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Lifting weighted blow-ups

Marco Andreatta

Abstract. Let f: X — Z be a local, projective, divisorial contraction
between normal varieties of dimension n with Q-factorial singularities.

Let Y C X be a f-ample Cartier divisor and assume that fjy: Y — W
has a structure of a weighted blow-up. We prove that f: X — Z, as well,
has a structure of weighted blow-up.

As an application we consider a local projective contraction f: X — Z
from a variety X with terminal Q-factorial singularities, which contracts
a prime divisor F to an isolated Q-factorial singularity P € Z, such that
—(Kx + (n — 3)L) is f-ample, for a f-ample Cartier divisor L on X.
We prove that (Z, P) is a hyperquotient singularity and f is a weighted
blow-up.

1. Introduction

Let X be a normal variety over C and let n = dim X. A contraction is a surjective
morphism ¢: X — Z with connected fibres onto a normal variety Z. If Z is affine
then f: X — Z will be called a local contraction.

We always assume that f is projective, that is, we assume the existence of
f-ample Cartier divisors L.

If f is birational and its exceptional set is an irreducible divisor, then it is
called divisorial. We say that the contraction is Q-factorial if X and Z have Q-
factorial singularities. Note that if X is Q-factorial and f is a divisorial contraction
of an extremal ray (in the sense of Mori theory), then Z is also Q-factorial (see
Corollary 3.18 in [22]).

A fundamental example of local contraction in algebraic geometry is the blow-
up of C" = Spec Clxy,...,x,] at 0. More generally, given o = (ay,...,a,) € N*
such that a; > 0 and m € N, one can define the o-blow-up (or the weighted blow-up
with weight o) of a hyperquotient singularity Z: ((¢ = 0) C C")/Zp (a1, ..., an).
The definition is given in Section 2, in accordance with Section 10 in [21].

The main goal of the paper is to prove the following theorem.
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Theorem 1.1. Let f: X — Z be a local, projective, divisorial and Q-factorial
contraction, which contracts an irreducible divisor E to an isolated Q-factorial
singularity P € Z. Assume that dim X > 4.

Let Y C X be a f-ample Cartier divisor such that f' = fy:Y — f(Y) =W
is a0’ = (ay,...,an_1)-blow-up, 7,: Y — W.

Then f: X = Z is a0 = (a1,...,0n_1,ap)-blow-up, 7,: X — Z, where a, is
such that Y ~; —anE (~; means linearly equivalent over f).

We apply the above theorem to the study of birational contractions which
appear in a minimal model program (MMP) with scaling on polarized pairs.

More precisely, if X is a variety with terminal Q-factorial singularities and L is
an ample Cartier divisor on X, the pair (X, L) is called a polarized pair. Given a
non negative rational number 7, there exists an effective Q-divisor A" on X such
that A" ~g rL and (X, A") is Kawamata log terminal. Consider the pair (X, A")
and the Q-Cartier divisor Kx + A" ~g Kx + L.

By Theorem 1.2 and Corollary 1.3.3 of [4], we can run a Kx + A”-minimal
model program (MMP) with scaling. This type of MMP was studied in deeper
details in the case r > (n — 2) in [1].

To perform such a program one needs to understand local birational maps (divi-
sorial or small contractions), f: X — Z, which are contractions of an extremal rays
R :=R"[C] C N1(X/Z), where C is a rational curve such that (Kx +rL)C <0
for a f-ample Cartier divisor L. We will call these maps Fano—Mori contractions
or contractions for a MMP.

In [2] we classified local birational contractions for a MMP if r > (n — 2): they
are o-blow-up of a smooth point with o = (1,1,b,...,b), where b is a positive
integer.

In [3], Theorem 1.1, we proved that if » > (n — 3) > 0 then one can find
a general divisor X’ € |L| which is a variety with at most Q-factorial terminal
singularities and such that fix,: X’ — f(X') =: Z’ is a contraction of an extremal
ray R’ :=R¥[C’'] such that (Kxs + (r —1)L’)C" <0, where L' := Lx.

On the other hand, a very hard program, aimed to classify local divisorial con-
tractions to a point for a MMP in dimension 3, was started long ago by Y. Kawa-
mata ([19]); it was further carried on by M. Kawakita, T. Hayakawa and J. A. Chen
(see, among other papers, [17], [18], [14], [15], [16], [10], [11], [12], [5]). They are
all weighted blow-ups of (particular) cyclic quotient or hyperquotient singularities,
and this should be the case for the few remaining ones. It is reasonable to make
the following:

Assumption 1.2. The divisorial contractions to a point for a MMP in dimen-
sion 3 are weighted blow-ups.

The next result is a consequence, via a standard induction procedure, called
the Apollonius method, of Theorem 1.1, the above quoted Theorem 1.1 in [3] and
Assumption 1.2 in dimension 3.
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Theorem 1.3. Let X be a variety with Q-factorial terminal singularities of di-
mensionn > 3 and let f: X — Z be a local, projective, divisorial contraction which
contracts a prime divisor E to an isolated Q-factorial singularity P € Z such that
—(Kx + (n—=3)L) is f-ample, for a f-ample Cartier divisor L on X.

Then P € Z is a hyperquotient singularity.

Moreover, if we assume that 1.2 holds, f is a weighted blow-up.

2. Weighted blow-ups

We recall the definition of weighted blow-up; our notation is compatible with that
of Section 10 in [21] and of Section 3 in [10].

Let ¢ = (a1,...,a,) € N" such that a; > 0 and ged(aq,...,a,) = 1; let
M =lem(ay,...,an).

The weighted projective space with weight (a1, ..., a,), denoted by P(aq, ..., a,),
can be defined either as

P(as,...,a,):= (C" —{0})/C*,
where £ € C* acts by &(x1,...,2,) = (£ 21, ...,£%x,), Or as
P(ay,...,ay) := Projc Clay, ..., z,],

where C[zq,...,2,] is the polynomial algebra over C graded by the condition
deg(x;) = a;, for i =1,... n.

A cyclic quotient singularity, denoted by C"/Zy, (a1, ..., a,):=X, is an affine va-
riety defined as the quotient of C™ by the action (z1,...,z,)— (€% 21, ..., €% x,,),
where € is a primitive m-th root of unity. Equivalently X is isomorphic to the
spectrum Spec C[z, . .., z,]%™ of the ring of invariant monomials under the group
action.

Let Q € Y: (g = 0) C C"! be a hypersurface singularity with a Z™ action.
The point P € Y/Z™ := X is called a hyperquotient singularity. In suitable local
analytic coordinates, the action on Y extends to an action on C"*! (in fact it
acts on the tangent space Ty ) and we can assume that Z,, acts diagonally by
e: (To,...,xn) = (€"x,..., € x,), where € is a primitive m-th root of unity.
Since Y is fixed by the action of Z,,, it follows that g is an eigenfunction, so
that e: g — €°g. We define the type of the hyperquotient singularity P € X with
the symbol %(ao, ...yan;e). Note that if m = 1 this is simply a hypersurface
singularity, while if g = x( this is a cyclic quotient singularity.

Let X = C"/Zm(a1,...,ay,) be a cyclic quotient singularity and consider the
rational map

p: X = Play,...,an)
given by (z1,...,25) — (21 xy).
Definition 2.1. The weighted blow-up of X = C"/Zy,(as,...,a,) with weight
o = (ai,...,a,) (or simply the o-blow-up), X, is defined as the closure in X x

P(ai,...,ax) of the graph of ¢, together with the morphism 7, : X — X given by
the projection on the first factor.
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The weighted blow-up can be described by the theory of torus embeddings, as
in section 10 of [21]. Namely, let e; = (0,...,1,...,0) for i = 1,...,n and let
e=1/m(ai,...,ay). Then X is the toric variety which corresponds to the lattice
Zei + -+ + Ze, + Ze and the cone C(X) = Qye; + -+ + Qye, in Q, where
Qy={2€Q:2>0}.

We denote with m,: X — X the proper birational morphism from the normal
toric variety X corresponding to the cone decomposition of C(X) consisting of
Ci =3j2Q1e; +Qqe, for i =1,...,n, and their intersections.

The following facts can be easily checked in many ways, for instance via toric
geometry (see also section 10 in [21] or section 3 in [10]).

e The map 7, is birational and contracts an exceptional irreducible divisor
E=P(ay,...,ar) to 0 € X.

e Let (y1 : ... : yn) be homogeneous coordinates on P(ai,...,an). For any
1 <4 < k consider the open affine subset U; = X N {y; # 0}; these affine
open subset are described as follows:

U, 2 SpecClZ1, ..., Tn]/Za;(—a1,...,m ..., —ap).

The morphism ¢g 7, : Ui — X is given by

(Z1,..., &) — (B2, 20

% ).

1

e In the affine set U; the divisor E is defined by {z; = 0}; it is a Q-Cartier
divisor and O (—aFE) ® O = Op(ma), for a divisible by Ila,.
The divisor H := —MFE is actually Cartier, it is generated over 7, by global
sections and it is the generator of Pic(X/X) =7Z =< H >.

e Let L = aH, for a a positive integer; clearly L is o-ample. We have
R'7,,Oy(il) = HY(X,iL) =0
for every i € Z.

We now use Grothendieck’s language to give a different characterization of the
o-weighted blow-up.

For a a positive integer, let L = aH = —aMFE. The divisor L is a w,-ample
Cartier divisor.

Consider the graduated Clz1,...,x,]%"-algebra @5, 7Ox(dL). The con-
struction in section (8.8) of [7] gives N

X = Projy (oX ® Pr.0x (dL)) = X.
d>0

Consider now the function
o-wt: Clzy,...,x5] = Q

defined as follows: on a monomial M = z{' ... 25", we put

n
o-wt(M) := Z sia;/m;
i=1
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for a general f = ZI arMiy, where ay € C and M; are monomials, we set
o-wt(f) := min{o-wt(My) : ay # 0}.

Definition 2.2. For a rational number k, the o-weighted ideal I9 (k) is defined as
I°(k) ={g € Clz1, ..., 2z, : o-wt(g) > k} = (.I;l R A Zsjaj/m > k)
j=1

The set 1°(k) is a an ideal in C[z1, . . ., z,] and therefore also in C[x1, . . ., x,)%m;
in particular Clzq, . .. amn]Zm@@keN,dw I7(k)isaClxy, ..., x,)?m-graded module.

The next lemma follows straightforward from the above discussion; see also
Lemma 3.5 in [10].

Lemma 2.3. Let 7,: X — X be a o-blow-up, E the exceptional divisor; let D
be the Q-Cartier Weil divisor defined by a Z,,-semi invariant f € Clxy,...,x,).
Then we have

(D) = D+ (o-wt(f))E,

o

where D is the proper transform of D.
In particular, for every integer a, we have m,Ox(—aF) = 1°(a).

The Grothendieck set-up and Lemma 2.3 imply immediately the following char-
acterization of weighted blow-up.

Proposition 2.4. Let X = C"/Zy,(a1,...,a,) and b a positive integer multiple
of M = lem(aq, ..., a,). The weighted blow-up of X with weight o defined above,
e X = X, is given by

X = Projy ((’)X @ de}g{?>0 Ia(db)).

Remark 2.5. The above characterization of X does not depend on the the choice
of b as a positive multiple of M; in fact taking Proj of truncated graded algebras
we obtain isomorphic objects (see for instance Exercise 5.13 or 7.11, Chapter II
in [9]).

Note that it is not true that I9(db) = I°(b)%: see for instance Example 3.5
in [2]. However this is true if b is chosen big enough; this can be proved, for
instance, following the proof of Theorem 7.17 in [9].

If this is the case we have that X = Projy (Ox & Dicn.a =0 I9(b)4); that
is, X is the blowing-up of X = C"/Z,(ay,...,a,) with respect to the coherent
ideal I7(b) (see the definition in Section 7, Chapter II, [9]).

Definition 2.6. Let X: ((¢g = 0) ¢ C"*Y)/Z,,(ao,...,a,) be a hyperquotient
singularity and let 7: C"*1/Z,,(ao,...,an) — C*"*1/Z,.(ag,...,a,) be the o =
(ag, .. .,an)-blow-up. Let X be the proper transform of X via 7 and call again, by
abuse, 7 its restriction to X. Then m: X — X is also called the weighted blow-up
of X with weight o = (a1, ...,ay) (or simply the o-blow-up).
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The above Proposition 2.4, together with Corollary 7.15 in Chapter II of [9],
implies the following.

Proposition 2.7. Let X: ((g = 0) C C"™)/Z(ao,...,an) be a hyperquotient
singularity and let i: X — C"" /Z,(ao, ..., a,) be the inclusion.
Then
X = Projy (OX o P J"(db)) =X,
deN,d>0
where J(db) :=i~*(I°(db)) Ox.
If b is big enough, then

X = Projy (OX ® d6§2>oj<’(b)d) - X.

3. Lifting cyclic quotient singularities

In this section we consider affine varieties Z and W; we think at them as germs
of complex spaces around a point P, (Z, P) and (W, P). We assume that P € Z
is an isolated Q-factorial singularities; Q-factoriality in this case depends on the
analytic type of the singularity.

Proposition 3.1. Let Z be an affine variety of dimension n > 4 and assume
that Z has an isolated Q-factorial singularity at P € Z.

Assume that (W, P) C (Z, P) is a Weil divisor which is a cyclic quotient sin-
gularity, i.e., W =C" " 1/Z,.(a1,...,an—1).

Then Z is a cyclic quotient singularity, i.e., Z = C"/Zp(a1,...,0n-1,an),
where a,, € Z is defined in the proof.

Proof. Assume first that W is a Cartier divisor, i.e., W is given as a zero locus
of a regular function f, W: (f = 0) € Z. The map f: Z — C is flat, since
dimc C = 1. Quotient singularities of dimension bigger or equal then three are
rigid, by a fundamental theorem of M. Schlessinger ([26]). Since Z has an isolated
singularity and dimW = n — 1 > 3, it implies that W is smooth, i.e., m = 1. A
variety containing a smooth Cartier divisor is smooth along it, therefore, eventually
shrinking around P, Z is also smooth.

In the general case, since Z is QQ-factorial, we can assume that there exists a
minimal positive integer r such that »W is Cartier (r is the index of W). Following
Proposition 3.6 in [25], we can take a Galois cover 7: Z' — Z, with group Z,, such
that Z’ is normal, 7 is etale over Z \ P, 7~ 1(P) =: @Q is a single point and the
Q-divisor 7*W := W' is Cartier, W': (f' =0) C Z".

Our assumption on W implies that r|m, that is, m = r's, and that W' =
C"1/Zs(ai,...,an,_1). By the first part of the proof we have that s = 1, i.e., W’
and Z' are smooth.

Taking possibly a smaller neighborhood of ), we can assume that, if W/ = C*~!
with coordinates (x1,...,x,_1), then Z’ = C", with coordinates (x1,...,Zn_1,Tn),
where z,, := f'.
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The action of Z,, on C", which extends the one on C"~!, fixes W', therefore f
is an eigenfunction; that is for a primitive m-root of unity e there exists a, € N
such that e: f’ — e f’.

Therefore the Galois cover w: Z' = C* — Z is exactly the cover of the cyclic
quotient singularity Z = C"/Zy, (a1, ..., Gn—1,an). O

If n = 3, the above proposition is false, as the following example shows.

Example 3.2. Let Z/ = C*/Z,(a,—a,1,0); let (x,y,2,t) be coordinates in C*
and assume (a,7) = 1. Let Z C Z’ be the hypersurface given as the zero set of the
function f := zy + 2" +t", with m > 1 and n > 2. This is a terminal singularity
which is not a cyclic quotient (it is a terminal hyperquotient singularity); in the
classification of terminal singularities it is described in Theorem (12.1) of [24] (see
also section 6 of [25]).

However the surface W := Z N (¢t = 0), which is the surface in C*/Z,(a, —a, 1)
given as the zero set of (xy + 2™™), is a cyclic quotient singularity of the type
C?/Zy2pn(a,rm — a).

We give a proof of this last fact for the interested reader. Let W be the surface
in C?, with coordinate (z,, z), given as the zero set of the function xy + 2.
W has a singularity of type A,,,_1, which is a cyclic quotient singularity of type
W = C?/Zm(1,-1).

Let (£,m) be the coordinate of C? and let ¢ = e%m a r2m root of unit;
note that € is a rm root of unit. The action of Z,,, on C? can be described
as € (&,n) = (€"¢,¢7™n). A base for C[¢,n)%, the spectrum of the ring of in-
variant monomials under the group action, is given by (", 7"™,&'n) and there-
fore W = Spec(&™™,n"™,€n). Let (w,y,2) = (€™, n"™™, &n), then W is ob-
tained as the quotient of W by the action of Z, with weights (a, —a,1) given
by € (x,y,z) = (€™, e "My, e™z). It is easy to check that this action can
be lifted directly to C? as the action: €(&,n) = (%€, "™~ %n). This extends the
previously defined Z,.,,-action on C? and has W as quotient.

Proposition 3.3. Let Z be an affine variety of dimension n > 4 with an isolated
Q-factorial singularity at P € Z. Assume also that (W,P) C (Z,P) is a Weil
divisor which has a hyperquotient singularity at P.

Then (Z, P) is a hyperquotient singularity.

Proof. Let W : (g =0) C C"/Zp(ay,...,an).

As in the previous proof we assume first that W is a Cartier divisor, i.e.,
W is given as the zero locus of a regular function f. The map f: Z — C is
flat and it gives a deformation of W. Since W is a hypersurface singularity, its
infinitesimal deformations are all embedded deformations, i.e., they extend to a
deformation of the ambient space. That is, there exists a flat map f: Z — C such
that f‘l(O) = C"/Zp(ay,...,an), Z is a hypersurface in Z, i.e., Z: (§=0) C Z,
and fz = f.

By Schlessinger’s theorem ([26]), this deformation f is rigid, therefore Z =
C"/Zm(ay,...,ap) x C=C""/Zy(a1,...,a,,0).

Thus Z: (§=0) C C""/Z, (a1, ..., a,,0).
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In the general case, as in [25], Proposition 3.6, we take the Z,-Galois cover
72 Z' — Z, such that Z' is normal, 7 is etale over Z \ P, 7~ }(P) =: Q is a single
point and the Q-divisor 7*W := W is a Cartier divisor: W' : (f' =0) C Z'.

The map W’/ — W is an etale cover of W ramified at P and it depends on
(a subgroup of) the local fundamental group 7 (W \ {0}). By our assumption on
the dimensions and the Lefschetz theorem, this is equal to w1 (C"/Z, (a1, . .., an)\
{0}) = Z,,,. Therefore the etale cover extends to C"/Z,,(a1,...,a,) and we have
that W': (¢’ = 0) € C"/Zs(a1,...,a,), with m = rs. By the first part of the
proof, Z': (§' = 0) C C"*1/Zs(a1,...,a,,0). Therefore Z: (§:=g or * =0) C
C" Y Zp(ar, ... a0, ani1). O

4. Lifting weighted blow-ups

This section is dedicated to the proof of Theorem 1.1; therefore f: X — Z will be
a local, projective, divisorial contraction which contracts an irreducible divisor F
to P € Z. We assume that X (as a projective variety over Z) and Z (as affine
variety) are Q-factorial; factoriality on Z depends only on the analytic type of the
singularities, on X also on their relative position.

By assumption, Y C X is a f- ample Cartier divisor such that ' = fjy: Y —
fY)=Wisao =(a1,...,an—1)-blow-up, mpr: ¥ — W.

In particular W = (¢ = 0) € C"'/Z,(a1,...,a,_1), possibly with g = 0.
Proposition 3.3 implies that Z = (§ = 0) C C"/Zy,(a1,...,an_1,a,). Note that
W = f(Y) is given as (xz, =0) C Z.

We have also Pic(Y/W) = < L >, where L = —ME, M = lem(ay, ...,y 1).
By the relative Lefschetz theorem, Pic(X/Z) = Pic(Y/W) = < L >; note that we
simply use the injectivity of the restriction map Pic(X/Z) — Pic(Y/W), true
even in the singular case (see for instance p. 305 of [20], or [8]).

Since Y is Cartier and ample, there exists a positive integer a such that
Ox(Y) ~¢ aL. We claim that a, = aM. To show this consider the o :=
(a1,...,an)-blow up of Z, f: X — Z. Let E be the exceptional divisor. Note
that Y sits in X as an ample divisor, therefore by the Lefschetz theorem there
exists a Cartler divisor L on X which extends Lig, L=-ME and Y = —aME.

Since f(Y) : (z, = 0), by Lemma 2.3 we compute that a, = o-wt(z,) = aM.

The map f is proper, so, as in Section 2, we can apply Grothendieck’s language,
section 8 of [7], to say that

X = Proj, ((’)Z @@Id),
d>0
where Id = f*Ox(—d(ME)) = f*Ox(dL)

Note that, since F is effective, I = f.Ox(dL) C Oz C C"[x1,...,x,] is an
ideal for positive d and I; = f,Ox(dL) = Oz C C"[z1,...,z,] for non positive d.
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By Propositions 2.4 and 2.7, X will be the weighted blow-up if for positive d
n
f*Ox(dL) = i_l (xil .. x:{’ : Z S5a; > db)(’)z
j=1

where b = M, s; are non negative integers and i: Z — C"/Z,,(a1,...,ay) is the
inclusion.

We now mimic the proof of Theorem 3.6 in [23].
Consider the exact sequence

(4.1) 0 — Ox(iL —aL) — Ox(iL) — Oy (iL) — 0,

for every integer 1.

We have noticed in Section 2 that R'f’ Oy (iL) = 0 for i € Z. Therefore,
by (4.1), we obtain surjections R' f,Ox ((i—aj)L) — R'f.Ox(iL) ,i,j € Z,j > 0.
On the other hand R'f,Ox(—jL) = 0 for sufficiently large j. Hence we obtain

R'f,Ox(iL) =0 for every integer i.

Let Oz = (Clay,... ,xn]/(g))Zm. All above implies the following exact se-
quences of Oz-algebras:

(4.2) 0— f.Ox((i —a)L) = f.Ox(iL) — f.Oy(iL) — 0.
In particular, for ¢ = a, we have
0— Oz — f.Ox(aL) — f.Oy(aL) — 0.
Let 0 be the image of 1 by the map Oz — f.Ox(aL); then (4.2) becomes

(4.3) 0— £.0x((i —a)L) %8 £,Ox(iL) — f.Oy(iL) — 0;

here, x6 is exactly x(zy,).

We will prove, by induction on d, that
f*Ox(dL) = (xil B x:;” : Zsjaj > db)OZ
j=1
By assumption we have that
n—1
f*Oy(dL) = (:Cil e -xi’” : Z S;ja; > db)OW
j=1

where s; € N.

By induction on d, we can assume that
f.0x((d=a)L) = (a3 --ay > sja; > (d—a)b) Oz,
j=1

the case d — a < 0 being trivial.
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Let g = 27' -+ 23" € f,Ox(dL) be a monomial.

If s, > 1 then, looking at the sequence (4.3), g comes from f,Ox((d —a)L) by
the multiplication by (z,,); therefore

n n—1
Zsjaj = Z sjaj + span > (d — a)b+ spa, > db—ab+ ab = db.
j=1 j=1
If s, =0, then g € f.Oy(dL) and so

n n—1
E S5a5 = E S5Qj Z db.
j=1 j=1

The non-monomial case follows immediately.

5. Application to MMP with scaling

The proof of Theorem 1.3, as explained in the introduction, follows via a standard
induction procedure using Theorem 1.1, Theorem 1.1 in [3] and, for dimension 3,
assuming 1.2. It is actually very similar to the proof of Theorem 1.2.A in [3], we
rewrite it for the reader’s convenience.

Proof of Theorem 1.3. Let f: X — Z be a local projective, divisorial contraction
which contracts a prime divisor F to P € Z as in the theorem.

The nef-value of the pair (f : X — Z,L) is defined as 74(X, L) :==inf{t e R :
Kx +tL is f-nef}. By the rationality theorem of Kawamata (Theorem 3.5 in [22]),
77(X,L) := 7 is a rational non-negative number. Moreover f is an adjoint con-
traction supported by Kx + 7L, that is Kx + 7L ~; Ox (~ stays for numerical
equivalence over f).

By our assumption, 7 > (n — 3). Therefore 7+ 3 >n >n —1 = dim F and,
by Proposition 3.3.2 in [3], there exists a section of L not vanishing along E; in
particular |L| is not empty.

Let H; € |L| be general divisors for ¢ = 1,...,n — 3. By Theorem 1.1 in [3],
quoted in the introduction, for any i, H; is a variety with terminal singularities
and the morphism f; = fg, : H; — f(H;) =: Z; is a local contraction supported
by Ky, + (1 — 1)L|g,. Since Z is terminal and Q-factorial (see Corollaries 3.36
and 3.43 in [22]), then the Z;’s are Q-Cartier divisors on Z.

For any t =n—3,...,0 define Y; = N> "H; and g; = Jiv Y = f(Yr) = Wy
in particular Y,,_3 =X, g3 = fand W,,_3 = Z.

By induction on t, applying Theorem 1.1 in [3], one sees that, for any ¢ =
n—4,...,0, Y; is terminal and g;: Y; — W; is a local Fano—Mori contraction
supported by Ky, + (7 — (n — 3 —t)L}y,. Therefore W is a terminal variety (by
Corollary 3.43 in [22]) and it is a Q-Cartier divisor in W41, because intersection
of Q-Cartier divisors (by construction Wy = N'~2~*Z;).



LIFTING WEIGHTED BLOW-UPS 1819

Set L; := Ljw,. By Proposition 3.3.4 of [3], Bs|L;| has dimension at most 1;
by Bertini’s theorem (see Theorem 6.3 in [13]), E; := Y; N E is a prime divisor.
E; is the intersection of Q-Cartier divisors and hence it is Q-Cartier.

Let X" =Y, and f” = go; by what said above, f”: X" — Z" is a divisorial
contraction from a 3-fold X" with terminal singularities, which contracts a prime
Q-Cartier divisor E” to a point P € Z”. Using the classification in dimension 3 of
terminal Q-factorial singularities ([24]) and of divisorial contractions (for a sum-
mary see [5]), one can see that Z” has a hyperquotient singularity at P, which is
actually contained in a special list.

By Proposition 3.3 and by induction on ¢, also Z has a hyperquotient singularity
at P.

Assume now (1.2), that is that f” is a weighted blow-up of P; applying Theo-
rem 1.1 inductively on ¢, we have that f is a weighted blow-up of a hyperquotient
singularities. O
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