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Hodge—Dirac, Hodge-Laplacian and
Hodge—Stokes operators in LP spaces
on Lipschitz domains

Alan McIntosh' and Sylvie Monniaux

Abstract. This paper concerns Hodge—Dirac operators D = d + 9 act-
ing in L?(2, A) where Q is a bounded open subset of R" satisfying some
kind of Lipschitz condition, A is the exterior algebra of R™, d is the exte-
rior derivative acting on the de Rham complex of differential forms on €2,
and J is the interior derivative with tangential boundary conditions. In
L*(Q,A), § = d* and Dy is self-adjoint, thus having bounded resolvents
{4 itDy) '}ier as well as a bounded functional calculus in L?(£2, A).
We investigate the range of values py < p < p™ about p = 2 for which D
has bounded resolvents and a bounded holomorphic functional calculus in
LP(2,A). On domains which we call very weakly Lipschitz, we show that
this is the same range of values as for which LP(Q, A) has a Hodge (or
Helmholz) decomposition, being an open interval that includes 2.

The Hodge-Laplacian A is the square of the Hodge-Dirac operator,
ie., —Ay = D;?, so it also has a bounded functional calculus in LP(£2, A)
when py < p < pf. But the Stokes operator with Hodge boundary
conditions, which is the restriction of —A to the subspace of divergence
free vector fields in LP (2, A') with tangential boundary conditions, has a
bounded holomorphic functional calculus for further values of p, namely
for max{1,prg} < p < p™ where pp g is the Sobolev exponent below p,
given by 1/pprg = 1/pa+1/n, so that prg < 2n/(n+2). In 3 dimensions,
PHg < 6/5

We show also that for bounded strongly Lipschitz domains Q, pg <
2n/(n +1) < 2n/(n — 1) < p”, in agreement with the known results
that pr < 4/3 < 4 < p™ in dimension 2, and pyr < 3/2 < 3 < p in
dimension 3. In both dimensions 2 and 3, pyg < 1, implying that the
Stokes operator has a bounded functional calculus in LP (€, A') when Q is
strongly Lipschitz and 1 < p < p™.
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1. Introduction

In this paper, we take a first order approach to developing an L? theory for the
Hodge-Laplacian and the Stokes operator with Hodge boundary conditions, act-
ing on a bounded open subset €2 of R™. In particular, we give conditions on 2
and p under which these operators have bounded resolvents, generate analytic
semigroups, have bounded Riesz transforms, or have bounded holomorphic func-
tional calculi. The first order approach of initially investigating the Hodge—Dirac
operator, provides a framework for strengthening known results and obtaining new
ones on general classes of domains, in what we believe is a straightforward manner.

In particular we consider the usual strongly Lipschitz and weakly Lipschitz
domains (see Section 2.2), but mostly we only need the still weaker concept of
a very weakly Lipschitz domain €2, by which we mean that 2 = U;Z M Q; where

each €; is a biLipschitz transformation of the unit ball, and 1o = ijl x; for
some Lipschitz functions y;: @ — [0, 1] with sppt x; C ;.

When 1 < p < oo, we consider the exterior derivative d = VA as an un-
bounded operator in the space LP(2, A) with domain D”(d) = {u € LP(Q,A); du €
LP(Q,A)}, where A = A @ Al @ --- @ A" is the exterior algebra of R™ and
LP(Q, A) = &7_ LP(Q, A¥) is the space of differential forms on . We shall see that
on a very weakly Lipschitz domain €2, the range RP(d) of the exterior derivative is
a closed subspace of the null space N?(d) with finite codimension. Similar results
hold for the interior derivative § = —V .

The duals of the operators d and & in L¥’ (©, A) are denoted by 0 and d, being
restrictions of the operators § and d to smaller domains, namely to the completion
of €°(Q) in the graph norms. By duality, the range RP(J) is a closed subspace
of the null space NP(§) with finite codimension, and similarly for d. We remark
that when €2 is weakly Lipschitz, so that the unit normal v is defined a.e. on the
boundary 02, then § and d have domains D?(§) = {u € DP(); vauy,, = 0}
and D?P(d) = {u € DP(d); v A uy,, = 0} (called tangential and normal boundary
conditions respectively).

When p = 2 and € is very weakly Lipschitz, then § = d*, so the Hodge—Dirac
operator Dy = d + ¢ is self-adjoint in L?(2, A), and thus has bounded resolvents
{(T+itDy) 1 }1er as well as a bounded functional calculus in L?(£2, A). Moreover
there is a Hodge decomposition

L2(Q,A) = R*(d) & R%(8) & N*(Dy ),
(

where the space of harmonic forms N?(D;) = N?(d) N N2(9) is finite-dimensional
(owing to the finite codimension of R?(d) in N2(§)). Similar results hold for D1 =
d+ 6.

When Q is smooth (see, e.g., [26]), then each of these L? results has an LP
analogue for all p € (1,00) (provided we drop orthogonality from the definition
of the Hodge decomposition). This is known not to be the case on all Lipschitz
domains, though typically LP results do hold for all p sufficiently close to 2 (see,
e.g., Theorem 6.1 in [20]). In this paper we prove that the following results hold,
provided that € is a very weakly Lipschitz domain.
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o There exist Hodge exponents py, pf = pg’ with 1 < py < 2 < pf < oo,
such that the Hodge decomposition

LP(Q,A) = RP(d) ® RP(8) & (NP(d) NNP(4))

holds if and only if pg < p < pf. Moreover, for p in this range, Dj = d + &
is a closed operator in LP(,A), and NP(d) N NP(§) = NP(Dy) = N%(Dy).
(Theorem 4.3).

e The Hodge-Dirac operator Dy is bisectorial with a bounded holomorphic
functional calculus in LP(€2, A) if and only if py < p < pf; in particular, for
each such p there exists C,, > 0 such that ||(I+ D)) ull, < Cpllul|, for
all t € R (Theorem 5.1 (i) and (ii)).

e When py < p < p”, the Hodge-Laplacian A, = —D,? = —(dd + dd) is
sectorial with a bounded holomorphic functional calculus in LP(Q, A) and
has a bounded Riesz transform in the sense that |[\/—Ajull, =~ || Djullp;
in particular, |[(I+ t2A)) " ull, < C,2|lull, for all t > 0, and A generates
an analytic semigroup in LP(2,A) (Corollary 8.1). Let us mention that
sectoriality ([24], Theorems 6.1 and 7.1) and boundedness of Riesz transforms
([16], Theorem 5.1) have already been proved in the case of bounded strongly
Lipschitz domains.

o If max{1,puyg} < p < p" (where pyg = npu/(n + py) < 2n/(n + 2)),
then the operators f(D)) in the holomorphic functional calculus of D, are
bounded on N?(9) and on N?(d) (Theorem 5.1 (iii)).

e When max{1,pgg} < p < pf, the restriction of the Hodge-Laplacian A to
NP(9) is sectorial with a bounded holomorphic functional calculus; in partic-
ular, the estimate ||(I—t2A)) " ul|, < C,2||ul|, holds for all u € NP(§) and all
t >0, and Ay generates an analytic semigroup on NP(d). The corresponding
results also hold on N?(d) (Corollary 8.2).

o If Q is strongly Lipschitz, then pg < 2n/(n + 1) < 2n/(n — 1) < p" and
prg < 2n/(n+ 3), in particular max{1,py¢} = 1 in dimensions 2 and 3.
(Theorem 7.1).

The last two points are of particular relevance to the Stokes operator with Hodge
boundary conditions, which is the restriction of —A to {u € LP(Q, A'); du = 0}.
In dimension n = 3, the last point shows that the Stokes operator has a bounded
holomorphic functional calculus for all p € (1,p) where p? > 3 depends on Q.
This result completes the result stated in Theorem 7.2 of [24], where only sectori-
ality for p € (px,p™) has been proved.

A similar lower Hodge exponent arises when considering perturbed Hodge—
Dirac operators of the form Dy g5 = d +dp = d + B~1'6B, where B,B™! €
L>(Q,.Z(A)) with ReB > kI, which we shall only do in the case of bounded
strongly Lipschitz domains. In this case, all of the above points, except for the
final one, hold with ¢ replaced by dp, Dy replaced by Dy g, and Ay replaced by
Ay p= —(D\\7B)2, though of course the Hodge exponents depend on B, with p™
possibly unequal to pg’. See Section 6.



1714 A. McINTOSH AND S. MONNIAUX

Our proofs of the results announced above rely strongly on the potential maps
defined in Section 4. Those maps can be of independent interest. They are refined
versions of the ones developed in [21] and [12], refined in two ways:

e we can deal here with very weakly Lipschitz domains while [21] and [12] only
treat the case of bounded strongly Lipschitz domains;

e we obtain true potentials, in the sense that the maps R, S, T and @ defined
in Section 4 are right inverses of d, §, d and d on their ranges.

As a direct consequence, the families of ranges and of null spaces of these
operators in LP, 1 < p < oo, form complex interpolation scales (see Corollary 4.2).

In the case of R™, results in the same spirit (extending the range of p for which
a bounded holomorphic functional calculus holds outside the Hodge range) have
been recently obtained in [15] and [5]. The methods used there are different, and
specific to R™.

2. Setting

In this section, we specify some concepts used throughout the paper. At all times
we are considering functions and operators defined on bounded open subsets (2 of
Euclidean space R™ with dimension n > 2.

2.1. Notation

Notation 2.1. For 1 < p < oo, we denote by p’ the Holder conjugate expo-
nent, i.e.,, 1/p+ 1/p’ = 1 (with the convention that 1/00 = 0), by ps the lower
Sobolev exponent defined by 1/ps = 1/p+ 1/n, and by p* the exponent for which
Wl/pp(R™) < LP"(R"), i.e., p* =np/(n —1).

We denote by p° the Sobolev exponent given by 1/p% =1/p—1/nif 1 < p < n,

p® = oo if p > n. If p=n, p° is multivalued, it takes any value in [p, c0).

Remark 2.2. Note that if p € [I,n), then (p°) € (1,n] and (p°) = (p')s. Note
also that if r € (1,00), then (r*) € (1,n) and

(2.1) (r"))” = ()"

Notation 2.3. The following sectors in the complex plane will be considered:

So, :={zeC\{0};|argz| <p} and S, :=S5;, ifpe(0,m),
Sp_=-=S, and S;:=S5,,US; ifpe(0,7/2),

Hn—=

S, =285 ifpe(0,7/2) and Sp:=Rx{0}cC.

Notation 2.4. The domain of an (unbounded linear) operator A is denoted by
D(A), its null space by N(A), its range by R(A), and its graph by G(A). When
the operator A acts in LP(£2), these are sometimes written as DP(A4, ), NP(A, Q),
RP(A, ), and GP(A, Q).
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Notation 2.5. For E, F C R™ two Borel sets, denote by dist (E, F') the distance
between E and F defined by dist (E, F') = inf {|m —yl;xeE ye F}

For a distribution f defined on an open subset 2 of R™, we denote the support
of f by spptaf, or sometimes just by sppt f.

Notation 2.6. We denote by B(z,r) the ball in R™ with centre z € R™ and radius
r > 0, and set Bq(z,r) = B(z,r) N, namely the ball in  with the same centre
and radius.

2.2. Various types of Lipschitz domains

In the following definitions and properties, we follow the paper [9] by Axelsson
(now Rosén) and the first author. By a bounded weakly Lipschitz domain we
mean a bounded open set () separated from the exterior domain R™ \ Q by a
weakly Lipschitz interface 3 = 9Q = 9(R™ \ ), defined as follows.

Definition 2.7. Let Q C R™ be an open set. A function f: Q — RP? is said to
be uniformly locally Lipschitz (or Lipschitz for short) if there exists C' > 0 such
that for all z € Q there exists r, > 0 such that |f(y) — f(2)| < Cly — z| for all
Y,z € Bo(z,rs).

We remark that every such function f is differentiable a.e. with derivatives
0;f € L=(Q,RP).

Example 2.8. Let
Q:={(z,y) eR*; 0 < 2® +y* < 1,|arg(z,y)| < 7}
as in the picture and define f: 2 — R by

fzy) = (2 + ) arg(z,y).

Then f is a uniformly locally Lipschitz function in the
sense of Definition 2.7, but not globally Lipschitz; i.e.,
there is no C' > 0 such that |f(z) — f(w)| < Clz — w| for all z,w € Q.

Definition 2.9. Let  C R™ and let p: Q — p(Q) C R™. We say that p is a
biLipschitz map if p is a bijective map from Q to p(Q2) and p and p~! are both
uniformly locally Lipschitz.

Definition 2.10. The interface 3 (between a bounded domain 2 C R™ and R™\ ()
is weakly Lipschitz if, for all y € ¥, there is a neighbourhood V,, 3 y and a global
biLipschitz map p, : R — R" such that
NV, =py(R" " x (0,400)) NV, TNV, =p, (R x{0})NV,
and (R"\ Q) NV, = p, (R"" x (—00,0)) NV,

In that case,  is called (bounded) weakly Lipschitz domain (following [9], Defini-
tion 2.1).
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A special case of a weakly Lipschitz domain is a strongly Lipschitz domain
defined as follows.

Definition 2.11. A (possibly bounded) strongly Lipschitz domain is a (possibly
bounded) weakly Lipschitz domain such that for all y € ¥, there is a neighbourhood
Vy > y and a global biLipschitz map p,: R™ — R", satisfying the conditions of
Definition 2.10, that takes the form

py(@) = Ey(2', 2 — gy(2)), = (2',2y), &' = (21,...,20-1)

where g,: R"! — R is a Lipschitz function such that g,(0) = 0 and E, is a
Euclidian transformation.

Reasoning as in the proof of Theorem 1.3 in [9], we see that bounded weakly
Lipschitz domains have the following property.

Remark 2.12. By Definition 2.10 it follows that there exist biLipschitz maps
pj: B—pj(B)=:Q; CQ(j=1,...,M) (where B = B(0, 1) denotes the unit ball
in R™) such that 2 = Uj\il Q;, and there exist Lipschitz functions y;: Q — [0,1]

such that spptgx; C 2, and Z;Vil X; =1 on .
Furthermore, we may assume that for each j = 1,..., M, p; extends to a
biLipschitz map between slightly larger open sets.

Example 2.13. An important example of a weakly Lipschitz domain that is not
strongly Lipschitz is the “two brick” domain in R? defined as the interior of

{(x,y,z)€R3;O§z§1,—2§y§2,—1§x§1}
U{(z,y,2) eR*}-1<2<0,-1<y<1,-2<z <2}

See, e.g., Example 1.5.6 in [6].

A bounded strongly Lipschitz domain is biLipschitz equivalent to a smooth
domain in the following sense. The proof of this fact is given in the Appendix A.
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Proposition 2.14. Let Q2 C R" be a bounded strongly Lipschitz domain. Then
there exists a biLipschitz map ¢: R™ — R™ where ¢~ 1(Q) = ' is a smooth domain
in R™ satisfying ¢(R™ \ Q) = R™ \ Q and ¢(9Q) = 09.

We now take the property of weakly Lipschitz domains spelled out in Re-
mark 2.12 (though without the condition that the biLipschitz maps extend to
slightly larger sets) as our definition of very weakly Lipschitz domains, because
this is all that is needed in proving many of our results.

Definition 2.15. We call an open set QQ C R" a very weakly Lipschitz domain
provided it satisfies the property (VWL) below:

there exist (p; : B — €;);=1,...,m biLipschitz maps such that
Q= UJAil ;, and for each j =1,..., M, there exists

a Lipschitz function x;: Q — [0, 1] such that sppt x; C €;
and Z]Ail X;(x) =1for all z € Q.

(VWL)

Example 2.16. Let us reconsider the domain €2 of Example 2.8. It is not weakly
Lipschitz because its boundary does not form an interface between Q and R™ \ Q.
However it is very weakly Lipschitz (with M =1 and x; = 1) as can be shown as
follows. Set

Q= {(z,y) € R?; 0 < 22 4+ 92 < 1, |arg(z, y)| < m/2},

and define ¢: Q — Q' by ¢(x,y) := (rcos(6/2),rsin(0/2)), where r := (22 +y?)'/?
and 0 = arg(z,y).

Q/

Now ¢ is a biLipschitz map from Q to Q' in the sense of Definition 2.9, and ' is
biLipschitz equivalent to a ball, so that €2 is biLipschitz equivalent to a ball.

2.3. Differential forms

We consider the exterior derivative d := VA = Z?Zl 0je; N\ and the interior deri-
vative (or co-derivative) § := -V, = —Z?Zl 0jeju acting on differential forms
on a domain 2 C R™, i.e., acting on functions from {2 to the exterior algebra
A=AN@A @ - @A™ of R™.

We denote by {es; S C {1,...,n}} the basis for A. The space of f-vectors A
is the span of {eg; |S| = ¢}, where

es=¢€j Nej, N---Nej, for S={ej,...,e;} with ji <jo <--- <o
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Remark that A, the space of complex scalars, is the span of ey () being the empty
set). We set A ={0}if £ <0or £ >n.
On the exterior algebra A, the basic operations are

(i) the exterior product A : A¥ x Af — AFHE
(ii) the interior product 4 : A¥ x A® — AfFK,
(iii) the Hodge star operator x : A* — A™~¢
(iv) the inner product (-,-) : A® x A — R.
If a € AY, w e Af and v € A1 then
(a N u,v) = (u,aav).

For more details, we refer to, e.g., Section 2 of [9] and Section 2 of [12], noting that
both these papers contain some historical background (and being careful that &
has the opposite sign in [9]). In particular, we note the relation between d and &
via the Hodge star operator:

(2.2) xou = (—1)%d(xu) and xdu=(=1)""15(xu) for an (-form u.

The domains of the differential operators d and d, denoted by D(d, ) and D(d, §2),
or more simply D(d) and D(¢), are defined by
D(d) == {u € L*(Q,A);du € L*(, A)}
and D(6) := {u € L*(Q,A);6u € L*(Q,A)}.

Similarly, the LP versions of these domains read

DP(d, Q) := {u € LP(Q,A);du € LP(Q,A)}

and DP(4,Q):= {u € LP(Q,A); 0u € LP(Q,A)}.
The differential operators d and ¢ satisfiy d?> = dod = 0 and 62 = §od = 0. We will
also consider the adjoints of d and ¢§ in the sense of maximal adjoint operators in
a Hilbert space: § := d* and d := §*. They are defined as the closures in L?(2, A)

of the closable operators (d*,4,°(Q,A)) and (6*,%°(2,A)). The next result was
proved in [9], Corollary 4.4.

Proposition 2.17. In the case where € is a bounded weakly Lipschitz domain,
the operators d* = § and §* = d have the following representation:

D(d,Q) =D(d) : = {u € L*(, A);da € L*(R*,A)}, du = (dd),, for u € D(d),
D(8,9Q) =D(0) : = {u € L*(Q,A);0a € L*(R",A)},  du = (@), for u € D(6),
where U denotes the zero-extension of u to R™.

A well-known property of the differential operator d is that it commutes with a
change of variables as stated below, see, e.g., Definition 1.2.1 and Proposition 1.2.2
in [6].
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Definition 2.18. Let 2 be an open set in R™ and p: @ — p(Q) a biLipschitz
transformation. Denote by J,(y) the Jacobian matrix of p at a point y € © and
extend it to an isomorphism J,(y): A — A such that J,(y)(eo) = eo and

Jp(y)(eil ASERRA 611.) = (Jﬂ(y)eil) TARRERRA (Jp(y)eu)v {1’17 s 71'/6} C {07 L.. .,TL}.

To a differential form w: p(2) — A we associate its pullback p*u:  — A and its
push forward p7'u: Q — A defined by

(P*u)(y) = Jo(y)* (ulp(y)) and (o7 u)(y) = Jo(y) " (ulp(y)), v € B.
For convenience, we define the reduced push forward of u by
pytu = Jac(p)pytu: Q — A

where Jac(p)(y) denotes the Jacobian determinant of p at a point y € Q.
Remark 2.19. Note that for all p € [1,00], p*: LP(p(2),A) — LP(Q2,A) and
(ps) "L LP(p(Q2),A) — LP(Q, A) are bounded with norms controlled by

esssup [|J,(y)||zn) and esssup|[J,(y) 2,
yeQ yeQ

and hence by the Lipschitz constants of p and p~!.

Remark 2.20. For p as in Definition 2.18 and a differential form u: p(2) — A,
the following commutation properties hold:

(2.3) d(p"u) = p"(du) and 8(5 ) = ;" (5u).

In particular, if u € D(d, p(©2)), then p*u € D(d,) and if u € D(, p(€2)), then
P tu e D(6,9).
We also have the following homomorphism properties:

p*(uAv) = p u A p*o, o (uAv) = prtun pito,

p*(usv) = ptusptu, pi M (uov) = prusptu.

Remark 2.21. By the product rule for the exterior derivative and the interior
derivative we have that for all bounded Lipschitz scalar-valued functions 7, for all
u € DP(d,Q) and v € DP(0,€), then nu € DP(d,2), nv € DP(4,?) with

(2.4) dnu) =ndu+VnAu and d(nv) =ndv— Vnav.
More generally, for u a bounded Lipschitz ¢-form, for all v € DP(d, Q2), it holds
(2.5) duAv) =duAv+ (=1)uA dv,

which gives also for all bounded Lipschitz scalar-valued functions 7, and for all
u € DP(d,Q):

(2.6) d(Vn Au) = —=Vn A du.
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2.4. Bisectoriality, sectoriality and functional calculus

Definition 2.22. A closed unbounded operator A on a Banach space X is said to
be bisectorial of angle w € [0, m/2) if the spectrum of A is contained in the double
sector S, and for all § € (w,7/2), the following resolvent estimate holds:

sup [[(I+24) 7 2 (x) < oo
z€C\Se

Remark 2.23. Let o € (0,7/2). Denote by ¥(S7) the subspace of continuous
functions f: S, — C holomorphic on S for which there exists s > 0 such that

SUP.cso {|1+\ kS ‘} < 0o. Let A be a bisectorial operator of angle w € [0, 1) on a

Banach space X. For all f € ¥(S}), we can define, for 6 € (w, u),

f(Au = — f(2) (=1 — )*1udz,

27 630

where the boundary of the double sector 0.5y is oriented counterclockwise. Note
that the integral above converges in norm thanks to the definition of functions
belonging to W(S};) and the estimate on the resolvents of A.

Definition 2.24. Let 0 < w < g < 7/2. A bisectorial operator A of angle w on
a Banach space X is said to admit a bounded S|, holomorphic functional calculus
in X if for § € (w, ;1) there exists a constant Ky > 0 such that for all f € ¥(S7),
we have that

1f(A)]lzx) < Kol fllLoe(s)-

Remark 2.25. Every self-adjoint operator S in a Hilbert space X is bisectorial
of angle 0 with resolvent estimate sup,ccyg, [[(I+ 25) 7| 2(x) < 1/sinf, and has
a bounded holomorphic functional calculus for all 8 € (0,7/2) with Ky = 1. See,
e.g., [19].

The results above can be adapted to the case of sectorial operators suited for
second order differential operators.

Definition 2.26. A closed unbounded operator A on a Banach space X is said to
be sectorial of angle w € [0, 7) if the spectrum of A is contained in the sector S, 4
and for all 6 € (w, ﬂ'), the following resolvent estimate holds:

sup (T4 24) 7 2 (x) < 0.
z€C\So+

Remark 2.27. Let p € (0,7). As before, denote by W(S},) the subspace of
continuous functions f: S,4+ — C, holomorphic on S;, for which there exists

°l5(z
TR

w € [0, ) on a Banach space X. For all f € (S}, ), we can define for 0 € (w, 1),

s > 0 such that SUP_ege { 201 (2) } < 00. Let A be a sectorial operator of angle

f(Au = L F(2)(z1 — A) tudz,

211 6sg+
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where the boundary of the sector 953 is oriented counterclockwise. Note that the
integral above converges in norm thanks to the definition of functions belonging
to U(S;, ) and the estimate on the resolvents of A.

Definition 2.28. Let 0 < w < u < 7/2. A sectorial operator A of angle w on a
Banach space X is said to admit a bounded S, holomorphic functional calculus
in X if for 6 € (w, p1) there exists a constant Ky > 0 such that for all f € W(S;, ),
we have that

If (Dl 2x)y < Kollfllzoe(ses)-

Definition 2.29. Let Q@ C R"™ be an open set and let ¢ € [1,00). A family
of bounded operators {R,,z € Z} (where Z C C) on L4(Q) is said to admit
(exponential) off-diagonal bounds L1-L? (of first order) if there exists C,c > 0
such that for all E, FF C R™ Borel sets, we have that

1R 1pul < Ce ¢ ED/IE | Laqy, Yz € Z, Yue LIQ).

|L‘1(Q)
Remark 2.30. If a family of bounded operators {R.,z € Z} on L%(Q) admits
off-diagonal bounds L?-L%, then the family of adjoints {R.",z € Z} admits off-
diagonal bounds L?-L% .

3. Hodge—Dirac operators

Definition 3.1. (i) The Hodge—Dirac operator on € with normal boundary condi-
tions is
D=6 +d=d+5.

Note that —A1 := D.? = dd+dd is the Hodge-Laplacian with relative (generalised
Dirichlet) boundary conditions.

For a scalar function u: @ — A° we have that —Aiu = ddu = —Apu,
where Ap is the Dirichlet Laplacian.

(ii) The Hodge—Dirac operator on Q with tangential boundary conditions is
Dy =d+d" =d+4.

Note that —A | := D% = d§+dd is the Hodge-Laplacian with absolute (generalised
Neumann) boundary conditions.

For a scalar function u: @ — A® we have that —Aju = ddu = —Anu,
where Ay is the Neumann Laplacian.

Following [8], Section 4, we have that the operators D. and D; are closed
densely defined operators in L?(€, A), and that

) L— 1 — 1 L
L7(Q,A) = R(d) & R(9) ® N(Dy) = R(0) ® R(d) & N(D~),

where N(D;) = N(d) N N(8) = N(A;) and N(D+) = N(§) N N(d) = N(AL)
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Remark 3.2. If Q satisfies (VWL), then it is essentially proved in [9] (see the
proof of Theorem 1.3 (i), p. 19-20) that R(d) and R(9), as well as R(d) and R(d),
are closed subspaces of L?(2, A) and that N(D;) = N(A;) and N(D.) = N(A.)
are finite dimensional. We shall include a proof of these facts in Section 4.

Definition 3.3. The Hodge decompositions from the paragraph just before Re-
mark 3.2 are accompanied with the orthogonal projections

(é), PN(DH) : LQ(Q,A) — N(DH);
(d), ’PN(DL) : LQ(Q,A) — N(DL).

Moreover, noting that d: D(d) NR(J) — R(d) is one-to-one we define

dRu=u if u € R(d),

R:L*(Q,A) — R(9), {EU:O ime@éN(Du).

In particular, we have that

I =dR+ Rd+ Pnp,),

where Rd denotes the closure in L2(Q2, A) of the operator Rd. Note that R is a
potential operator, in the sense that, if u € R(d) then u = df where f = Ru.

Remark 3.4. If the domain 2 C R" is convex or of class €'!, we have that
D(D.),D(Dy) € HYQ,A) (see Theorems 2.9, 2.12, 2.17 in [1] for the proof in
dimension n = 3, and Theorem 4.10 and Remark 4.11 in [9]). This is however
not true in general. If @ is a strongly Lipschitz domain, then it can be proved
that D(D.),D(Dy) ¢ H'Y?(Q,A) as shown in [11] in dimension 3 and in [22],
Theorem 11.2; in arbitrary dimension (see also the estimate (7.1) below).

Remark 3.5. At this point we remark that the theory concerning the Hodge—Dirac
operator with normal boundary conditions, D1 = §* + 0 = d+ 6, is entirely analo-
gous to the theory concerning the Hodge—Dirac operator with tangential boundary
conditions, Dy = d + d* = d + 0. Either the proofs for one can be mimicked for
the other, or the results for one can be obtained form the results for the other
by the Hodge star operator and appropriate changes of sign. So from now on we
will state our results for d, § and D), noting here that corresponding results hold
for §, d and D..

4. Potential operators on very weakly Lipschitz domains

The unit ball B = B(0, 1) in R™ is starlike with respect to the ball %B := B(0,1/2).
For p € (1,00) and s € R, let Rg: W*~1P(B,A) — W*P(B, A) be a Poincaré-type
map (relative to a non negative smooth function § € 7 := €>°(B) with support
in £B and [0 = 1) as defined in [12], Definition 3.1 and (3.9) (building on [21];
see also [10]), in the case of domains which are starlike with respect to a ball.
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In those papers a theory of potential operators in Sobolev spaces on strongly
Lipschitz domains was developed. Following the notations used in §2 of [12], we
denote by Wﬂi’p(A) the space {u € WIP(R™, A) : spptu C Q}. In this section
we follow some of the techniques developed there to consider a somewhat different
context, namely potential operators mapping L? (€, A) to r° (©, A) on very weakly
Lipschitz domains.

The operator Rp has the following representation:

1
40 Rei)= [ o= as( [ ¢ i - 0) ) da
for an (-form f, (L =1,...,n)
(Rpfo =0), and satisfies
(4.2) Rpdf+dRpf=f—Kpf where Kpf= @<9,f0>@/ ep

forall f = fo+ fi+--+ fn € WSP(B,A) = WSP(B,A°) @ W*P(B,AY) @ --- @
W#P(B,A™), where (-, ) denotes the duality pairing between 2 and 2’. The
operator Kp is infinitely smoothing in the sense that for all f € (€>°(B,\)),
Kpf € €°°(B,A). Moreover, Kpf = 0if f = dg for g € D(d, B), which implies
that the operator Rp is a true potential for d on B in the sense that for all
p € (1,00),

(4.3) if f € RP(d,B), then f=dRpf.
The mapping properties of Rp imply in particular that
(4.4) dRp : LP(B,A) — L?(B,A), Vpe (1,00),

so that dRp is a projection from L?(B, A) onto RP(d, B).

We also have that for p € (1,00), the adjoint operator of Rp, Rp* maps
LP(B,A) to Wé’p(A) Ny (B,A) N DP(§, B) where p° is as in Notation 2.1. As
for the adjoint operator of Kp, K} maps in particular LP(B,A) to L>®(B,A) N
D?(4, B).

Therefore, we have that

(4.5) Rp: LP(B,A) — L? (B,A) nD"(d, B),
Ry : LP(B,A) — L? (B,A)NDP(4, B)

and

(4.6) Kp:LP(B,A) — L>=(B,A) N D"(d, B),
K5 : LP(B,A) — L>=(B,A) nDP(4, B)

are bounded for all p € (1,00). Since the range of Kp is one-dimensional, the
operator Kp is compact in LP(B, A) for every p € (1,00) (as is Kj). Note that
the operators Rp and R}, are also compact in LP(B, A) for every p € (1, 00).
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Let now Q C R™ satisfy property (VWL): Q = UM, p;(B) with x;: Q — [0,1]

Lipschitz functions such that spptg x; C p;(B) and ijl x; = 1 on . Following
the construction of [12], we define for u € LP(Q2, A),

M
Rou=">"x;(p5) " Rp(pju).

Jj=1

By Remark 2.19, Rq : LP(,A) — LP" (2, A) N D(d, B) for all p € (1,00). More-
over, for all u € DP(d, ) we have, thanks to the product rule (2.4), the commuta-
tion property (2.3) and the relation (4.2) satisfied by Rp, that

M
dRou="y_ x;d[(p})"' Re(pju) +ZVXJ “'Rp(pju)]

I
SE

X [(pj) 1dRB p] +ZVXJ p] 1RB(p] )]

<.
Il
_

Xi[(05) (I — Kp — Rpd)(pju) +ZVXJ [(p5) " Ru(pju)]

E'ﬂ:

Il
_

J
u—]%gdu—f{’gu

where
M

Kau =3 (o) Kppju) = Vi A ()7 Re(pju)]).

The operator Kgq is compact in LP(€, A) for all p € (1,00); it is indeed a sum of
compositions of bounded operators (p7, (p;)_1 and multiplication with x; or Vx;)
with compact operators (Kp and Rp).

The relation dRg + Rod =1 — K¢ on D?(d, §?) implies directly that K¢ com-
mutes with d on DP(d, ). Moreover, thanks to the mapping properties of Rp
and Kp, it is clear that Ko maps L9(Q, A) to LqS(Q,A) for all ¢ € (1,00). It is
also obvious that Ko maps LP(Q,A) to DP(d, ) thanks to the mapping proper-
ties of Rp and Kp, the commutation property (2.3) and the product rules (2.4)
and (2.6). Therefore, we see that Kq” maps LP(Q, A) to L=(Q, A) N DP(d, Q) for

all p > 1. We define the following operators Rq and Ko:
.éQ = (I + KQ + ng + -+ Rﬂnil)éﬂ and f:(Q = f{Qn

It follows that I:(Q is compact in LP(Q, A) for all p € (1,00) (as a composition of
compact operators) and

R : LP(Q,A) — L (Q,A) NDP(d,Q),  Vpe (1,00)
Ko : LP(Q,A) — L®(Q,A)NDP(d,Q),  Vpe (1,00),
dRo + Rod =1 — Ko, dKq = Kod  on DP(d, ).
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Note that Rq is a potential operator modulo compactness, in the sense that,

if u € RP(d,Q), then u = df + Kqu where f = Rqu. It is good enough for most
purposes, but it can be improved as follows. Define

(47) Rq = RQ + KQRQ + KQEIN(Q and Kq := f(QPN(DH)f(Q,

where R and Py D) Were defined in Definition 3.3. Then the operators Rq and K¢
satisfy, for every p € (1, 00),

dRqu + Rodu = v — Kqu, for all u € DP(d).

By construction, Kq is zero on RP(d,Q); it follows that Rq is a true potential
operator in the sense that, if u € RP(d, ), then u = df where f = Rqu. It is not
as natural in L?(2,A) as the potential operator R, but it has the advantage of
working for all p € (1,00). (We remark that a similar improvement could be made
to the potential operators in strongly Lipschitz domains studied in [12].)

Using the properties of Ry and K and the same construction as above, as
well as the Hodge star operator we have similar properties for potential operators
(defined below) associated with 6 (Qq and Lg), d (To = Qf and L§) and J (Sq
and K{). We define

* Qou = (—1)*'Rq(xu), *Lou := Kq(*u) for an (-form u;
Tou = QHu;

*x Squ = (—=1)"""Tq(*u), for an (-form u.

The properties of the operators Rq, Sq and K are summarised in the following
proposition. The properties of T, Qq and Lg, can be deduced in a straightfor-
ward way.

Proposition 4.1. Suppose Q is a very weakly Lipschitz domain. Then the potential
operators Rq, Sq and Kq defined above satisfy, for all p € (1,00),

Ro: LP(Q,A) — LP°(Q,A) N D°(d,Q), Sq:LP(QA) — LP" (Q,A) N DP(8,Q),
Kq: LP(Q,A) = L>®(Q,A)ND"(d, ), K:LP(QA)— L=(Q,A)NDP(4,Q),
Kq, K§ are compact operators in LP(2, A),

dRo + Rod =1 — Ko, 8Sq+Sad =1 — K&,

dKq =0, 0K5=0 and Kq=0onRP(d,Q), K;=0 onRPGY,Q),

dRou =u if u € RP(d,Q), dSou=u if u e RP(4, Q).

As direct consequence we obtain that dRq, 6Sq, dlq, and dQq are projections

from LP(£2, A) onto the ranges of d, d, § or ¢ for all p € (1,00).

Corollary 4.2. Suppose § is a very weakly Lipschitz domain. Then

(i) for all p € (1,00), the spaces RP(d,€2), RP(d,2), RP(4,8) and RP(J,Q) are
closed linear subspaces of LP(2, A);
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(ii) forallp € (1,00), the operators d, d, § and § are closed (unbounded) operators
in LP(Q,A);

(ili) there exist finite dimensional subspaces 24, Zs5, Zq, Zs C L>°(Q, A), such that
NP(d, Q) = RP(d, Q) & Z4, NP(8,9) = RP(5,Q) & Z5, NP(d, Q) = RP(d, Q) & 24
and NP(4,Q2) = RP(3,Q) @ Z5 for all p € (1,00).

(iv) The families of spaces {RP(d,),1 < p < oo}, {RP(d,Q),1 < p < oo},
{RP(4,Q),1 < p < oo} and {RP(3,9Q),1 < p < oo} are complex interpolation
scales. So too are the families of null spaces.

(v) When 1l <p < q< oo, then R4(d,Q) = RP(d,Q) N LY(Q, A), and similarly for
the other range spaces.

(vi) When 1 < p < q < o0, then R%(d, Q) is dense in RP(d, ), and similarly for
the other range spaces.

Proof. (i) This follows from the fact that the ranges are images of bounded pro-
jections.

(ii) The cases of J, d and ¢ are similar to the case of d. Let (uj)ren be a
sequence in D?(d, Q) converging to u in LP(£2, A) such that (duy)ren converges to v
in LP(Q2, A). By (i), v € RP(d, Q) (in particular, v = dRqv) and by Proposition 4.1
applied to uy, we have that v = dRqu + Rqv + Kqu. Therefore u € DP(d,Q)
satisfies du = d(dRqu + Rqv + Kqu) = dRqv = v since d*> = 0 and dKq = 0. This
proves that d is a closed operator in LP(Q, A).

(iii) We just consider the case of d. Let Z8 = Kq(NP(d,Q)) C L>=(Q). Then
N?(d, Q) = RP(d, )& 2% with decomposition u = dRou+Kqu for all u € N?(d, ).
So the spaces in the decomposition are closed, and Z} is finite dimensional (on
account of the compactness of Kq). Moreover if u € N%(d, Q), then Kqu = Ko*u €
Ko(NP(d,Q)) = 2% so that Z] C 2, and conversely Z C Z7, implying that the
spaces Z1 are independent of p and can just be named Zg.

(iv) The spaces LP(€2, A) interpolate by the complex method, and hence so
do their images under bounded projections (see [18], Chap.1, §14.3; see also
Lemma 2.12 in [23]).

(v) If uw € RP(d, Q) N LY(Q, A), then u = d(Rqu) € RY(d, Q).
(vi) LI(Q, A) is dense in LP(2,A), and so then is dRqL(Q2, A) dense in the
space dRqLP(Q, A). O

We have now essentially proved Remark 3.2. In particular the L? range spaces
are all closed, and for the space L?(€2, A), the following decompositions are equally
valid:

L2(Q,A) = R(d) & R(3) & N(Dy) = R(d) & R(8) @ 25 = R(8) & R(d) & 24
= R(9) eé R(d) eé N(D.) = R(d) é R(d) ® Z4 = R(d) é R(S) @ Zs

So the spaces N(Dy), Z5 and Z4 all have the same finite dimension. So do their
components of ¢ forms in L?(Q, A), which can be identified with the de Rham
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cohomology spaces of 2 with tangential (absolute) boundary conditions, and thus
have dimensions determined by the global topology of €. The spaces N(Dv+), 24
and Z;s also have the same finite dimension, as well as their components, which
can be identified with the de Rham cohomology spaces of 2 with normal (relative)
boundary conditions.

A further important consequence of the existence of these potentials is the fact
that the above Hodge decompositions in L?(Q, A) extend to LP(2,A) for p in an
interval around 2.

Theorem 4.3. Let Q@ C R™ be a very weakly Lipschitz domain. There exist Hodge
exponents py, p = py’ with 1 < pyg < 2 < pf < oo, such that the Hodge
decomposition

(H,) LP(Q,A) = RP(d, Q) © R(5, Q) @ (NP(d, ) N NP (4, 9))

holds if and only if pg < p < pf. Moreover, for p in this range, Dy = d + §
(with DP(Dy) = DP(d) N DP(9)) is a closed operator in LP(2,A), and NP(d, ) N
NP(9,Q) = NP(Dy) = N(Dy), so that

(4.8) L¥(9, A) = R*(d, ) & R¥(8,0) & N(D));
and also D1 =6+ d is a closed operator in LP(Q, A) with Hodge decomposition
(4.9) LP(Q,A) =RP(6,Q) @ RP(d, Q) & N(Dv1).

Proof. Let p € (1,00). The decomposition (H),) holds if and only if

(4.10) LP(Q,A) =RP(d,Q) ®NP(5,Q)  and
(4.11) LP(Q,A) = NP(d, Q) & RP(5, Q).

Now each of these decompositions hold for p = 2, and all of the families interpolate
with respect to p by the the complex method, so by the properties of interpolation
together with Sneiberg’s theorem [27] (see also Theorem 2.7 in [17]), (4.10) holds if
and only if p belongs to some open interval J = (qq, rq) containing 2, while (4.11)
holds if and only if p belongs to another open interval, which, by duality, is J' =
(ra’,qo"). Therefore (H,) holds if and only if p € JNJ', i.e., py < p < p, where
pr = max{qo,ro’} and p = min{rg,qa’'} = py’.

Once we have the Hodge decomposition (Hp), it is straightforward to verify
that Dy = d+ 4 is a closed operator in LP(€2, A) (using the closedness of d and ¢
proved in Corollary 4.2 (ii)), and that N?(d, Q) N N?(4, Q) = NP(Dy).

Moreover, following the reasoning above, we have that dim(N?(D))) = dim 2,4
which is independent of p € (pg,p"). Now N¢(D;) C NP(Dy) when pg < p <
q < pH, and these null spaces all have the same dimension, so they are all equal

to N(DH )
The results for D. = § + d are proved in a similar way, and have the same
Hodge exponents by Hodge duality. O

We record the following facts about the closed operator Dy = d + ¢ (with
DP(Dy) =DP(d) N DP(§)) in LP(Q2, A).
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Proposition 4.4. If py < p < q < pf, then RP(Dy) = RP(d) @ RP(§) and
RY(Dy) = R%(d)®RI(9) is dense in RP(Dy ). Moreover, GI(Dy) is dense in G (D).

Proof. The density of the ranges follows from Corollary 4.2 (vi). In proving the
density of the graphs, we assume that ¢ < p®. Otherwise we proceed by induction.
Let us introduce the potential map Z: LP(Q, A) — L2(2, A) defined by

Zv = Prea) Sa Pr()0 + Pr(s) RoPra)v

where Rq and Sq have the properties stated in Proposition 4.1. This is a potential
map in the sense that, for all v € RP(D)),

Dy Zv = 6 Prea) S Prs)v + d Pr(s) RaPr(ayv
=050 Pr(g)v + d RoPrayv = Pr(g)? + Priayt = v

Let (u, Dyu) € GP(Dy). By density of the ranges, there exists a sequence (wg)ren
in RY(Dy) such that wy, — Dyu as k — oo in LP. Let up = Zwp + (u —
ZDyu). Then (up)ren is a sequence in L9(Q2,A) (because Zwy, € L9 and u —
ZDyu € N(DH) S Lq) and Djuy = Wi, SO (uk,DHuk) = (uk,wk) S Gq(DH). Also
ug —u = Z(wyp — Dyu) = 0 as k — oo, so that (ug, Dyur) — (u, Dju) as k — oo
in LP? @ LP. We conclude that GY(D)) is dense in GP(Dy). O

Remark 4.5. If Q C R” is smooth, it is known that py = 1 and p = oo (see
Theorems 2.4.2 and 2.4.14 in [26]). We will see in Section 7 that if Q@ C R™ is a
bounded strongly Lipschitz domain, then py < 2n/(n + 1) and pff > 2n/(n —1).

5. Hodge—Dirac operators on very weakly Lipschitz domains

On any  C R”, the Hodge Dirac operator Dy = d + ¢ with domain D(D)) =
D(d,Q2)ND(J, ), as defined in Definition 3.1, is self-adjoint in L?(2, A). Therefore,
by Remark 2.25, D is bisectorial of angle w = 0 in L?(2,A), and, for all u €
(0,7/2), Dy admits a bounded S, holomorphic functional calculus in L*(€, A).

Our aim in this section is to extend this result to a range of values of p under
the condition that €2 satisfies condition (VWL).

In the case of a strongly Lipschitz domain, it has been proved in Theorem 7.1
of [24] that the semigroup generated by the Hodge-Laplacian A = —Dy? in
L?(, A) extends to an analytic semigroup in LP(Q,A) if pg < p < p*. More-
over, the Riesz transforms d/\/—A; and §/1/—A are bounded in LP(£2, A) for
pr < p < p! as proved in Theorem 1.1 of [16].

Recall that the results presented here for D; are equally valid for D1 (see
Remark 3.5).

Theorem 5.1. Suppose  is a very weakly Lipschitz domain, 1 < p < oo, and
Dy = d+ ¢ is the Hodge—Dirac operator in LP(Q2,A) with domain DP(D)) =
DP(d, Q) N DP(4,9).
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(1)

If py < p < p™, then the operator Dy = d + § is bisectorial of angle w = 0
in LP(Q,A), and for all p € (0,7/2), Dy admits a bounded S}, holomorphic
Junctional calculus in LP(S), A).

Conversely, if, for some p € (1,00), the operator Dy is bisectorial with a
bounded holomorphic functional calculus in LP(Q2, A), then pg < p < pfl.

Moreover, for all v € (max{1,pug},p™) (recall that ps := np/(n+p)) and
all 0 € (0,7/2), there exists Cyrg > 0 such that

R™(d, Q)

L"(QA) V C\ Sy,
RT(Q,Q) — ( ) z € \ 0

(51) (I -I-ZDH)_l : {

with the estimates

(5.2) sup (I +2Dy) " ull, < Crgllull, Yu€R"(d,Q) and Yu € R"(4,Q).
z€C\Se

For all i € (0,7/2), there exists a constant K., such that for all f € W(S}),
R"(d,Q)

5.3 D) : L9, 0,

(5.3 F(D) {RT@Q) (©.4)

with the estimates

(5-4) F(D)ully < K pll fllzoecsgy lullr, Vu € R™(d, Q) and Vu € R™(4, Q).

The proof of this result is iterative. In the iteration arguments, we will apply
the following two intermediate results. The heart of the extrapolation method is
deferred to Section 9.

Proposition 5.2. Suppose () is a very weakly Lipschitz domain, that pg < q < p™,
and that Dy is bisectorial of angle w > 0 in LI(2, ). Suppose w < u < 7/2 and
max{1,¢gs} <p <q.

(i)

The family of resolvents
(5.5) {(I +2Dy) ZG(C\SH}

admits off-diagonal bounds L9-L? as defined in Definition 2.29. Moreover the
following families of operators

(5.6) {zd(I +2D)) "t zeC\ Su} and {zé(l +2zD))t; zeC\ S,L}

also admit off-diagonal bounds L1-L?, as (by Remark 2.30) do the families of
adjoints

(5.7) {z0+2Dy)"16;2€C\S,} and {z2(1+2z2Dy)"'d;2€C\S,}.

Condition (A) of Theorem 9.1 (which we state here for the convenience of
the reader):
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X, is a closed subspace of LP(§) such that for all u € X, there exist
w,v € L1(Q) with w € DP(B), ||[w|lg, vl S |lullp and v = Bw + v.
Moreover, for each t € (0,diam Q] there exists a family {Q},k € Z"} of
open subsets of ) with the property that

QLI St Mg < g < Nlg,
k

Supzefsdist (QZ,Q;)/t _ Supzefsdist (QZ,Q;)/t < CE
I ko

for all e > 0, where C. does not depend on t, and for all u € X, there
exist wg, vy € L1(Q) such that wy, € DP(B) for all k, and wy,, vy, satisfy

sppt wy, sppt vk C Qf,  [willgs okllg S 7PV 1y ull,,

u= Z (Bwk + %vk)

k

holds in each of the following cases:

(a) The operator B = d and the subspace X, = RP(d,€2),
(b) the operator B = § and the subspace X, = RP(4,Q).

(i) There exist constants M, , such that

@+ ZDH)_lqu < My ullullp, YzeC\S,,
Vue RP(d,Q)NLIQ,A) =RYd,Q)
and Yu e RP(,Q)NLI(Q,A) =RY9,Q).

(iv) If in addition p > pg, then D is bisectorial of angle w in LP(Q, A).

Proof. (i) The methods used in this proof are inspired by those developed for the
proof of Lemma 2.1 in [3]; see also Proposition 5.1 in [2].

We start with the proof of off-diagonal bounds for the families (5.5). Let
€ (w,m/2) and E, F C R™ be Borel sets. Let z € C\ S, and ¢ := |z| > 0. If
dist (E, F') = 0, the result is immediate since the resolvent is bounded in L(2, A)
by assumption, so suppose that dist (E,F) > 0. Let M,, = SUP.cc\ s, (I +
2Dy )_1”2([‘{1(9’/\)). Let £ be a real-valued function satisfying

1
. Lip(R")NL*(R"), { =1on E, £ = F and PO
for example taking &(z) = min{dist(x, F') /dist(E, F'),1}. Let o > 0 (which will be
determined later) and let 1 := e*¢. Note that Vi = anVE.
For each u € LI(2,A), set v := (I + 2zDy) " Y(Upu) = (I + 2Dy) " (nllpu) €
DY(Dy,Q) (since n = 1 on F), noting that nv € DI(Dy, ) (see Remark 2.21).
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Hence we have the following commutator identity:

n=uv+ [77, I+ zDH)*l] (1pu)
=v—(I+ ZDH)_1 [77, zDH] T+ ZDH)_l(]lFU)
=v+2(I+2Dy) " (VnAv—Vniv) by (2.4)
=v+2(I +2D)) " a(VEA (nv) — VES (1v)).

Since ||v|lq < Mg ullu|lq, we have the estimate
1
(5.9) Invllg < Mq,uH“Hq“‘Qath,uW l[mvllq-

dist (E,F)

We now choose o = T,

and since 7 = e® on E, (5.9) implies
(5.10) e*[Mpvlly < lInvllg < 2Mgu l|ullg-

Therefore, we have proved off-diagonal bounds (as in Definition 2.29) for {(I +
zDy)7 ' 2 € C\ S, } with C =2M,, and ¢ = 1/(4M,,).

We turn now to the proof of off-diagonal bounds for the first family in (5.6),
and use the same notation as above for ¢,t,&, 1, My, ., u, v, first noting that

(5.11) 2Dy (I + 2Dy) " tullg < (14 Mg)llully, ¥z € C\ Sy

Since ¢ € (pg, p™), the Hodge projection Pra(q,0): L2, A) — R%(d, 2) is bounded
on L(€, A); we denote by M, its norm. It is straightforward that Pra(q,0)Djv = dv
for all v € DY(Dy, ). From (5.11) follows the estimate

|2d(I + 2Dy) tully < My (1+ M,,) ||lull, Vz2€C\S,, and therefore
[zdvllg < My (14 Mgp) |Jully VzeC\Sy.

Further,

nzdv — zdv = nzdv — zd(nv) + zd(nv) — zdv
= —azVEA () + zd(nv — v)
=az(— VEA () + 2d(I + 2Dy) " (VE A (nv) — VEL ().

This gives the estimate

at
[nzdvllg < Mg(1+ Mg,,.)lullg + W (1 +2M,y(1+ Mq,u))Hm)”q'
Choosing a = %}f’f), and using the bound proved in (5.10) for ||nv||,, we obtain

HUZdU”q < (1/2 + 2Mq(1 + qu)) ||U||q

and conclude as before that {zd(I + 2Dy)" ',z € C\ S,} satisfies off-diagonal
bounds with C' =1/2+2M,(1+ M, ,) and ¢ =1/(4M, ,.).
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The proof of the off-diagonal bound for the other family in (5.6) follows the
same lines.

(ii) The proofs of points (a) and (b) are similar and rely on the properties of
the potentials described in Section 4. We present the proof of point (a), so suppose
B =d and X, = RP(d, ).

For the family @ required in (A) of Theorem 9.1, proceed as follows.

e Suppose 0 < t < diam €.

e Cover Q: Let QZ (k € J) be the cubes in R™ with side-length ¢ and corners

at points in ¢Z", which intersect Q. Let Q} = 4QZ N Q. Then Q = UQL.

e There exist functions , € ¢} (4QZ, [0,1]) with [|Vn, | < 1/t and ZﬂkQ =1
on 2 (see Remark below). Then 7y := 1, |o is a Lipschitz function on € with
values in [0, 1], sppt (mx) C Q%, [[Viklleo < 1/t and >"m? =1 on Q.

o d(ef) —medf = (V) A S
For u € RP(d,Q)NLI(,A), u = dRqu (where Rg is the potential map defined
in Section 4) and we define

wi = g Ra(meu) and vy = R (Ve A w) — tVne A Ro(niu) + tni Ko (nw),

where K is defined in Section 4. It is clear that sppt wg,sppt vy C Q%. Thanks
to the relations listed in Proposition 4.1, it is immediate that

1
m2u = i (dRg + Rad + Kq)nru = dwy, + 7 Uk

and so

u = Zn;ﬁu = Z (dw;€ + %vk).
k

k

It remains to prove estimates on wy and vg. They come from the mapping
properties of Rg and Kqg. Denote by r € (1,00) the real number satisfying
1/q¢ = 1/p® + 1/r. In other words, r satisfies 1/r = 1/n — (1/p — 1/q). We
have that

il < el [1Ra ()l s < 1QGM" llnkully < #7219 gy ull,
and similarly
el S el | Bea(t¥ i A )l + 69l BeaCmanllps + el K () o
< mn/p=1/9) (1+ tn/p)|‘ﬂQ;U||p < t1—n(1/p=1/q) (1+ diam(Q)"/p) e wll,

and thus the condition (A) of Theorem 9.1 is satisfied.

(iii) This is now a consequence of Theorem 9.1. By density of R(d,2) in
RP(d, ) and of R?(4,€2) in RP(4, ) (see Corollary 4.2 (vi)), the estimate in (iii)
holds for all u € RP(d, §2) and for all u € RP(¢, 2).
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(iv) Tt is a consequence of (iii) and the Hodge decomposition of L? (€2, A), that
there exist constants M, , such that

@+ ZDH)’lqu < My ullullp, Vze€C\S,, Yue LYQ,A).
By the density of GZ(Dy) in GP(Dy) (Proposition 4.4) it then follows that the L?
operator (I + zDy) is invertible in LP(£2, A), with

(X +2zDy)~ qu < Mpullullp, YzeC\Su, Yue LP(Q,A). O
Remark 5.3. A partition of unity associated with a family of cubes of length 1
{C%, k € Z™} usually has the form > yr = 1 where 0 < y; < 1 and x; =1 on Cj.

The functions i € €°(2C)) are obtained with the help of (translation, dilation,
product of) bump functions such as

0 if xZ; S —2,
-1
(1 + exp( = +2 + —le_l)) if —2<a;< -1,
b(zj) =4 1 if —1<ua;<1, 1<j<n.
(1+ex I,vlfl))_1 if 1<uz; <2,
0 if T 2 2

Using v/b instead of b in the construction of Yy to obtain functions 7, we obtain
the desired form of the partition of unity »_ 7?7 = 1.

Proposition 5.4. Suppose that, in addition to the hypotheses of Proposition 5.2,
Dy has a bounded holomorphic functional calculus in L(2, A) with pg < q < pH
and max{1l,qs} < p < q.

Then condition (B) of Theorem 9.2 (stated below)

X, is a closed subspace of LP(S2) such that there is a Calderén—-Zygmund
type decomposition: for all o > 0 and all u € X,, there exist functions
g, wi, v, € LY(Q), tr > 0 and cubes Qr = Q(xg,t) C R™ of center xy,
and sidelength ty such that

lglly S lullps llglloo < @, o < 3 Tlg, < N g,
k

1
Mounoull, S olQulV?, Y 1Qul S o 1l
k

sppt wi, sppt vr, C Qr N,
wp € Dro(B),  |wkllg, [vellg S te' P79 |1, nqullp,

and u=g+ Z (Bw;€ + tikvk).
k
holds in each of the following cases:
1. the operator B = d and the subspace X, = RP(d, (),

2. the operator B = § and the subspace X, = RP(4,Q).
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Consequently, for each r € (p,q) there exist constants k., such that
(5.12) ||f(DH)u||T§ Erull fllscllte]lr, ¥2zeC\S,,VueR"(d,Q) and Vu € R"(3,Q)
for all f € W(S}).

Proof. Our aim is to prove that the condition (B) of Theorem 9.2 is satisfied in
case 1 (case 2 can be treated similarly). Let o > 0, u € X, N L9(Q, A) and let

Fi={z e R" (M(JaP)(@)" <a}, E.:=R"\F,

where M denotes the uncentered Hardy-Littlewood maximal operator on R™, i.e.,

M(f)(z) = supf F@ldy, zeR", feIb (R,
Q3zJQ

where the sup is taken over all cubes Q C R™ containing x and @ denotes the
extension by zero to R™ of u. Let Qr = Q(xg,tx), k € N be the family of cubes
relative to F' given by Theorem 3 in [28], Chap. I, §3, and denote by 27Qj the
dilated cube Q(z,27t;). Since 2Q) N F # 0, we have that

/ lulP da :/ P dz < |2Qk|][ (P dz < a Q4.
QrN Qk 2Qk

Moreover, by the finite overlapping property of the family of Q’s and the proper-
ties of the maximal operator (see, e.g., Chap. I, §1, Theorem 1 in [28]), we have
that

ST 1Rkl S [U@| = 1Bal = | {z e R MliP) (@) > o7}
k k

N 1
S 5 MalPleey = — llullp-

Next, for each k € N, let n; € €>°(Qk, [0,1]) be such that Y, n? = 1, and
[Viklloo S 1/tk. We define g by g := L\ g, u. It is clear that | g||, < [lul|, and by

~

the Lebesgue differentiation theorem, we have that
lg(x)] <« for almost all z € Q.

We define next, for the relevant k& € N, i.e., those & € N such that QN Q # 0 and
t < diam €,

Wy 1= nkRQ(’ﬂkU) and v = nkRQ(thnk/\u)—thnk/\RQ(nku)—tknkKQ(nku).

Since 7y is smooth and Rq(nru) € RP(d,Q), it follows that wy € RP(d, Q). We

have that n,%u = dwy, + ivk, and therefore

uzg—i—Z(dwk—i—%vk).
k
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Moreover, wy and vy, k € N, satisfy the estimate

tllefn(l/pfl/q

lwllgs llvgllg < ! Lgnaullp,

which proves that in our case, the conditions of (B) of Theorem 9.2 are satisfied.
Therefore, applying the result of Theorem 9.2, we obtain the following weak LP-
estimate:

1D,y < KppullFlsllullys ¥z € C\ S,
Vu € RY(d,Q) = RP(d, Q) N LY(Q,A) and
Vu € RY(§,Q) = RP(8,Q) N LY, A).

~—

By interpolation between this last result and the fact that D; has a bounded
holomorphic functional calculus in L7(2, A), and using the density of RY(d, ) in
R"(d, ) and of R%(9,2) in R"(4,Q) for all p < r < ¢ (see Corollary 4.2 (vi)), we
obtain (5.12). O

Proof of Theorem 5.1. We are now in position to prove our main theorem.

The assertion (iii) is proved by iteration: we start with ¢ = 2 and apply Proposi-
tion 5.2 (iii) and Proposition 5.4 to obtain (iii) for all r € (max{1,2g},2]|. We iter-
ate the procedure a times where a is the smallest integer defined by ni’;a < (pH)s
(we can take a = 14+ E(n/2), were F(s) denotes the integer part of a real s) and we
obtain (iii) for all r € (max{1,prg},2|. The range [2,p") is obtained by taking
adjoints in the interval (pg, 2].

(iii) = (i): For p in the range where (H)) holds, it is immediate that for all
ue LP(Q,A), and all z € C\ Sy, § € (0,7/2),

(I +2Dy) 'u= (14 2Dy) " (Pro(@yu) + (I + 2D1) " (Pre(ayt) + Pre(py ) Us
and therefore, by (5.2),
1T +2D1)~ ully < Cpo(I1Pre(@yullp+1Presyullp) + 1 Pre(oy yllp < (Cpo+1)lullp.
Similarly, for all f € W(S;), u € (0,7/2),
f(Dy)u= f(Dy)(Preayu) + f(Di)(Presyu),
which gives the estimate
1F(Dn)ullp < Kp,pu (IPro(ayully + [ Precgyllp) < Kppllullp

thanks to (5.3).

(ii): Assume that p is such that Dy admits a bounded S;; holomorphic func-
tional calculus in LP(Q, A). The fact that Dy is bisectorial in LP(€2, A) implies
that

LP(Q,A) =Rpr(Dy) & NP(Dy),
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the projections on each subspace being bounded. See, e.g., Theorem 3.8 in [13].
Then the restriction of Dy in Y, := RP(D)) with domain D?(D;)NY,, is densely de-
fined, one-to-one and admits a bounded Sj; holomorphic functional calculus in Y.
Following the idea of [4], §5.3, let sgn be the (bounded) holomorphic function in S

defined by sgn(z) = z/v/22 where /- is the holomorphic continuation of (0, +00) 3
2+ /7 to C\ (—00,0]. Then we have that sgn?(D))u = sgn(sgn(D))u) = u for
all u € Y,,. Now, (H,) is a consequence of ||Dyull, ~ |dull, + ||dull, ~ ||/D3? u| .

Indeed, assuming these equivalences hold, for all u € Y},

u=dv+Jiw, where v=-—-—u and w=—5

v € DP(d, Q), [|dvflp, S [lull, and  w € D?(§,9Q), [dwl, < llullp-

The equivalence ||Dyull, ~ ||\/Df u p comes from the boundedness of the holo-

morphic functional calculus for DH in Y,. To prove ||Dyull, = ||dull, + ||0ul]p, it 1s
sufficient to show that ||dull, < HDHqu for all u € DP(Dy). Write u =Y, _,u*
where u* € LP(Q, A¥). Then

ldullp =D I (duw)*ll, = D ldd)]l, < Z 1D (WO, = Y Iy DR’
k=0 =0 =0
= > lIG/Di)|l, = l\/Diull,, ~ [ Dyull,.
=0

The bound Y, [|d(u)|l, < Y7o D1 (u?)]l, holds because d(u’) € LP(2, A“T1)
and §(u’) € LP(Q, A*~1). This proves then that (H,) holds if p is as in (ii). O

6. Perturbed Hodge—Dirac operators on strongly Lipschitz
domains

Let © C R™ be a bounded strongly Lipschitz domain. Let ¢: R™ — R™ a biLips-
chitz map as in Proposition 2.14 for which Q' = ¢~1(Q) is a smooth domain. The
following result is the perturbed version of Theorem 5.1 in the case of bounded
strongly Lipschitz domains.

Theorem 6.1. Let B € L™(Q, . Z(A)) such that ReB > kI (k > 0) and B(x) is
invertible for almost all z € Q. We assume moreover that B~1: Q — £ (A) defined
by B~'(x) := (B(x))~" belongs to L=(Q,.Z(N)). Let Dy p be the (unbounded)
operator defined on L*(Q,A) by

Dyg=d+dg=d+B 9B D(D,p)=D(d)ND(B).

Then there exist wp € [0,7/2) and ep,Ep > 0 such that for all 0 € (wp,7/2) and
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allp € (max{l, (2—¢€p)sh 2+ 63), there exists Cp 9 > 0 such that

RP(d, )

— LP(Q,A), VzeC\ Sy,
RP(6,5, ) (©2,4), VzeC\S

(6.1) (I —I—ZDH’B)il : {

with the estimates

(6.2) sup |[[I+2Dyp) ull, < Cpollullp, VYu € RP(d,Q) and Vu € RP(6,9).
z€C\Se

For all i € (0,7/2), there exists a constant K, ,, such that for all f € U(S};),

RP(d, )

— LP(Q,A),
RP(6,5, Q) (2,4)

(6.3) f(DH,B) : {

with the estimates
(6.4) [[f(Du plullp < Kpull flleo(s)llullp,  Vu € RP(d, Q) and Vu € RP(§p,9).

Proof. The proof follows the lines of the proof of Theorem 5.1. To prove that Dy g
admits a bounded holomorphic functional calculus in L2(£2, A), we use the charac-
terization of Theorem 2 in [7] after transformation of the problem in the smooth
domain ' from Proposition 2.14: Q = ¢(€2’) where ¢: R" — R" is a biLipschitz
map. The triplet (d, B~!,B) with B = (¢,) 'B(¢*)"! satisfies the conditions
(H1) — (H8) of [7] (the condition (H8) is satisfied thanks to the embedding of
D(d + §,€) into H'(€',A) since ' is smooth: see Remark 3.4). We conclude
then that the operator d + 0 5 admits a bounded holomorphic functional calculus
in L*(Q, A). Therefore, d + § 5 admits a bounded holomorphic functional calculus
in L2(2,A). By the same arguments as in the proof of Theorem 5.1 (i), we see
that the Hodge decomposition

LP(Q,A) = R7(d, Q) & RP(3,5, Q) & NP(d + 6.5, Q)

holds for p = 2. Let €g,ep > 0 such that the above Hodge decomposition holds
for all p € (2 —£€p,2+ 63). Next, instead of potentials Rq and Sq, we use Rg
and B~'SqB which have the same mapping properties as Rq and Sq listed in
Proposition 4.1. This gives the result in the range (max{1,(2 — €p)s},2]. To
obtain the range [2,2+¢3), we proceed by duality, using § + B*d(B*)~! the adjoint
of Dy p and the potential maps Sq and B*Rq(B*)~! instead of R and Sq. O

7. Estimates of the Hodge exponents on strongly Lipschitz
domains

In this section, we focus on the case of bounded strongly Lipschitz domains. We
start with a result which gives good integrability properties of solutions of Dyu = f
on  when @ C R™ is a bounded strongly Lipschitz domain. We recall that,
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according to Theorem 11.2 in [22], there exists 0 < & < 1 depending on the
geometry of Q such that for all 7 € (2 —&’,2 + €’), there is a constant C' > 0 with

(7.1) [l

sty < C (Il 1dull+ 1ull, + vl e

where 7% := max{2,7}. This estimate is also true if we replace [[vaul|r-(90,a)
in (7.1) by [[v A ulzr@90,4)- Applying Corollary 2 in [25], p. 36, we can show that
the embedding

(7.2) By s L

holds as long as 7# < r*. In particular (7.2) is true for all ¥ > 2(n — 1)/n = 2—2/n.
Combining (7.1) and (7.2), we obtain

(7.3) [l < C (ull: + lldull, + |6ull, + lvaul Lroa.a))
and
(7.4) Jullre < C (llully + lldulls + [|6ull- + [1v A ullro0,a))

forall7 € (2—min{e’,2/n},24¢’). By Theorem 4.3, we know that there exits & > 0
such that the Hodge decompositions (4.8) and (4.9) hold for all p € ((2+¢)’,2+¢).
Let o := min{e,e’,2/(n — 2)} > 0. Remark that this particular choice of a ensures
that (7.3), (7.4), (4.8) and (4.9) hold in the interval ((2 + @)’,2+ «).

We have the following result.
Theorem 7.1. Let 2 C R"™ be a bounded strongly Lipschitz domain. Then we

can estimate the Hodge exponents associated to the Hodge decompositions (4.8)
and (4.9) as follows:

24+ a)n 2n

< 2 */: ( — 2*/

pr = (@+0)) = T e - @)
2n 2+ a)n H
— =2 — = (2 <
n—1 T @+a) =p%

where a > 0 was defined just above: (7.3), (7.4), (4.8) and (4.9) hold in the interval
((2—1—04)’, 2+a). In particular, in dimension n = 2 we have that pyr < 4/3 < 4 < pfl,
and in dimension n = 3 we have that py < 3/2 < 3 < p*.

Before proving this theorem, we first give some properties of the null space of
the operator Dy or D..

Lemma 7.2. Let r € ((2+ @)’,2+ a). Let N"(D) be the null space of D = Dj
or D1 endowed with the L"-norm. Then the projection P: L"(Q, A) — N"(D) maps
L7 (0, A) to L™ (2, A). Moreover, N"(D) = N"" (D) with equivalent norms and the
projection P extends to a bounded operator from LP(Q,A) to LPS(Q,A) N N?(D)
for all p € J, where J, denotes the open interval around (2°) = 22 given by

n+1
((2+a)"), (2+a)))).
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Proof. Let r € ((2+ a)/,2+ a). The projection P: L"(Q,A) — N"(D) coming
from the Hodge decomposition (4.8) (or (4.9)) satisfies, thanks to (7.3) (or (7.4)),

[Pull- < C[Pull, < C"lull,

since for v € N"(D), we have that dv =0, 6v =0in Q and vov =0 (or v Av = 0)
on 99Q. This proves that P maps L"(2,A) to L™ (2, A).

It is clear that N"" (D) < N”(D) since we assumed that Q was bounded. Con-
versely, let v € N"(D). Then we have that dv =0, v = 0 in Q and vav =0 (or
v Av=0)on 09, and thanks to (7.3) (or (7.4)), v € L™ (2, A) and ||[v||,« < [|v]|,
which proves that N"(D) < N"" (D) and therefore N (D) = N"(D) with equiva-
lent norms.

Let now p € J,. We want to prove that P maps LP(Q,A) to v’ (Q,A).
Since P maps L"(Q, A) to L™ (Q, A) for all 7 € ((2+ @),2 + «), its adjoint maps
Lira=1(Q,A) to LI(, A) for all ¢ € (24 a)’,2+ «). We know moreover that P
is a projection, so that P = P’ = P2. Therefore, we obtain by composition that P
maps L7741 (Q, A) to L7-1(Q, A) for all g € (2+a),24+a). If welet p= T
it is easy to check that p¥ = 24 and the result is proved. O

n—1

To prove Theorem 7.1, we need the following lemma which gives a partial right
inverse of Dy (or D1) in LP(Q, A).

Lemma 7.3. Let p € J, (Jo was defined in Lemma 7.2). Then any v € LP(Q, A)
can be decomposed as

(7.5) w=DTu+ Ku= D.Su+ Lu,
where
g
(7.6) T,S: LP(Q,A) — LP (Q,A) N D2(Dy)
DP(D.)
and
p
(7.7) K,L:LP(Q,A) — LP (Q,A)N N(Dy)
NP(D.)

are bounded linear operators.

Proof. Let D := Dy or Di. Let r € ((2+ a)’,2 4 ). We denote by D"(D) the
domain and R"(D) the range of D, both endowed with the L"-norm. We have that
D"(d)nD"(9) if D=D
D" (D) _ ( ) (_) l Iy
D"(6)ND"(d) if D=D.,
and since the Hodge decompositions (4.8)—(4.9) hold in L"(€2, A), the projection

onto the null space of D, P: L"(2,A) — N"(D), is bounded and the operator
DI - P): D"(D) — R"(D) is invertible (one-to-one and onto); we denote by
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T: R"(D) — D"(D) its inverse. Let p := (r*): p belongs to Jgu, and p° = r*
by (2.1). From now on, we assume that D = D) (the case D = D1 can be treated

similarly). We define T := (I — P)T (I — P) and K := P. It is clear that T maps
L™(9, A) to itself and that, thanks to (7.3),

[Tull~ < C (ITully + [|dTullr + |6Tull;) < Cllully, Yue L(Q,7),
which proves also, by duality (T is self-adjoint in L?(£2, A)),
(7.8) | Tull, < C||lu||—nx Vre (2+a),2+a).

— ntr—1’

It remains to prove that these operators 7' and K satisfy (7.5) and the mapping
properties (7.6) and (7.7). The fact that K = P satisfies (7.7) is a direct conse-
quence of Lemma 7.2. Next, let u € L™(Q,A), (2+«) <r <2+a«. Since Dy P =0
and D Tv=wvforallve R"(Dy), we have that

DTu=D;(I-P)T(1-P)u=(I-Pu=u-—Ku,
which proves (7.5) for v € L™(9Q, A). The last step in this proof is to show that T'

maps LP(Q, A) to L”'S (Q,A)NDP(Dy) for all p € J,. Let u € L?(Q,A) N LP(Q, A)
and denote by w € W1P(R™, A) the solution of

(I-P)u inQ

e LP(R™,A).
0 outside Q ( )

(d+5)w:{

We have that [Jw,[|l,s + [[w),, || @-1e < Clullp. Let now v := Tu — wy,,.
L7n=p (99,A)
The function v satisfies

{M+®v:OinQ

viv=—viw € Bff’l/p(c'?(l,/\) — L

(n=1)p

= (09, A).

Let ¢ = (n—1)p/(n — p), so that ¢* = np/(n —p) = p°; in particular, q €
(24 @),2+ «). By (7.3), since dv + dv = 0, we have that

[ollg= < C (llvllg + llvavllLaan.ny)

and therefore, using (7.8) and the fact that ng/(n+q¢—1) = p,
ITullps S (1Tullg + llullp) S llullp,
which ends the proof. O

Corollary 7.4. Let Q C R™ be a bounded strongly Lipschitz domain. Then the
operators Dy and D1 admit a bounded holomorphic functional calculus on LP (€2, A)
for all p in the interval (((2+ a)*), (2 + @)*).

Proof. The proof follows the lines of the proof of Theorem 5.1. Conditions (A) of
Theorem 9.1 and (B) of Theorem 9.2 hold for X, = LP(Q,A) and A = B = D)
(or D.), using the potentials (T, K) (or (S, L)) defined in Lemma 7.3. O

Proof of Theorem 7.1. It is an immediate consequence of Corollary 7.4 and (ii) of
Theorem 5.1. O



HODGE-STOKES OPERATORS ON LIPSCHITZ DOMAINS 1741

8. Hodge-Laplacian and Hodge—Stokes operators

Direct applications of the results in Section 5 are the following properties of the
Hodge-Laplacian —A | = D;? and the Hodge—-Stokes operator S defined as the
part of —Aj in N?(8) extended as sectorial operators in LP(2, A) and in NP(§).

Corollary 8.1. Suppose Q is a very weakly Lipschitz domain in R™. Define —A; =
D% in L2(Q,A). Ifpgr < p < pf, then —A, is sectorial of angle 0 in LP(Q, A) and
for all p € (0,7/2), —=Ay admits a bounded S, holomorphic functional calculus
in LP(Q, A).

Let us mention that the first part of this corollary (sectoriality of —Aj) has
been proved in [24] in the case of a bounded strongly Lipschitz domain.

Corollary 8.2. Suppose 2 is a very weakly Lipschitz domain in R™. Define S| :=
Dy? in R%(3,Q). If max{l, (pH)s} < p < pf, then S) is sectorial of angle 0 in
RP(8) and for all p € (0,7/2), Sy admits a bounded S;,, holomorphic functional
calculus in RP(9).

9. General LP extrapolation results

In Section 5, we used the following extrapolation results, but are presenting them
separately, as they are general results which could be useful in other contexts. In
them, LP(Q) := LP(Q2,CY), where Q is an open subset of R", and N is a positive
integer.

Theorem 9.1. Let g € [1,00), max{l,qs} <p<qgand 0 <w < p < 7/2. Let A
be a bisectorial operator of angle w in LY such that the family of the resolvents
{XT +24)7Y,2 € C\ S,} has LI-L? off-diagonal bounds. Assume that B is an
unbounded operator in LY such that {(1 + zA)"'2B,z € C\ S,} has LI-L? off-
diagonal bounds.

(A) Assume that X, is a closed subspace of LP(QY) such that for all uw € X, there
exist w,v € LI(Q) with w € DP(B), [wly, oy < l[ull, and u= Bw +o.

Moreover, assume that for each t € (0, diam Q)] there exists a family {Q}, k€ Z"}
of open subsets of Q0 with the property that

t n
QL] St*, 1o < E g < N,
k
—edist (QF,Q5)/t _ —edist (QF,,Q5)/t
sup » e ¢ Rt =gup y e ot )it < O

for all ¢ > 0, where C. does not depend on t, and for all u € X,,, there exist
wi, v € LI(Q) such that wy € DP(B) for all k, and wg, vy satisfy

spPtowk, PPt vk C Qfy  [[willgs lorllg S 7"/ |[Tge ull,,

U= Z (Bwk + %Uk).

k
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Then there exists a constant M, , such that

X+ 2z4)" u|| <My ulullp, VzeC\S,, Yue X,NLIQ) .
Proof. For z € C\ Sy, let t = min{|z|, diamQ} € (0,diam Q}, v € X,.

If t = diam, then let w and v be as in the first part of Assumption (A):
u = Bw + v, and therefore

I+ 24 u= l(I +2A) 2Bw + (1 +24)" 1w
z

so that, thanks to the boundedness of (I +2A4)~! and (I + zA4)~'2zB in L4(Q),

11+ 24) ully S (diam )"/ (ol + ol ) S

diam Q2

If t < diam €, then let Q%, wy, vy as in the statement of the theorem. Then, using
the L9-L4 off diagonal bounds for (I + 2A4)~! and (I + 2A4)~'2B we have that for
all u € X, N LY,

1T+ 24) " ull, < (Z/Q T+ ZA)*luI"’)l/p

p11/p
s [Z <||(I + ZA)71U|\L«<Q§-)|Q§|1/p71/q> }
J
(by Holder’s inequality)
1_1y\P7l/p
i~ [Z (Z (X + 24) " (tBuwg + ve)l| oyt ;)> }
J k

(since u =Y, (Bwy + fui) and |Q%] <t™)

[ (et @bl (Ll + ol ) i) ]

i k

N

(by off-diagonals bounds)

t _ _ py1/p
S Ce 2 (57 Il + el ) om0 )]
k
(by Schur’s lemma and the fact that ¢/]z] < 1)
S Ce[ D Imgyull ]
k

(by the L? bounds for wy and vy and since ¢t < |z|)
< lullp,

where we have used, in the last estimate, the finite overlapping property of the
cubes Q}. O
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Theorem 9.2. Suppose that all the hypotheses of Theorem 9.1 hold, but with (A)
replaced by:

(B) Assume that X, is a closed subspace of LP(Q2) such that there is a Calderén—
Zygmund type decomposition: for all « > 0 and all uw € X, there exist func-
tions g, wi, v € LI1(Q), tp > 0 and cubes Qr = Q(x,tr) C R™ of center xy,
and sidelength ty, such that

lgllp < Nlullps  llgllee < e,

1
o <Y o, < N, |[lg,noully, S @lQi'?, Y 1Qk S — lullp,
k k

sppt wy, sppt v, C Qr N, wy € Do (B),

lwillg, lloellg S PV D g, nqullp,  and w=g+ Y (Buwk + £ok).
k

If A admits a bounded S}, holomorphic functional calculus in LY(Q2), then f(A) is
bounded from X, N L1(Y) to the weak LP space LP () defined as follows:

LY (Q) = {u : Q — A measurable ;
1/p
le|lpw == (sup apHac € Q |lu(z)| > a}|> < oo}
a>0
i.e., for each 0 € (w, ) there exists Kp g such that

1 (A)ullpw < Kpo [l flloollull, Vue X, N LUQ), V[ e W(Sy).

Proof. The idea of the proof presented below is inspired by the techniques devel-
oped in [16]. The starting point is a Calderén—Zygmund like decomposition as (B)
in the statement.

It suffices to prove the result when |/ f|lcc = 1. So assume henceforth that

[fllec = 1.

We proceed in several steps. Let f € W(S}). Let a > 0, u € X, and write

u:g—i-Z(Bwk—i-tl—kvk)
k

as in the statement of the theorem.

Step 1. The part involving g.
We have that g € LI(Q2) with the estimate

lglly < NgllZs?/@llgll,” e < al=?/4 |lu],*/ .

Using the boundedness of f(A) on L(€2), we have

07| {w € Q:17(A)g(@) > a}] S o S 17 A)gll" S @ g,
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which shows, using the bound just proven for ||g||q,

(9-1) af[{z € Q:|f(A)g()] > a}| < [lull,’

Step 2. On the subsets 2Q, NQ = Q(zk, 2t;) N Q.

We denote by E the set Ui (2Q; N ). We have the estimate
< 1 p
B < 3 204 5 &l
k
so that
(9.2) o |E| < [Jullp-

Step 3. We claim that for all m > 1,
1/q
HZRk Buwy, + £y H <04‘UQ1€‘ ;

where
Ry = (I +itkA)_1

and for M > 1 to be chosen later,

(9.3) ap’{m €Q\E: |[f(A)3 (I - (I - R)™)(Buy + ~ui)| > a}’ S [z
k

Indeed, let h € LY (Q) with |||, = 1. We have that
(/ ZRk Bug + u), h)|
‘/ Zt wi, te B* R (Rp)™ 1) +’/ ti (Rp)™h)|,

(taking the adjoints)

<Z@wmewmwwm@m+uwmmwm@mg

For each k, we denote by Ayj, j > 1, the annulus 27Qr \2771Qy, and by Axo = Qy,
so that R™ = szo Qr;- For each k, we decompose h as

h=> Ta,nah
Jj=0
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and we obtain

1
R (Bwy + —ui), h ’
|, (S s g
<§:i § =2 Npll
~ tk(Hwqu"'Hkaq) € 12l 1o (QNA;)
k J

(thanks to the off-diagonal bounds satisfied by R}, txB* R},

and compositions of them)

(using the bounds for wy and v in L, denoting by h the extension
by zero to R™ of h and using the fact that |2/ Qx| = 27"¢})

S Yottt ()" (S )

J

(since ||g, dll, < aty "/? and using the maximal function M in R”

1 ’
S 042/ |h|q /a (Slnce ty lnfzer |f| < fQ,\ |f|
< a/ (M(|iL|ql)) /e (by the finite overlap property of the Q)
Uk QL

e - / / /
< Oé’ U Qk’ K ||1/q (thanks to the estimate: [, (M|g0\)l/q < ||Vl
k see, e.g., Lemma 5.16 in [14]).
.1/q

SQ.UQk
K

To prove (9.3) we now use the fact that f(A) is bounded in L? and we obtain

o[ {z € Q\E: |f(A)Y (I = (1 = Ro)™) (Buy +t%vk)(x)| > a}|
k

> (1= (1 = Re)™) (Buwy + Eox)
& q

< AP—4q - M m 1 q< p
ot (3 (o) | et o] ) <

Step 4. Estimate of ||, f(A)I — Ry)™ (Bwyi + tl—kvkﬂ L2 (O\B)"

Let 0 € (w, ). Recall that for each b € LP(Q), the definition of the functional
calculus gives

S =M= [ (1

@] S Il
k

)M(zI A hds.

211 1+ itz
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Using the change of variable z = %ei’w_”) and z = %eiw we obtain for
b 1=t Bwy, + vy,

1 * 1 itre’ \M , dt

= o i/ N () (e S
T et a(ng) 70 'K T tke

1 : itee'® \M : dt

= Z iQ— t_f(t_lelﬂﬂ)(%) (I —te_wA) 1b —
o=t0 t(n_p) —T0JO Tk + ke

1 [>1 , e’ \M , dt

+ tom | I () e
o=t 0.1 (7—0) T Jot, Uk + 1tge

(9.4) = (FF,(be) + F5 ,(br))-
=40+ (r—0)

Step 4.1. For ¢ = +0 or ¢ = +(7m — 0), we claim that

(9.5) o|{z € Q\E: | Pl ()@ > a}| S llull
k

Let h € Lp/(Q) with ||h||,y = 1. As before, for j > 1, we denote by Ay; the annulus
27Q \ 2771Qy,. Using the representation of Flk,w(bk), we have that

[ (e

k

2t i
_ itpe™ \M . e dt
- QW’Z// Jee) t+ztkew) <“”“tB (I —te™ A7) 1(HQ\Eh)>t_2‘

o [ e () e o)

(using the definition of by and duality)

2ty 2
itpe'? \M
t 1 up )
271' Z/ Z/ u t—i—ztkew

j>2

* —1 * dt
'<wk»tB (I —te™A") " (Lana,,) \E)h)> ‘
‘Z/thz:/ Lt 1 w it,e? )M
tr t—l—ztkew

. dt
'<vk7(1—te’wz‘1*) (]1<mAm\E)h)> ‘

(where we have decomposed o\ gh as 2122 (QﬁAk],)\Eh) .
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We then obtain, denoting by h the extension by 0 to R™ of h,

I \E<Zm<bk>,h>1

k
215, ;
—e20 Nyt
S Wl 22 (oot o) [ 5 e il
(cos€ t
j>2

(using the off-diagonal bounds for (I 4+ 2zA4*)™" and for 2B*(I + zA*)~!
the estimate |tj_tz’“tij¢ < 1/|cos | =1/cosd, the fact that t/t, < 2 for t € [0, 2t]
and the estimate 2771ty /t > 27 /8 4- 271, /(4t) if 0 < t < 2ty,)

1,n(l,l) Y 2t _coj S ’
Szzatz/ptk Pl c2J/8/0 e 42th/t2n_]/q |Qk|1/q( |

k j>2

)

(where we have used the bounds for wy and vy in L9

and the fact that ||, ul, < atz/p)

~ ’ L J 2ty j o
< ozz |Qk|xien5k (M(|hJ? )(x))l/P (Zan/q o—c2 /8/ Ptk s tﬁt)ﬁ)
k

i>2 0 t t

(since p’ > ¢ and |Qx|"™ ~ ty)

and so

[ (Ao
09 / MR ) (S 2l s [

6768/4 dS)
j>2 2771

’1/17

(where we conclude as in Step 4, using the change of
variable s = 2jtk/t in the integral with respect to ¢

(9.6) S 04‘ U Qk
k
and the fact that the sum over j converges).

The estimate (9.6) shows that || >, FF(br) HLP(Q\E A S < a|U, Qk|1/p. We can
now prove (9.5). We have that

ap‘{x€Q\E |ZF1¢bk >O‘}’<HZF1W ‘LPQ\E)

< apﬂ @] < lull.
k

Step 4.2. For ¢ = 40 or ¢ = £(m — 0) and M > n/q’, we claim that

(9.7) o|{z € Q\E: | Y] Fh (b)) > a}| S Jlull.
k
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Let h € L¥' () with ||k]|,, = 1. We proceed as in the previous step and we obtain

y \E<ZF£¢<bk>,h>|

k
itye'® M
t_l up( )
<52/, e (e

Z/ wk,tB (I —tefupA*) (H(QmAkJ)\Eh)>dt'

j>2
1 <t L itpe’? \M
+ 2 Z~/2tk tkf( € ) t+ itpe
. dt
Z/ vk, (I —te "PA*)™ (H(QmAkJ)\Eh)> ‘
j>2

(where we have used duality and the decomposition o\ gh = 2122 H(QﬁAkj>\Eh).

And so

[0 R 0.

k
> th M-1 _0i—1
Sl 3 Qs+ o) [ (327 S e s, Bl
k 2tk J>2
(thanks to the L9-L? off-diagonal bounds satisfied by (I 4+ zA*)™*

and zB*(I +2A*)"" and the fact that | itge'® | < 2t/tif t > 2t)

t+itye’®
oo
~ 71\ /P i/d t\NM _c iy, s dt
Sa inf (M(|h|? ( oni/d' ¢ / <_) e 5 k/)_)
SadllQu it (MORP) (L 2n [ (3 !
k §>2 k
where we have used the same arguments as for the proof of (9.5).

To estimate the sum over j > 2, we change the variable s := 27t /t in the integral
and we obtain

[e%s} . 271
S gl / (t_k)Me—gwtk/t)ﬁ =Y il / oM M ,—5s 48
t t 0 s

7>2 2t §>2
< ([Tt sas) (T eie ) <oc,
0 j>2

The sum over j is finite since we have chosen M > n/q’. Therefore, we obtain as
in the proof of (9.6)

LSl [ o o

k

‘1/10

This proves (9.7) the same way we proved (9.5).
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Step 5. Conclusion: f(A) maps X, N L7 to LP (Q).
Indeed, for all 3 > 0 we have for a = 8/11,

{zeq: |f(A)u(x)| > B3}
cl{zeq: |f(A)g(J:)| >alUE
U {:c €O\ E: ‘f(A)Z(I —(I _Rk)M)(Bwk+ ivk)(ﬂﬁ)’ > a}
k

(U e S o)

=+0,+(7—0)
(U frenis| T roow] o))
=+0,+(7—0) -

We can estimate the size of each of the sets on the left hand side of the previous
decomposition thanks to (9.1), (9.2), (9.3), (9.5) and (9.7). We prove that for all
u € X, and all 8 > 0, we have that

Bz e Q: [f(Au(z)| > B} < lul?,

which is exactly the claim. O

A. Deferred proofs

Recall the statement of Proposition 2.14:

Let Q C R™ be a bounded strongly Lipschitz domain. Then there exists a biLip-
schitz map ¢: R™ — R"™ where ¢~ 1(Q) = Q' is a smooth domain in R™ satisfying
PR\ ) =R"\ Q and ¢p(9Q) = ¢(99Q).

Proof. Let n € €°(R"1) such that n > 0, spptn C B,—1(0,1) and [5, .7 = 1.
For € > 0, define n.(z') = e~ (= Up(a’/e) for all 2/ € R*~!. By definition of a
strongly Lipschitz domain, there is a covering of 02 by N open sets V; C R"
(j =1,...,N) with the following properties:

X; € €:°(R™,[0,1]), V; = {J; eR"; x;(z) = 1}, sppt x; C Uj,
n
U; = Ej( H [ak, bk]), where ay, by, € R and E; is a Euclidian transformation,
k=1
pj(x) = Ej(z', 2y — g;(2')), Yo = (2',2,) €R",
g; : R"* — R Lipschitz continuous, QN U; = p;(R"™* x (0, +00)) N U;.

We fix now j € {1,...,N} and omit to write the subscript j. For the sake of
simplicity, we assume that Ej; is the identity on R"; if this is not the case, the
modifications in the following proof are easy. We define

@R SR, a@) = (220 — (@) (9@) — g-(), @ = (),
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where g. = n. % g —eM for ¢ < 1/M, M := ||Vg|. The map « is Lipschitz
continuous by construction and we have, in particular, for all 2’ € R* !,

e+ 9ty =@ = | [ 0ot — ) - 0)
7/11«77 1 nyYMely'|dy <eM,

so that eM — (n. = g(z') — g(z)) > 0 for all 2’ € R"'. Moreover we have the
following properties:

(i) It is straightforward to see that if © = (2/,x,) € V NOQ, then x(x) = 1,
z, = g(a') and therefore a(x) = (2/,g.(2’)), which defines a piece of a
smooth hypersurface. We have moreover that if z € R™ \ U, then x(z) =0
and then a(z) = x.

(i) The map a: R™ — R™ is invertible. Indeed, let 2/ € R"~!. The function
hyr it =t —x(2',t)(g(z") — g-(2')) is smooth on R and its derivative is given
by Rl (t) =1 — O x(2,t)(g(z") — g (2')). Choosing ¢ > 0 small enough such
that

v e OIS g
we have that 1/2 < h/,(t) < 3/2, for all t € R, 2/ € R"!, so that
he: R — hy(R) is strictly increasing, invertible and its inverse is smooth
(in the variable t). For |t] large, x(z’,t) = 0. This implies that hy (t) = —o0
as t — —oo, and h,/(t) — 400 as t — +o00, and then h, (R) = R. Therefore,
the map « is invertible, its inverse given by

LR SR, o Ny yn) = (8 by ()

Moreover, since h, is strictly increasing, we have that a(R™\ Q) = R™\ a(Q)

and «(09) = 9(a(2)).

(iii) The map o~ ! is Lipschitz continuous. The Jacobian n x n matrix of « at a
point z = (a/,t) is given by

= (S )
@ mﬂt =
0 | 1-0ux(.0)(g@) - g ()

This matrix is invertible, its inverse at a point (2/,t) = a~!(y’, y,) is given by

. Vm/ (af/'—>hx/ (t))
1=8,x (2 ) (g9(2")—ge (=)
0 1
1=0nx(2',t) (g(z") —g-(2"))

Infl

Ja(a' t)h = = Jo=1(y',yn)

which is bounded on R™. Therefore a~! is Lipschitz continuous.
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Following this construction for all j = 1,..., N, we finally obtain
a:=ayo---oaj:R" = R" is a biLipschitz map

for which a(2) = ' is a smooth domain. Letting ¢ = a~! proves the claim made
in Proposition 2.14. O

The following result shows a property of smooth domains. We did not use it
in this paper, but it seems to us to be of independent interest and can justify, a
posteriori, together with Proposition 2.14, the classical assumption that for Q a
bounded strongly Lipschitz domain, z € 99, r > 0, the domain B(z,r) N has
the same Lipschitz constant as  (see, e.g., [24], §5).

Lemma A.1. Let Q' be a smooth domain in R™. For xg € 0Q and r > 0, we
consider B(zo,r) N QY. Then there exists a smooth domain (of class €°) Q, C R™
such that

B(zg,7)NQ C Q, C B(wg,2r)NQ.

Proof. We define G : R™ — R by
G(z) = 2ridist (z,R™ \ ')® — max {0, (|z — zo[* = r*)*}, =z €R".

The function G is of class €3. We define Q, := G~!(0,4+00). Then Q, is of
class €3. It remains to verify that B(zg,r) N Q' C Q, C B(zo,2r) N
(i) If z € B(xo,7) N, then dist (x, R™ \ )2 > 0 and max{0, (|z — z¢|*> — r?)?}
= 0. Therefore, G(x) > 0, and = € Q.
(i) If x € R™\ ', then dist (z,R" \ )2 = 0 and therefore G(z) > 0 which
implies that = ¢ Q..

(iii) If z € Q" with |z — x| > 27, then dist (z, R" \ Q)? < |z — x0|? and
max {0, (|z — zo|? — 7"2)2} = (Jz — zo|® — r?)2.
Therefore,
G(z) < 2|z — zo)> = (|z — x0|* — 72)% < 4r?|z — z0)* — |z — 20[* <0

so that « ¢ Q..
This proves the properties of @, O
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