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Lifting weighted blow-ups

Marco Andreatta

Abstract. Let f : X → Z be a local, projective, divisorial contraction
between normal varieties of dimension n with Q-factorial singularities.

Let Y ⊂ X be a f -ample Cartier divisor and assume that f|Y : Y → W
has a structure of a weighted blow-up. We prove that f : X → Z, as well,
has a structure of weighted blow-up.

As an application we consider a local projective contraction f : X → Z
from a variety X with terminal Q-factorial singularities, which contracts
a prime divisor E to an isolated Q-factorial singularity P ∈ Z, such that
−(KX + (n − 3)L) is f -ample, for a f -ample Cartier divisor L on X.
We prove that (Z,P ) is a hyperquotient singularity and f is a weighted
blow-up.

1. Introduction

Let X be a normal variety over C and let n = dimX . A contraction is a surjective
morphism ϕ : X → Z with connected fibres onto a normal variety Z. If Z is affine
then f : X → Z will be called a local contraction.

We always assume that f is projective, that is, we assume the existence of
f -ample Cartier divisors L.

If f is birational and its exceptional set is an irreducible divisor, then it is
called divisorial. We say that the contraction is Q-factorial if X and Z have Q-
factorial singularities. Note that if X is Q-factorial and f is a divisorial contraction
of an extremal ray (in the sense of Mori theory), then Z is also Q-factorial (see
Corollary 3.18 in [22]).

A fundamental example of local contraction in algebraic geometry is the blow-
up of Cn = Spec C[x1, . . . , xn] at 0. More generally, given σ = (a1, . . . , an) ∈ Nn

such that ai > 0 and m ∈ N, one can define the σ-blow-up (or the weighted blow-up
with weight σ) of a hyperquotient singularity Z : ((g = 0) ⊂ Cn)/Zm(a1, . . . , an).
The definition is given in Section 2, in accordance with Section 10 in [21].

The main goal of the paper is to prove the following theorem.
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Theorem 1.1. Let f : X → Z be a local, projective, divisorial and Q-factorial
contraction, which contracts an irreducible divisor E to an isolated Q-factorial
singularity P ∈ Z. Assume that dimX ≥ 4.

Let Y ⊂ X be a f -ample Cartier divisor such that f ′ = f|Y : Y → f(Y ) = W
is a σ′ = (a1, . . . , an−1)-blow-up, πσ′ : Y → W .

Then f : X → Z is a σ = (a1, . . . , an−1, an)-blow-up, πσ : X → Z, where an is
such that Y ∼f −anE (∼f means linearly equivalent over f).

We apply the above theorem to the study of birational contractions which
appear in a minimal model program (MMP) with scaling on polarized pairs.

More precisely, if X is a variety with terminal Q-factorial singularities and L is
an ample Cartier divisor on X , the pair (X,L) is called a polarized pair. Given a
non negative rational number r, there exists an effective Q-divisor Δr on X such
that Δr ∼Q rL and (X,Δr) is Kawamata log terminal. Consider the pair (X,Δr)
and the Q-Cartier divisor KX +Δr ∼Q KX + rL.

By Theorem 1.2 and Corollary 1.3.3 of [4], we can run a KX + Δr-minimal
model program (MMP) with scaling. This type of MMP was studied in deeper
details in the case r ≥ (n− 2) in [1].

To perform such a program one needs to understand local birational maps (divi-
sorial or small contractions), f : X → Z, which are contractions of an extremal rays
R := R+[C] ⊂ N1(X/Z), where C is a rational curve such that (KX + rL).C < 0
for a f -ample Cartier divisor L. We will call these maps Fano–Mori contractions
or contractions for a MMP.

In [2] we classified local birational contractions for a MMP if r ≥ (n− 2): they
are σ-blow-up of a smooth point with σ = (1, 1, b, . . . , b), where b is a positive
integer.

In [3], Theorem 1.1, we proved that if r > (n − 3) > 0 then one can find
a general divisor X ′ ∈ |L| which is a variety with at most Q-factorial terminal
singularities and such that f|X′ : X ′ → f(X ′) =: Z ′ is a contraction of an extremal
ray R′ := R+[C′] such that (KX′ + (r − 1)L′).C′ < 0, where L′ := L|X′ .

On the other hand, a very hard program, aimed to classify local divisorial con-
tractions to a point for a MMP in dimension 3, was started long ago by Y. Kawa-
mata ([19]); it was further carried on by M. Kawakita, T. Hayakawa and J. A. Chen
(see, among other papers, [17], [18], [14], [15], [16], [10], [11], [12], [5]). They are
all weighted blow-ups of (particular) cyclic quotient or hyperquotient singularities,
and this should be the case for the few remaining ones. It is reasonable to make
the following:

Assumption 1.2. The divisorial contractions to a point for a MMP in dimen-
sion 3 are weighted blow-ups.

The next result is a consequence, via a standard induction procedure, called
the Apollonius method, of Theorem 1.1, the above quoted Theorem 1.1 in [3] and
Assumption 1.2 in dimension 3.
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Theorem 1.3. Let X be a variety with Q-factorial terminal singularities of di-
mension n ≥ 3 and let f : X → Z be a local, projective, divisorial contraction which
contracts a prime divisor E to an isolated Q-factorial singularity P ∈ Z such that
−(KX + (n− 3)L) is f -ample, for a f -ample Cartier divisor L on X.

Then P ∈ Z is a hyperquotient singularity.
Moreover, if we assume that 1.2 holds, f is a weighted blow-up.

2. Weighted blow-ups

We recall the definition of weighted blow-up; our notation is compatible with that
of Section 10 in [21] and of Section 3 in [10].

Let σ = (a1, . . . , an) ∈ Nn such that ai > 0 and gcd(a1, . . . , an) = 1; let
M = lcm(a1, . . . , an).

The weighted projective space with weight (a1, . . . , an), denoted by P(a1, . . . , an),
can be defined either as

P(a1, . . . , an) := (Cn − {0})/C∗,

where ξ ∈ C∗ acts by ξ(x1, . . . , xn) = (ξa1x1, . . . , ξ
anxn), or as

P(a1, . . . , an) := ProjC C[x1, . . . , xn],

where C[x1, . . . , xn] is the polynomial algebra over C graded by the condition
deg(xi) = ai, for i = 1, . . . , n.

A cyclic quotient singularity, denoted by Cn/Zm(a1, . . . , an):=X , is an affine va-
riety defined as the quotient of Cn by the action (x1, ..., xn)→(εa1x1, ..., ε

anxn),
where ε is a primitive m-th root of unity. Equivalently X is isomorphic to the
spectrum Spec C[x1, . . . , xn]

Zm of the ring of invariant monomials under the group
action.

Let Q ∈ Y : (g = 0) ⊂ Cn+1 be a hypersurface singularity with a Zm action.
The point P ∈ Y/Zm := X is called a hyperquotient singularity. In suitable local
analytic coordinates, the action on Y extends to an action on Cn+1 (in fact it
acts on the tangent space TY,Q) and we can assume that Zm acts diagonally by
ε : (x0, . . . , xn) → (εa0x0, . . . , ε

anxn), where ε is a primitive m-th root of unity.
Since Y is fixed by the action of Zm, it follows that g is an eigenfunction, so
that ε : g → εeg. We define the type of the hyperquotient singularity P ∈ X with
the symbol 1

m (a0, . . . , an; e). Note that if m = 1 this is simply a hypersurface
singularity, while if g = x0 this is a cyclic quotient singularity.

Let X = Cn/Zm(a1, . . . , an) be a cyclic quotient singularity and consider the
rational map

ϕ : X → P(a1, . . . , an)

given by (x1, . . . , xn) �→ (x1 : · · · : xn).

Definition 2.1. The weighted blow-up of X = Cn/Zm(a1, . . . , an) with weight
σ = (a1, . . . , an) (or simply the σ-blow-up), X , is defined as the closure in X ×
P(a1, . . . , ak) of the graph of ϕ, together with the morphism πσ : X → X given by
the projection on the first factor.
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The weighted blow-up can be described by the theory of torus embeddings, as
in section 10 of [21]. Namely, let ei = (0, . . . , 1, . . . , 0) for i = 1, . . . , n and let
e = 1/m(a1, . . . , an). Then X is the toric variety which corresponds to the lattice
Ze1 + · · · + Zen + Ze and the cone C(X) = Q+e1 + · · · + Q+en in Qn, where
Q+ = {z ∈ Q : z ≥ 0}.

We denote with πσ : X → X the proper birational morphism from the normal
toric variety X corresponding to the cone decomposition of C(X) consisting of
Ci = Σj �=iQ+ej +Q+e, for i = 1, . . . , n, and their intersections.

The following facts can be easily checked in many ways, for instance via toric
geometry (see also section 10 in [21] or section 3 in [10]).

• The map πσ is birational and contracts an exceptional irreducible divisor
E ∼= P(a1, . . . , ak) to 0 ∈ X .

• Let (y1 : . . . : yn) be homogeneous coordinates on P(a1, . . . , an). For any
1 ≤ i ≤ k consider the open affine subset Ui = X ∩ {yi 
= 0}; these affine
open subset are described as follows:

Ui
∼= SpecC[x̄1, . . . , x̄n]/Zai(−a1, . . . ,m, . . . ,−an).

The morphism ϕσ |Ui
: Ui → X is given by

(x̄1, . . . , x̄n) �→ (x̄1x̄
a1/m
i , . . . , x̄

ai/m
i , . . . , x̄k x̄

ak/m
i ).

• In the affine set Ui the divisor E is defined by {x̄i = 0}; it is a Q-Cartier
divisor and OX(−aE)⊗OE = OP(ma), for a divisible by Πai.

The divisor H := −ME is actually Cartier, it is generated over πσ by global
sections and it is the generator of Pic(X/X) = Z =< H >.

• Let L = aH , for a a positive integer; clearly L is σ-ample. We have

R1πσ∗OY (iL) = H1(X, iL) = 0

for every i ∈ Z.

We now use Grothendieck’s language to give a different characterization of the
σ-weighted blow-up.

For a a positive integer, let L = aH = −aME. The divisor L is a πσ-ample
Cartier divisor.

Consider the graduated C[x1, . . . , xn]
Zm-algebra

⊕
d≥0 π∗OX(dL). The con-

struction in section (8.8) of [7] gives

X = ProjX

(
OX ⊕

⊕
d>0

π∗OX(dL)
)
→ X.

Consider now the function

σ-wt : C[x1, . . . , xn] → Q

defined as follows: on a monomial M = xs1
1 . . . xsn

n , we put

σ-wt(M) :=

n∑
i=1

siai/m;
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for a general f =
∑

I αIMI , where αI ∈ C and MI are monomials, we set

σ-wt(f) := min{σ-wt(MI) : αI 
= 0}.
Definition 2.2. For a rational number k, the σ-weighted ideal Iσ(k) is defined as

Iσ(k) = {g ∈ C[x1, . . . , xn] : σ-wt(g) ≥ k} =
(
xs1
1 · · ·xsn

n :
n∑

j=1

sjaj/m ≥ k
)
.

The set Iσ(k) is a an ideal in C[x1, . . . , xn] and therefore also in C[x1, . . . , xn]
Zm ;

in particularC[x1, . . . , xn]
Zm⊕⊕

k∈N,d>0 I
σ(k) is a C[x1, . . . , xn]

Zm-graded module.

The next lemma follows straightforward from the above discussion; see also
Lemma 3.5 in [10].

Lemma 2.3. Let πσ : X → X be a σ-blow-up, E the exceptional divisor; let D
be the Q-Cartier Weil divisor defined by a Zm-semi invariant f ∈ C[x1, . . . , xn].
Then we have

π∗
σ(D) = D + (σ-wt(f))E,

where D is the proper transform of D.
In particular, for every integer a, we have π∗OX(−aE) = Iσ(a).

The Grothendieck set-up and Lemma 2.3 imply immediately the following char-
acterization of weighted blow-up.

Proposition 2.4. Let X = Cn/Zm(a1, . . . , an) and b a positive integer multiple
of M = lcm(a1, . . . , an). The weighted blow-up of X with weight σ defined above,
πσ : X → X, is given by

X = ProjX

(
OX ⊕

⊕
d∈N,d >0

Iσ(db)
)
.

Remark 2.5. The above characterization of X does not depend on the the choice
of b as a positive multiple of M ; in fact taking Proj of truncated graded algebras
we obtain isomorphic objects (see for instance Exercise 5.13 or 7.11, Chapter II
in [9]).

Note that it is not true that Iσ(db) = Iσ(b)d: see for instance Example 3.5
in [2]. However this is true if b is chosen big enough; this can be proved, for
instance, following the proof of Theorem 7.17 in [9].

If this is the case we have that X = ProjX
(OX ⊕ ⊕

d∈N,d >0 I
σ(b)d

)
; that

is, X is the blowing-up of X = Cn/Zm(a1, . . . , an) with respect to the coherent
ideal Iσ(b) (see the definition in Section 7, Chapter II, [9]).

Definition 2.6. Let X : ((g = 0) ⊂ Cn+1)/Zm(a0, . . . , an) be a hyperquotient
singularity and let π : Cn+1/Zm(a0, . . . , an) → Cn+1/Zm(a0, . . . , an) be the σ =
(a0, . . . , an)-blow-up. Let X be the proper transform of X via π and call again, by
abuse, π its restriction to X . Then π : X → X is also called the weighted blow-up
of X with weight σ = (a1, . . . , an) (or simply the σ-blow-up).
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The above Proposition 2.4, together with Corollary 7.15 in Chapter II of [9],
implies the following.

Proposition 2.7. Let X : ((g = 0) ⊂ Cn+1)/Zm(a0, . . . , an) be a hyperquotient
singularity and let i : X → Cn+1/Zm(a0, . . . , an) be the inclusion.

Then
X = ProjX

(
OX ⊕

⊕
d∈N,d>0

Jσ(db)
)
→ X,

where Jσ(db) := i−1
(
Iσ(db)

).OX .

If b is big enough, then

X = ProjX

(
OX ⊕

⊕
d∈N,d>0

Jσ(b)d
)
→ X.

3. Lifting cyclic quotient singularities

In this section we consider affine varieties Z and W ; we think at them as germs
of complex spaces around a point P , (Z, P ) and (W,P ). We assume that P ∈ Z
is an isolated Q-factorial singularities; Q-factoriality in this case depends on the
analytic type of the singularity.

Proposition 3.1. Let Z be an affine variety of dimension n ≥ 4 and assume
that Z has an isolated Q-factorial singularity at P ∈ Z.

Assume that (W,P ) ⊂ (Z, P ) is a Weil divisor which is a cyclic quotient sin-
gularity, i.e., W = Cn−1/Zm(a1, . . . , an−1).

Then Z is a cyclic quotient singularity, i.e., Z = Cn/Zm(a1, . . . , an−1, an),
where an ∈ Z is defined in the proof.

Proof. Assume first that W is a Cartier divisor, i.e., W is given as a zero locus
of a regular function f , W : (f = 0) ⊂ Z. The map f : Z → C is flat, since
dimC C = 1. Quotient singularities of dimension bigger or equal then three are
rigid, by a fundamental theorem of M. Schlessinger ([26]). Since Z has an isolated
singularity and dimW = n − 1 ≥ 3, it implies that W is smooth, i.e., m = 1. A
variety containing a smooth Cartier divisor is smooth along it, therefore, eventually
shrinking around P , Z is also smooth.

In the general case, since Z is Q-factorial, we can assume that there exists a
minimal positive integer r such that rW is Cartier (r is the index of W ). Following
Proposition 3.6 in [25], we can take a Galois cover π : Z ′ → Z, with group Zr, such
that Z ′ is normal, π is etale over Z \ P , π−1(P ) =: Q is a single point and the
Q-divisor π∗W := W ′ is Cartier, W ′ : (f ′ = 0) ⊂ Z ′.

Our assumption on W implies that r|m, that is, m = r.s, and that W ′ =
Cn−1/Zs(a1, . . . , an−1). By the first part of the proof we have that s = 1, i.e., W ′

and Z ′ are smooth.
Taking possibly a smaller neighborhood ofQ, we can assume that, ifW ′ = Cn−1

with coordinates (x1, . . . , xn−1), then Z ′ = Cn, with coordinates (x1, . . . , xn−1, xn),
where xn := f ′.
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The action of Zm on Cn, which extends the one on Cn−1, fixes W ′, therefore f ′

is an eigenfunction; that is for a primitive m-root of unity ε there exists an ∈ N

such that ε : f ′ → εanf ′.
Therefore the Galois cover π : Z ′ = Cn → Z is exactly the cover of the cyclic

quotient singularity Z = Cn/Zm(a1, . . . , an−1, an). �

If n = 3, the above proposition is false, as the following example shows.

Example 3.2. Let Z ′ = C4/Zr(a,−a, 1, 0); let (x, y, z, t) be coordinates in C4

and assume (a, r) = 1. Let Z ⊂ Z ′ be the hypersurface given as the zero set of the
function f := xy+ zrm + tn, with m ≥ 1 and n ≥ 2. This is a terminal singularity
which is not a cyclic quotient (it is a terminal hyperquotient singularity); in the
classification of terminal singularities it is described in Theorem (12.1) of [24] (see
also section 6 of [25]).

However the surface W := Z ∩ (t = 0), which is the surface in C3/Zr(a,−a, 1)
given as the zero set of (xy + zrm), is a cyclic quotient singularity of the type
C2/Zr2m(a, rm− a).

We give a proof of this last fact for the interested reader. Let W be the surface
in C3, with coordinate (x, y, z), given as the zero set of the function xy + zrm.
W has a singularity of type Arm−1, which is a cyclic quotient singularity of type
W = C2/Zrm(1,−1).

Let (ξ, η) be the coordinate of C2 and let ε = e
2πi
r2m a r2m root of unit;

note that εr is a rm root of unit. The action of Zrm on C2 can be described
as εr(ξ, η) = (εrξ, ε−rη). A base for C[ξ, η]Zrm , the spectrum of the ring of in-
variant monomials under the group action, is given by (ξrm, ηrm, ξ.η) and there-
fore W = Spec(ξrm, ηrm, ξ.η). Let (x, y, z) = (ξrm, ηrm, ξ.η), then W is ob-
tained as the quotient of W by the action of Zr with weights (a,−a, 1) given
by εrm(x, y, z) = (εrmax, ε−rmay, εrmz). It is easy to check that this action can
be lifted directly to C2 as the action: ε(ξ, η) = (εaξ, εrm−aη). This extends the
previously defined Zrm-action on C2 and has W as quotient.

Proposition 3.3. Let Z be an affine variety of dimension n ≥ 4 with an isolated
Q-factorial singularity at P ∈ Z. Assume also that (W,P ) ⊂ (Z, P ) is a Weil
divisor which has a hyperquotient singularity at P .

Then (Z, P ) is a hyperquotient singularity.

Proof. Let W : (g = 0) ⊂ Cn/Zm(a1, . . . , an).
As in the previous proof we assume first that W is a Cartier divisor, i.e.,

W is given as the zero locus of a regular function f . The map f : Z → C is
flat and it gives a deformation of W . Since W is a hypersurface singularity, its
infinitesimal deformations are all embedded deformations, i.e., they extend to a
deformation of the ambient space. That is, there exists a flat map f̃ : Z̃ → C such
that f̃−1(0) = Cn/Zm(a1, . . . , an), Z is a hypersurface in Z̃, i.e., Z : (g̃ = 0) ⊂ Z̃,
and f̃|Z = f .

By Schlessinger’s theorem ([26]), this deformation f̃ is rigid, therefore Z̃ =
Cn/Zm(a1, . . . , an)× C = Cn+1/Zm(a1, . . . , an, 0).

Thus Z : (g̃ = 0) ⊂ Cn+1/Zm(a1, . . . , an, 0).
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In the general case, as in [25], Proposition 3.6, we take the Zr-Galois cover
π : Z ′ → Z, such that Z ′ is normal, π is etale over Z \ P , π−1(P ) =: Q is a single
point and the Q-divisor π∗W := W ′ is a Cartier divisor: W ′ : (f ′ = 0) ⊂ Z ′.

The map W ′ → W is an etale cover of W ramified at P and it depends on
(a subgroup of) the local fundamental group π1(W \ {0}). By our assumption on
the dimensions and the Lefschetz theorem, this is equal to π1(C

n/Zm(a1, . . . , an)\
{0}) = Zm. Therefore the etale cover extends to Cn/Zm(a1, . . . , an) and we have
that W ′ : (g′ = 0) ⊂ Cn/Zs(a1, . . . , an), with m = r.s. By the first part of the
proof, Z ′ : (g̃′ = 0) ⊂ Cn+1/Zs(a1, . . . , an, 0). Therefore Z : (g̃ := g̃′ ◦ π−1 = 0) ⊂
Cn+1/Zm(a1, . . . , an, an+1). �

4. Lifting weighted blow-ups

This section is dedicated to the proof of Theorem 1.1; therefore f : X → Z will be
a local, projective, divisorial contraction which contracts an irreducible divisor E
to P ∈ Z. We assume that X (as a projective variety over Z) and Z (as affine
variety) are Q-factorial; factoriality on Z depends only on the analytic type of the
singularities, on X also on their relative position.

By assumption, Y ⊂ X is a f - ample Cartier divisor such that f ′ = f|Y : Y →
f(Y ) = W is a σ′ = (a1, . . . , an−1)-blow-up, πσ′ : Y → W .

In particular W = (g = 0) ⊂ Cn−1/Zm(a1, . . . , an−1), possibly with g ≡ 0.
Proposition 3.3 implies that Z = (g̃ = 0) ⊂ Cn/Zm(a1, . . . , an−1, an). Note that
W = f(Y ) is given as (xn = 0) ⊂ Z.

We have also Pic(Y/W ) = < L|E >, where L = −ME, M = lcm(a1, . . . , an−1).
By the relative Lefschetz theorem, Pic(X/Z) = Pic(Y/W ) = < L >; note that we
simply use the injectivity of the restriction map Pic(X/Z) −→ Pic(Y/W ), true
even in the singular case (see for instance p. 305 of [20], or [8]).

Since Y is Cartier and ample, there exists a positive integer a such that
OX(Y ) ∼f aL. We claim that an = aM . To show this consider the σ :=

(a1, . . . , an)-blow up of Z, f̃ : X̃ → Z. Let Ẽ be the exceptional divisor. Note
that Y sits in X̃ as an ample divisor, therefore by the Lefschetz theorem there
exists a Cartier divisor L̃ on X̃ which extends L|E′ , L̃ = −MẼ and Y = −aMẼ.

Since f̃(Ỹ ) : (xn = 0), by Lemma 2.3 we compute that an = σ-wt(xn) = aM .

The map f is proper, so, as in Section 2, we can apply Grothendieck’s language,
section 8 of [7], to say that

X = ProjZ

(
OZ ⊕

⊕
d>0

Id

)
,

where Id := f∗OX(−d(ME)) = f∗OX(dL).

Note that, since E is effective, Id = f∗OX(dL) ⊂ OZ ⊂ Cn[x1, . . . , xn] is an
ideal for positive d and Id = f∗OX(dL) = OZ ⊂ Cn[x1, . . . , xn] for non positive d.
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By Propositions 2.4 and 2.7, X will be the weighted blow-up if for positive d

f∗OX(dL) = i−1
(
xs1
1 · · ·xsn

n :

n∑
j=1

sjaj ≥ db
)
.OZ

where b = M , si are non negative integers and i : Z → Cn/Zm(a1, . . . , an) is the
inclusion.

We now mimic the proof of Theorem 3.6 in [23].
Consider the exact sequence

0 → OX(iL− aL) → OX(iL) → OY (iL) → 0,(4.1)

for every integer i.
We have noticed in Section 2 that R1f ′∗OY (iL) = 0 for i ∈ Z. Therefore,

by (4.1), we obtain surjections R1f∗OX((i−aj)L) → R1f∗OX(iL) , i, j ∈ Z, j ≥ 0.
On the other hand R1f∗OX(−jL) = 0 for sufficiently large j. Hence we obtain

R1f∗OX(iL) = 0 for every integer i.

Let OZ =
(
C[x1, . . . , xn]/(g̃)

)Zm
. All above implies the following exact se-

quences of OZ-algebras:

(4.2) 0 → f∗OX((i− a)L) → f∗OX(iL) → f∗OY (iL) → 0.

In particular, for i = a, we have

0 → OZ → f∗OX(aL) → f∗OY (aL) → 0.

Let θ be the image of 1 by the map OZ → f∗OX(aL); then (4.2) becomes

(4.3) 0 → f∗OX((i− a)L)
×θ→ f∗OX(iL) → f∗OY (iL) → 0;

here, ×θ is exactly ×(xn).

We will prove, by induction on d, that

f∗OX(dL) =
(
xs1
1 · · ·xsn

n :

n∑
j=1

sjaj ≥ db
)
.OZ .

By assumption we have that

f∗OY (dL) =
(
xs1
1 · · ·xsn

n :

n−1∑
j=1

sjaj ≥ db
)
.OW

where sj ∈ N.

By induction on d, we can assume that

f∗OX((d − a)L) =
(
xs1
1 · · ·xsn

n :

n∑
j=1

sjaj ≥ (d− a)b
)
.OZ ,

the case d− a ≤ 0 being trivial.
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Let g = xs1
1 · · ·xsn

n ∈ f∗OX(dL) be a monomial.

If sn ≥ 1 then, looking at the sequence (4.3), g comes from f∗OX((d− a)L) by
the multiplication by (xn); therefore

n∑
j=1

sjaj =
n−1∑
j=1

sjaj + snan ≥ (d− a)b+ snan ≥ db− ab+ ab = db.

If sn = 0, then g ∈ f∗OY (dL) and so

n∑
j=1

sjaj =
n−1∑
j=1

sjaj ≥ db.

The non-monomial case follows immediately.

5. Application to MMP with scaling

The proof of Theorem 1.3, as explained in the introduction, follows via a standard
induction procedure using Theorem 1.1, Theorem 1.1 in [3] and, for dimension 3,
assuming 1.2. It is actually very similar to the proof of Theorem 1.2.A in [3], we
rewrite it for the reader’s convenience.

Proof of Theorem 1.3. Let f : X → Z be a local projective, divisorial contraction
which contracts a prime divisor E to P ∈ Z as in the theorem.

The nef-value of the pair (f : X → Z,L) is defined as τf (X,L) := inf{t ∈ R :
KX+ tL is f -nef}. By the rationality theorem of Kawamata (Theorem 3.5 in [22]),
τf (X,L) := τ is a rational non-negative number. Moreover f is an adjoint con-
traction supported by KX + τL, that is KX + τL ∼f OX (∼f stays for numerical
equivalence over f).

By our assumption, τ > (n − 3). Therefore τ + 3 > n > n − 1 = dimE and,
by Proposition 3.3.2 in [3], there exists a section of L not vanishing along E; in
particular |L| is not empty.

Let Hi ∈ |L| be general divisors for i = 1, . . . , n − 3. By Theorem 1.1 in [3],
quoted in the introduction, for any i, Hi is a variety with terminal singularities
and the morphism fi = f|Hi

: Hi → f(Hi) =: Zi is a local contraction supported
by KHi + (τ − 1)L|Hi

. Since Z is terminal and Q-factorial (see Corollaries 3.36
and 3.43 in [22]), then the Zi’s are Q-Cartier divisors on Z.

For any t = n−3, . . . , 0 define Yt = ∩n−3−t
i=1 Hi and gt = f|Yt

: Yt → f(Yt) = Wt;
in particular Yn−3 = X , gn−3 = f and Wn−3 = Z.

By induction on t, applying Theorem 1.1 in [3], one sees that, for any t =
n − 4, . . . , 0, Yt is terminal and gt : Yt → Wt is a local Fano–Mori contraction
supported by KYt + (τ − (n − 3 − t)L|Yt

. Therefore Wt is a terminal variety (by
Corollary 3.43 in [22]) and it is a Q-Cartier divisor in Wt+1, because intersection
of Q-Cartier divisors (by construction Wt = ∩n−3−t

i=1 Zi).
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Set Lt := L|Wt
. By Proposition 3.3.4 of [3], Bs|Lt| has dimension at most 1;

by Bertini’s theorem (see Theorem 6.3 in [13]), Et := Yt ∩ E is a prime divisor.
Et is the intersection of Q-Cartier divisors and hence it is Q-Cartier.

Let X ′′ = Y0 and f ′′ = g0; by what said above, f ′′ : X ′′ → Z ′′ is a divisorial
contraction from a 3-fold X ′′ with terminal singularities, which contracts a prime
Q-Cartier divisor E′′ to a point P ∈ Z ′′. Using the classification in dimension 3 of
terminal Q-factorial singularities ([24]) and of divisorial contractions (for a sum-
mary see [5]), one can see that Z ′′ has a hyperquotient singularity at P , which is
actually contained in a special list.

By Proposition 3.3 and by induction on t, also Z has a hyperquotient singularity
at P .

Assume now (1.2), that is that f ′′ is a weighted blow-up of P ; applying Theo-
rem 1.1 inductively on t, we have that f is a weighted blow-up of a hyperquotient
singularities. �
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