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A unified approach of blow-up phenomena for
two-dimensional singular Liouville systems

Luca Battaglia and Angela Pistoia

Abstract. We consider generic 2 x 2 singular Liouville systems

—Auyp =2M\ " —aXe"? —2m(a1 —2)dp  in Q,
(%) —Auz =2X2e"? —bA1 et —27(a2 —2)d0  in §,
up =uz =0 on 99,

where € 5 0 is a smooth bounded domain in R? possibly having some
symmetry with respect to the origin, dp is the Dirac mass at 0, A1, A2 are
small positive parameters and a, b, a1, a2 > 0.

We construct a family of solutions to (x) which blow up at the origin as
A1 — 0 and A2 — 0 and whose local mass at the origin is a given quantity
depending on a, b, a1, .

In particular, if ab < 4 we get finitely many possible blow-up values
of the local mass, whereas if ab > 4 we get infinitely many. The blow-up
values are produced using an explicit formula which involves Chebyshev
polynomials.

1. Introduction

In this paper we consider the system of singular Liouville equations

—Auy =2\ " —alye™?2 — 2’/T(041 - 2)50 n Q,
(1.1) —Aug = 2 9 e%2 — bA\; ¥t — 27‘((0&2 - 2)60 in Q,
up =ug =0 on 0f),

where Q C R? is a smooth bounded domain which contains the origin, dq is the

Dirac mass at 0, \; are small positive parameters and the matrix

(1.2) A= (—21) _2“> with a,b > 0.
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Liouville systems find applications in many fields of physics and mathematics,
like theory of chemotaxis [20], theory of charged particle beams [36], theory of
semi-conductors [48], Chern—Simons theory [38], [29], [47], [27], [39], [53], [54], and
holomorphic projective curves [14], [19], [11], [39], [12], [26], [31].
It is not hard to see that any more general Liouville systems
—Aug = a1 € + ajpAo e — 2w(a; — 2)dp  in Q,
—Aug = a1 Ag %2 + agi A\ e¥t — 27T(042 - 2)50 in Q,
up =ug =0 on 012,
with aq2,a21 < 0 < a1, age, can be brought back to (1.1) just by a rescaling of the
parameters Ay and As.
Using Green’s function

(1.3)
and its decomposition
1

with H(z,y) smooth, we can eliminate the singularity on the right-hand side
of (1.1) and rewrite the system as

—Auy =2\ h1e" —adlyhoe¥ in

(1.5) —Aus =2Xohg e —bA\1hie"  in Q,

up =uz =0 on 0,
where
(1.6) hi(z) = |z|®i—2 e 2m(@=DH@O)  for j =1 2,

and e 27(@i=2)H(x.0) i5 smooth and positive.

One of the most important and challenging issues concerning Liouville sys-
tems (1.1) or (1.5) is the blow-up phenomena. A point z¢ € €2 is called a blow-up
point if a sequence of solutions w, = (uj n,uz ) satisfies

max max U, = maxu;,(r,) — +oo and z, — o.

i=1,2 B,,.(g:o)mQ i=1,2 n——4oo n—-+oo

Knowing the asymptotic behavior of blowing-up solutions near the blow-up points
is the first step in applying topological or variational methods to get solutions to
the Liouville systems. In particular, the first main issue is to determine the set of
critical masses of solutions with bounded energy, i.e., max;—1,2 Ai fQ hietin < C
for some C.

We define the local masses at the blow-up point xg as

(1.7) mi(zo) :==lm lim A, h;e*r fori=1,2.

r—0n—+4o0 B, (20)

The local masses have been widely studied in the last years.
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When the system (1.1) reduces to a single singular Liouville equation

—Au=Xe" —27(av — 2)0p in Q,
(1.8) { u=20 on 0%},

the local mass has been completely characterized. In particular, in the regular
case, i.e., a = 2, all the blow-up points are internal to €2, they are simple and the
local mass equals 87 (see Brezis and Merle [13], Nagasaki and Suzuki [50], Li and
Shafrir [40]). In fact, in this case there is only one bubbling profile: after some
rescaling, the bubble approaches a solution of the Liouville equation

{ —AU =¢Y in R2,

(19) fR2 eU < +OO

In the singular case, i.e., @ # 2, the local mass around the origin is 4ra and the
corresponding bubbling profile, after some rescaling, is given by solution to the
singular Liouville equation

{ —AU = |- |*2eV in R?,

1.10
( ) IRQ | . |a—2 eU < 400.

(see Bartolucci and Tarantello [6] and Bartolucci, Chen, Lin and Tarantello [3]).

The knowledge of the bubbling profile is the main step in finding existence and
multiplicity results concerning the equation (1.8). Indeed, bubbling solutions with
multiple concentration points have been built by Baraket and Pacard [2], del Pino,
Kowalczyk and Musso [24] and Esposito, Grossi and Pistoia [28] in the regular case
and by del Pino, Esposito and Musso [22] and D’Aprile [21] in the singular case.
Moreover, a degree formula has been obtained by Chen and Lin [17] and [18], and
Malchiodi [43], whereas solutions have also been found through variational methods
by Bartolucci and Malchiodi [5], Bartolucci, De Marchis and Malchiodi [4], Carlotto
and Malchiodi [15], Djadli [25] and Malchiodi and Ruiz [45].

The natural generalization to (1.8) is the 2 x 2 system (1.1) when the matrix
A = (a;j)2x2 is as in (1.2). In particular, when A is the Cartan matrix of a simple
Lie algebra we get the well-known Toda system. In this case, since the rank of the
simple Lie Algebra is 2, there are three types of corresponding Cartan matrices of
rank 2:

(1.11) Az = (_21 _21) Ba = (—22 _21) o= (—23 _21)

In the regular Az-Toda system, i.e., ayg = ag = 2, Jost, Lin and Wang in [34] found
that the local masses can only take 5 values. Moreover, all these blow-up values
can occur as shown by Musso, Pistoia and Wei in [49] (see also Ao and Wang, [1]).

In the singular case Lin, Wei and Zhang in [42] found that only 5 possible
values are allowed for the local masses, provided the singularities o1 and ae satisfy
a suitable condition (which also include the regular case) (see Example 1.7).

Recently, Lin and Zhang in [41] found that only 7 possible values are allowed
for the local masses in the regular Bs-Toda system (see Example 1.8) and 11
possible values are allowed for the local masses in the regular Go-Toda system (see
Example 1.9) under some extra assumptions.
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Solutions to the regular As Toda system have been found both through the
computation of the degree by Lin, Wei and Yang in [37] and variationally by
Battaglia, Jevnikar, Malchiodi and Ruiz in [9], Jevnikar, Kallel and Malchiodi [32],
Malchiodi and Ndiaye [44] and Malchiodi and Ruiz [46]. Variational solutions have
also been found for the A5 Toda system in Battaglia, Jevnikar, Malchiodi and Ruiz
in [9], Battaglia in [7] and Battaglia and Malchiodi in [10] and for the By and Gs
systems by Battaglia in [8].

At this stage, two questions naturally arise:

(Q1) Which are the values of the local masses at the origin for the system (1.1)
for a general matriz A with or without singular sources?

(Q2) Are these values attained?

In this paper we focus on the second question and we give a partial answer.
More precisely, we build solutions to the system (1.1), whose components blows-up
at the origin and whose local masses are quantized in terms of a, b, a; and as.
In particular, if det(A) < 0 we find infinitely many possible values for the local
masses. We also provide an explicit formula involving Chebyshev polynomials
which produces blow-up values of the local masses (see Remark 1.5). We also
conjecture that these are the only admissible values when the blowing-up profile
of each component resembles one or more bubbles solving the scalar Liouville
equations (1.8). Indeed, they coincide with the known ones when the matrix A is
as in (1.11) (see Examples 1.7, 1.8 and 1.9).

Let us state our main result.
For any integer ¢ € N, we introduce the polynomials

Py(t) =0,
Pi(t) =1,
(1.12) Polt) = 1.
Py(t) = Hg(ﬁfl)m] (t—2—2cos %) if £ >3,

and the real numbers 8y = S¢(a, b, a1, az) defined as follows:

(1.13) B { a1Py(ab) + aaz Pp_1(ab) if £ is odd,
. Z pr—

bag Py(ab) + ag Py—1(ab) if £ is even.
Then we define the (possibly infinite) integer
(1.14) kmax = kmax(a, b, a1, 2) :=sup{k: B> 0,Vl=1,... k}.

By (1.12) and (1.13) it immediately follows that kmax > 2, and we also deduce
that knax = 400 if ab > 4. In Remark 2.5, we find the following expression of kpax
in terms of a and b when ab < 4:

27 : 27
arccos(ab/2—1) if arccos(ab/2—1) € N’
2m 3
(115) kmax = [arccos(ab/Zfl)] if /B[arccoagu.%]—‘rl <0,
2m 3
[arccos(ab/Zfl)] +1 if B[W]-Fl > 0.
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Definition 1.1. Set Z :={¢ € {1,...,k} : B¢ € 2N}. We say that Q is compati-
ble if

27

2T 2 2T 2T
emt ()= {(ml €OS — — T sin —, w1 sin — + xo cos—) s (z1,20) € Q} =Q,
m m m m

where m := lem{my € N : 8y/m; &€ 2N, ¢ € Z}. In particular, if Z = {) any smooth
bounded domain 2 containing the origin is compatible.

Remark 1.2. The integer m introduce in the previous definition is not uniquely
defined, since it depends on the choice of my,..., mg, which are not unique. In
the definition of compatibility we want the equality to hold true for at least one of
such possible m’s.

Theorem 1.3. Let k € N, k < knax be fized, let By,..., Bk be defined by (1.13),
and let Q 0 be a smooth bounded domain which is compatible in the sense of
Definition 1.1.

Then, there exists X = (k) > 0 such that, for \ satisfying

/\1,)\2 € (O,X) ka' < k'maxa

I Phmax+1

(1.16) A A2 € (0,0), A2 <\ Phmax if k = kmax 18 odd,  for some v > 0,
Y Bhmax+1

A2 € (0,0), A < Ay e if b= Eynax 45 even,

the problem (1.1) has a solution u = ux = (u1,x, U2,2)-

Moreover, there holds

[(k—1)/2] [(k—2)/2]
(117) ml(O) =27 Z ﬂ2j+1 and mg(O) =27 Z 62j+27
7=0 7=0

where we agree that m2(0) = 0 if k = 1. Moreover, if G is the Green’s function
defined in (1.3), we have, as A — 0,

(1.18)  uy — [2m1(0) — am2(0)] G(-,0) and wuz — [2m2(0) — bm4(0)] G(-,0)

weakly in Wh4(Q) for any q < 2 and strongly in C2.(Q\ {0}).

Remark 1.4. We point out that if € is a symmetric domain according to in
Definition 1.1, then the functions h; defined in (1.6) and the solutions found in
Theorem 1.3 inherit the symmetry of the domain €2, namely they satisfy the sym-
metry condition u(e’™ ‘z) = u(z) for any 2 € Q, where m is as in Definition 1.1.

Remark 1.5. As far as we know, this is the first result which gives a clear re-
lation between the local masses at the origin and their possible number and the
values of the entries of the matrix A in (1.2) and the values of the singularities ay
and as. Indeed, we can express the masses in (1.17) in terms of the value of the
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polynomials Py(t) at t = ab as (see Remark 2.7):
2ma Py(,—1)/2)(ab) (bor P—1)/2)(ab) + az P_3)/2)(ab))
if ke (AN+1)U (4N + 2),
27 Py(—1) 2 (ab) (a1 Pv(ab) + a oz Px—_3) 2 (ab))
if k € (AN + 3) U 4N,

(1.19) m1(0) =

and
27 Py(1—2) /21 (ab) (bay Py /o (ab) + ag Pyr—2)/2)(ab))

it k€ ANU (4N + 1),
27 Py(r—2)/2)(ab) (@1 Pr/2)(ab) + a az Py—2)/2)(ab))

if k € (4N 4 2) U (4N + 3),

(1.20) ma(0) =

where the range of k is between 1 and the number k. defined in (1.14).

Remark 1.6. The bubbling profile of each component resembles a sum (with
alternating sign) of bubbles solutions to different singular Liouville problems (1.10):
all the bubbles are centered at the origin and the rate of concentration of each
bubble at the origin is slower than the previous one, namely

a a b
(1.21) wy ~w1—§w2+w3—§w4+~-~ and ug ~ —§w1 +w2—§w3—|—w4—|—-~-
where
o
(z) ==log2B? ————— 2 eR? §;>0
(1.22) walir) = log 26 OF + [Py Z

Fim2ewi jn R?

solves — Aw; = |-

and ¢;/0,11 approaches zero. The construction of a solution with such a profile
is possible as long as the exponents §;’s are positive and that is why we need to
introduce the maximal number of bubbles kyax in (1.14). Moreover, each bubble
wy scaled with §; turns out to be a singular source for the equation solved by the
bubble w; whenever £ < i.

Therefore, the choice of each (; takes into account the singular sources present
in the equation and all the singular sources generated by the interactions between
the bubbles w; and all the previous ones. This fact leads to choose §; as in (2.3) to
ensure that the prescribed profile is almost a solution to system (1.1) (as carefully
proved in Lemma 2.2 and Lemma 4.1).

This kind of construction is strongly inspired by the bubble-tower construction
in Musso, Pistoia and Wei [49] (see also Grossi and Pistoia [30]), where the reg-
ular As-Toda system was studied. Nevertheless, the general case turns out to be
rather delicate.

In particular, the interaction between the two components is much more in-
volved because the concentration of each bubble is affected by all the other previ-
ous bubbles, not only the ones for which the same component concentrates. Even
and odd bubbles affect the concentration in opposite ways.
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Moreover, we will need some rather involved symmetry condition, which are
needed to invert a linearized operator and strongly depend on the values of ;.
Finally, the presence of singularities gives weaker regularity properties and makes
some estimates more subtle.

In the following examples we describe how our result can be applied to classical
problems.

Example 1.7. If ¢ = b = 1, the system (1.5) becomes the well-known As-Toda
system:

—Au; =2 M hie"t — X ahoe¥? in Q,

—Aug =2 oho e — A\ h1e¥t in Q,

up =ug =0 on 0f).

We have ab = 1 and by (1.15) we compute kyax = 3. Moreover,

Pl(l) = 1a
Py(1) =1,
P3(1) = =1 —2cos & = 0.

Then, by (1.13) and (1.17) (possibly exchanging the role of the components) we
deduce the following configurations for (m1(0), m2(0)):

e if k=1 we get 2m(a1,0) and 27(0, az),
e if k=2 we get 27(aq, a1 + a2) and 27 (o + ag, s),
o if k=3 we get 2m(aq + 2,01 + a2).

In [42] Lin, Wei and Zhang show that, for suitable values of a1, a2 (including the
regular case a1 = ay = 2), the only possible values are the five above. Therefore,
Theorem 1.3 shows in particular the sharpness of their classification.

For the regular Toda system, Theorem 1.3 was already proved by Musso, Pistoia
and Wei [49].

Example 1.8. The case a =1, a3 = ag = b = 2 is the By-Toda system

—Auyp = 2)\ et — g e¥2 in Q,
—Aug =2Xge"2 — 2\ e in Q,
up =uz =0 on 0f).

We have ab = 2 and by (1.15) we compute knyax = 4. Moreover,

P1(2) = ]-7

P2(2) = 1a

P3(2) = —2cos & =1,
Py(2) = —2cos 5 =0

Then, by (1.13), (1.17) we deduce the following configurations for (m4(0), m2(0)):
e if k=1 we get 27(51,0) = 27(2,0),
e if k =2 we get 27(f1, B2) = 27(2,6),
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e if k=3 we get 27(B1 + B3, B2) = 27(6,6),
o if k =4 we get 27(B1 + B3, B2 + Ba) = 27(6,8),
and exchanging the role of the components (i.e., b =1 and a = 2),
e if k=1 we get 27(0, 31) = 27(0, 2),
o if k=2 we get 27(Be, f1) = 27(4,2),
e if k=3 we get 27(B2, 51 + B3) = 27(4,8),
o if k =4 we get 27(B2 + Ba, 1 + B3) = 27(6,8).
In [41] Lin and Zhang show that no other values are admissible in case of blow

up. Theorem 1.3 shows the sharpness of their classification.

Example 1.9. The case a =1, b = 3, a; = ay = 2 is the G2-Toda system:

—Auyp = 2)\ et — g e¥2 in Q,
—Auy =2 e"? =3\ e" in €,

U1 = U = 0 on 89
We have ab = 3 and by (1.15) we compute kyax = 6. Moreover

Pi(3)=1,

P(3) =1,

P3(3) =1—2cos & =2,
Py(3)=1-2cos§ =1,
P;s(3)=(1—-2cos %) (1 —2cos &) =1
Ps(3) = (1 —2cos %) (1—2cos %) =0

Then, by (1.13), (1.17) we deduce the following configurations for (mq(0), m2(0)):

e if k=1 we get 27(51,0) = 27(2,0),

e if k=2 we get 27(P1, B2) = 27(2,8),

o if k =3 we get 27w(B1 + F3, B2) = 27(8, 8),

e if k=4 we get 27(B1 + B3, B2 + Pa) = 27 (8, 18),

o if k=5 we get 2r(B1 + B3 + Bs, B2 + B1) = 2m(12,18),

o if k=6 we get 27(B1 + B3 + b5, B2 + 1 + Be) = 27(12,20),
and exchanging the role of the components (i.e., b =1 and a = 3),
0,51) = 2n(0,2),

B2, B1) = 2m(4,2),

B2, B1 + B3) = 2m(4,12),

B2 + Ba, B1 + B3) = 2m(10,12),

Ba + B4, B1 + B3 + B5) = 2m(10,20),

B2 + Ba+ B, B1 + B3 + P5) = 2m(12,20).

o if k=1 we get 2w
o if k=2 we get 2w
o if k=3 we get 27
o if k=4 we get 2w
e if k=5 we get 2w

o~ o~ o~ o~ o~ o~

o if k=06 we get 27w
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In [41] Lin and Zhang found the previous blow-up values under some extra
assumptions. Theorem 1.3 shows that these blow-up values are attained.

Example 1.10. The case ab = 4 is particularly interesting: in Remark 2.4 this is
the borderline scenario to have an infinite number of blow-up values. This fact is
related to the matrix of the coefficients in (1.1) being singular.

In fact, if we consider the system

—Aup =2 \1hie“t —aldy hoe¥?  in Q,
—Aug = 2 9 hg e¥2 — %/\1 hie"t in Q,
up =uz =0 on 09,

then a suitable linear combination of the two equation gives

—A(u1+%uz) =0 inQ,
up + guz =0 on 0,

which means us = —% uy; therefore, in this case (1.5) is equivalent to the scalar
equation

—Au=2\ hie" —alyhye 3% inQ,
u=20 on Of).

In this case (see Remark 2.6),

((e-1)/2] ¢ if £ is odd,
Py(4) = 2(1—cos— ) =
il;[l ) 3 if £ is even.

Therefore, using Remark 2.7, the infinitely many blow-up masses are

27T(Oz1, 0)

[\

™ 0413—0414-042)

2w (4o + aag, — a1 + 042)

2 (0 +1)%a, + ;’z(u Do, 260+ 1)as +€2a2>
a

(
(
27T(4a1 + aag, 24 4a2)
((
(

2
o ((0+1) 041-1—;£(€+1)042,a(€+1)(£+2)041+(£+1)2a2)

71(0,042)

2m(aq + a ag, )

4
27r(a1 +aas, —ay + 4042)
a
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4
2 (4041 + 3a o, —ay + 4042)
a

27r(€2041 + ge(e +1)as, %e(e +1)ar+ (0 + 1)2a2>

27r((e +1)%0 + g(e +1)(C+ 2)as, %e(e +)ay + (£ + 1)2a2)

The case a; = ag = a = 2 is known as sinh-Gordon equation. The above-
mentioned values are shown to be the only admissible ones for any blow-up, as
showed by Jost, Wang, Ye and Zhou in [35]. Moreover, all such values had already
proved to be attained by Grossi and Pistoia in [30], where Theorem 1.3 is proved
in this particular case.

The case a1 = aa, a = 1 is known as Tzitzeica equation. Jevnikar and Yang [33]
proved that no other value, besides those above, can occur for blow-up masses.

Moreover, for a; = as = 2, the above-mentioned blow-up values are attained
for any a > 0, as Pistoia and Ricciardi have recently showed in [51].

The proof of our result (Section 3) relies on a contraction mapping argument.
In Section 2 we give a more precise description of the leading term (1.21), in
Section 4 we estimate the error terms and in Section 5 we study the linear theory.
The symmetry introduced in Definition 1.1 is a technical condition used in the
linear theory which ensures the non-degeneracy in a one-codimensional space of the
bubble w; defined by (1.22) even when the parameter 3; is even (see Appendix A).

2. The ansatz

For any 8 > 0, let

w?(m) = log 23° m zeR? §>0
be the solutions to the singular Liouville problem in the whole plane, namely
—Aw? = |ﬁ726“’§ in R?,
{ Joo |- 1B72e5 < 400

For any integer k € [1, kmax] we will look for a solution to problem (1.1) as
(2.1) uy = Wi+ ¢x = (Wi + ¢1x, Wax + d2.3).
The components of the main term W), are defined as

" [(k—1)/2] a [(k=2)/2]
Wi =Puwy - sPwp +--- = Y Punjii— ) > Puzjie,
j=0 J=0

b [(k—2)/2] b [(k—1)/2]
Wa = —§Pw1 +Pwy —--- = Z Pwyjio — 9 Z Puwajt1,
j=0 J=0
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where we agree that if £ = 1 the second sum in W; ) and the first sum in Wy ) are

zero.

Moreover, wy := w?j, and the projection P: H*(Q) — H}(Q) is defined by

(2.2)

—A(Pu)=—-Au in Q,
Pu=0 on 0f2.

The (,’s are defined by recurrence as

(2.3)

ﬁl = 01,
B2 =bai + ag,
Jj—1 Jj—1
Boj+1 = a2ﬁ2i+2 - 2252i+1 +ay = afaj — Poj-1,
i=0 i=0
J Jj—1
Bojio = bZﬁziH -2 Zﬁ2i+2 +ag = bfajr1 — Poy.
i=0 i=0

Actually, the two definitions of §,’s given in (1.13) and in (2.3) match perfectly.
That will be proved in Section 2.2.
The concentration parameters d,’s satisfy

(2.4)

[(k—1)/2] [((k—2)/2]
- ﬁ2j+1 log 52j+1 -2 Z ﬁ2i+1 log 52@‘+1 +a Z ﬁ2i+2 log 62i+2
=1 i=
[(k—1)/2] [((k—2)/2]
—log (283;41) + 2 (2 Z Bait1 —a Z Brit2 — o1 + 2) H(0,0)
i=0 =0
+log(2A\1) =0,
[(k—2)/2] [(k—1)/2]
-2 Z Bait2logd2it2 +b Z Baiv1log 62ip1 — log (263, 2)
i=j+1 i=j+1

[(k—2)/2] [(k=1)/2]
+ 2 (2 zz_; BQH—Q — b ; ﬁ2i+1 — Q2 + Q)H(O, 0) + log(2/\2) =0.

The choice of B¢’s and ;s is motivated by Lemma 2.2.
It is useful to point out that by (2.4) we easily deduce that

and

Pr_gj(ab) aPy_o;_1(ab)

A R, T if & is odd,

52j+1 = d2j+1 Pi_oj_1(ab) aPy_g;(ab)
A\ B2j+1 Ay B2j+1

if k is even,

bPg_gj_q1(ab)  Pp_g;_o(ab)

A, Ry, TR if k is odd,
62j+2 = d2j+2 bPg_gj_o(ab)  Pp_o;_1(ab)

A\ B2j+2 Ay Baj+2

if k is even,
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which implies

Br41 B
BeBust \ PePert g p :
5 dy AN K is odd,
= B
det1 deta & £t

)\15"5“1 )\5“3“1 if k& is even.
We want to have d;/0p41 — 0 as A — 0 for any ¢, i.e., each bubble is slower
than the previous one; this is always satisfied if Sy + 1 > 0, namely k < kpax,
otherwise we need the additional condition in (1.16). The condition (1.16) also
ensures that d;/0,11 = O(|A]?) for some v > 0, which will be useful in some
estimates throughout the paper.

Finally, the remainder term ¢, in (2.1) belongs to the following space:

H:= {6 = (¢1,¢2) € HL(Q) x HL(Q) : ¢i(e™'x) = ¢y(x) Vo € Qi = 1,2},
where m is as in Definition 1.1. We agree that if m = 1 than H is nothing but the
space H3(Q) x HE(Q).

The space Hi(Q) x H}() is equipped with the norm

szl i= | + Jusll, where full = ( / Vul?)

Moreover, we also consider the space LP() x LP(Q), with p > 1, equipped with
the norm

I, uz) = lually + lluallp,  where ull, := ( /Q ful?)

2.1. The choice of concentration parameters

For any integer £ =1, ..., k, we introduce the function ©, which reads if ¢ is odd,
ie, f=2j+1, as
[(k—1)/2] [(1%2)/2]
O2;41(y) = ( > Puwsigr —waypn — Z Pw2i+2) (02j4+19)
i=0 i=0
(25) = (Boj+1 — o) log|daj41y| — 2m(en — 2)H (02541y,0) + log(2A1),

and if £ is even, i.e., £ = 2j + 2, as

[(k—2)/2] b[(k 1)/2]
O2j42(y) = ( > Puwgipa —wajyn — Z Pw2z+1)(52y+2y)
1=0
(2.6) — (B2j+2 — a2) log |02 12y] — 27?(042 — 2)H(025+29,0) + log(2)2).

We agree that if k£ = 1 the second sum in (2.5) and the first sum in (2.6) are zero.
We shall estimate each functions ©, on the corresponding scaled annulus

Ay VIR VT

Op 655. O¢ 7||7
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where
Ay = {x €0 /10, < |l‘| < /6ot },
where we agree that ép = 0 and 611 = +00.

We recall the following estimate, which has been proved in [30].

Lemma 2.1.
(2.7) Puwy = wy — log(262 67°) + 4nBy H(-,0) + O(6,")
= —2log(6;" + |- %) + 4mB H(-,0) + O(5;"),

and, for any i,0 =1,...,k, Pw;(dey) equals

=20 Tog(Bely) + 4n5iH (0,0) + O (3)™) + O(elyl) + 0(67)
if i < L,
%) +4mBiH(0,0) + O(:y]) + O(67")
ifi=1¢
5(4£)™) + 0(Salyl) + O(57)
if i > 1.

(2.8) —2B;logd; — 2log (1 + |y

—28;log 6; + 4w B;H(0,0) + O(Jy

Lemma 2.2. Assume ; and 6y are defined respectively by (2.3) and (2.4).
Then there exists vo > 0 such that, for any £ =1,... k,

A
(2.9) [Oe()l = Oelyl + A for any y € 5,
and in particular
(2.10) sup |9/ = O(1).
Ae/de

Proof. We will prove the lemma only for odd ¢, i.e., £ = 2j + 1, since the same
argument works in the general case. We can also restrict ourselves to consider the
case of an odd k.

We can estimate Pwy by using Lemma 2.1 and then H by the mean value
theorem, which gives H(dy,0) = H(0,0) + O(d¢|y|):

O2;5+1(y)
j—1 m
= Pwaji1(82j41Y) — waj1(02j1y) + > Pwai1(Soj1y) + Y Pwaip1(d2j419)
i=0 i=7+1
a j—1 a m—1 !
-3 > Pwaira(d2j1y) — 5 > Pwait1(82j11)(Bajr1 — 1) log |01y
i=0 i—j

—2m(an — 2)H (62541, 0) + log(2A1)
= —log (25%“) — Bojy110g 02541 + 4mP2j41 H(0,0) + O(d2541y|)

-1
+ O(%@Tﬁ) +) ( — 2241 10g(d2511|y|) + 4mB2iy1H(0,0)
1=0
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0 () ™) + 0oyl + 03551

l 82j+1\ P2
+ i:jz;l ( — 2[2;4110g 0241 + 4mB2 41 H(0,0) + O(|y|/327:+1 (52#:) > +1)

=

j—
a
+ 0(62j+1|y|) + O (55;:&1 ) — 5 ( — 2ﬁ21+2 log 62]+1|y|) + 47T521+2H(0 O)
=0

+ O(|y|ﬁ12i+z (gzi )62 +2) + O(82j41lyl) + O(éﬁf;;))

=
a ) 09 B2it2
-5 > ( — 2B2i42log 62i42 + 4AmB2i12H(0,0) + O<|y|ﬁ2l+2 (—6ZJ+;> )
i=j it

+ O(b251lyl) + O(35215") ) = 27(a1 = 2)H(625419,0)

— (B2j1 — 1) log [02j11y] + log(2X1)

m—1
—log (262j+41) — B2j+110g G241 — 2 Z Bai1logdaisr +a > Baiyalogdaite
i=j+1 i=j+1

m m—1
+27 (22ﬁ2i+1 —-a Z Baiyo — o1 + 2>H(0,0) +log(2A1)
=0 i=0

i1 j—1
+ (CLZB%H -2 Zﬂzwz tar — ﬁ2j+1> log(02541]yl) + O(02;+1 )

2m+iT0 . Rl 02541
+ Z O(s7 +ZO<|y|ﬂ (52 +1) ) _;200 |6( ; ) )
O(82j+1lyl) + 2§0 o) +ZO(|y|ﬁ (52 +1) )+ Z O(| a (62]+1) )
O(b2541y[) + 2351 O(5;") + Z O(((SQJ(S;H )B’ﬂ)
2m41 0o +152 2\ Pi/2
+Z%:+20(( S
— 2m+1

) 3 o((2))

i=2j+2 02+2

O(02j+1]y]) + Z 0(s7") +ZO((

= 0(82yaly)) + O(mind") + O min (621)@/3

= O(d25+1]yl) + O(|A™)
= O(b2j 41yl + [A°),
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where we used that \/d2;/02j41 < |y| < /02541/02j4+2 and that §; < dz; and

02j42 < Oy forany i <25 +1 < i
Formula (2.10) follows straightforwardly from (2.9), since d;|y| = O(1) for any
Yy e Ag/(se. O

2.2. Chebyshev polynomials and the 3;’s

In this sub-section we shall prove that the (¢’s defined in (1.13) and in (2.3)
coincide.

Let us introduce the polynomials

Pt =1,
Pt) =1,
(2.11) Pl =3 (-1 (j ; i)ti,
Paiial) =3 1>J’+i(j§;f11> ’

By induction, is not difficult to check that the real numbers defined in (2.3)
satisfy (1.13), since

ﬂl = Qj,
52 = bal + a2,

j—1 .
. o ]+’L =7+1 (3%} +’L 1 =7+Z i+1714
ﬁw_alz (73 )t an e (2 Jare

=0
2.12
( ) = alPQJJ’_l (ab) + a g Pyj(ab),

+i1+1 +17\ .
Pojta = n Z(_l)w (J 2+ 1 ) @btz Z by (J >albz
=0

= ba1P2j+2 (ab) —+ o P2j+1(ab),

Therefore, the problem reduces to prove that the polynomials defined in (2.11)
coincide with the polynomial defined in (1.12).
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Now, the polynomials defined in (2.11) can be expressed in terms of Chebyshev’s
polynomials

To(IE) = 1,
(2.13) Ti(z) = =,
Toy1(z) =20 Ty(x) — Ty—1(x) if £ > 2.

Lemma 2.3. Let Py be defined by (1.12) and T; be defined by (2.13).
Then, for any j € N and x € R it holds:

(2.14) Tojir (@) =1+ (2 = 1) (Poys1 (22 +2))°,
T2j+2(£) =1+ (21‘2 — 2) (P2j+2(2I + 2))2 .
Proof. We proceed by induction. We can easily see that the proposition is true for
r=1,2.
Let us now assume the proposition to hold for any positive integer up to 2j
and let us show it still holds true for 25 + 1 and 2j + 2.

First of all, by induction we can easily show that P, verifies the following
properties:

(2.15) Pojia(t) = tPo;(t) — Poj—1(t),  Pajra(t) = Pajta(t) — Po;(t),
and also

(Pajy1(£))* 4+t (Po(£))* — t Pajia(t) Poj(t) =1 =0,
(Pojsa(t)” + (Pajia (t)* — t Pajia(t) Pojpa(t) — 1 =0.

Using (2.15) and (2.16) we get, for odd indexes:

(2.16)

Tyja(x) =22 Toj(x) — Toj—1(2)
=2z + (42° — 4z) Py; (22 4+ 2)° — 1 — (z — 1) Pyj_1 (22 + 2)?
=1+ (z—1) ((42® + 42) Poj(2z + 2)* — Paj_1(2z +2)* + 2)
=1+ (z—1) (Py4122+2)> — 2 ((2z + 2) P (22 + 2)* — Paj_1 (22 +2)°
— (22 +2)Pj (22 +2)Poj—1(2x +2) — 1))
=1+ (z — 1)Pyjs1(27 + 2)%;

similarly, for even indexes:

Tojyo(v) = 22 Toja(x) — Toj(x)
=2z + (227 — 2z) Pyj11(22 4+ 2)° — 1 — (227 — 2) Py;(2z + 2)?
=14 (22— 2) (2Pyj+1(22 +2)* — (z+ 1) Py;(2z 4+ 2)*> + 1)
=1+ (22— 2) ((z + 1) Pajr2(2z +2)? — (Paj1(2z +2)?
+ (22 + 2) Py (27 4+ 2)% — (22 + 2) Poj42(27 + 2) Py (22 + 2) — 1))
=1+ (22 — 2) Pj2(22 +2)%. O
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Remark 2.4. By using the properties of Chebyshev’s polynomials (see for in-
stance [52]), we easily find the explicit expression of Ty as

2
To(x) =142 1H(m—cosﬂ),

which can be rewritten, if £ = 2j + 1 is odd or £ = 2j 4 2 is even, respectively as

j .
, 2w 2
Toji1(x) = 1—}—223(3;—1)1_[ (J;—COS2,+1) ;
(2.17) =t
2]+1 2
Tojro(z) =1+2 H(I—COS +1).

Now, if we compare (2.14) and (2.17) we get the explicit expression for P given
n (1.12).

Remark 2.5. If ab = 2cos (2) + 2 for some k € N, then we have Py(ab) > 0 for
any £ =1,...,k—1 and Pk(ab) =0 > Pit1(ab); hence, by the definitions (1.13)
of B¢ and (1.14) of kpax we get kmax = k = 2m/arccos (ab/2 —1).

On the other hand, if 2cos (22) + 2 < ab < 2cos(k+1) + 2, then Py(ab) > 0
for ¢ =1,...,k —1 and Py(ab), Pk+1(ab) < 0; hence, 8, > 0 for ¢ <k—1and
Br+1 <0, 80 kmax could be either &k — 1 or k.

Finally, if ab > 4, then clearly Py(ab) > 0 for all £, hence by > 0 and kyax = +00.

Remark 2.6. By (2.14) we immediately deduce that

(Pojir (4))° = Thyo (1) = (2§ 1 1)
(Poysa®))? = 214, 00y = BE2E 5y

because the Chebyshev’s polynomials satisfy (by induction, for instance) T}(1) = ¢2
for any ¢ > 1.

Remark 2.7. The validity of (1.19) and (1.20) follows by the fact that the coef-
ficients [, verify the following properties (by induction, for instance):

2j+1
Y Baiv1 = Pojir(ab) (a1 Pajia(ab) + aan Poj(ab)),

2542
> Bais1 = aPyjia(ab) (bar Pyjia(ab) + oz Pajya(ab)),
=0

2j+1

> Baiva = Pajra(ab) (bai Pajia(ab) + o Pajia(ab)),

2542
> Boiva = b Pajya(ab) (a1 Pojis(ab) + aas Pajio(ab)).
=0
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3. Proof of the main theorem

In this section, we prove the existence of a solution to system (1.1) using a con-
traction mapping argument and we study its properties.

Proposition 3.1. There exist v, R, X\ > 0 such that for any \ € (O,X) X (O,X)
there exists a unique ¢y = (1,1, P2,1) € H such that:

e Wy + ¢ solves (1.1), namely

_A(Wl,/\ + (bl,)\) =2\ hy eWiatoin _ a X hs eWeato2n p Q,
_A(WZ,/\ + (252’)\) =22 ho eWaatdaxn _ b hy eWiatoin  up Q;

* oAl < RIA|" log 57
Proof. We point out that Wy + ¢, solves (1.1) if and only if

Lrd = Nr(¢) — Sxd — R
where the linear operator £y: H}(Q) x H}(Q) — LP(Q) x LP(Q) is defined by

—Ap1 — (Lig1 — Lo
(3.1) Lr() == ( ; ) ,
—Apy — (Laga — 3L161)
with
[(kil)/2] ﬁ2j+1| . |ﬁ2j+172 [(kfz)/2] ﬂ2j+2| . |ﬁ2j+272

Ly = Z 26%j+1 2j+1
Ba; N2
j=0 (52‘721:#11 + | . |ﬁ2j+1)

the error function Ry € LP(Q2) x LP(2) is defined by

Ry RL)\ _ —AWL)\ —2X\1 hy eWia + a Mg ho EUERY
AT Ran —AWax — 2Aahg €W 4 bA By eVin )7

Lo = Z 25§j+2 2j+2
B2 ] 2
j=0 (62.]2!:»22 + | . |ﬁ2j+2)

(3.2)

the error linear operator Sy : H}(Q) x H}(Q) — LP(Q) x LP(Q) is defined by

Sip1 — 28
(33) S,\( ¢1 ) — 1¢1 i 2¢2 ’
P2 S22 — 58191
with
[(k—1)/2] [(k—2)/2]
S = Z |.|52.7‘+1 W2t 9\ hy V1A Sy = Z |.|52.7‘+2 e2i+2 —2\o hy W2,
Jj=0 j=0

and the quadratic term Ny: HE(Q) x H(Q) — LP(Q) x LP(R) is defined by

2 ho €W2’*(€¢2 —-1- (bg) — b1 hq €W1*>‘(€¢1 —-1- (bl)

Wix(ebr _ 1 _ _ War(wbs _ 1 _
(3.4) NA(@;(”lhle (€91 =1 — 1) — ado hy eWer (P2 — 1 du))i
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Since Proposition 5.1 ensures that £): H — H is invertible, this is equivalent
to requiring ¢, to be a fixed point of the map

Ta: ¢ (L£3) T (NA(6) — Sxop — R);

therefore, the existence of such a ¢, will follow by showing that 7, is a contraction
on the ball

Byani= {0 € H: 0] < RN oz -}

for v, A small enough and R large enough.

We first show that T\ maps B, x r into itself.

We will use Proposition 5.1 to get estimates on £ and Lemmas 4.1, 4.2, and 4.3
to estimate Ny (), Sx¢ and R, respectively.

With the notation of these lemmas, we take v < max{vy1,72} and p so close
to 1 that all such lemmas apply and v3(1 — p) + v > 0. We then take C as in
Lemma 4.3 and X so small that eCR2N*"~ p)+7( log1/X)? < 1. Finally, we take
R > 0 greater than the three constants which define the O in Lemmas 4.1, 4.2,
and 4.3, times the C appearing in Proposition 5.1.

Notice that these choices imply that R|\|Y log ﬁ < 1; therefore

[Tx(9)|] < Clog — (IWA( e + 1Sxéllp + IRAll, )

IAI

< Clog (IW‘”“1 Pl 10 4 (APl + A

| |
< 2 ,C Y3 (1=p)+27 ¥
Clog 5 (R <log|)\|> A + A1)

1

1
x < RN log —
Al

< C A" log == B

Moreover, we also get

IT3(¢) = Ta(¢")]l < Clog (IWA() NA@)llp + 1S3 (6 = ¢)l,)

Al

< Clog 5 (=06 = &[] + 10/ DU 19 4 7P g — ')

R
< € (2R 0% (1og 7)Ao o) lo = o

¢ 1
<C (2% + 3" log 5 )16~ o'l

with the constant multiplying ||¢ — ¢'|| being smaller than 1, after taking larger R
and/or smaller A, if needed. This concludes the proof. O

Proof of Theorem 1.3. By Proposition 3.1 we get uy = W + ¢ which solves (1.1).
Let us prove (1.17).



1886 L. BATTAGLIA AND A. PISTOIA

We basically show that ¢, is negligible in this computations, thanks to the
estimates from Proposition 4.3 and in particular (4.5). Then, we compare W; »
with wo;4; using the estimate (4.2) from Lemma 4.2:

[(k=2)/2]

[(k—9)/2] |521+L 2

, ) 1
i /B,.(O) hieWirtoin _ 3 Z / ﬂ2]+z

1
S / )\ihieW"’wed”'v* )\1/ hiGVVi’A - =
Q B,(0) 2

S/)\ihiew"’*|¢i,,\|€¢"'*
0

1 + | |ﬁ2J+1)2 ’

[(k /2 P
263 4i
/ 2]+ 1 +| |ﬁ21+z)

[(k—i)/2] -
) 1 | B2i+i—2
+ )\i/ hieVir — 3 / 2654 -] Borrs 2‘ +o(1)
B (0) =0 BS#(O) (14| - |P2ite)
< [Pehie |, Igualla 22| sy
1 [(k=0)/2]
B(0) =0

<CR |)\|73(17p)+7 log |1\|

Since this holds true for any r, then letting r tend to 0 we find the value of m;(0).

+ AP +0(1) — 0.
A—0

Finally, we prove (1.18).

First of all, uy is bounded in Wh4(Q) x Wh4(Q) for any ¢ < 2, because
Wwha/a=D(Q) — C (Q), hence for any ¢ € W14/(4=1)(Q) with lellwrara— @) <1,
we have

‘/ Vi - VQO‘ = ‘/(—Aum)@‘ < C()q/ hye"t +)\2/ ho 6”“)”90”00 <C
Q Q Q Q

From (2.7) we get Pwy(z) — 475,G(-,0) as A — 0 pointwise in  \ {0}. Since
[[¢xl] = 0 as A — 0, from the definition of uy and my, ms we deduce that the weak
limit of uy in W9(Q) must be the one in (1.18).

Moreover, from (2.8) and the definition of W; x we deduce that the latter are
both bounded in L{2 (92 \ {0}). Therefore, for any K € Q\ {0},

loc

/ | — Au; /\|q <C (/ | . |q(a1*2)eq(W1,>\+¢1,>\) +/ | . |Q(a2*2)etI(W2,x+¢2,A)>
K ’ K K

< CGQIlw)\Hoo(/ ed%1,0 +/ eqm,)\) <C.
K K

Therefore, a standard bootstrap method will imply convergence in C*°(K) hence,
being K arbitrary, in Co.(Q2\ {0}). O
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4. The error terms

In this section we estimate in the LP norm the function R defined in (3.2), the
linear operator Sy defined in (3.3) and the quadratic term N defined in (3.4).
Roughly speaking, both Ry and S\ will decay as a power of A if p is close
enough to 1. On the other hand, the norm of A will diverge as A goes to 0, but
its growth will be slow for small p.
The estimates for Sy and N, will require mostly the same calculations as the
ones needed for Ry.

4.1. The function R,

Lemma 4.1. Let Ry be defined by (3.2). There exists pg > 1 and 1 > 0 such

that for any p € [1,po),
[RAllp = O(IA™).

Proof. We will only provide estimates for R x; the estimates for R » are similar.
First of all, by the very definition of W; y and triangular inequalities, we can
split the LP norm of R4 in the following way:

/ Ranl?

(k 1)/2] [(k—2)/2]

|62'7+1_26w2-f+1 _ ¢ E |ﬂ2j+2_26w2j+2
2
j=0
— 2)\1 h1 ez'sbk 01)/2 Pwami1—5 va} 02)/2 Pwam2
+adho e (k 2)/2] Pway, +2_7 [(k 1)/2] Pwamat P

[(k—1)/2]
P
< C’/ E |ﬂzg+1 “2eW2i41 9\ hy e S P g1~ 4 S Pugj

[(k— 2)/2
k— k P
+ C'/ ‘ |521+2*26UJ2J+2 — 29 ho 62,5:02’/2] Pwapmi2— % SN0/ Pus,, g

[(k—1)/2]
k k p
<C Z / |ﬁ21+1 Zew2it1 21 hy ezri o Pwa =g SIS Py
A21+1

=1/

2541
[(k—1)/2] k
+C E E / |521+1*26w21+1 p
=0 i=1,i#2j+1
=151
((k—2)/2] k—1)/2 k—2)/2 p
+C E / /\1 hy e S Py g — & ST 2 Py,
Aziyo

1"
- 121+2
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& [(k=2)/2] [(k—1)/2] P
+C § / |ﬁ24+2 2pWw2i+2 2 ho e2m=0 Pwami2—8 S0 Pwami1
A21+2
=:Ié.+2
J
[(k=2)/2] k
+C E E / |ﬁ2j+2*26w2j+2 p
= i=1,i#2j+2
=dil2j12
e [((k=2)/2] [(k—1)/2] p
+C g / )\2 hg 627” 0 sz"“rz*z 2 m=o Pwam 41
Azt
=5/

Now we suffice to estimate separately each of I, I{’e, I}". To handle with I, we use
the definition (2.5) of ©y and Lemma 2.2:

p
Ié:/A ‘|x|m—2ewz<x>(1_eem/aw)‘ Az
£

=eayaimf % 1 gy
<@y [ oammemr sy
<Co 4 1|y.;|_([|3;|_62:)p2'p 19¢(y)|Pdy < 055217/% (1|y—||—([|3;|_62z))p2_p_ |0ey + A" dy
< sy mne /i |y|maf{+ Ty|;;p 1}pdy+5?‘27”|A|7[”° gi(ﬂ(a;;pdy)
:

< 0(55 min{1,2— ﬂe/2}p+5§ 2p|)\|p'y())’

which can be estimated by a power of |A| if p is close enough to 1.
Concerning I}/, we have:
(Zﬁe) 2 o /
B

_/ ‘2/3e6ﬁ’|wlﬁ'~’ ?
zé 65[ + |£E|ﬁ‘4

|y|(62_2)p

0+

B
80441 \ 8;—10;
) )

<O (\/ ) (Be=2)p+2 ifi<?
= 4 (Bet+2)p+2 . .
( \/Oi_ 15 ) if 0>
601/ )(ﬁg 2)p+2 iy
_ 1 <
< C(S? 2p { ! —(Bp+2)p+2
(54/544,1) 2 if 6>

(4.1) <Co PN,
which is still bounded by a power of A for small p.
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Finally, for I3}, ,, we use (2.7), the fact that é, < |y| < dp for any y € Aziyo
and ¢ < 2i 4+ 2 < ', and then the properties (2.4) of §;’s and (2.12) of S,:

Iyi1s
o N [(k—1)/2] 1 [(k—2)/2] s Bamia)@ pd
N .A2i+2’ 1|m| ,L[O (526f,bm++11+|x|ﬂ2m+1)2 n:!_:[O <2m+2 —|—|l‘| ) ‘ t
[(k—1)/2] [(k—2)/2]
<o IT ez TI esm
m=i+1 m=i+1

i i— ) ap
. / |x|(0¢1 —2)p—23% _ Bamt1p+a X2 Bomtap (55@2:52 + |x|627:+2) dz
Aziyo

. ap
ot [ fal et (o o) " da
2i+2

i 2+(—2—P2it1+af2i — (B2 i ap
_ 0521i23+3p52l+2 B2i+1t+aB2it2)p i |yl (B2i+1+2)p (1 4 |y|62 +2) dy
S2it2
(52+2 62i+3p 2_9 _ . . ap
- (et | [y~ (1 [y eee2) ™ ay
i

B 92i43 \B 92i41
5242 5242
) 2—(B2i41+2)p 2+(B2i43—-2)p
02iq2\P2i43P oo ([ 02i41 2 02i43 2
S C 62i+2 s
82i43 02i4+2 0242
(2=(B2i4+1+2)P)B2i+3

—2—=(B2i+3—2)p
N T B R e I
_ C ( 2’L+2> 6;_5; (( 2’L+2> 2B2i41 + ( 2’L+2> 2 >

02i+3 02i+3 02i+3
6 B2i4+3(B2iy1P+2—2p)
2—2p ( 02i+2 2B2i41 2—2p ~ Y1
< Clgiys (m) < Clgiyg AT < CIA™.
3

This argument has to be slightly modified when k = 2l 4 2; in this case, none

of the two products in the second line appear and therefore we have A} in place

B2i+3p,
of §y, 3"

I <O 52+(6A+1 2)17/ |y|7(ﬁk—l+2)p (1 + |y|ﬁ1«)‘”’ dy
Bdiamsl/ék\Bm

2—(By_1+2)p

gm’fé,ﬁ*‘ﬁ“f?)”((‘s’;—*l) T g )
k

2—(Brp_1+2)p

< CAI;(62+(ﬁk+l 2)p(6k 1) 2 +1) < C|A|"/1
< o <
The same argument works for 157, ,, with a slight modification needed now for I7":
this time in the second line we do not have any of the sums in the power of |z| and
we get:

1< €5 [ fafe I 4ol vda
Ay
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B2p
) e [yl @272 (1 + [y ™)

Vo2/81

dy

J

0, < O™

(B2+2)p—2
2

02

this concludes the proof.

4.2. The linear operator Sy

Lemma 4.2. Let Sy be defined by (3.3).
for any p € [1,po),

There exists pg > 1 and 2 > 0 such that

[8x0llp = O™ [0]])-

Proof. We can estimate ||Sy||, by arguing as in Lemma 4.1:

[(k—1)/2] »
/ Z |ﬂ2;+1 w21 _ 9\ hy er**
[(k H/2 k—1)/2] k—2)/2] p
/ Z |521+1 2 w2541 _ 2M\; hy 6275L OV Pwggyr— & IR Py
[(k— 1)/2]
<C Z / | - |Pri+1—2gwasn
Azjpa
— 2 \1hy e S A Pwsy 1= S Py o P
[(k—1)/2] k
SR R Nl
= i=1,i#2j+1
[(k 2)/2] [(k—1)/2] [(k—2)/2] p
+C Z / A hy eXm=o  Pwrmi1—5 35,007 Pwamsa
-A2L+2
[(k— 1)/2] [(k—1)/2] ke [(k—2)/2]
(4.2 Z Iyjia + Z Z Iljea + Z Igi/+2> < O™
= i=1,i#2j+1 =0

and the same estimates also work the other components of Sy.
Then we suffice to apply the Holder and Sobolev inequalities, with ¢ so close
to 1 that the previous estimates hold for ||.Sx||pq:

[8x8llp < ISAllpgll ]l 22 < CIAI[|9]]-

1

O

4.3. The quadratic term N>

Lemma 4.3. Let N be defined by (3.4).
There exists pg > 1,C > 0 and v3 > 0 such that, for any p € [1,po),

INA(6) = N (@)lp = O(IAP#0) 6 — &[] + [ )e eI 11y

(4.3)
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and in particular
(4.4) INA(@)[lp = O(A2 =P 2eCT4I7).
Proof. By writing

N (2 -—a M hyeWia(e? —e®t — ¢y + ¢h)
Na(d) = Na(¢') = ( b 2 > < )\;h;eWM(ed’? — e% —¢;+¢;) >’

we suffice to provide LP estimates for \;h;e"Vi> (e®i — e®i — ¢; + ¢r) for i =1,2.
By the elementary inequality

let —e® —t+s| < |t —s|(|t| +|s]) Tl Vi seR

and the Holder, Sobolev and Moser—Trudinger inequalities, we get
/ |)\’LhzeW7A <6¢i _ 641:- o ¢i + ¢;)|P
Q
< [ Db 6= 61 (i +164]7) e+
Q
o eWin|P4 /e / _Al|Ps e / |ps e / /|ps 1
< ([ o) ([ o) ((f 1) " ([ 1)
A / e$<w+wn>)“/q*“*/s
Q

) 1/q p2qrs ) ’ 2
<O [ Iamie ) o = gl () + sl e (1900’

therefore, we just have to estimate \;h;e"Vi> in LP(€).
The computations from Lemma 4.1 and (2.10) yield:

/ |)\1hzew7)‘ |p
Q

[(k—1)/2] [(k—3+1)/2]
<C Z / ||x|ﬁ2j+i*26w2j+i($)+@2j+i(I/521+i)|pdm_|_C Z Iélg{—3+i

-A2J+L 7=0
[(k—l)/Z]

(B2j+i—2)p
» 2-2p ly[*72 Pl©2;+:(v)]
< B3t Z% 03 4i /A2J+1 (1+|y|627+7)2p6 2rildy +o(1)
= 2j+i

(B2j+i—2)p

2-2p |y|'F=s

<c S o /AW ey o)
j=0
[(k—i)/2)

(45) <cC Z Sl < CAPstP)

hence (4.3) is proved.
Formula (4.4) just follows from (4.3) after setting ¢’ = 0. O
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5. Linear theory

In this section we develop a linear theory for the linear operator £y defined in (3.1).
The following proposition, whose proof will take up the whole section, is in-
spired by [30] (Proposition 4.1) and [49] (Proposition 4.1).

Proposition 5.1. For any p > 1 there exists A >0 and C > 0 such that for any
NS (0,/\) X (0,/\) and any v € H there exists a unique ¢ € H solution of

L:/\d) = w on Qv

satisfying

¢l < Clog — Wllp

1Al
Proof. Suppose the statement is not true. This means that there exist p > 1 and
sequences {\, tnen C R2g, {¢n}nen € H, {¢n }nen C H such that

_A¢n,1 - En,l ¢n,1 + %En,Q ¢n,2 = wn,la

_A¢n,2 - En,Q ¢n,2 + En,l ¢n,1 = wn,Qa
(5.1) An — 0 as n — +oo,

[fnll = 1,

10g 5 |¢nlp — 0 as n — +oo,,

where 6, ¢ is defined as in (2.4) with A, 1, A, 2 in place of A1, A2 and

[(k—=1)/2] 677221:11' Br,2j+1—2
Ln1= 202 oji1 2
Zy P G )
[(k—222)/2] 6ﬁva2g++22| . |6n,2_7‘+2—2
Lno= 20 2§42 — :
) B, Y
=0 (05745 + [+ [Pr20e2)
We will divide the proof in six steps.
Step 1. For anyi=1,2,j=0,...,[(k—1)/2],
B2j+i -
5n5 |B2.7+z
i |2 =0(01)
) s [6nal? = O().
/ (6n25;+1 +1- |ﬂ2]+z)

If we multiply both sides of the first equation in (5.1) by ¢, 1 and both sides
of the second equation by ¢, 1 and then we sum the two equalities we get

[(k—1)/2] B2j+1 |_|62j+1—2

(1__> Z ﬂ2j+1/ ;Zijl“

( n,2j+1 + | : |ﬂ2j+1)

/|V¢n1| /wn1¢m+ /wsnl Voo - /an,mn,l

< C (I6nll* + lleonllpllnll) < C;

2 |¢n,1|2
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similarly, by multiplying the first equation in (5.1) by g(bn,l, the second equation
by ¢n,2 and then summing, we get

[((k—2)/2] Bzj+2 Baji2—2
ab O ajpal P22 2
1- § 2ﬁ§j+2/ . 3 |pn,2|” = O(1).
( 4 ) = (6[32]]-&2-2 + | |521‘+2)

Therefore, the claim is proved if ab # 4.
On the other hand, if ab = 4, then summing the first equation in (5.1) and the
second equation multiplied by a/2 = 2/b gives

{ -A (¢n,1 + %(bn,Q) = 1bn,l + %1%,2 in Q,
Gna+ 5Pn2=0 on 09,

hence standard regularity theory yields

Therefore, multiplying the first equation in (5.1) by ¢, 1, the second equation by

a a
O+ 5ona| < Offtnr + Ga] = o().

2 .
S On2 = l;iz(lﬁmg and then summing we get

[(k—1)/2] 652£4i1| . |ﬂ2j+1—2
2 2511 / 2 -
Z_: ! (5627;jr1+| |B2+1)

o [(k—2)/2] 6[32]+2 | . |ﬁ2j+272

|¢n,1|2

a_ n,2j+2 2
I A el
[(kil)/2] 62.7+1 ﬁ2j+172
_/( Z 252 n2]+1|'| )
- 25+1 B2 ) 2 YN,
Q s (6n22ﬁ1 + - |ﬁ24+1)
[(k 2)/2] ﬁ2J+2 Bajia—2
2 ol <72 a
Z 26342 57; f; 5 On 2> <¢n 1+ 50n, 2)
(671 éj+2 + | |ﬂ2]+2)
/|V¢n1|2 /wn1¢n1+ /|v¢n2| ——/wnzqm
k—1)/2 Ba; o
: zi/ ]252 / il - P2 (6]
25+1 Ba2j ) 2 17N,
=0 2 (G35 + |- [7+)
[(k—2)/2] 5ﬁ2a+2 Bajia—2
a n 2‘+2| ) | ! 1/2 a
+ 3 22/ . n) ‘n+—nH+C
D) jz:% 52J+2 (652”2 - [Pt 2)2|¢ 2| Pna 2¢ 2 -
(5.2)
[(k—l)/Q] 6ﬁ22j{r11| . |,(32j+1—2
§0(1)< S 28 [ b ?
B 2P
= (6 21]i1 + | |62_7+1)
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a [(k—2)/2] 562.27‘ij| . |ﬁ2j+272 1/2
n,
* 2 Z 2ﬁ§j+2/ 52]:2 Boiio)2 |¢",2|2) + C;
=0 Q (5n,2j+2 + | - |Paa+2)

therefore,

B2j+i i—

577,725;—-"—1' : |ﬁ21+b 2 2 < C

Bojti Boiti)2 |¢"”| =

Q (0,554 + |- [P29+)

for all i, £.

Step 2: The sequence &Zn,e, defined by 5n,2j+i(y) = ¢n,i(0n,2j+iY), converges to

1| |

for some pg, weakly in Hg,(R?) and strongly in Lg,(R?), where

ASEARE
-5
. 2
Ls(R?) = {u € L2 (R?): T e L2(R2)},
|15
HUHL/S T H 1+]- |ﬁu' L2(R2)
|-
Hs(R?) = {u € HL (R?): |Vu| + T e L2(R2)},
B—2
||T 2 1/2
HuHHﬂ = (HVUH%Q(R2) + ku‘ LZ(RZ)) .

First of all, because of Step 1, ¢, ¢ is bounded in Hp, (R?):
~ 2
/ V24 (y)| dy = 53,2j+i/ Vi (0n254:9)[* dy
Q/0n,2j+i n,2j+i

:/ |V¢n7i(m)|2dm =1,
Q

o Bojti Bajii—2
y|Peiti=2 2 9, 2j+i |2t 2
—— |® ,2'+‘(y) dy = — |¢ 7($)| dx
/sz/&n,QHi (1 + [y[P2o+e)2 [ ) Q (5525;“ + |m|ﬁ2j+i)2 "

= 0(1).

Therefore, (Emg — ¢p asn — 400 in Hpg, (R?) for some = Hpg,(R?); moreover, the
embedding Lg, (R?) — Hg,(R?) is compact (see [30], Proposition 6.1; the result is
stated only for a > 2 but the same argument works for any « > 0). From this we
get ¢n.e — ¢p as n — +oo in Lg, (R?).
The function (ng solves
A~ 2 | ) |B£—2 e QO/s
¢ ,Z /BZ (1+||ﬁ£)2¢ ,Z p ,@ / ,@

G =0 on 0 (/d,.4),



BLOW-UP PHENOMENA FOR LIOUVILLE SYSTEMS 1895

where
[(k—1)/2] 52;@1 562;71 ) |y|ﬂ“+1_2
n,2i+1 “n,2j+
P (W)= D 2834, Bairt o Y ¢n,1(0n,2j4+1Y)
i=0,i7] (5541 + O apr1 Yl 2i+1)
k—2)/2 i i A
o F2/A 9 55,22ﬁ2 55,22;11 |y|P2i+2—2
_ 5 Z 262i+2 Baitz Baitz o P} ¢n,2(5n,2j+1y)
i=0 <5n,2i+2 + 5n,2j+1|y| 2”2)
+ 5721,2j+1 Vn,1(0n,2j+1Y)
and
[(k—2)/2] 52;42_2 5ﬁ2/2i{rj_2 |y|[3271+2—2
n,2i n,
pnoit2(y) = > 283, PR PR Dn,2(0n,2j+29)
i=0,i] (5n,2i+2 + 0y 05121yl 2i+2)
k—1)/2 i i A
b B O ey
_ 5 Z 262i+1 Bait1 Bait1 B P} ¢n,1((5n,2j+2y)
i=0 <5n,2i+1 + 5n,2j+2|y| 2’“)
+ 52,2j+2 VYn,2(0n,2j+2Y)-

Let us show that p, ¢ — 0 as n — 400 in L, (R?\ {0}).

loc

Any compact set K € R? \ {0} will be contained, for large n, in

Au /S = {y € Vfus s \[bneor/One < |yl < \f0u/Ousi }i

therefore, by the estimate (4.1),

/ el < / lpn,e(y)] dy
K Apo/0ne
557:6[37‘,

u y
< C Z / n,i- n,b
- JA

Bi Bi
i=0,ij Y An.e/On,e (Sn,i + 5n7£

Bi—2
5i)

w:y / (W Ge)| + [m 2B e9)]) dy
4

n,

k 551'.
—C Y [ (6@ + () da

i=0,ij 7 An.e ((55Z + |m|ﬂ)

2 (|¢n,1(6n,€y)| + |¢n72(5n,£y)|) dy

Y

Bi—2

T

n C/Q(|¢n71(m)| + [ 2(x)]) dz

r (5671‘67_2 q 1/q
<C< > / ‘"72‘ dm) o lla/iq—1) + C lltonllp
iy Awe | (007 + ||
< C Pl nll + Clitbnlly | 2 O-
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Therefore, the weak limit (Eg must be a solution of
| . |6z—2

Ay = 287 A+ P2 ¢¢ in R \ {0}.

Finally, by the properties of weak convergence we get fR2 |V(Eg|2 <1, so 54
must be a solution on the whole plane; by Proposition A.1 we get

(E B 1—|- |ﬂ/3
Z_M€1+||ﬁ[
Step 3. As n — 400, and for all £’s,
log — 0 11" 5y
On,e = log — o On.e .
! Aol Jags,, (L +]-]P)2 "
Define
) 55:54 —|-]P
nt = g,
oty +1 1%
which solves (see Theorem A.1)
(5[3’“7@ . |ﬁe72
~AZy =267 — Zne in R?

Oy + 1172

consider now its projection PZ, o on HJ(£2), namely (see (2.2)) the solution of

2 6ﬁ£€| : |,6Z_2
~APZ, ) =282 ————Z,, in Q,
(5.3) (PZne) =208 G e P
PZ,e=0 on 0f.
As in Lemma 2.1, the maximum principle gives
5 26,0 5
4 PZ,o= 7 1 ) = . ‘
(5.4) it = Zne+1+0(8,) 55 1 |- P +0(8,5),
hence
, B;
Oni/ 527?) 0(8:) if i<,
((6n,i/6n,6) “+ |y ﬁL) '
(55)  PZ,i(0ney) = TTE T o(s) ifi =1,
(G /0n.0)™ 1y|* By e
— : : +0(67 ) ifi> L.
(14 (One/0ni) P [y]P) (9.2
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Recall now the first equation of (5.1) and multiply it by log ‘;T‘PZH,%_H; then,
multiply by log ﬁ ¢n,1 the equation (5.3) satisfied by PZ,, 2,11 and subtract the
two quantities: we get

62i+1 . |62i+1—2

1 o
0= log |A | / Qﬂgi-i-l (6,@7:7+Zl+1+ | |ﬁ )2 ¢n,1(PZn,2i+1 - Zn,2i+1)
nl JQ n.2it1 . |B2it+1
=) 5,01
[(k—1)/2] ﬂzg+_~1_1| . |ﬁ21+172
+ ) log / sz+1 e bp 1P Zp 0iin
B N2 T ,
J=0,j#i |)\ | 5n25;11 + | . |ﬁ2a+1)
Iw ,2i4+1,25+1
[+ =2)/2] §P2+2 B2jt2—2
a4 1 gl P
’ Jz::() Il Jo R (g |y T

=1} 5112542
+ 1Og / wn 1PZn 2i+4+1 -

—. T
In ,2i+1

A

To estimate I}, 5;,; we use (5.4), then the boundedness in Lg,, , (R?) and the
definitions of 4y, ;:

B2it1—2 -
/ 2 |y| . . .
I 9i41 = log =— ol Jos, o ﬂ2i+17(1 P2 bn,2i+1(Y)(PZn 2i11(0n,2i+1Y)

= Zn 2i+1(0n,2i+1y))dy
|y|52i+1*2 ~

) Pn,2i+1 (y)dy

2
log /82i+1 (1 + |y|,@21‘,+1 2

|)‘ | Q/0n,2i41
|y|52i+1*2

B§i+1W|$n,2i+l(y)|dy>

+0(073511 log o 5l o
n,2i+1

= On,2i+1 + O<6761252—41>1 10g m“¢n,2i+l ||L[32.+1) = On,2i+1 + 0(1)
n i

Concerning the terms in I;{,Qi +1,2j+1, we proceed differently depending whether
j <iorj>i:in the former case, using (5.5) and choosing ¢ very close to 1, we get

1
In,2i+1,2j+1
|y|62.7‘+1—2 -

2 bn,2j+1(Y) PZn 2041 (0n.25419) dy

2
log 62j+1 (1 + |y|62-7'+1

Al Jossn 050

|y|62_7'+1—2 . On 2j+1 B2it1 1
= 2log i 2B e @ ,2'+1(y)dy—2(’—) log =~
|)\ | Q/6n,2j+1 A (1 + |y|62'7+1)2 " 5n,2i+1 |)\n|
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|y|521+1+52i+1*2

: 23 i1 : 5n,2j+1 (y)dy
/9/5",2]*1 T lyl)? (14 (G )72 |y
, 1 y|Paei=2 <
+0(87571 1og — 28 By ()] )
PEEBRT fo ., SN T e P |4

B 0,241 P2+t Loz
= 2,501+ 00 + O (F222) ™ tog il

6n,2i+1
(. ") ") o)

|y|62j+1+,@27‘,+1—2
O, 2541\ P2it1 1 a1
=20n,2j41 + O<<&> lo 5n,2§~+1 /9) lpn.1]

(L4 [yl%2)2 (L4 (B 21 /G 2i1) 7 [yl P20

Sn2itt ) ol a/(a=1)
|y|(ﬁ2i+1*521+1*2)q 1/q
. (/ . q> +o(1)
R2\B1(0) (1 + (On,2j+1/0n,2i41) """ |y|ﬁ2"’+1)

0y 94 B2i+1 1
= 202501+ O (£221)™ tog |
6n,2i+1 |)\n|

K} 2j+1 min{0,825 41 —B2i1+2(1=1/0)} 5 4
(722) ) ot
n,2i+1

= 20p,2j+1 + 0(1);

in the latter case,

1
Iy oiv1,2j41

1 2 y[P—2
= log ol Jos 205511 T+ P On,2j+1(Y)P Zn,2i41(0n,2j4+19)dy
n,2j+1
_ (5n,2i+1>52i+1 log 1 '
On,2j+1 [An]
|y|P2ir =2 ~
: 2ﬁ§j+1 . ¢n,2j+1(y) dy
/9/6n,2j+1 (1+ |y|ﬁ2j+1)2((6n,2i+1/6n,2j+1)ﬁm+l+ |y|ﬁ2i+1)
B2j+1—2 ~
B2it1 1 2 |y| ! )
FOURENRT o, Ty P 1)
n,2J

6n,2i+1 B2it+1 1 —2(1—-1
:0((—) log = 0, 33" 1 6n1 g (a-1)

On,2j+1 5] St

|y|(ﬁ2j+1*2)q 1/q

' (/ Bait1 —a dy) ) +0(1)
B1(0) ((On,2i+1/0n,2j41) 2 + y|P2i1)

On,2i41  P2i+1 1 a0-1/g
=0 <—> log —— 6 2U=Va) 4
( On,2j+1 g|/\n| n,2j+1 (o
(5n,2i+1 )min{07ﬂ2j+1—/6271+1+2(1—1/q)}>
On,2j+1

+o(l) — 0.

n—-+oo
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The same argument shows that

I o 20n2j42+0(1) ifj<i
n,21+1,25+2 0(1) lf] 2 i

Finally, since ||PZ, ¢]|co < C,

1 1
[T2i41] < log W\W)ml [1[PZn 2i41]lec < Clog mllwn\\p Rl
Therefore, we get
i—1 i—1
(56) O'n,2i+1 + 2 Z Un,2j+1 - GZ O'n72j+2 = 0(1);
j=0 j=0
a similar argument yields
i—1 i
(57) On,2i+2 + 2 Z On,2j+2 — bz On,2j+1 = 0(1).
j=0 j=0

Putting (5.6) and (5.7) together we get oy, ; = o(1) for all i’s.
Step 4: e =0 for all j's.

\/be recall the SOlutiOn Pwn,g — P’u);’“] . Of
S)‘B Bp—2
fﬂ . | 4

2
(55572 +-17)
Pw, =0 on 0f).

—APwy,0) = 267 in Q,

(5.8)

We multiply by Pw, 2,11 the first equation of (5.1), then we multiply by ¢, 1 the
equation (5.8) satisfied by Pwy, 2,11; their difference gives

1671)/2 562.7+1 | . |ﬂ2j+172

[( ]
0= / 232, —mH L > b1 Pwn it
P TR

—. J/
=5 20412541

[(k—2)/2 5521+2 | . |,62j+2—2

]
a 2 n,2j+2
S
=

Onapie + 1 1P2t2)

5 Pn,2Pwn 2i41 +/ Un 1Pwy, 241
Q

—_—
=J" .
=1J} giti12j42 n,2i41
B2i i1 —2
/ 232 Opnait1 - [Prit 5
N 2itl  Baiia N2 Tl

@ (6n,22—+1 + | - |Privr)

::J///

n,2i+1
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We start by estimating J,’” ¢, considering as before only the case of odd indexes.

For ¢ < i we use (2.7), the definition of d, ¢ and the vanishing of o, ¢. Notice
that, to handle with Pw;, (2.8) would not suffice hence we need sharper estimates
for the logarithmic term.

Jh 2i41,2j41
:/ 2ﬁ§j+1% On2j+1(Y)Pwn,2i41 (00 2j419)dy
Q61271 (1 + [y[P=i+1)

= (—202+1 108 6y 2541 + 47 B2:+1 H (0, 0))
;s
'/Q/(; . QﬁzjﬂW Pn,2j+1(y)dy
et

_2/ 2ﬁ2, % 72,+1(y)
Q/0n 2541 2+t (1 —+ |y|ﬁ2;+1)2 n,zj

0y 94 B2i
) log (1 + (5n,2j+1) 2i+1 |y|ﬁ2i+1)dy
n,2i+1

syt
+ O(5n,2j+1/ﬂ 2ﬂ2j+1W|¢n,2j+l(y)|dy>

/On 2541

ol g o)
n,2i+1 Q/8n 2541 25+1 (1 + |y|52j+1)2 n,25+1
1 |y|ﬂ2]+1 2 _
O(log )‘/ D1 L S — Y dy‘
Dl oy, ass 2P 1 [yl Om2t (y)

—|—O<(/ |y|(ﬁ2j+1—2)q 10g (1 . (6"72j+1)ﬁ2i+1|y|62i+1)q)l/q
Q/n 2041 (1 + |y|62_7‘+1)2q 6n,2i+1
' ||¢’”72j+1||q/<q1>>

|y|(52j+1*1)‘1 1/q. ~ P
+ (@) <(sn,2i 1 ( / 5. ) n,2j+1 + o) 6n272—1
W oo Wrtgm) Womsstloson )+ O0na0)

= O(lon,2j+11)

L0 (5n,2j+1>62i+1 / |y|(ﬁ2j+1+ﬁ21+1 2)qdy /q _2(1 1/q)”¢ |
(5n,2i+1 Bs, 44y (0) (1 + |y|ﬁ2j+1 )2q n 2741 n

n,2j+1

|y (B25+1—-2)q . 1/q
—|—O<(/ S log (1 + |y dy)
R2\B s, ;44 (0) (1 + |y|62]+1)2q ( )

n,2j+1

—211
M;J%%Q

ming 0,82;+1+1—
+0(Fuzndpsny ™ s 20D 6,1 4 o(1)
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_ O((M)ﬁmﬂ (M) min{0,82i41—B2j 11 +2(1*1/¢1)}6_2(1_1/q)>

On,2i41 On,2i+1 n,2j+1
P2jt1
677(72 i1 T+2(1—1/q) (11
+O((5 ;H) 055 /‘”) +o(1) = o(1).
n,2i

In the other cases, some terms will vanish by the same arguments as before, but
some others will not. To estimate the latter terms, we will use the convergence
of ¢p ¢ in Lg,,., and the following equalities, which can be proved by direct com-
putation:

gz 21—yl
R2 4(1+|y|ﬁe))2 1+ [y]P
gz 21—yl

R2 ¢ (1+ |y|ﬁe))2 1+ |y|5£

log (1 +[y|**) dy = —2mf;

log [y|dy = —4.

When j = i we have

20412141
/ 232 ly[Pei 2~ P 5 .
= . N L ) w A ‘
Q/0n,2i+1 A (1 + |y|Baet1)2 Dn,2i+1(Y)Pwn 2i41(0n,2i419) dy

= (=262i41108 0n i1 + 4mf2i11H(0,0))
|y|62i+1—2 B

' 285141 53 Pn.2i+1(y) dy

‘/52/5n,,271+1 Zirl (1 + |y|52i+1)2 n,2i+

/ 2533 ly P b (y) log (1 4 [y|%+) d
+ i1 g Pn.2i+1(y) log (1 + |yt Y
Q/6n,2i4+1 et (1 + |y|ﬁ21+1)2 e

+ @) (6n,2i+1 /
Q
|y|ﬁ2i+1*2

+O(5521‘;“1 / 92 N (E (1) dy)
2i+1 Q62011 2’+1(1+|y|ﬁ2i+1)2| n,2i |

/ 52 |y|ﬁ2i+1*2 (E ( )1 ( | |ﬁ ) ; ( )
-2 2851 2i+1(y) log 1+ [y|P2i+r y+o(1
Q/0n,2i41 2 (1 + |y|ﬂ2z+1)2 n,2%

|y|,@271+1—1

252, R (E ,2'+1(y) dy)
/On 2i41 2l (1 + |y|ﬁ2i+1)2 | n,2% |

|y|ﬁ2i+1*2 1— |y|52i+1

B2it1
L+ [y|P2i+1)2 1 + |y| Bt log (1 +[y|™") +o(1)

- —2u21+1/ 263,11
R2 (
= 4f2i412i+1 + o(1).
Similarly, if j > 1,
Jh2i41,241
/ ﬁ2 |y|ﬁ2j+172 5 P ’ ’
= 2 . T 1AL o 2j+1\Y)EWn 2i+1 2i+1Y)dy
Ubnagen T [y Paaer)2 T n,2i41(0n,2j

= (—2f2i411086n 2541 + 47B241H(0,0))
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[ e
' 20551 e Pn2iv1(y) dy
Q/0n,25+1 2t (1 + |y|ﬁ2]+1)2 "

s [ a8 G sl
T AP2i41 j : 25+1\Y) 10g [y |dy
' Q/0n,2i+1 2t (1 + |y|ﬁ2JJr1 )2 "

o[ e G
- j TR 25+1\Y)"
Q/0n, 2541 A (1 + |y|ﬁ2JJr1 )2 "

) 2341 B2i+1 1
(e )
o8 On,2j+1 |y|ﬁ2"“+ Y

+0 (6n,2j+1 /
Q
P2

+0(5521j1 / 282 1 |bn2j1(y) dy)
2i+1 Q/6n 2541 25+1 (1+ |y|62-7+1)2 | n,2j |

|y|52j+1—2 1— |y|ﬂ2j+1
1+ |y|,@2j+1)2 14+ |y|,@2j+1 log |y| +o(1)

—|—O<</ mlog<<6n,%+l>ﬂ%+l 1 +1>q>1/q
Q/0n,2i4+1 (1 + |y|ﬁ2jJrl )2q 6n,2j+1 |y|62i+1

[16n.251 ||q/<q—1)>
= 8mPaj11 p2j41 + o(1)

|y|(ﬁ2j+1*2)q 1 a 1/q —2(1 1/q)
—|—O<</ ————log 1+ ——— dy) n l[én
By 0 (LF [y]P2e0)20 y[Pat 2541

232 |y|P2s+1—1 |$ ( )|d
24177 1 |glBaeny2 |Pn2i+10Y y)
/On,2j+1 A (1 + |y|52.7+1)2 n,2)

= —2fB2j+1 M2j+1/ 2ﬁ§j+1
R? (

Sn,2j+1
+O<<5",2i+1>ﬂ2"'+1</ ly| Pt Gara =D dy)l/ ~201-1/a))1 4 |>
bnarer) om0 Gy @) S
Tr2i 41
B2jt1
On2it1\ 2 —20-1/a) 5 4
= 87 B2j41 t2j+1 + O((6—+> 6n72(j+1 /q)>
n,2j+1

6n,2i+1 Bzi+1 6n,2i+1 min{0,Bz;+1—B2i+1—-2(1-1/q)} —2(1-1/q)
+O((5n,2j+1) (5n,2j+1) On2j+1 )+0(1)

= 8mf2j+1 f2j+1 + o(1)

The term J/ 5, ., vanishes because, by Lemma 2.1, |[Pwy, ¢||cc = O(log 1/[As]),
therefore

T < Clog 1 |Hwn||p
n——+oo
Finally, Step 3 gives
B2it1—2 Orr o5
mo 232 |y|7 i d = 2t — 0.
e /m B A g
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Putting all these estimates together, repeating the computations for even indexes
and passing to the limit gives

[(k—1)/2] [(k—2)/2]
47 Boiy1p2i+1 + 8T Z Bojr1pojy1 — 4ma Z Bajrap2ij+2 =0,
j=it1 =i
[(k—2)/2] [(k—1)/2]
47 Boiyapioite + 8 Z Bojiapojr2 — 4mh Z Baj+ip2j+1 =0,
j=i+1 j=i+1

from which we get g = 0 for all j’s.
Step 5. ¢n, — 0 as n — +oo in L=(Q)2.

We fix = € Q and we estimate ¢, ;(z), using Green’s representation formula.
We provide the estimate only for ¢ = 1:

[(k—1)/2] ﬁ25+11|y|627+1 2
|1 ()| = ‘ /G (z,y)283; Ondy s én,1(y)dy
Z 00 + )
[(k—2)/2] ﬁ2J+2 Bojt2—2
a n 2542 |y| g
- Z / Gla) 26510 2 - na(y) dy

( n2j+2 1 |y|ﬁ2”2)

+ [ G vnaty) dy'

z2:[(7€z%/2 52£+i |62.7‘+71—2

< / Gz e ) -(y)dy‘
= B o 2 n,t

= = 6525;+1+|y|62-7+z)

+] [ G i) dy(

e

k
< / G, 602 e )dz|+ sup |G, )| o
2 o, (1+ 12l | e

3 log | — dez| =23, ()
< ‘/ 0g|T — Op 2| —————5 Pne(2 Z‘
= oy, (1+]z/%)*

:=K;’1[1

|z]fem2 ~
+ / H(2,00.02)| ————— |fn.o(2)| dz +0(1).
Z /m " (1+|z|ﬂe>2| ele)
:=K7’7l’ye

To estimate K;L/,e we apply some weighted Sobolev inequalities to ;5,1,4: since it is
bounded in Hg,(R?) and tends to 0 in Lg,(R?), then for any ¢ > 2,

|Z|ﬁe 2
—_— dz — 0.
/9/6 NCEAEDE |¢né ! el
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Therefore, for a suitable ¢,

Be—2 .
o< (0.0 +La]) [ . ulillwl%e@)!dz

5 |Z|ﬁe*1 |(,£ ( )‘d
+ n,é/ —— LAV z
/6, (1+2]%)?

R af? 2
SC(/ ﬁdz) (/ 72|¢n€ | dz)
/6,0 (1+2]%) /bne (14217
|5z—2+

2 =T 1-1/q 2|Be=2 1/q
o [Ty G )
/8,0 (14 ]2]5¢) /6,0 (14 2]%)

< Cllmell,, oy + 0TV o1) 0.

n—-+oo

To deal with K, ¢ we use that g, 0 — 0 as n — +oo (see Step 3) and that 0, ¢ is
given by powers of An,i; in particular, we will distinguish whether |z| is smaller or
larger than 6, ¢:

T — Op 02 |z|Pe=2 ~
< ne(2)dz
ol ‘/ max{5n4,|x|} (1+|Z|5£)2 9n.t(2) ‘

)

+|logmax{5ng,|x|}|’/ e
1+|I6)
|x/6n,e—z| 2 |22 )”2
)

< 1
</Q/6,,L,,Z max {1, [2/0nel} | (14 |2]8¢)?
|2]fe=2  ~ 2 1/2 max{logﬁ,logdiamQ}
( /b0 ( 2 [0ne2) Z>
£

1+ |z|ﬁe log 1/|An|
<
< (/]1{2 lo

The claim will follow by showing that K}”(z’) is uniformly bounded for 2’ € R%.

0g

o e

. ‘ |2 — /8072
max{l Ix/énel} (142" —/6,07)°

4 ) 1/20(1) + o(1).

Ky (@/0n.0)

Taking a cue from [16] (Lemma 1.1), we split the integral in the ball of radius
2max{1, |z’|} and its complementary: in the ball, we just apply a Holder inequality
with suitable exponents and then a dilatation; in its exterior, we use the mono-
tonicity of the logarithm and the fact that 2’ it is somehow negligible with respect
to 2':

2" —a'| 2 |2/ = [o'] > [2'] — max{L,[a'|} > 5 |¢/|
2" —a'| <[+ ]a'] < [2'] + max{L, [/} < §2/].
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We get, for a suitable ¢ > 1:
K///( ) /
B

] o2

max{1, |m’|}. 1—|—|z x|Be)?

‘ log dz’

2 max{1,]z’|} (0)

N oL =P
0
By 0| S T ]| (T 17— 2T
- </ ’1 2q/(q— 1) 1-1/q
+ I
Bj max{1,]2’13(0) max{l |xl|}
(] dZ’)
R
|2]Pe—2 /
+C ’log ’
R2\ By ax{1,]2/3 (0) max{l |xl|} 1+|Z//2|ﬁ£)2
2L gy 1-1/q 2 |Zl|m_2
<c([ JglyIFay) e [log |2/|P— =1
B2(0) R2\ B (0) (14 [2/2]%)

<C.

Step 6: A contradiction arises.

We multiply each equation of (5.1) by the respective ¢, ; and we sum the two
of them. We get:

1:/ |V¢n,1|2+/ Vb l?
Q

[(k 1)/2] ﬁ2J+1 ﬂ2j+1_2
Z / ﬂ n2]+1| | 2
o 6[32];1 +1- |62'7+1)2 "
[(k 2)/2] 52§+i2| . |ﬂ2j+2—2
62 j+2 o 2 ¢n,1¢n,2 +/ wn,l ¢n,1
/ RO RPN RE o
[(k—2) /2 [325+i2| . |ﬁ2]‘+272 ,
. / i,
Z 2j+2 5627]12 +| |ﬁ2j+2)2 n,2
b [(k: 1)/2] [325+_~1_1| . |ﬁ2j+172
— = 285,11 ——2 On,10n,2 + / Vn 20n.2
2 Z / G SRR o

|ﬂ/3 2

Z/ 65[ )2||¢"||L°°(Q)+H¢n”p”¢n”

< C(lfnll3 ey + Hwnnp 16al2,) —>_0;

which is a contradiction. O
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A. Appendix

We prove here a classification result for entire solutions of a scalar linearized prob-
lem.

Proposition A.1. Assume a > 0, m € N and a/m & 2N. Then, any solution ¢ of

a—2
—Ap = 902 1" ¢ inR2,
(L+]-]*)?
R2
¢(eﬁL ) ) = (ba
satisfies, for some p € R,
e e

Proof. We argue as Baraket and Pacard do in [2], Proposition 1, where the case
a = 2 is covered (see also Del Pino, Esposito and Musso [23]).
By writing any solution ¢ of (A.1) as a Fourier decomposition,

d(x) =Y dnllz]) ™,

nez

we see that each of the ¢,, solves the following ODE:

1 n2 2a2p(x—2
A2 b (p) + = 0pon(p) — = dn(p) + ——— dn(p).
(A.2) S dn(p) 5 v ®n(p) = én(p) 1) én(p)
Integrating by parts, ¢, must satisfy
+oo 2 2a2pa72
9ptn(P))* + (= = L) 6u(p)?) pdp = 0;
L (rontor + (5 = 5s) onlo)) oo

since
n2 2a2po¢—2 1 5 CKQ
n-— )

P2 (1+p2)° " P2

2

we must have ¢, = 0 for |n| > a/v/2. In particular, ¢ is a finite combination of
the ¢,’s.

It is easy to see that each solution of (A.2) is a linear combination of the
fundamental solutions

n 0+ 2n — (a—2n)p®
14 p>

00— 2n — (a4 2n)p®
1+ po '

On+(p) =p ; Gn—(p)=0p

Since we are looking for bounded solutions of (A.1), here we are allowed to take
only bounded solution of (A.2).
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If o is not an even integer, the condition is satisfied only by

_L=pf
= o

bo,+(p) = do,—(p)

hence ¢(x) = ¢o(|z|) is an integer multiple of its and the Proposition is proved.

On the other hand, if o € 2N, then ¢, /2 4 (p) = 204% is also allowed, there-

fore in this case ¢(x) is a combination of the following functions:

1— |z|*
do(lz]) = ﬁ
ngﬁ (|x]) cos (29) = M cos (g9>
20 /2 27) " 1+ Ja| 2
1 . o _ |x|a/2 . o
%¢a/2(|l‘|) S (5 9) = W Sin (5 9)

Anyway, the latter two functions do not satisfy the symmetry requirement if m is
as in the assumptions, therefore ¢ must again be a multiple of ¢g(|z|). The proof
is completed. O
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