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Multiplicative dependence of the translations

of algebraic numbers

Artūras Dubickas and Min Sha

Abstract. In this paper, we first prove that given pairwise distinct alge-
braic numbers α1, . . . , αn, the numbers α1 + t, . . . , αn + t are multiplica-
tively independent for all sufficiently large integers t. Then, for a pair
(a, b) of distinct integers, we study how many pairs (a+ t, b + t) are mul-
tiplicatively dependent when t runs through the set integers Z. Assuming
the ABC conjecture we show that there exists a constant C1 such that for
any pair (a, b) ∈ Z2, a �= b, there are at most C1 values of t ∈ Z such that
(a + t, b + t) are multiplicatively dependent. For a pair (a, b) ∈ Z2 with
difference b − a = 30 we show that there are 13 values of t ∈ Z for which
the pair (a+ t, b+ t) is multiplicatively dependent. We further conjecture
that 13 is the largest number of such translations for any such pair (a, b)
and prove this for all pairs (a, b) with difference at most 1010.

1. Introduction

Given n ≥ 1 non-zero complex numbers z1, . . . , zn ∈ C∗, we say that they are
multiplicatively dependent if there exists a non-zero integer vector (k1, . . . , kn) ∈ Zn

for which

(1.1) zk1
1 · · · zkn

n = 1.

Otherwise (if there is no such non-zero integer vector (k1, . . . , kn)), we say that
the numbers z1, . . . , zn are multiplicatively independent. Consequently, a vector
in Cn is called multiplicatively dependent (resp. independent) if its coordinates
are all non-zero and are multiplicatively dependent (resp. independent). To avoid
confusion, the vectors with zero coordinates, like (0, 1), are not considered to be
multiplicatively dependent (although, by convention, 0011 = 1) or independent.

In [8], several asymptotic formulas for the number of multiplicatively dependent
vectors of algebraic numbers of fixed degree (or lying in a fixed number field)
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and bounded height have been obtained. In an ongoing project [14], the authors
continue to study multiplicatively dependent vectors from the viewpoint of their
density and sparsity. By contrast, in this paper, aside from the multiplicative
dependence and independence of a given set of algebraic numbers, we also want to
investigate the multiplicative dependence and independence of their translations.
More generally, the authors in [7] study multiplicative dependence of values of
rational functions in some special cases. We remark that a method on deciding
the multiplicative independence of complex numbers in a finitely generated field
has been proposed by Richardson [12].

In Section 3, we prove a result (Theorem 3.1) which implies that given pairwise
distinct algebraic numbers α1, . . . , αn, n ≥ 2, for each sufficiently large integer t,
the algebraic numbers α1 + t, . . . , αn + t are multiplicatively independent. This
is in fact a special case of Theorem 1’ in [2]. A weaker version of this statement
given in Lemma 2.1 of [4] was used in [4], and so it is an additional motivation
for Theorem 3.1. In particular, by Theorem 3.1, for an integer vector (a1, . . . , an)
whose coordinates are pairwise distinct, there are only finitely many integers t
for which the numbers a1 + t, . . . , an + t are multiplicatively dependent. So, a
natural question is to estimate the number of such integers t corresponding to a
given integer vector. In this paper, we investigate in detail the case of dimension
n = 2 by presenting some explicit formulas, upper bounds and several conjectures.
See Theorems 4.2, 4.3, 4.4 and 4.8. For example, we conjecture that for any pair
of distinct integers (a, b) ∈ Z2, the number of such integer translations t is at
most 13, which is in fact related to two special forms of Pillai’s equation. The pair
(a, b) = (1, 31) is an example which has exactly 13 integer translations leading to
multiplicatively dependent vectors (see Section 4).

2. Preliminaries

For the convenience of the reader, we recall some basic concepts and results in this
section, which are used later on.

For any algebraic number α of degree degα = m ≥ 1, let

f(x) = amxm + · · ·+ a1x+ a0

be the minimal polynomial of α over the integers Z, where am > 0. Suppose that f
is factored as

f(x) = am(x− α1) · · · (x− αm)

over the complex numbers C. The height of α, also known as the absolute Weil
height of α and denoted by H(α), is defined by

H(α) =
(
am

m∏
i=1

max{1, |αi|}
)1/m

.

Besides, we define the house of α to be the maximum of the modulus of its conju-
gates:

|α| = max{|α1|, . . . , |αm|};
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see Section 3.4 of [16]. Clearly, if |a0/am| ≥ 1 we have

H(α) ≤ a1/mm |α|.

In particular, for any algebraic integer α �= 0 we have H(α) ≤ |α|.
The next result shows that if algebraic numbers α1, . . . , αn are multiplicatively

dependent, then one can find a relation as in (1.1), where the exponents ki, i =
1, . . . , n, are not too large; see for example Theorem 3 of [5] or Theorem 1 of [11].

Lemma 2.1. Let n ≥ 2, and let α1, . . . , αn be multiplicatively dependent non-zero
algebraic numbers of height at most H ≥ 2 and contained in a number field K of
degree D over the rational numbers Q. Then, there are k1, . . . , kn ∈ Z, not all
zero, and a positive number c1 which depends only on n, such that

(2.1) αk1
1 · · ·αkn

n = 1

and

(2.2) max
1≤i≤n

|ki| ≤ c1 D
n(log(D + 1))3(n−1) (logH)n−1.

Furthermore, if K is totally real, then there are integers k1, . . . , kn, not all zero,
as in (2.1) and a positive number c2 which depends only on n such that

(2.3) max
1≤i≤n

|ki| ≤ c2 (logH)n−1.

Proof. Let w(K) be the number of roots of unity inK. Note that for Euler’s totient
function ϕ we have ϕ(m) � m/ log logm for any m ≥ 3. Since ϕ(w(K)) ≤ D, we
obtain w(K) � D log log(3D). Then, using Theorem 3 (A) in [5], we can get (2.2).
In the same fashion, (2.3) follows directly from Theorem 3 (B) in [5]. �

The following statement is Mihăilescu’s theorem (previously known as Catalan’s
conjecture) [6], which roughly says that (23, 32) is the only case of two consecutive
powers of natural integers.

Lemma 2.2 ([6]). The equation

by − ax = 1

with unknowns b ≥ 1, y ≥ 2, a ≥ 1 and x ≥ 2, has only one integer solution
(a, b, x, y) = (2, 3, 3, 2).

We also need the following classical result due to Siegel [15].

Lemma 2.3 ([15]). Let f(x) be a polynomial in Z[x]. If f has at least three simple
roots, then the equation y2 = f(x) has only finitely many integer solutions (x, y).
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3. Multiplicative independence

In the following theorem, we confirm the multiplicative independence among the
translations of algebraic numbers. Actually, we can do more than it was claimed
at the beginning.

Theorem 3.1. Let α1, . . . , αn be pairwise distinct algebraic numbers, and let d =
[Q(α1, . . . , αn) : Q]. Then, there is a positive constant C = C(n, α1, . . . , αn) such
that for any algebraic integer t of degree at most |t| 1/(nd+1) and with |t| ≥ C, the
following n algebraic numbers: α1+ t, . . . , αn+ t, are multiplicatively independent.

We remark that the exponent 1/(nd+1) for |t| here is not optimal and is chosen
for the sake of simplicity.

Proof. The result is trivial for n = 1. Assume that n ≥ 2. Without loss of
generality, we can further assume that

(3.1) |t| = |t|.
Indeed, if |t| �= |t|, then there is a Galois isomorphism σ of the Galois closure
of Q(α1, . . . , αn, t) over Q such that |σ(t)| = |t|. Then, it suffices to verify the
multiplicative independence of the algebraic numbers σ(α1)+σ(t), . . . , σ(αn)+σ(t).

Take |t| large enough. Then, we can assume that αi + t �= 0 and, moreover,∣∣|1 + αi/t| − 1
∣∣ < ε, i = 1, 2, . . . , n,

for a sufficiently small ε > 0. For a complex number z, let arg(z) ∈ (−π, π] be the
principal argument of z. Note that for ε ≤ 1/2 and each i = 1, 2, . . . , n, we have

| sin(arg(1 + αi/t))| = | sin(arg(αi/t))| · |αi/t|
|1 + αi/t| ≤ 2 |αi|/|t|.

Thus, using the fact that |x| ≤ 2| sinx| for any x ∈ [−π/2, π/2], we can further
assume that the principal arguments satisfy

(3.2) | arg(1 + αi/t)| ≤ 4 |αi|/|t|, i = 1, 2, . . . , n.

Besides, by the basic properties of the Weil height (see, e. g., [16]) and (3.1), we
have

(3.3) H(αi + t) ≤ 2H(t)H(αi) ≤ 2 |t|H(αi), i = 1, 2, . . . , n.

Here, H(t) ≤ |t|, since t is an algebraic integer and |t| = |t|, by (3.1).
For a contradiction, assume that α1 + t, . . . , αn + t are multiplicatively depen-

dent, that is, there is a non-zero vector (k1, . . . , kn) ∈ Zn such that

(3.4) (α1 + t)k1 · · · (αn + t)kn = 1.

Set
D = [Q(α1, . . . , αn, t) : Q].
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Then, by the degree assumption on t, we find that

D ≤ [Q(t) : Q] d ≤ d |t|1/(nd+1).

By Lemma 2.1 (see (2.2)) and (3.3), we can further assume that the nonzero
integers in (3.4) can be chosen such that

(3.5) max
1≤i≤n

|ki| ≤ c3 |t|n/(nd+1) (log |t|)4(n−1),

where c3 depends only on n, α1, . . . , αn. (Note that d also depends on α1, . . . , αn.)

Observe first that if in (3.4) we have S =
∑n

i=1 ki �= 0, then, since each |αi + t|
is close to |t|, the absolute value of the left-hand side of (3.4) is either very large
(if S > 0) or very small (if S < 0) provided that |t| is large enough, which contra-
dicts with (3.4). Indeed, by (3.4), we obtain

|t|S =

n∏
i=1

|1 + αi/t|−ki .

Suppose that S �= 0. Replacing (k1, . . . , kn) by (−k1, . . . ,−kn) if necessary, we can
assume that S > 0, and hence S ≥ 1. Then, using |1 +αi/t|−ki ≤ |1 + |αi|/|t||2|ki|

for |t| large enough and |t| ≤ |t|S , we deduce that

|t| ≤
n∏

i=1

(1 + |αi|/|t|)2|ki| ≤ exp
( 2

|t|
n∑

i=1

|ki| |αi|
)
.

By taking logarithms of both sides and using (3.5), we get the inequality

|t| log |t| ≤ c4 |t|n/(nd+1) (log |t|)4(n−1)

for some constant c4 depending only on n, α1, . . . , αn. However, this inequality
cannot hold for |t| large enough, because n/(nd+1) < 1. Thus, we must have S = 0.

Now, by (3.4) combined with
∑n

i=1 ki = 0, it follows that

(3.6) (1 + α1/t)
k1 · · · (1 + αn/t)

kn = 1.

With our assumptions, by (3.2), we further deduce that

n∑
i=1

|ki arg(1 + αi/t)| ≤
n∑

i=1

4 |ki αi|
|t| ,

which, by (3.5), is clearly less than π when |t| is large enough. So, by taking
logarithms of both sides of (3.6), we obtain

n∑
i=1

ki log(1 + αi/t) = 0,

where “log” means the principal branch of the complex logarithm. Then, using
the Taylor expansion we deduce that

(3.7)
1

t

n∑
i=1

ki αi − 1

2t2

n∑
i=1

ki α
2
i +

1

3t3

n∑
i=1

ki α
3
i − · · · = 0.
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Multiplying both sides of (3.7) by t and using the bound (3.5), we get

(3.8)
∣∣ n∑
i=1

ki αi

∣∣ ≤ c5 |t|(n−nd−1)/(nd+1) (log |t|)4(n−1),

where c5 is a constant depending only on n and α1, . . . , αn.

Assume that
∑n

i=1 ki αi �= 0. Then, by Liouville’s inequality (see Proposi-
tion 3.14 of [16]) and the upper bound (3.5), one can easily get that

(3.9)
∣∣ n∑
i=1

ki αi

∣∣ ≥ c6 (|t|n/(nd+1)
(
log |t|)4(n−1)

)1−d
,

where c6 is a constant depending only on n and α1, . . . , αn. Clearly, in view of
nd − n + 1 > n(d − 1), the two estimates (3.8) and (3.9) lead to a contradiction
provided that |t| is large enough. Hence, we must have

n∑
i=1

ki αi = 0.

Applying the same argument to (3.7), step by step, we obtain

n∑
i=1

ki α
2
i = 0,

n∑
i=1

ki α
3
i = 0, . . . ,

n∑
i=1

ki α
n
i = 0.

This is a system of n linear equations with unknowns k1, . . . , kn. Notice that its
coefficient matrix is the Vandermonde matrix with non-zero determinant, since
αi �= αj for 1 ≤ i �= j ≤ n. So, we must have

k1 = · · · = kn = 0,

which contradicts to the assumption that (k1, . . . , kn) is a non-zero vector. This
completes the proof of the theorem. �

Following the same arguments as in the proof of Theorem 3.1 and using the
inequality (2.3) of Lemma 2.1 (instead of (2.2)), which yields

max
1≤i≤n

|ki| ≤ c7 (log |t|)n−1

instead of (3.5), we obtain the following.

Theorem 3.2. Given n ≥ 2 pairwise distinct totally real algebraic numbers
α1, . . . , αn, there is a positive constant C = C(n, α1, . . . , αn) such that for any
totally real algebraic integer t with |t| ≥ C, the following n algebraic numbers :
α1 + t, . . . , αn + t, are multiplicatively independent.

Theorem 3.1 implies the following corollary. (It also follows from Theorem 1’
of [2], by considering the line parameterized by x− α1, . . . , x− αn as x varies.)
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Corollary 3.3. Given a positive integer m and n ≥ 2 pairwise distinct algebraic
numbers α1, . . . , αn, there is a positive constant C = C(m,n, α1, . . . , αn) such that
for any algebraic integer t of degree at most m and with |t| ≥ C, the following n
algebraic numbers : α1 + t, . . . , αn + t, are multiplicatively independent.

In particular, we have:

Corollary 3.4. Given n pairwise distinct algebraic numbers α1, . . . , αn, there are
only finitely many integers t ∈ Z for which the translated numbers α1+t, . . . , αn+t
are multiplicatively dependent.

On the other hand, for a fixed integer t ∈ Z, there are infinitely many vectors
(α1, . . . , αn) ∈ Zn such that (α1 + t, . . . , αn + t) is multiplicatively independent.
For example, we can choose αi = pi − t for each i, where p1, . . . , pn are pairwise
distinct rational primes.

4. Sets of multiplicatively dependent vectors

4.1. General setting

In this section, we focus our attention on vectors in Z2 which are multiplicatively
dependent. This turns out to be related to Pillai’s equation, which is a quite
typical kind of Diophantine equation and has been extensively studied; see, for
example, [1], [3], and [13].

Starting from an integer vector (a1, . . . , an) ∈ Zn, we can get a set of multi-
plicatively dependent vectors in Zn by adding t ∈ Z to each coordinate of the given
vector. Corollary 3.4 implies that the set of such t ∈ Z is finite when the coordi-
nates of the given vector are pairwise distinct, namely, ai �= aj for i �= j. Now, a
natural question is to estimate the size of the set of possible t ∈ Z for which the
vector (a1 + t, . . . , an + t) is multiplicatively dependent (and thus contains no zero
coordinates by definition). In this paper, we only consider the simplest case n = 2.

Given a vector (a, b) ∈ Z2 with a �= b, note that either (1, b− a+1) or (−1, b−
a − 1) is multiplicatively dependent obtained from (a, b) by translation as above,
because b − a + 1 and b − a − 1 cannot be zero at the same time. So, the set
of all possible t ∈ Z only depends on the difference b − a, which is also called
the difference of the set. For an integer d ∈ Z, we denote by M(d) the set of
multiplicatively dependent vectors in (a, b) ∈ Z2, ab �= 0, with difference d = b− a.
Corollary 3.4 implies that each set M(d), d �= 0, is a finite set. Let us put

M(d) = |M(d)|, d ∈ Z,

where |M(d)| is the cardinality of the set M(d). One interesting direction is to
study the size of M(d), and especially whether the following maximum:

max
d �=0

M(d),

is finite. (Clearly, the set M(0) is infinite, because it consists of all pairs (a, a) ∈
Z2, a �= 0.)
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Note that for any multiplicatively dependent vector (a, b) ∈ Z2, we certainly
have (a, b) ∈ M(b − a). So, the sets M(d), d ∈ Z, form a disjoin union of all the
multiplicatively dependent vectors in Z2. Since there is a one-to-one correspon-
dence between the vectors in M(d) and those in M(−d) by the permutation of
coordinates, we have

M(d) = M(−d)

for any d �= 0. So, in the sequel we will always assume that d ∈ N.
Before going further, let us emphasize the following useful fact about multiplica-

tively dependent vectors in Z2. That is, if (a, b) ∈ Z2, a �= b, is multiplicatively
dependent, then there exists a positive integer g and two non-negative integers x, y
such that (a, b) = (±gx,±gy).

4.2. Some explicit formulas

We essentially relate M(d) to counting integer solutions of two simple Pillai’s
equations in the lemma below.

Throughout, for any given integer d ≥ 1 we say that an integer solution (g, x, y)
of the equation

(4.1) gy + gx = d, g ≥ 2 and y > x ≥ 1

is primitive if g is not a perfect power. Let N+(d) be the number of primitive
integer solutions of (4.1). Similarly, for any given integer d ≥ 1 we say that an
integer solution (g, x, y) of the equation

(4.2) gy − gx = d, g ≥ 2 and y > x ≥ 1

is primitive if g is not a perfect power. Let N−(d) be the number of primitive
integer solutions of (4.2).

Lemma 4.1. For any integer d ≥ 3, we have

(4.3) M(d) = 2N+(d) + 2N−(d) + 4 + δ(d),

where δ(d) = 1 if d is even, and δ(d) = 0 if d is odd.

Proof. Let

S0 = {(−d− 1,−1), (−d+ 1, 1), (−1, d− 1), (1, d+ 1)},
S1 = {(−gx, gy), (−gy, gx) : (g, x, y) is a primitive solution of (4.1)}

and

S2 = {(gx, gy), (−gy,−gx) : (g, x, y) is a primitive solution of (4.2)}.

We claim that, if d is odd,

(4.4) M(d) = S0 ∪ S1 ∪ S2,
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and if d is even,

(4.5) M(d) = {(−d/2, d/2)} ∪ S0 ∪ S1 ∪ S2 .

Evidently, S0 ⊆ M(d). Also, (−d/2, d/2) ∈ M(d) if d is even. Let us count the
vectors (a, b) ∈ M(d) \ (S0 ∪{(−d/2, d/2)}) with ab < 0. Then, a < 0 < b, so that
such vectors (a, b) have a form of (−gx, gy) or (−gy, gx) for some positive integer
g ≥ 2 and two non-negative integers x ≤ y. If d is even, then (−d/2, d/2) ∈ M(d),
which corresponds to the case gx = gy = d/2, so this solution is not in S1 ∪ S2,
and since d ≥ 3, we have (−d/2, d/2) /∈ S0. In case x = 0, that is, gx = 1,
we obtain two vectors (−d + 1, 1), (−1, d − 1) ∈ M(d), which are already in S0.
Besides, if an integer vector (g, x, y) with g = ar ≥ 2 and y > x ≥ 1 satisfies
gy + gx = d, where a and r are positive integers, then (g, x, y) and (a, rx, ry) are
different integer solutions of (4.1), but they produce the same vectors in M(d):
(−gx, gy) and (−gy, gx). Thus, the sets {(−d/2, d/2)}∪S0 and S1 are disjoint and,
by the definition of S1, we have |S1| = 2N+(d).

It remains to count the vectors (a, b) ∈ M(d) with ab > 0. Clearly, they
have the form (gx, gy) or (−gy,−gx) for some positive integer g ≥ 2 and two non-
negative integers x, y with y > x ≥ 0. If x = 0, i.e., gx = 1, we get two vectors
(−d − 1,−1), (1, d+ 1) ∈ M(d) which belong to S0. Now, by the same argument
as the above, we see that the sets {(−d/2, d/2)} ∪ S0 and S2 are disjoint and
|S2| = 2N−(d).

Finally, since the sets S1 and S2 are disjoint by their definitions (and each of
them is disjoint from the set {(−d/2, d/2)}∪S0), we deduce (4.3), in view of (4.4),
(4.5), |S0| = 4, |S1| = 2N+(d) and |S2| = 2N−(d). �

Lemma 4.1 transfers our problem to estimates for the quantities N+(d) and
N−(d). Next, using the formulas (4.4) and (4.5) we give the explicit constructions
for M(d) as well as the explicit values for their sizes M(d) in some special cases.

Theorem 4.2. We have

(i) M(1) = 2,M(2) = 5, and M(2r) = 7 for any positive integer r ≥ 2 ;

(ii) M(d) = 4 for any odd integer d ≥ 3.

Proof. It is straightforward to check that

M(1) = {(−2,−1), (1, 2)},
and

M(2) = {(−4,−2), (−3,−1), (−1, 1), (1, 3), (2, 4)}.
Now, we consider the set M(2r), where r ≥ 2. We first look at the equa-

tion (4.1) with d = 2r. Notice that gx(gy−x + 1) = 2r. Since x ≥ 1 and
gcd(gx, gy−x + 1) = 1, the left-hand side gx(gy−x + 1) has at least two distinct
prime factors. So, there is no integer solution of the equation (4.1). Consequently,
N+(2r) = 0.

Next, let us consider the equation (4.2) with d = 2r. This time, in view of
gx(gy−x − 1) = 2r and x ≥ 1, we must have gx = 2r and gy−x = 2. Hence,



1798 A. Dubickas and M. Sha

(g, x, y) = (2, r, r+1) is the only primitive integer solution of (4.2). It follows that
N−(2r) = 1, which gives two vectors

(−2r+1,−2r), (2r, 2r+1) ∈ M(2r).

So, by Lemma 4.1, it follows that M(2r) = 2 · 0+ 2 · 1+ 4+ 1 = 7 for r ≥ 2, as
claimed. This completes the proof of (i).

Now, let d ≥ 3 be an odd integer. Considering the equation (4.1), we first note
that, since x ≥ 1, it is impossible to have gy + gx = d for d odd, because gy + gx

is even. Similarly, there is also no integer solution of the equation (4.2) for d odd.
Using N+(d) = N−(d) = 0, by Lemma 4.1, we obtain M(d) = 4, as claimed in (ii),
and in fact

M(d) = {(−d− 1,−1), (−d+ 1, 1), (−1, d− 1), (1, d+ 1)}

for each odd d ≥ 3. �

To handle the case when d is the product of a power of 2 and a power of an odd
prime, i.e., d = 2rps, where p ≥ 3 is a prime and r, s ≥ 1, we shall use Mihăilescu’s
theorem, that is, Lemma 2.2. Recall that a prime number p is said to be a Fermat
prime if p = 2m + 1 for some positive integer m, and consequently m must be a
power of 2. So far, the only known Fermat primes are 3, 5, 17, 257 and 65537.
Also, recall that a prime number p is called a Mersenne prime if p = 2m − 1 for
some positive integer m, and in fact m must be also a prime.

Theorem 4.3. Let r and s be two positive integers. For 1 ≤ r ≤ 3 we have

M(2r3s) =

⎧⎪⎨
⎪⎩
11 if s = 1,

9 if s = 2,

7 if s ≥ 3;

and for r ≥ 4, we have

M(2r3s) =

⎧⎪⎨
⎪⎩
9 if s = 1,

7 if s = 2,

5 if s ≥ 3.

Let p ≥ 5 be a prime, and let r, s be two positive integers. Then,

M(2rps) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

9 if s = 1, and either p = 2r + 1 or p = 2r − 1,

7 if s ≥ 2, and either p = 2r + 1 or p = 2r − 1,

7 if s = 1, and either p is a Fermat prime satisfying

p �= 2r + 1, or p is a Mersenne prime satisfying

p �= 2r − 1,

5 otherwise.
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Proof. By Lemma 4.1, it suffices to count primitive integer solutions of the equa-
tions (4.1) and (4.2).

Consider the equation (4.1) with d = 2rps, where p ≥ 3 is a prime. Since
y > x ≥ 1, from gy + gx = gx(gy−x + 1) = 2rps, we must have

(4.6) either

{
gx = 2r,

gy−x + 1 = ps,
or

{
gx = ps,

gy−x + 1 = 2r.

In the first case, since g is not a perfect power, we must have g = 2 and x = r.
The second equation gy−x + 1 = ps becomes

(4.7) 2y−r + 1 = ps.

By Lemma 2.2, in (4.7) we cannot have s ≥ 3. Suppose that in (4.7) we have s = 2.
Then, by Lemma 2.2, p = 3 and y = r+3. This gives the unique primitive solution
(g, x, y) = (2, r, r + 3) of (4.1). If in (4.7) we have s = 1 , then there is a unique
primitive solution of (4.1) if and only if p is a Fermat prime. (Otherwise, (4.1) has
no primitive solutions.) Consequently, the contribution of the “first case” into the
quantity N+(2rps) is one if (p, s) = (3, 2) or if p is a Fermat prime and s = 1, and
zero otherwise.

In the second case of (4.6), we must have g = p and x = s. The second equation
gy−x + 1 = 2r becomes

(4.8) py−s + 1 = 2r.

Clearly, r ≥ 2. Note that we cannot have y−s ≥ 2 in (4.8), by Lemma 2.2. Hence,
y = s + 1. This yields p = 2r − 1. Hence, the contribution of the “second case”
of (4.8) into the quantity N+(2rps) is one if and only if p = 2r − 1, where r ≥ 2,
and zero otherwise. Combining both these contributions we deduce that

(4.9) N+(2rps) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if p = 3, r = 2, s ∈ {1, 2},
1 if p = 3, r �= 2, s ∈ {1, 2},
1 if p = 3, r = 2, s ≥ 3,

1 if p ≥ 5 is a Fermat prime and s = 1,

1 if p = 2r − 1 and r ≥ 3,

0 otherwise.

Now, let us investigate the equation (4.2) with d = 2rps. Since y > x ≥ 1, by
gy − gx = gx(gy−x − 1) = 2rps, we must have

(4.10) either

{
gx = 2r

gy−x − 1 = ps
or

{
gx = ps

gy−x − 1 = 2r.

In the first case of (4.10), we obtain (g, x) = (2, r), and the second equation
gy−x − 1 = ps becomes

(4.11) 2y−r − 1 = ps.
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Clearly, we must have y − r ≥ 2. By Lemma 2.2, the equality in (4.11) can not
hold for s ≥ 2. For s = 1 there is a unique integer solution of (4.11) if and only if
p is a Mersenne prime.

In the second case of (4.10), we obtain (g, x) = (p, s). The second equation
gy−x − 1 = 2r becomes

py−s − 1 = 2r.

For r = 1 we obtain p = 3 and y = s + 1. For r = 3, we must have p = 3 and
y = s+ 2. Then, for r ∈ N \ {1, 3}, by Lemma 2.2, we must have y = s+ 1 and so
p is a Fermat prime of the form p = 2r + 1. Therefore, as above, combining both
contributions into N−(2rps) we derive that

(4.12) N−(2rps) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if p = 3, s = 1, r ∈ {1, 3},
1 if p = 3, s = 1, r /∈ {1, 3},
1 if p = 3, s ≥ 2, r ∈ {1, 3},
1 if p ≥ 7 is a Mersenne prime and s = 1,

1 if p = 2r + 1 and r ≥ 2,

0 otherwise.

Finally, applying Lemma 4.1 and combining (4.9) with (4.12) first for p = 3
and then for p ≥ 5, we conclude the proof. �

Obviously, given an explicit value of d, following the arguments in the proof of
Theorem 4.3 we can compute the exact value of M(d). However, the argument can
be quite complicated when d has many distinct prime factors. At the end of the
paper we will present an algorithm which allows to calculate M(d) for any given
even integer d ∈ N.

4.3. Unconditional upper bound

Note that in the above we have obtained the exact value of M(d) when d is either
odd or has at most two distinct prime factors. Now, we present an unconditional
upper bound for M(d) when d is even and has at least three distinct prime factors.

Theorem 4.4. Suppose that an even integer d ∈ N has m ≥ 3 distinct prime
factors. Then

(4.13) M(d) ≤ 2m+1 + 1.

Furthermore, if d is square-free, then

(4.14) M(d) ≤
{
13 if m = 3,

2m+1 + 7− 4m if m ≥ 4.

Proof. We first define the subset of factors of d:

D(d) = {j : j | d, gcd(j, d/j) = 1, 1 < j < d}.
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Since d has m distinct prime factors, where m ≥ 3, we have

|D(d)| =
(
m

1

)
+

(
m

2

)
+ · · ·+

(
m

m− 1

)
= 2m − 2.

From (4.1), since 1 ≤ x < y and d = gx(gy−x + 1), in view of gcd(gx, gy−x +
1) = 1, we obtain gx ∈ D(d). By the same argument, from (4.2) it follows that
gx ∈ D(d). However, since d is not of the form 2r · 3, there are no positive integer
g ≥ 2 and non-negative integers x, u, v for which

d = gx(gu + 1) = gx(gv − 1).

This means that gx counted as a primitive solution (g, x, y) in N+(d) and gx

similarly counted in N−(d) are distinct. Thus, we obtain

N+(d) +N−(d) ≤ |D(d)| = 2m − 2.

Therefore, applying Lemma 4.1, we deduce that

M(d) = 2N+(d) + 2N−(d) + 5 ≤ 2m+1 + 1.

This completes the proof of (4.13).

From the above discussion, we see that there is an injective map, say σ, from
the primitive integer solutions of (4.1) or (4.2) to the set D(d) that sends (g, x, y)
to gx. To prove the second part in (4.14), we need to show that there are m
elements in D(d) which are not in the image of σ when m ≥ 4. Now, we assume
that d is square-free with the following prime factorization:

d = p1p2 · · · pm, p1 = 2 < p2 < · · · < pm.

We first claim that the cases gx = d/pi, 1 ≤ i ≤ m− 1, cannot happen neither
in (4.1) nor in (4.2). Indeed, fix pi, where i < m. If the equation (4.1) has an
integer solution with gx = d/pi, then we must have g = d/pi and x = 1. Thus, by
d = gy + gx and by the choice of pi, we obtain y = 1, which contradicts to y > x.
Similarly, we can show that the equation (4.2) has no integer solution (g, x, y) for
which gx = d/pi. This proves the claim, and this claim actually shows that these
m−1 elements (d/pi, i = 1, 2, . . . ,m−1) in D(d) are not in the image of σ. Hence,
we have

M(d) ≤ 2 (|D(d)| − (m− 1)) + 5 = 2m+1 + 3− 2m.

In particular, this implies the first part of (4.14) when m = 3.

To complete the proof, we only need to exclude m− 2 more cases when m ≥ 4.
For any 2 ≤ i < m, as the above, both equations (4.1) and (4.2) have no integer
solution with gx = d/(p1pi), where we need to use m ≥ 4. So, this shows that
these m − 2 elements (d/(p1pi), i = 2, 3, . . . ,m − 1) in D(d) are not in the image
of σ. This in fact completes the proof. �
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We remark that the estimate (4.14) is optimal in general. For example,M(30) =
13, which achieves the first upper bound in (4.14). In fact, M(30) consists of the
following 13 vectors:

(−15, 15), (−1, 29), (−29, 1), (1, 31), (−31,−1), (−5, 25), (−25, 5),

(−3, 27), (−27, 3), (2, 32), (−32,−2), (6, 36), (−36,−6).

Here, except for the five vectors in the set {(−15, 15)} ∪ S0, we have eight more
vectors in view of

30 = 52 + 5 = 33 + 3 = 62 − 6 = 25 − 2,

so that N+(30) = N−(30) = 2.

4.4. Conditional upper bound

Actually, under the ABC conjecture, there is a uniform upper bound for M(d)
where d ∈ N. To show this, we need some preparations.

Recall that the ABC conjecture asserts that for a given real ε > 0 there exists
a constant Kε depending only on ε such that for any non-zero integers A,B,C
satisfying

A+B = C

and gcd(A,B) = 1 we have

max{|A|, |B|, |C|} ≤ Kε

( ∏
p|ABC

p
)1+ε

,

where p runs through all the (distinct) prime factors of ABC.
We first show an unconditional result, which is an analogue of Theorem 6.2

in [3].

Lemma 4.5. Assume that x1, x2, y1, y2 are fixed positive integers with x1 > x2, y1 >
y2, x1 > y1, gcd(x1, x2) = 1 and gcd(y1, y2) = 1. Then, the equation

(4.15) ax1 + ax2 = by1 + by2

has only finitely many positive integer solutions (a, b).

Proof. Note that, since x1 > y1 and y1 > y2 ≥ 1, we have x1 > y1 ≥ 2. If y1 ≥ 3,
then, by Theorem 1 of [10], the equation

ax1 + ax2 = by1 + by2

has only finitely many positive integer solutions (a, b).
Next, let y1 = 2. Then, y2 = 1, and thus the equation (4.15) becomes

(4.16) ax1 + ax2 = b2 + b
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with unknowns a, b. If x1 = 2x2, then, since gcd(x1, x2) = 1, we must have x1 = 2,
which contradicts with x1 > y1 = 2. So, we can assume that x1 �= 2x2. Then,
using Theorem 2 of [10] and noticing x1 ≥ 3, we only need to consider the following
cases:

(4.17) (x1, x2) = (3, 1), (3, 2), (4, 1), (4, 3), (6, 2), and (6, 4).

In order to apply Lemma 2.3, we rewrite (4.16) as

(4.18) 4ax1 + 4ax2 + 1 = (2b+ 1)2.

For any case of (x1, x2) listed in (4.17), the left-hand side of (4.18) is in fact a
polynomial in a. By computing its discriminant, one can see that it is non-zero, so
the polynomial 4ax1+4ax2+1 has at least three simple roots. Thus, by Lemma 2.3,
the equation (4.18) has only finitely many integer solutions (a, b). This completes
the proof of the lemma. �

The following lemma is a direct analogue of Theorem 6.1 in [3], where the
equation ax1 − ax2 = by1 − by2 instead of (4.19) have been considered.

Lemma 4.6. Under the ABC conjecture, the equation

(4.19) ax1 + ax2 = by1 + by2

has only finitely many positive integer solutions (a, b, x1, x2, y1, y2) with a > 1, b >
1, x1 > x2, y1 > y2 and ax1 �= by1 .

Proof. First, applying the same arguments as those in Step 1 and Step 2 of the
proof of Theorem 6.1 in [3], we can prove that, under the ABC conjecture, both x1

and y1 are bounded from above.
Next, let us fix positive integers x1, x2, y1, y2, where x1 > x2, y1 > y2. If

gcd(x1, x2) > 1, then in (4.19) we can replace a by agcd(x1,x2). So, without loss of
generality, we can assume that gcd(x1, x2) = 1 and gcd(y1, y2) = 1. If x1 = y1,
then by ax1 �= by1 we have a �= b, say a > b, and so

ax1 + ax2 > ax1 ≥ (b + 1)x1 = (b + 1)y1 > by1 + by2 ,

which implies that there is no such integer solution (a, b). Thus, we can further
assume that x1 �= y1, say, x1 > y1. Then, by Lemma 4.5, the equation

ax1 + ax2 = by1 + by2

has only finitely many positive integer solutions (a, b). This concludes the proof.
�

The next corollary follows from Theorem 6.1 of [3] and Lemma 4.6.

Corollary 4.7. Under the ABC conjecture, for each sufficiently large d we have
N+(d) ≤ 1 and N−(d) ≤ 1.
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Proof. By Lemma 4.6, under the ABC conjecture, there are only finitely many
positive integer solutions of (4.19). So, excluding these solutions, for large enough d
there will be no solutions (a, b, x1, x2, y1, y2) of the equation ax1+ax2 = by1+by2 = d
with restrictions as in Lemma 4.6. This yields N+(d) ≤ 1 for d large enough.
Similar argument implies N−(d) ≤ 1, by Theorem 6.1 of [3]. �

We are now ready to give a conditional uniform upper bound for M(d).

Theorem 4.8. Under the ABC conjecture, there is a positive integer C1 such that
for any integer d ∈ N we have M(d) ≤ C1. Moreover, under the ABC conjecture,
we have M(d) ≤ 9 for d large enough.

Proof. Take any d1 such that for d ≥ d1 the two inequalities in Corollary 4.7
hold. Set C2 = max1≤d<d1 N

+(d) and C3 = max1≤d<d1 N
−(d). (Evidently, we

have C2 < ∞ and C3 < ∞ by Theorems 4.2, 4.3 and 4.4.) Therefore, Lemma 4.1
implies that

M(d) ≤ 2C2 + 2C3 + 5.

This proves the first assertion of the theorem with C1 = 2C2+2C3+5. For d ≥ d1
we have M(d) ≤ 2+ 2+ 5 = 9, by Corollary 4.7 and Lemma 4.1, which proves the
second assertion of the theorem. �

In Conjecture 4.11 below we predict that the integer C1 in Theorem 4.8 can
be chosen to be 13 according to the numerical data. Note that for d large enough
the constant 9 of Theorem 4.8 would be best possible. To see this, we can take
d = 3 ·2r with r ≥ 4. With this choice, by Theorem 4.3 we have M(d) = 9 for each
such d. Also, we can take d of the form n2+n, where n ≥ 2. Then, for each such d
we have N+(d) ≥ 1. Indeed, this is true if n is not a perfect power. If it is, say
n = gm, where m ≥ 2 and g ≥ 2 is not a perfect power, we still have N+(d) ≥ 1
in view of d = g2m + gm. By the same argument, the inequality N−(d) ≥ 1 holds,
since

d = n2 + n = (n+ 1)2 − (n+ 1).

Consequently, M(d) ≥ 9 for each d of the form n2 + n, n ≥ 2.

4.5. Numerical data and conjectures

In this section, we want to design an algorithm for computing M(d), d ∈ N, and
perform the corresponding computations.

From Theorem 4.2 (ii), we only need to compute M(d) for positive even inte-
gers d. Based on Lemma 4.1, we design Algorithm 1 for this purpose. As one can
see, the algorithm is very simple, and essentially it is also an algorithm to solve the
equations (4.1) and (4.2). Here, we use PARI/GP [9] to implement this algorithm
and make the corresponding computations.

When using Algorithm 1 to compute M(d) for a large range of d, to speed
up the computation and save the memory we can set A,B to be two zero vectors
of size 2 in Step 2 of Algorithm 1, and then let the algorithm return the value
of d if the size 2 is not big enough. Besides, in Step 3 of Algorithm 1 we use the
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Algorithm 1 Computing M(d)

Require: positive even integer d ≥ 4 (input).
Ensure: M(d) (output).
1: Compute the prime factorization of d, say, d = pr11 pr22 · · · prmm .
2: Set A,B to be two zero vectors of size 2m.
3: Execute the subsequent three steps by running through all the factors a of d

with gcd(a, d/a) = 1.
4: Given such a factor a of d, say a = pr11 · · · prjj , compute r = gcd(r1, . . . , rj) and

g = p
r1/r
1 · · · prj/rj .

5: Divide d− a repeatedly by g until the quotient is not greater than 1. Then, if
the quotient is equal to 1, store a in the vector A.

6: Divide d+ a repeatedly by g until the quotient is not greater than 1. Then, if
the quotient is equal to 1, store a in the vector B.

7: Count the number of distinct non-zero entries in A, say N1, and count the
number of distinct non-zero entries in B, say N2. Return M(d) = 2(N1 +
N2) + 5.

Table 1. Statistics of M(d) for positive even integers d

M(d) 5 7 9 11 13
d ≤ 103 380 79 33 7 1
d ≤ 104 4653 233 103 10 1
d ≤ 105 49177 488 323 11 1
d ≤ 106 498015 963 1010 11 1
d ≤ 107 4994967 1846 3175 11 1
d ≤ 108 49986562 3410 10015 12 1
d ≤ 109 499961918 6427 31642 12 1
d ≤ 1010 4999887540 12425 100022 12 1

binary representations of integers between 0 and 2m − 1 to run over all such 2m

factors of d. For example, the factor corresponding to the binary number 0 . . . 011
is pr11 pr22 .

In Table 1, the first row shows all the possible values of M(d) for positive even
integer d ≤ 1010. The second row gives the number of such integers d ≤ 103 whose
M(d) correspond to the values in the first row. Other rows have similar meaning.

In particular, we have M(30) = 13, and M(d) = 11 if d is one of the following
twelve integers:

6, 12, 24, 132, 210, 240, 252, 6480, 8190, 9702, 78120, 24299970.

In fact, these thirteen integers are of the form n2+n except for d = 24 and d = 252.
For example, 24299970 = 49292 + 4929. Moreover, we used Algorithm 1 to test
all the integers d = n2 + n, where 4930 ≤ n ≤ 108, and found no examples with
M(d) > 9.
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Table 2. The values of d ≤ 1010 with N+(d) = 2

d Primitive integer solutions (g, x, y) of (4.1)
12 (2,2,3), (3,1,2)
30 (3,1,3), (5,1,2)
36 (2,2,5), (3,2,3)
130 (2,1,7), (5,1,3)
132 (2,2,7), (11,1,2)
252 (3,2,5), (6,2,3)
9702 (21,2,3), (98,1,2)
65600 (2,6,16), (40,2,3)

Furthermore, from Table 1 and Theorem 4.2 we see that for any positive integer
d ≤ 1010 we have

M(d) ≤ 13.

From Table 1, one can also observe the following interesting phenomenon. Cor-
responding to the values 5, 7, 9, the quotients of the numbers of such integers d in
two nearby rows are very close to 10, 2, 3, respectively.

Based on our computations, we pose two conjectures on the equations (4.1)
and (4.2) as follows, which are of independent interest.

Conjecture 4.9. For any given integer d ≥ 1, we have N+(d) ≤ 2.

Conjecture 4.10. For any given integer d ≥ 1, we have N−(d) ≤ 2.

From our computations, it follows that Conjectures 4.9 and 4.10 are true for
all positive integers d ≤ 1010. Moreover, it is likely that either N+(d) = 2 or
N−(d) = 2 are very rare events. We collect the values of positive integers d ≤
1010 for which either N+(d) = 2 or N−(d) = 2, and the corresponding primitive
integer solutions of the equations (4.1) and (4.2) in Tables 2 and 3, respectively. In
particular, one can see that 30 is the unique positive integer in the range [1, 1010]
with N+(30) = 2 and N−(30) = 2. We emphasize that, by Corollary 4.7, under
the ABC conjecture the inequalities N+(d) ≤ 1 and N−(d) ≤ 1 hold for each
sufficiently large d. The last example in Table 3 corresponds to the solution (x, y) =
(30, 9859) on the hyperelliptic curve

y2 = 4x5 − 4x+ 1.

Inserting y = 2 · 4930− 1 and x = 30 we get 49302 − 4930 = 305 − 30.
From the proof of Theorem 4.8 we know that, under the ABC conjecture, there

exists a positive integer C4 = max{C2, C3}, which is independent of d, such that
each of the equations in Conjectures 4.9 and 4.10 has at most C4 primitive integer
solutions.

Under Conjectures 4.9 and 4.10 and in view of (4.3), for any integer d ∈ N we
have

M(d) ≤ 13,
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Table 3. The values of d ≤ 1010 with N−(d) = 2

d Primitive integer solutions (g, x, y) of (4.2)
6 (2,1,3), (3,1,2)
24 (2,3,5), (3,1,3)
30 (2,1,5), (6,1,2)
120 (2,3,7), (5,1,3)
210 (6,1,3), (15,1,2)
240 (2,4,8), (3,1,5)
2184 (3,1,7), (13,1,3)
6480 (3,4,8), (6,4,5)
8190 (2,1,13), (91,1,2)
78120 (5,1,7), (280,1,2)

24299970 (30,1,5), (4930,1,2)

which is also compatible with our numerical data. So, in conclusion we suggest
the following conjecture.

Conjecture 4.11. For any d ∈ N we have M(d) ≤ 13. Moreover, M(d) = 13 if
and only if d = 30.

In fact, the second part of Conjecture 4.11 asserts that 30 is the unique positive
integer d satisfying N+(d) = N−(d) = 2.
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