3.

2. Preliminaries

Let us introduce the space

Ĥ1(R2,R3) :=
{
u ∈ H1

loc(R
2,R3);

∫
R2

(|∇u|2 + μ2|u|2) <∞
}
,

where

(2.1) μ(z) =
2

1 + |z|2 for z = (x, y) ∈ R
2.
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For simplicity we will use the notation Ĥ1 instead of Ĥ1(R2,R3). The space Ĥ1

is a Hilbert space with inner product

〈u, v〉 =
∫
R2

(∇u · ∇v) +
( 1

4π

∫
R2

uμ2
)
·
( 1

4π

∫
R2

v μ2
)

and is isomorphic to the space H1(S2,R3). The isomorphism is given by the cor-
respondence Ĥ1 � u �→ u◦φ ∈ H1(S2,R3), where φ is the stereographic projection
of S2 onto the compactified plane R2 ∪ {∞}. As usual, we denote ‖u‖ = 〈u, u〉1/2.

It is known that C∞(S2,R3) is dense in H1(S2,R3) (see, e.g., [2], Chapter 2).
As a consequence, Ĉ∞ := {u ◦ φ−1 | u ∈ C∞(S2,R3)} is dense in Ĥ1. We point
out that constant maps belong to Ĥ1, and we identify them with R3. Moreover
we observe that p+ Ĥ1 = Ĥ1 for every p ∈ R3.

We recall now some important facts. Some of them are well known and classical.
Others, more related to our problem, are discussed in [7]. We refer to that paper
for the proofs or for additional, useful bibliography.

Lemma 2.1. The space R3+C∞
c (R2,R3) is dense in Ĥ1. In particular, for every

u ∈ Ĥ1 ∩ L∞ there exists a sequence (un) ⊂ R3 + C∞
c (R2,R3) such that un → u

in Ĥ1, in L∞
loc and ‖un‖∞ ≤ ‖u‖∞.

Set

A(u) :=

∫
R2

|ux ∧ uy|, D(u) :=
1

2

∫
R2

|∇u|2 (u ∈ Ĥ1)

V(u) := 1

3

∫
R2

u · ux ∧ uy (u ∈ Ĥ1 ∩ L∞).

Lemma 2.2. The functional V admits a unique analytic extension on Ĥ1. In
particular, for every u ∈ Ĥ1,

V ′(u)[ϕ] =
∫
R2

ϕ · ux ∧ uy ∀ϕ ∈ Ĥ1 ∩ L∞

and there exists a unique v ∈ Ĥ1 ∩ L∞ which is a (weak ) solution of{ −Δv = ux ∧ uy on R
2,∫

R2 vμ
2 = 0 .

Moreover,

(2.2) ‖∇v‖2 + ‖v‖∞ ≤ C ‖∇u‖22
for a constant C independent of u. In addition, for every t 	= 0 the set

(2.3) Mt := {u ∈ Ĥ1 | V(u) = t}
is a smooth manifold and, for any fixed u ∈Mt, a function ϕ ∈ Ĥ1 belongs to the
tangent space to Mt at u, denoted TuMt, if and only if V ′(u)[ϕ] = 0.
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Remark 2.3. The second part of Lemma 2.2 states that there exists a number
C > 0 such that ‖V ′(u)‖Ĥ−1 ≤ C‖∇u‖22 for every u ∈ Ĥ1, where Ĥ−1 denotes the

dual of Ĥ1.

Remark 2.4. The mapping ω(z) = (μx, μy, 1− μ), with μ defined in (2.1), is
a conformal parametrization of the unit sphere. Indeed, it is the inverse of the
stereographic projection from the North Pole. Moreover A(ω) = D(ω) = 4π
and V(ω) = −4π/3. If p ∈ R

3 and r ∈ R\{0}, then u = p+rω is a parametrization
of a sphere centered at p and with radius |r|, Moreover, A(u) = D(u) = 4πr2 and
V(u) = −4πr3/3.

Lemma 2.5 (Isoperimetric inequality). One has that

(2.4) S |V(u)|2/3 ≤ A(u) ≤ D(u) ∀u ∈ Ĥ1,

where S = 3
√
36π is the best constant. Moreover, any extremal function for (2.4)

is a conformal parametrization of a round sphere and it has degree 1 or −1 (as a
map from S2 into S2).

Fixing K ∈ C1(R3) satisfying (K1), set

(2.5) mK(p) :=

∫ 1

0

K(sp)s2 ds and QK(p) := mK(p)p ∀p ∈ R
3,

and observe that divQK = K. Then set

Q(u) :=

∫
R2

QK(u) · ux ∧ uy (u ∈ Ĥ1).

Remark 2.6. We point out that under the correspondence u �→ u◦φ it holds that

FK(u ◦ φ) =
∫
S2

(1 +QK(u ◦ φ) · ν) dΣ

=

∫
R2

(|ux ∧ uy|+QK(u) · ux ∧ uy) dx dy = A(u) +Q(u).

In view of this equality we can extend FK to the class of non immersed surfaces.

Remark 2.7. Using (2.5) one can easily check that Qk satisfies (1.2). More
precisely,

(2.6) ‖QK‖∞ ≤ k0
2
< 1.

Moreover, the functional Q is well defined on Ĥ1 and

(2.7) |Q(u)| ≤ ‖QK‖∞D(u) ∀u ∈ Ĥ1.

One can also check that Qk satisfies (1.3). Indeed, for |p| > R write

QK(p) =
p̂

|p|2
∫ R

0

K(tp̂) t2 dt+
p̂

|p|2
∫ |p|

R

K(tp̂) t2 dt

with p̂ = p/|p|, and use (K2) to conclude.
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The next result collects some useful properties of the functional Q.

Lemma 2.8. Let K : R3 → R be a bounded continuous function. Then:

(i) the functional Q is continuous in Ĥ1.

(ii) For every u ∈ Ĥ1 and ϕ ∈ Ĥ1 ∩ L∞ one has

Q(u+ϕ)−Q(u) =

∫
R2

( ∫ 1

0

K(u+ rϕ)ϕ · (ux + rϕx)∧ (uy + rϕy) dr
)
dx dy.

(iii) The functional Q admits directional derivatives at every u ∈ Ĥ1 along any
ϕ ∈ Ĥ1 ∩ L∞, given by

Q′(u)[ϕ] =
∫
R2

K(u)ϕ · ux ∧ uy.

If in addition supp∈R3 |K(p)p| <∞, then for every u ∈ Ĥ1 the mapping s �→ Q(su)
is differentiable and

d

ds
[Q(su)] = s2

∫
R2

K(su)u · ux ∧ uy.

Now we state and prove a technical result which will be useful in the sequel.

Lemma 2.9. For any ϕ ∈ R
3 +C∞

0 (R2,R3), the map u �→ E ′(u)[ϕ] from Ĥ1 to R

is continuous.

Proof. Thanks to Lemma 2.8 (iii), we have that for any u ∈ Ĥ1 and ϕ ∈ R3 +
C∞

0 (R2,R3) the functional E admits the directional derivative at u along ϕ and

E ′(u)[ϕ] =
∫
R2

∇u · ∇ϕ+

∫
R2

K(u)ϕ · ux ∧ uy.

Since u �→ D′(u)[ϕ] is continuous, it suffices to show that this holds also for u �→
Q′(u)[ϕ]. Let (un) ⊂ Ĥ1 be such that un → u in Ĥ1. Then

|Q′(un)[ϕ]−Q′(u)[ϕ]|
=

∣∣∣ ∫
R2

K(un)ϕ · unx ∧ uny −
∫
R2

K(u)ϕ · ux ∧ uy
∣∣∣

=
∣∣∣ ∫

R2

K(un)ϕ · unx ∧ uny −
∫
R2

K(u)ϕ · unx ∧ uny

+

∫
R2

K(u)ϕ · unx ∧ uny −
∫
R2

K(u)ϕ · ux ∧ uy
∣∣∣

≤
∫
R2

|K(un)−K(u)| |ϕ| |unx ∧ uny |︸ ︷︷ ︸
In
1

+

∫
R2

|K(u)| |ϕ| |unx ∧ uny − ux ∧ uy|︸ ︷︷ ︸
In
2

.

Since un → u in Ĥ1, we get that unx ∧ uny → ux ∧ uy in L1(R2) and un → u a.e.
in R

2. Moreover, since K is continuous and satisfies (K1), then K is bounded by
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some positive constant CK . Now assume by contradiction that In1 	→ 0 as n→ ∞.
This means that there exists ε > 0 such that |Ink

1 | > ε for some subsequence
nk → ∞. But since unx ∧ uny → ux ∧ uy in L1(R2), there exists a subsequence nkh

and a nonnegative function g ∈ L1(R2) such that |unkh
x ∧ u

nkh
y | ≤ g a.e. in R2.

Thus, by the previous considerations and being ϕ ∈ R3+C∞
0 (R2,R3) it holds that

|K(unkh )−K(u)| |ϕ| |unkh
x ∧ unkh

y | ≤ 2CK |ϕ|∞ g,

and by the dominated convergence theorem we obtain that I
nkh
1 → 0, contradicting

|Ink
1 | > ε. As far as concerns In2 , it suffices to observe that

In2 ≤ CK‖ϕ‖∞
∫
R2

|unx ∧ uny − ux ∧ uy| → 0, as n→ ∞

because unx ∧ uny → ux ∧ uy in L1(R2). The proof is complete. �

Remark 2.10. Let ω be the mapping introduced in Remark 2.4. Then, for every
p ∈ R3 and r > 0, one has that Q(p + rω) = − ∫

Br(p)
K(p) dp, whereas if r < 0

then Q(p+ rω) =
∫
B|r|(p)

K(p)dp. For a proof of this fact, see Remark 2.3 in [12].

Now we recall some useful results concerning the following volume-constrained
minimization problems:

(2.8) SK(t) := inf
u∈Mt

E(u) where E(u) := D(u) +Q(u) ,

t ∈ R is fixed, and Mt is defined in (2.3). Unless differently specified, we always
assume that K ∈ C1(R3) satisfy (K1) and (K2).

We point out that the mapping t �→ SK(t) is well defined on R and takes
positive values for t 	= 0, in view of (2.4), (2.6), and (2.7). It will be named the
isovolumetric function.

Remark 2.11. For t = 0 the class Mt contains the constant functions. Since
0 ≤ (1 − ‖QK‖∞)D(u) ≤ E(u), we deduce that SK(0) = 0 and minimizers for
SK(0) are exactly the constant functions.

Remark 2.12. When K = 0 we have E = D and, by (2.4), S0(t) = inf{D(u) | u ∈
Mt} = St2/3, for any fixed t ∈ R.

Now we state some properties of the isovolumetric function SK(t).

Lemma 2.13. For every t ∈ R the following facts hold :

(i) SK(−t) = S−K(t);

(ii) SK(t) = SK(·+p)(t) for every p ∈ R3.

(iii) SK(t) = inf{E(u) | u ∈ C∞
c (R2,R3), V(u) = t}.

Lemma 2.14. For every t ∈ R the following facts hold :

(i) For every t ∈ R one has that (1− ‖QK‖∞)St2/3 ≤ SK(t) ≤ S0(t) = St2/3.

(ii) For every t1, . . . , tk ∈ R one has that SK(t1)+· · ·+SK(tk) ≥ SK(t1+· · ·+tk).



Isovolumetric stationary surfaces for capillarity functionals 1693

Remark 2.15. The value S0(t) is the infimum for the Dirichlet integral in the
class Mt of mappings in Ĥ1 parametrizing surfaces with volume t. We know
that S0(t) is attained by a conformal parametrization of a round sphere of volume t
with arbitrary center (Lemma 2.5). On the other hand, SK(t) is is the infimum
value for the functional E = D +Q in the same class Mt, and Q has the meaning
of K-weighted algebraic volume (see Remark 2.10; see also [10], Section 2.3).

The next result collects some properties about minimizing sequences for the
isovolumetric problem defined by (2.8). In particular we have a bound from above
and from below on the Dirichlet norm, and we have that every minimizing sequence
shadows another minimizing sequence consisting of approximating solutions for
some prescribed mean curvature equation.

Lemma 2.16. Let t ∈ R be fixed. Then :

(i) D(u) ≥ SK(t)
1+‖QK‖∞

for every u ∈Mt.

(ii) If (un) ⊂ Mt is a minimizing sequence for SK(t), then lim supD(un) ≤
St2/3

1−‖QK‖∞
.

(iii) For every minimizing sequence (ũn) ⊂ Mt for SK(t), there exists another
minimizing sequence (un) ⊂ Mt such that ‖un − ũn‖ → 0 and with the
additional property that

Δun −K(un)unx ∧ uny + λunx ∧ uny → 0 in Ĥ−1 (= dual of Ĥ1)

for some λ ∈ R.

Definition 2.17. Let H ∈ C0(R3) be a given function. We call U ∈ Ĥ1 an
H-bubble if it is a nonconstant solution to

(2.9) ΔU = H(U)Ux ∧ Uy on R
2

in the distributional sense. If H is constant, an H-bubble will be named H-sphere.
The system (2.9) is called H-system.

A first useful property of H-bubbles, for a class of mappings H of our interest,
is the following.

Lemma 2.18. Let H(p) = K(p)−λ with λ ∈ R and K ∈ C0(R3) satisfying (K1).
If U ∈ Ĥ1 is an H-bubble, then U ∈ L∞, and λV(U) > 0. If, in addition,
K ∈ C1(R3), then U is of class C2,α as a map on S2.

The next result is crucial and explains that Palais–Smale sequences for E con-
strained to Mt admit a limit configuration made by bubbles. More precisely:

Lemma 2.19 (Decomposition theorem). Let K : R3 → R be a continuous function
satisfying (K1) and (K2). If (un) ⊂ Ĥ1 is a sequence satisfying

Δun −K(un)unx ∧ uny + λunx ∧ uny → 0 in Ĥ−1,
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for some λ ∈ R and such that c1 ≤ ‖∇un‖2 ≤ c2 for some 0 < c1 ≤ c2 < ∞
and for every n, then there exist a subsequence of (un), still denoted (un), finitely
many (K−λ)-bubbles U i (i ∈ I), finitely many (−λ)-spheres U j (j ∈ J) such that,
as n→ ∞, ⎧⎪⎨

⎪⎩
D(un) → ∑

i∈I D(U i) +
∑

j∈J D(U j),

V(un) → ∑
i∈I V(U i) +

∑
j∈J V(U j),

Q(un) → ∑
i∈I Q(U i),

(2.10)

where I or J can be empty but not both. In particular, if J = ∅ then the subse-
quence (un) is bounded in Ĥ1.

3. A constrained minimax result

Let us denote by CritE(t) the set of constrained critical points of the functional E
over Mt, in the following sense:

CritE(t) = {u ∈Mt | ∃λ ∈ R s.t. E ′(u)[ϕ]−λV ′(u)[ϕ] = 0 ∀ϕ ∈ R
3+C∞

0 (R2,R3)}.
For any p ∈ R3 and t > 0 we set

(3.1) st :=
3

√
3t

4π
and ωp,t := st(−ω + p),

where ω the map defined in Remark 2.4.

The goal of this section is to prove the following result.

Proposition 3.1. Let K ∈ C1(R3) satisfying (K1)–(K2) with (1.8), and K > 0
on R

3. Assume that

(3.2) ∃ t0 > 0 s.t. CritE(t) = ∅ ∀t ∈ (0, t0].

Then there exists R > 0 such that, for every t ∈ (0, t0),

S0(t) < sup
p∈∂BR

E(ωp,t) < inf
φ∈Φ

sup
p∈BR

E(φ(p)) < 21/3S0(t),

where S0(t) = St2/3, Φ := {φ ∈ C0(BR,Mt); φ|∂BR(p) = ωp,t}, ωp,t is the function
defined in (3.1).

In order to prove Proposition 3.1, we need to introduce a new tool and some
preliminary results. Let us fix t > 0 and denote by Bt : Ĥ

1 → R3 the vector-valued
map defined by

Bt(u) :=
1

8πs2t

∫
R2

Π(u) |∇u|2,

where Π is the minimal distance projection of R3 onto the closed unit ball, namely,

Π(p) :=

{
p if |p| < 1,

p/|p| if |p| ≥ 1.
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Since Π ◦ u is bounded for any u ∈ Ĥ1, the mapping Bt is well defined and
continuous on Ĥ1, in particular Bt is continuous as mapping from Mt to R

3. We
also point out that Bt is conformally invariant.

Proposition 3.2. Let K ∈ C1(R3) satisfying (K1)–(K2) and assume that K > 0
in R

3 and (3.2). Then

∀t ∈ (0, t0) ∃ rt,K > 0 s.t. inf
u∈Mt

|Bt(u)|≤rt,K

E(u) > S0(t).

Proof. We argue by contradiction. Assume the thesis is false, then there exist
t ∈ (0, t0) and a sequence (un) ⊂ Mt such that E(un) → S0(t) and Bt(u

n) → 0.
Observe that, thanks to Theorem 1.2, we can assume without loss of generality that
SK(t) = S0(t). Hence (u

n) is a minimizing sequence for SK(t) and, by Lemma 2.16,
there exists another minimizing sequence (ũn) ⊂Mt such that ‖un − ũn‖ → 0 and

Δun −K(un)unx ∧ uny + λunx ∧ uny → 0 in Ĥ−1

for some λ ∈ R. Now, being (D(un)) bounded, by Lemma 2.19, we get that, up to
a subsequence (still denoted (un)), there exist finitely many (K − λ)-bubbles U i

(i ∈ I), finitely many (−λ)-spheres U j (j ∈ J) for which (2.10) holds, and I or J
can be empty but not both. Since we are assuming (3.2), it results that I = ∅ and
thus J 	= ∅. Now we prove that J is a singleton. Assume, by contradiction, that J
is not a singleton, in particular, being J finite and denoting by |J | its cardinality,
we have |J | ≥ 2. We set tj := V(Uj) for j ∈ J . By Lemma 2.18 one has that
tjλ > 0 for any j ∈ J . Hence, from (2.10) we get that

∑
j∈J tj = t, and tj > 0 for

any j ∈ J . We observe that for any j ∈ J being Uj a (−λ)-sphere, there exists a
positive integer kj such that

4πkj λ
2 = D(Uj),

4
3πkj λ

3 = tj .(3.3)

From (3.3) we deduce that D(Uj) = Sk
1/3
j t

2/3
j . Moreover, thanks to (2.10), being

SK(t) = S0(t) we have S0(t) =
∑

j∈J D(Uj), and being kj ∈ N+ it holds(∑
j∈J

tj

)2/3

=
∑
j∈J

k
1/3
j t

2/3
j ≥

∑
j∈J

t
2/3
j .

On the other hand, being tj > 0 for all j ∈ J and |J | ≥ 2, by a well-known
elementary inequality, it also holds(∑

j∈J

tj

)2/3

<
∑
j∈J

t
2/3
j ,

which gives a contradiction. Now, being J a singleton, by Theorem 0.1 of [6]
and thanks to (3.2), there exists a sequence (gn) of conformal transformations of
R2 ∪ {∞} into itself such that setting

vn := ũn ◦ gn and pn :=
1

4π

∫
R2

μ2 vn
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for a subsequence of (vn) (still denoted by (vn)), one has |pn| → ∞ and vn −
pn → Uj weakly in Ĥ1. In particular, being D(ũn) → D(Uj) it holds that ∇vn →
∇Uj in L2. Recalling that Bt is conformally invariant, we get that

Bt(ũ
n) = Bt(vn) =

1

8πs2t

∫
R2

Π(vn)|∇Uj |2 + o(1).

Since |pn| → ∞ and
∫
S2
Uj = 0 we also have that vn − pn → Uj strongly in Ĥ1. In

particular |vn| → ∞ a.e. in R2. Being pn/|pn| bounded, up to a subsequence, we
have pn/|pn| → p ∈ S2 and it follows that Π(vn) → p. Hence we obtain that

|Bt(ũ
n)| = 1

8πs2t

∫
R2

|∇Uj |2 + o(1) ≥ c > 0,

and being Bt continuous and ‖ũn − un‖ → 0, this contradicts Bt(u
n) → 0. �

Lemma 3.3. Let K ∈ C1(R3) satisfying (K1), (K2) and (3.2). Let t ∈ (0, t0) and
p ∈ R

3. As |p| → ∞ it holds that

E(ωp,t) = S0(t) + o(1),

Bt(ωp,t) =
p

|p| + o(1),

where ωp,t is the function defined in (3.1).

Proof. The first relation follows from the fact that D(ωp,t) = S0(t) and Q(ωp,t) =∫
Bst (stp)

K(q) dq (see Remark 2.10). Thanks to assumption (K1) we get that

|Q(ωp,t)| ≤
∫
Bst (stp)

|K(q)| dq ≤ k0

∫
Bst (stp)

dq

|q| .

Recalling that 1/|q| is harmonic in R
3 outside the origin, we have∫

Bst (stp)

dq

|q| =
4πs2t
3|p| → 0 as |p| → ∞.

The first relation is then proved. Concerning the second relation, we observe that
|ωp,t| ≥ 1 on R2 for |p| large enough. This implies that Bt(ωp,t) = s2tBt(−ω + p)
and

s2tBt(−ω + p)− p

|p| =
1

8π

∫
R2

( ω + p

|ω + p| −
p

|p|
)
|∇ω|2 → 0 as |p| → ∞,

by dominated convergence theorem. The proof is then complete. �

We have now all the tools to prove Proposition 3.1.

Proof of Proposition 3.1. Let t ∈ (0, t0), let rt,K > 0 be given by Proposition 3.2,
and let ε ∈ (0, 1) be such that ε < infu∈Mt,|Bt(u)|≤rt,K E(u)− S0(t). According to
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Lemma 3.3, there exists a sufficiently large number R > 1 such that, for all p ∈ R3

with |p| = R, one has

(3.4) E(ωp,t) < S0(t) + ε, |Bt(ωp,t)| > 1− ε,
p

|p| · Bt(ωp,t) > 1− ε.

Let Φ be as in the statement of Proposition 3.1. Being K > 0, and thanks to (3.4),
it follows that

S0(t) < sup
p∈∂BR

E(ωp,t) < S0(t) + ε.

Let us set c := infφ∈Φ supp∈BR
E(φ(p)). We want to prove that c ≥ S0(t) + ε. To

this goal, assume by contradiction that there exists a map φ ∈ Φ such that

sup
p∈BR

E(φ(p)) < S0(t) + ε.

Hence by Proposition 3.2 we have that

(3.5) |Bt(φ(p))| > rt,K for all p ∈ BR.

Now consider the map g : BR → R3 defined by

g(p) := Bt(φ(p)),

and fix a point p0 ∈ R3 with 0 < |p0| < min{rt,K , 1 − ε}. We claim that the
topological degree deg(g,BR, p0) is well defined and deg(g,BR, p0) = 1. To this
purpose, consider the homotopy h : [0, 1]×BR → R3 defined by

h(s, p) := sp+ (1− s)Bt(φ(p)).

Assume by contradiction that h is not admissible, then, there exist s̄ ∈ [0, 1] and
p̄ ∈ ∂BR such that h(s̄, p̄) = p0, hence by definition of h and thanks to (3.4) we
deduce that

|p0| = |s̄p̄+ (1− s̄)Bt(ωp̄,t)| ≥ s̄R+ (1− s̄)(1 − ε) = 1− ε+ s̄(R− 1 + ε) ≥ 1− ε,

which gives a contradiction. Hence h is an admissible homotopy between g and the
identity map of BR, and by well-known properties of the topological degree it holds
that deg(g,BR, p0) = 1. Now, being deg(g,BR, p0) 	= 0 in particular we deduce
that the equation g(p) = p0 has at least a solution p ∈ BR. Hence |Bt(φ(p))| =
|p0| for some p ∈ BR but, being |p0| < rt,K it follows that |Bt(φ(p))| < rt,K ,
contradicting (3.5) and hence c ≥ S0(t) + ε.

In order to conclude the proof, it remains to check that c < 21/3S0(t). To this
goal, let us consider the map p �→ ωp,t. It is clear that ωp,t ∈ Φ. It is known
that D(ωp,t) = S0(t), hence in order to complete the proof we need to estimate
Q(ωp,t). By Remark 2.10, we know that Q(ωp,t) =

∫
Bst(stp)

K(q) dq. Thanks to

assumption (K1) and being K > 0, it holds that∫
Bst (stp)

K(q) dq ≤ k0

∫
Bst(stp)

1

|q| dq .
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By a suitable change of variable and elementary computations we get that

k0

∫
Bst (stp)

K(q) dq = k0s
2
t

∫
B1(0)

1

|q − p| dq.

Let us set consider the function I : R3 → R defined by p �→ ∫
B1(0)

1
|q−p| . We observe

that I(p) can be explicitly computed, more precisely we have that

(3.6) I(p) =

{
2π
3 (3− |p|2) if |p| ≤ 1,
4π
3|p| if |p| > 1.

In fact if |p| > 1 the integrand function q �→ 1
|q−p| is harmonic in B1(0) and thus

by the mean value property we get that I(p) = 4π
3|p| .

The case |p| ≤ 1 is more delicate: first observe that by dominated convergence
theorem we get that I : R3 → R is continuous at any p ∈ R3, in particular if
p ∈ ∂B1(0), from the previous case, we deduce that I(p) = 4π/3. Now let us
consider the vector field E : R3 → R3 defined by

E(p) :=

∫
B1(0)

p− q

|p− q|3 dq.

Observe that, by definition and by the dominated convergence theorem, I is dif-
ferentiable and

(3.7) E(p) = −∇I(p).
We also note that E is of the form E(p) = g(|p|) p

|p| when p 	= 0, for some function

g : R+ → R. In fact, fixing p 	= 0 and making a change of variable in the integral
defining E by any orthogonal matrix T ∈ O3 such that T (p) = p we get that
E(p) = T (E(p)), and thus the fact follows from the arbitrariness of T . Moreover,
since T (0) = 0 for any T ∈ O3 it holds that E(0) = 0. At the end, by a suitable
application of the Stokes theorem, we obtain that

E(p) =

{
4
3 πp if |p| ≤ 1,
4
3 πp/|p|3 if |p| > 1.

Thanks to (3.7) and the previous characterization, by fixing a point p0 ∈ ∂B1, and
for any path γ joining p and p0, we get that

I(p)− I(p0) = −
∫
γ

E · dγ = −4

3
π

∫ |p|

1

r dr = −2

3
π (|p|2 − 1).

Hence, since I(p0) = 4π/3, we have

I(p) =
4

3
π − 2

3
π (|p|2 − 1) =

2

3
π (3 − |p|2) = 2

3
π (3− |p|2).

Hence, thanks to (3.6) we deduce that

sup
p∈R3

I(p) = 2π
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and

k0 s
2
t

∫
B1(0)

1

|q − p| dq ≤ k0 s
2
t 2π.

Now observe that

E(ωp,t) ≤ S0(t) + 2π k0

( 3

4π

)2/3

t2/3 = S t2/3 + 2k0

( 9

16
π
)1/3

t2/3.

Now, thanks to the assumption (1.8), by elementary computations it is easy to
verify that

S t2/3 + 2k0

( 9

16
π
)1/3

t2/3 < 21/3S t2/3,

which implies that E(ωp,t) < 21/3St2/3, and in particular c < 21/3St2/3 which is
the desired relation. The proof is complete. �

4. Constrained Palais–Smale sequences for E at the minimax
level c

In this section we prove that there exists a Palais–Smale sequence constrained to
the smooth manifold Mt at a suitable minimax level. Let t > 0 and R > 0 be
fixed, we define

(4.1) c := inf
φ∈Φ

sup
p∈BR

E(φ(p)),

where Φ := {f ∈ C0(BR,Mt); f |∂BR(p) = ωp,t}, and ωp,t is the function defined
in (3.1). Moreover we define

(4.2) c0 := sup
p∈∂BR

E(ωp,t).

We begin with a preliminary result.

Lemma 4.1. Let t ∈ R \ {0} and let u ∈ Mt. It holds that TuMt ∩ (R3 +
C∞

0 (R2,R3)) is dense in TuMt.

Proof. Let us fix t ∈ R \ {0}. By Lemma 2.2 we know that Mt ⊂ Ĥ1 is a smooth
manifold of codimension one. Let us fix u ∈Mt. Then we can write

Ĥ1 = TuMt ⊕ 〈h〉,

where h ∈ Ĥ1 is the Riesz representative of V ′(u)/‖V ′(u)‖2 (see Section 6.1 of [1]).
We observe that since R3 + C∞

0 (R2,R3) dense in Ĥ1 (see Lemma 2.1) then there
exists v ∈ (R3 + C∞

0 (R2,R3)) \ TuMt. Hence we can also write

Ĥ1 = TuMt ⊕ 〈v〉.
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Now let us fix w ∈ TuMt, then by the density of R3 + C∞
0 (R2,R3) in Ĥ1 there

exists a sequence (wn) ⊂ R
3 + C∞

0 (R2,R3) such that wn → w in Ĥ1. Let us set

w̃n := wn − V ′(u)[wn]

V ′(u)[v]
v.

By construction, w̃n ∈ R3 + C∞
0 (R2,R3) and V ′(u)[w̃n] = 0, i.e., w̃n ∈ (R3 +

C∞
0 (R2,R3)) ∩ TuMt. Moreover,

‖w̃n − w‖ ≤ ‖wn − w‖ +
∣∣∣V ′(u)[wn]

V ′(u)[v]

∣∣∣ ‖v‖,
and the right-hand side goes to zero as n → ∞ because wn → w in Ĥ1 and
w ∈ TuMt. The proof is complete. �

Proposition 4.2. Let t ∈ R+ and R > 0 be fixed and let c, c0 be the numbers
defined, respectively, in (4.1), (4.2). If c > c0 then for any sufficiently small ε > 0
and for each f ∈ Φ such that

(4.3) sup
p∈BR

E(f(p)) ≤ c+ ε

there exists u ∈Mt such that

c− ε ≤ E(u) ≤ supp∈BR
E(f(p)) ,

‖u− f(p)‖ ≤ ε1/2 ∀p ∈ BR ,

|E ′(u)[ϕ]| ≤ 2ε1/2 ∀ϕ ∈ TuMt ∩ (R3 + C∞
0 (R2,R3)) with ‖ϕ‖ = 1 .

Proof. Let ε be such that 0 < ε < c− c0. Moreover assume that ε satisfies

(4.4) ε2
( 1

3t
+

2

9
27/3ε2

)
< 1.

A further restriction on the smallness of ε will be specified in the sequel of the
proof. Let f ∈ Φ satisfy (4.3) and define the function F : Φ → R by setting

F (g) := sup
p∈BR

E(g(p)).

In particular, observe that c = infΦ F > c0. Thanks to Ekeland’s variational
principle (see, e.g., [15]), there exists h ∈ Φ such that

F (h) ≤ F (f) ≤ c+ ε ,(4.5)

d(h, f) := sup
p∈BR

‖h(p)− f(p)‖ ≤ ε1/2 ,

F (g) > F (h)− ε1/2d(h, g) ∀g ∈ Φ with g 	= h .
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In order to reach the conclusion, it suffices to show that for some p ∈ BR it
holds that

c− ε ≤ E(h(p)) ,
|E ′(h(p))[ϕ]| ≤ 2ε1/2 ∀ϕ ∈ Th(p)Mt ∩ (R3 + C∞

0 (R2,R3)) with ‖ϕ‖ = 1 .(4.6)

Notice that (4.6) is equivalent to

E ′(h(p))[ϕ] ≥ −2ε1/2 ∀ϕ ∈ TuMt ∩ (R3 + C∞
0 (R2,R3)) with ‖ϕ‖ = 1 .

By contradiction, if this does not happen, then, setting

P := {p ∈ BR | c− ε ≤ E(h(p))},
for each p ∈ P there exists δp > 0, ϕp ∈ Th(p)Mt∩(R3+C∞

0 (R2,R3)) with ‖ϕp‖ = 1

and an open ball Bp centered at p such that for q ∈ Bp and u ∈ Ĥ1 with ‖u‖ ≤ δp,
we have

(4.7) E ′(h(q) + u)[ϕp] < −2ε1/2.

We recall that, by Lemma 2.9, for any fixed ϕ ∈ R3 + C∞
0 (R2,R3) the map u �→

E ′(u)[ϕ] from Ĥ1 to R is continuous. Moreover, since V ′(h(p))[ϕp] = 0, taking
a possibily smaller ball Bp and a smaller constant δp, if necessary, we can also
assume that

(4.8) |V ′(h(q) + u)[ϕp]| ≤ ε2 ∀q ∈ Bp , ∀u ∈ Ĥ1 with ‖u‖ ≤ δp .

By the continuity of D, assumption (K1) and (4.5), taking a smaller δp, we can
also assume that

(4.9) D(h(p) + u) ≤ C for ‖u‖ ≤ δp ,

where C is some positive constant depending only on k0 and c. In fact, by assump-
tion (K1) we have

D(h(p)) ≤ E(h(p))
1− k0/2

≤ F (h)

1− k0/2
≤ c+ ε

1− k0/2
< C,

for some positive constant C depending only on k0 and c and then by continuity
of D we get (4.9). Since P is compact there exists a finite subcovering Bp1 , . . . , Bpk

of P and we define ψj : P → [0, 1] by

ψj(p) =

⎧⎪⎨
⎪⎩

dist(p, �Bpj )∑k
i=1 dist(p, �Bpi)

if p ∈ ⋃k
i=1Bpi ,

0 if p ∈ P \⋃k
i=1 Bpi .

Furthermore, let δ := min{1/2, t/2, δp1, . . . , δpk
}, let ψ : BR → [0, 1] be a continu-

ous function such that

ψ(p) =

{
1 if c ≤ E(h(p)),
0 if E(h(p)) ≤ c− ε,
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and let τ : BR → R and g : BR →Mt be defined by

τ(p) :=
( t

V(h(p) + δ ψ(p)
∑k

j=1 ψj(p)ϕpj

))1/3

,

g(p) := τ(p)
(
h(p) + δ ψ(p)

k∑
j=1

ψj(p)ϕpj

)
.

It holds that g ∈ Φ. In fact, since 0 < ε < c− c0, when p ∈ ∂BR we have

E(h(p)) = E(st(−ω + p)) ≤ c0 < c− ε,

and hence ψ(p) = 0 which means that g(p) = h(p) = st(−ω + p). We observe that
for p ∈ P the following inequality holds:

(4.10) 1− 1

3t
δ ψ(p)ε2−2

9
27/3δ2ψ2(p)ε4 ≤ τ(p) ≤ 1+

1

3t
δ ψ(p)ε2+

2

9
27/3δ2ψ2(p)ε4.

In fact, by the mean value theorem, we have

V
(
h(p)+δ ψ(p)

k∑
j=1

ψj(p)ϕpj

)

= V(h(p)) + V ′
(
h(p) + σ δ ψ(p)

k∑
j=1

ψj(p)ϕpj

)[
δ ψ(p)

k∑
j=1

ψj(p)ϕpj

]

= t+ δ ψ(p)

k∑
j=1

ψj(p)V ′
(
h(p) + σ δ ψ(p)

k∑
j=1

ψj(p)ϕpj

)
[ϕpj ]

for some σ ∈ (0, 1). Now, thanks to (4.8) and the definition of the functions ψj ,
we see that ∣∣∣ k∑

j=1

ψj(p)V ′
(
h(p) + σδ ψ(p)

k∑
j=1

ψj(p)ϕpj

)
[ϕpj ]

∣∣∣ ≤ ε2.

In particular we observe that this estimate is uniform with respect to p ∈ P . Hence
we deduce that

τ(p) =
( t

t+ δ ψ(p)O(ε2)

)1/3

with |O(ε2)| ≤ ε2 and the desired inequality follows by elementary considerations.
More precisely, by the Taylor expansion of the function s �→ 1/(1 + s)1/3 we have

τ(p) = 1− 1

3t
δ ψ(p)O(ε2)

+

∫ 1

0

(1− s)
4

9

(
1 + s

(δ
t
ψ(p)O(ε2)

))−7/3(δ
t
ψ(p)O(ε2)

)2

ds.

Thanks to the choice of δ and being |O(ε2)| ≤ ε2 we have | δtψ(p)O(ε2)| ≤ 1
2ε

2 ≤ 1
2 .
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Hence, for any s ∈ [0, 1] we have(
1 + s

(δ
t
ψ(p)O(ε2)

))−7/3

≤ 27/3

and we get∣∣∣ ∫ 1

0

(1 − s)
4

9

(
1 + s

(δ
t
ψ(p)O(ε2)

))−7/3(δ
t
ψ(p)O(ε2)

)2

ds
∣∣∣ ≤ 2

9
27/3

δ2

t2
ψ2(p)ε4.

Hence the estimate (4.10) follows immediately. Now, setting

η(p) := ψ(p)
k∑

j=1

ψj(p)ϕpj and hδ(p) := h(p) + δη(p) ,

we write

E(g(p))− E(h(p)) = τ(p)2
(E(hδ(p))− E(h(p)))︸ ︷︷ ︸

I1

+ τ(p)2E(h(p)) − E(h(p))︸ ︷︷ ︸
I2

+Q(τ(p)(hδ(p)))−Q(hδ(p))︸ ︷︷ ︸
I3

+Q(hδ(p))− τ(p)2Q(hδ(p))︸ ︷︷ ︸
I4

.

We begin with the term I1. Recalling that for any fixed ϕ ∈ R3 +C∞
0 (R2,R3) the

functional E is differentiable along ϕ, by the mean value theorem, for any fixed
p ∈ P there exists ξ ∈ (0, 1) such that

E(hδ(p)) − E(h(p)) = E ′
(
h(p) + ξ δ ψ(p)

k∑
j=1

ψj(p)ϕpj

)
[δ ψ(p)

k∑
j=1

ψj(p)ϕpj ]

= δ ψ(p)

k∑
j=1

ψj(p)E ′
(
h(p) + ξ δ ψ(p)

k∑
j=1

ψj(p)ϕpj

)
[ϕpj ]

= δ ψ(p)

k∑
j=1

ψj(p)E ′
(
h(p) + ξ τ(p)δ ψ(p)

k∑
j=1

ψj(p)ϕpj

)
[ϕpj ] .(4.11)

Now, from (4.7), (4.10) and (4.11) we get that for p ∈ P

I1 ≤ −2τ(p)2δ ψ(p)ε1/2 ≤ −2
(
1− 1

3t
δ ψ(p) ε2 − 1

9t2
27/3 δ2 ψ2(p) ε4

)2

δ ψ(p)ε1/2 .

Regarding the term I2, thanks to (4.4), (4.5) and (4.10) we have

|I2| = |τ2(p)− 1| E(h(p)) ≤ 3(c+ ε)
( 1

3t
δ ψ(p) ε2 +

2

9t2
27/3 δ2 ψ2(p) ε4

)
.

For I3, thanks to Lemma 2.8, we have that

Q(τ(p)(hδ(p))) −Q(hδ(p)) =

∫ τ(p)

1

s2
∫
R2

K(s(hδ(p)))hδ(p) · (hδ(p))x ∧ (hδ(p))y .
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Now, by assumption (K1) and thanks to (4.4), (4.9), (4.10) we get that

∣∣∣ ∫ τ(p)

1

s2
∫
R2

K(s(hδ(p)))hδ(p) · (hδ(p))x ∧ (hδ(p))y

∣∣∣
=

∣∣∣ ∫ τ(p)

1

s

∫
R2

K(s(hδ(p)))shδ(p) · (hδ(p))x ∧ (hδ(p))y

∣∣∣
≤

∫ max{1,τ(p)}

min{1,τ(p)}
s

∫
R2

∣∣K(s(hδ(p)))s(hδ(p))
∣∣ ∣∣(hδ(p))x ∧ (hδ(p))y

∣∣
≤ k0

∫
R2

∣∣(hδ(p))x ∧ (hδ(p))y
∣∣ ∣∣∣ ∫ τ(p)

1

s ds
∣∣∣

≤ k0 D(hδ(p))
|τ(p)2 − 1|

2
≤ 3

2
k0 C

( 1

3t
δ ψ(p)ε2 +

2

9t2
27/3 δ2 ψ2(p) ε4

)
.

As far as concerns I4, as before, using assumption (K1) we get that

|I4| = |1 − τ(p)2| |Q(h(p) + δη(p))| ≤ |1− τ(p)2| k0
2

D(hδ(p))

≤ 3

2
k0 C

( 1

3t
δ ψ(p) ε2 +

2

9t2
27/3 δ2 ψ2(p) ε4

)
.

Finally, from these estimates we get that for p ∈ P

E(g(p)) − E(h(p)) ≤ −2δ ψ(p) ε1/2 + C1 δ ψ(p) ε
2,

where C1 is a constant depending only on k0, t and R. Hence choosing at the
beginning of the proof ε > 0 sufficiently small such that −2ε1/2+C1ε

2 < −ε1/2 we
get that

E(g(p))− E(h(p)) ≤ −δ ψ(p) ε1/2.
If p /∈ P we have that ψ(p) = 0 and E(g(p)) = E(h(p)). If p̄ ∈ BR is such that
E(g(p̄)) = F (g), we have

E(h(p̄)) ≥ E(g(p̄)) ≥ c,

and hence p̄ ∈ P and ψ(p̄) = 1. Thus, we get that

E(g(p̄)) − E(h(p̄)) ≤ −δ ε1/2

and in particular
F (g) + ε1/2 δ ≤ E(h(p̄)) ≤ F (h),

so that g 	= h. But by definition of g we have

d(g, h) ≤ δ

and hence
F (g) + ε1/2 d(g, h) ≤ F (h),

which gives a contradiction. The proof is complete. �
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Proposition 4.3. Let K ∈ C1(R3) satisfying (K1) and (K2), let t ∈ R+ and R > 0
be fixed, and let c, c0 be the numbers defined, respectively, in (4.1), (4.2). Assume
that c > c0. Then, for every sequence (fn) ⊂ Φ such that supp∈BR

E(fn(p)) → c,
there exists another sequence (un) ⊂ Mt such that E(un) → c and with the addi-
tional property that

Δun −K(un)(un)x ∧ (un)y + λ(un)x ∧ (un)y → 0 in Ĥ−1

for some λ ∈ R.

Proof. Let (fn) ⊂ Φ be such that supp∈BR
E(fn(p)) → c. Then, according to

Proposition 4.2 we find sequences (εn) ⊂ (0, 1), with εn → 0, and (un) ⊂Mt such
that

c− εn ≤ E(un) ≤ sup
p∈BR

E(fn(p))

|E ′(un)[ϕ]| ≤ 2 ε1/2n ‖ϕ‖ ∀ϕ ∈ TunMt ∩ (R3 + C∞
0 (R2,R3)).

Then, since (R3 + C∞
0 (R2,R3)) ∩ TunMt is dense in TunMt (see Lemma 4.1) we

conclude that

(4.12) |E ′(un)[ϕ]| ≤ 2 ε1/2n ‖ϕ‖ ∀ϕ ∈ TunMt .

Now let vn ∈ Ĥ1 be the Riesz representative of V ′(un). Set

λn =
E ′(un)[vn]
‖vn‖2

(notice that λn is well defined because vn ∈ L∞, see Lemma 2.2). For every
ϕ ∈ Ĥ1 ∩ L∞ the projection of ϕ on TunMt is given by

ϕ̃ = ϕ− 〈vn, ϕ〉
‖vn‖2 vn

and, by (4.12),

|E ′(un)[ϕ]− λnV ′(un)[ϕ]| = |E ′(un)[ϕ̃]| ≤ 2 ε1/2n ‖ϕ̃‖ ≤ 2 ε1/2n ‖ϕ‖,
and then, by density, E ′(un) − λnV ′(un) → 0 in Ĥ−1. Now we show that the
sequence (λn) is bounded. First of all we observe that the sequence (D(un)) is
bounded, because E(un) → c and by Remark 2.7 we know that E is coercive with
constants depending only on k0 (see also (4.9)). Thus, by (2.2), we estimate

(4.13) ‖∇vn‖2 + ‖vn‖∞ ≤ C1 ‖∇un‖22 ≤ C2,

for some positive constants C1, C2. Then

|E ′(un)[vn]| ≤
∣∣∣ ∫

R2

(∇un · ∇vn +K(un)vn · unx ∧ uny )
∣∣∣

≤ ‖∇un‖2 ‖∇vn‖2 + ‖K‖∞ ‖vn‖∞ ‖∇un‖22 ≤ C.

(4.14)
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Moreover, keeping into account that
∫
R2 v

nμ2 = 0 and being D(un) bounded, we
have that

|3t| = |V ′(un)[un]| = |〈vn, un〉| =
∣∣∣ ∫

R2

∇vn · ∇un
∣∣∣

≤ ‖∇vn‖2 ‖∇un‖2 ≤ C ‖∇vn‖2 = C ‖vn‖ .
(4.15)

Then (4.14) and (4.15) imply that (λn) is bounded, because t 	= 0. Hence, for a
subsequence λn → λ ∈ R and since (vn) is bounded in Ĥ1 (use (4.13)), we conclude
that E(un)− λV ′(un) → 0 in Ĥ−1. �

5. Proof of Theorem 1.3

In view of Remark 2.6, we consider the functional FK(u) = A(u) + Q(u) on Ĥ1.
Let t > 0 and denote by CritFK (t) the set of constrained critical points of FK at
volume t, which we define as

CritFK (t) :=
{
u ∈Mt | ux ∧ uy 	= 0 a.e and there exists λ ∈ R such that

d

ds
FK(u+ sϕ)

∣∣∣
s=0

= λ
d

ds
V(u+ sϕ)

∣∣∣
s=0

∀ϕ ∈ C∞
0 (R2,R3)

}
.(5.1)

We point out that if u is of class C2 and free of branch points (i.e., u is an
immersion) then, since ϕ has compact support, we have

(5.2)
d

ds
A(u + sϕ)

∣∣∣
s=0

= −2

∫
R2

H(u)ν · ϕ|ux ∧ uy|,

where H is the mean curvature of u, and ν = (ux ∧ uy)/|ux ∧ uy| is the Gauss map
(see [13], Section 2.1, (7) and (8)).

In general, if u is smooth but not immersed then we can consider only vari-
ations ϕ which have compact support in the set of regular points. Nevertheless,
if H is a prescribed function of class C1,α, then any H-bubble, namely any non
constant (weak) solution u ∈ Ĥ1 of ∇u = 2H(u)ux ∧ uy on R2, is in fact smooth,
more precisely, of class C3,α, in view of well-known results (see [13], Section 5.1,
Theorem 1). Hence, the right-hand side of (5.2) can be continuously extended
to variations ϕ ∈ C∞

0 (R2,R3). Therefore we can take (5.2) as a definition of
d
dsA(u+ sϕ)

∣∣
s=0

when u is a H-bubble of class C3,α (see also [13], Sect. 5.3).

Before proving Theorem 1.3, we need the following preliminary lemma.

Lemma 5.1. Let K ∈ C1,α(R3) satisfy (K1) and (K2). Then for any fixed t > 0
it holds that

CritE(t) ⊂ CritFK (t).

Proof. If u ∈ CritE(t), then by definition u is a weak solution of

Δu = (K(u)− λ)ux ∧ uy on R
2,
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for some λ ∈ R and, by Lemma 2.18, u is of class C2,α as a map on S2 and satisfies
the conformality relations ux ·uy = 0 = |ux|2− |uy|2 (see [12], Remark 2.5). More-
over, since we are assuming K ∈ C1,α, by well-known regularity results (see [14],
Section 2.3), we get that u is of class C3,α. Hence u describes a closed parametric
surface of mean curvature 1

2 (K(u) − λ) in the set of regular points. Concerning
the set of branch points of u (i.e., points where ∇u = 0), we point out that it is at
most finite (see [17] or [13], Sect. 5.1, [14], Sect. 2.10), and in particular it holds
that ux ∧ uy 	= 0 a.e. in R2. Since u is a (K − λ)-bubble of class C3,α, by (5.2),

d

ds
A(u + sϕ)

∣∣∣
s=0

= −2

∫
R2

1

2
(K(u)− λ)ν · ϕ|ux ∧ uy|

= −
∫
R2

(K(u)− λ)ϕ · ux ∧ uy,(5.3)

for any ϕ ∈ C∞
0 (R2,R3), where ν is the extension of the Gauss map (see [13],

Section 5.1). Now, from (5.3) and Lemma 2.8 we get that, for any ϕ ∈ C∞
0 (R2,R3),

d

ds
FK(u + sϕ)

∣∣∣
s=0

= −
∫
R2

(K(u)− λ)ϕ · ux ∧ uy +
∫
K(u)ϕ · ux ∧ uy.

Moreover, by Lemma 2.2, we have

d

ds
V(u+ sϕ)

∣∣∣
s=0

=

∫
R2

ϕ · ux ∧ uy.

Hence, it immediately follows that

d

ds
FK(u+ sϕ)

∣∣∣
s=0

= λ
d

ds
V(u+ sϕ)

∣∣∣
s=0

,

for any ϕ ∈ C∞
0 (R2,R3), which means that u ∈ CritFK (t) (see (5.1)). The proof

is complete. �

Now we can prove Theorem 1.3.

Proof. Assume by contradiction that the thesis is false. Then, by Lemma 5.1, there
exists t0 ∈ (0, t̄) such that

CritE(t) = ∅ ∀t ∈ (0, t0] .

Hence the assumptions of Proposition 3.1 are satisfied, and so there exists R > 0
such that

(5.4) S t2/3 < c0 < c < 21/3 S t2/3 ∀t ∈ (0, t0) .

By Proposition 4.3, there exists a constrained Palais–Smale sequence (un) ⊂ Mt

at level c. Since D(un) is uniformly bounded (see the proof of Proposition 4.3),
then, by Lemma 2.19 we deduce that I = ∅ and c =

∑
j∈J D(Uj).

Now we observe that, up to changing the index set J , we can assume that the
coefficients kj ∈ N

+ in (3.3) are all identically 1. In fact, for any given j ∈ J ,
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if kj > 1 then we can split D(Uj) as the sum of the area of kj spheres having the
same area 4πλ2 and the same volume 4

3πλ
3. Hence, up to replacing j with kj new

indexes j̃1, . . . , j̃kj and repeating this operation for all j ∈ J (we recall that J is

finite), then, we get a new finite index set J̃ such that all the algebraic multiplicities
of the spheres Uj̃ are identically 1.

Hence, denoting by |J̃ | the cardinality of J̃ , we have

c =
∑
j∈J

D(Uj) =
∑
j̃∈J̃

D(Uj̃) =
∑
j̃∈J̃

S t
2/3

j̃
= S

( t

|J̃ |
)2/3

|J̃ | = S |J̃ |1/3 t2/3,

but this contradicts (5.4), because |J̃ | is a positive integer. The proof is complete.
�

As a consequence of Theorem 1.3, and arguing as in the proof of Theorem 3.15
in [7], we get an existence result for the H-bubble problem.

Theorem 5.2. Let K ∈ C1,α(R3) satisfy (K1) with (1.8), (K2), and assume that
K > 0 on R3. Then there exists a sequence (λn) ⊂ R with |λn| → ∞ such that for
every n there exists a (K − λn)-bubble.
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