Rev. Mat. Iberoam. **34** (2018), no. 4, 1809[–1820](#page-11-0) doi 10.4171/rmi/1044

Lifting weighted blow-ups

Marco Andreatta

Abstract. Let $f: X \to Z$ be a local, projective, divisorial contraction between normal varieties of dimension *n* with Q-factorial singularities.

Let *Y* \subset *X* be a *f*-ample Cartier divisor and assume that $f_{|Y}: Y \to W$ has a structure of a weighted blow-up. We prove that $f: X \to Z$, as well, has a structure of weighted blow-up.

As an application we consider a local projective contraction $f: X \to Z$ from a variety X with terminal $\mathbb Q$ -factorial singularities, which contracts a prime divisor *E* to an isolated Q-factorial singularity $P \in Z$, such that $-(K_X + (n-3)L)$ is *f*-ample, for a *f*-ample Cartier divisor *L* on *X*. We prove that (Z, P) is a hyperquotient singularity and f is a weighted blow-up.

1. Introduction

Let X be a normal variety over $\mathbb C$ and let $n = \dim X$. A *contraction* is a surjective morphism $\varphi: X \to Z$ with connected fibres onto a normal variety Z. If Z is affine then $f: X \to Z$ will be called a *local contraction*.

We always assume that f is *projective*, that is, we assume the existence of f-ample Cartier divisors L.

If f is birational and its exceptional set is an irreducible divisor, then it is called *divisorial*. We say that the contraction is Q*-factorial* if X and Z have Qfactorial singularities. Note that if X is \mathbb{Q} -factorial and f is a divisorial contraction of an extremal ray (in the sense of Mori theory), then Z is also $\mathbb Q$ -factorial (see Corollary 3.18 in [\[22\]](#page-11-1)).

A fundamental example of local contraction in algebraic geometry is the blowup of $\mathbb{C}^n = \text{Spec } \mathbb{C}[x_1,\ldots,x_n]$ at 0. More generally, given $\sigma = (a_1,\ldots,a_n) \in \mathbb{N}^n$ such that $a_i > 0$ and $m \in \mathbb{N}$, one can define the σ -blow-up (or the weighted blow-up with weight σ) of a hyperquotient singularity $Z: ((g = 0) \subset \mathbb{C}^n)/\mathbb{Z}_m(a_1, \ldots, a_n).$ The definition is given in Section [2,](#page-2-0) in accordance with Section 10 in [\[21\]](#page-11-2).

The main goal of the paper is to prove the following theorem.

Mathematics Subject Classification (2010): Primary 14E30, 14N30; Secondary 14J40. *Keywords:* Contractions, weighted blow-up, Q-factorial terminal singularities.

Theorem 1.1. Let $f: X \rightarrow Z$ be a local, projective, divisorial and \mathbb{Q} -factorial *contraction, which contracts an irreducible divisor* E *to an isolated* Q*-factorial singularity* $P \in Z$ *. Assume that* dim $X \geq 4$ *.*

Let $Y \subset X$ be a f-ample Cartier divisor such that $f' = f_{|Y} : Y \to f(Y) = W$ $is a \sigma' = (a_1, \ldots, a_{n-1})$ *-blow-up*, $\pi_{\sigma'} : Y \to W$.

Then $f: X \to Z$ *is a* $\sigma = (a_1, \ldots, a_{n-1}, a_n)$ *-blow-up,* $\pi_{\sigma}: X \to Z$ *, where* a_n *is such that* $Y \sim_f -a_n E$ (\sim_f *means linearly equivalent over* f).

We apply the above theorem to the study of birational contractions which appear in a minimal model program (MMP) with scaling on polarized pairs.

More precisely, if X is a variety with terminal \mathbb{O} -factorial singularities and L is an ample Cartier divisor on X , the pair (X, L) is called a *polarized pair*. Given a non negative rational number r, there exists an effective $\mathbb{Q}\text{-divisor }\Delta^r$ on X such that $\Delta^r \sim_0 rL$ and (X, Δ^r) is Kawamata log terminal. Consider the pair (X, Δ^r) and the Q-Cartier divisor $K_X + \Delta^r \sim_{\mathbb{Q}} K_X + rL$.

By Theorem 1.2 and Corollary 1.3.3 of [\[4\]](#page-10-0), we can run a $K_X + \Delta^r$ -minimal *model program (MMP) with scaling*. This type of MMP was studied in deeper details in the case $r \ge (n-2)$ in [\[1\]](#page-10-1).

To perform such a program one needs to understand local birational maps (divisorial or small contractions), $f: X \to Z$, which are contractions of an extremal rays $R := \mathbb{R}^+[C] \subset N_1(X/Z)$, where C is a rational curve such that $(K_X + rL)$ $C < 0$ for a f-ample Cartier divisor L. We will call these maps Fano–Mori contractions or *contractions for a MMP*.

In [\[2\]](#page-10-2) we classified local birational contractions for a MMP if $r \ge (n-2)$: they are σ -blow-up of a smooth point with $\sigma = (1, 1, b, \ldots, b)$, where b is a positive integer.

In [\[3\]](#page-10-3), Theorem 1.1, we proved that if $r > (n-3) > 0$ then one can find a general divisor $X' \in |L|$ which is a variety with at most Q-factorial terminal singularities and such that $f_{|X'}: X' \to f(X') = Z'$ is a contraction of an extremal ray $R' := \mathbb{R}^+[C']$ such that $(K_{X'} + (r-1)L')$ $C' < 0$, where $L' := L_{|X'}$.

On the other hand, a very hard program, aimed to classify local divisorial contractions to a point for a MMP in dimension 3, was started long ago by Y. Kawamata ([\[19\]](#page-11-3)); it was further carried on by M. Kawakita, T. Hayakawa and J. A. Chen (see, among other papers, [\[17\]](#page-11-4), [\[18\]](#page-11-5), [\[14\]](#page-11-6), [\[15\]](#page-11-7), [\[16\]](#page-11-8), [\[10\]](#page-10-4), [\[11\]](#page-11-9), [\[12\]](#page-11-10), [\[5\]](#page-10-5)). They are all weighted blow-ups of (particular) cyclic quotient or hyperquotient singularities, and this should be the case for the few remaining ones. It is reasonable to make the following:

Assumption 1.2. *The divisorial contractions to a point for a MMP in dimension* 3 *are weighted blow-ups.*

The next result is a consequence, via a standard induction procedure, called the *Apollonius method*, of Theorem [1.1,](#page-1-0) the above quoted Theorem 1.1 in [\[3\]](#page-10-3) and Assumption [1.2](#page-1-1) in dimension 3.

Theorem 1.3. *Let* X *be a variety with* Q*-factorial terminal singularities of dimension* $n > 3$ *and let* $f: X \rightarrow Z$ *be a local, projective, divisorial contraction which contracts a prime divisor* E *to an isolated* Q-factorial singularity $P \in \mathbb{Z}$ such that $-(K_X + (n-3)L)$ *is f-ample, for a f-ample Cartier divisor* L *on* X.

Then $P \in Z$ *is a hyperquotient singularity.*

Moreover, if we assume that [1.2](#page-1-1) *holds,* f *is a weighted blow-up.*

2. Weighted blow-ups

We recall the definition of weighted blow-up; our notation is compatible with that of Section 10 in [\[21\]](#page-11-2) and of Section 3 in [\[10\]](#page-10-4).

Let $\sigma = (a_1, \ldots, a_n) \in \mathbb{N}^n$ such that $a_i > 0$ and $gcd(a_1, \ldots, a_n) = 1$; let $M = \text{lcm}(a_1,\ldots,a_n).$

The *weighted projective space* with weight (a_1, \ldots, a_n) , denoted by $\mathbb{P}(a_1, \ldots, a_n)$, can be defined either as

$$
\mathbb{P}(a_1, \dots, a_n) := (\mathbb{C}^n - \{0\})/\mathbb{C}^*,
$$

or $f(x, a_n) = (c^{a_1}x, c^{a_n}x)$, or

where $\xi \in \mathbb{C}^*$ acts by $\xi(x_1,\ldots,x_n)=(\xi^{a_1}x_1,\ldots,\xi^{a_n}x_n)$, or as

$$
\mathbb{P}(a_1,\ldots,a_n):=\operatorname{Proj}_{\mathbb{C}}\mathbb{C}[x_1,\ldots,x_n],
$$

where $\mathbb{C}[x_1,\ldots,x_n]$ is the polynomial algebra over \mathbb{C} graded by the condition $deg(x_i) = a_i$, for $i = 1, \ldots, n$.

A cyclic quotient singularity, denoted by $\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)=X$, is an affine variety defined as the quotient of \mathbb{C}^n by the action $(x_1, ..., x_n) \rightarrow (\epsilon^{a_1} x_1, ..., \epsilon^{a_n} x_n)$, where ϵ is a primitive m-th root of unity. Equivalently X is isomorphic to the spectrum Spec $\mathbb{C}[x_1,\ldots,x_n]^{\mathbb{Z}_m}$ of the ring of invariant monomials under the group action.

Let $Q \in Y: (g = 0) \subset \mathbb{C}^{n+1}$ be a hypersurface singularity with a \mathbb{Z}^m action. The point $P \in Y/\mathbb{Z}^m := X$ is called a *hyperquotient singularity*. In suitable local analytic coordinates, the action on Y extends to an action on \mathbb{C}^{n+1} (in fact it acts on the tangent space $T_{Y,Q}$ and we can assume that \mathbb{Z}_m acts diagonally by $\epsilon: (x_0,\ldots,x_n) \to (\epsilon^{a_0}x_0,\ldots,\epsilon^{a_n}x_n),$ where ϵ is a primitive m-th root of unity. Since Y is fixed by the action of \mathbb{Z}_m , it follows that g is an eigenfunction, so that $\epsilon: g \to \epsilon^e g$. We define the *type* of the hyperquotient singularity $P \in X$ with the symbol $\frac{1}{m}(a_0,\ldots,a_n;e)$. Note that if $m=1$ this is simply a hypersurface singularity, while if $g = x_0$ this is a cyclic quotient singularity.

Let $X = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$ be a cyclic quotient singularity and consider the rational map

$$
\varphi\colon X\to \mathbb{P}(a_1,\ldots,a_n)
$$

given by $(x_1,\ldots,x_n)\mapsto (x_1:\cdots:x_n).$

Definition 2.1. The *weighted blow-up* of $X = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$ with weight $\sigma = (a_1, \ldots, a_n)$ (or simply the σ -blow-up), \overline{X} , is defined as the closure in $X \times$ $\mathbb{P}(a_1,\ldots,a_k)$ of the graph of φ , together with the morphism $\pi_{\sigma} : \overline{X} \to X$ given by the projection on the first factor.

The weighted blow-up can be described by the theory of torus embeddings, as in section 10 of [\[21\]](#page-11-2). Namely, let $e_i = (0,\ldots,1,\ldots,0)$ for $i = 1,\ldots,n$ and let $e = 1/m(a_1,...,a_n)$. Then X is the toric variety which corresponds to the lattice $\mathbb{Z}e_1 + \cdots + \mathbb{Z}e_n + \mathbb{Z}e$ and the cone $C(X) = \mathbb{Q}_+e_1 + \cdots + \mathbb{Q}_+e_n$ in \mathbb{Q}^n , where $\mathbb{Q}_+ = \{z \in \mathbb{Q} : z \geq 0\}.$

We denote with $\pi_{\sigma} : \overline{X} \to X$ the proper birational morphism from the normal toric variety \overline{X} corresponding to the cone decomposition of $C(X)$ consisting of $C_i = \sum_{j \neq i} \mathbb{Q}_+ e_j + \mathbb{Q}_+ e$, for $i = 1, \ldots, n$, and their intersections.

The following facts can be easily checked in many ways, for instance via toric geometry (see also section 10 in $[21]$ or section 3 in $[10]$).

- The map π_{σ} is birational and contracts an exceptional irreducible divisor $E \cong \mathbb{P}(a_1,\ldots,a_k)$ to $0 \in X$.
- Let $(y_1 : \ldots : y_n)$ be homogeneous coordinates on $\mathbb{P}(a_1, \ldots, a_n)$. For any $1 \leq i \leq k$ consider the open affine subset $U_i = X \cap \{y_i \neq 0\}$; these affine open subset are described as follows:

$$
U_i \cong \mathrm{Spec}\mathbb{C}[\bar{x}_1,\ldots,\bar{x}_n]/\mathbb{Z}_{a_i}(-a_1,\ldots,m,\ldots,-a_n).
$$

The morphism $\varphi_{\sigma|U_i}: U_i \to X$ is given by

$$
(\bar{x}_1,\ldots,\bar{x}_n)\mapsto (\bar{x}_1\bar{x}_i^{a_1/m},\ldots,\bar{x}_i^{a_i/m},\ldots,\bar{x}_k\,\bar{x}_i^{a_k/m}).
$$

• In the affine set U_i the divisor E is defined by $\{\bar{x}_i = 0\}$; it is a Q-Cartier divisor and $\mathcal{O}_{\overline{X}}(-aE) \otimes \mathcal{O}_E = \mathcal{O}_{\mathbb{P}}(ma)$, for a divisible by Πa_i . The divisor $H := -ME$ is actually Cartier, it is generated over π_{σ} by global

sections and it is the generator of $Pic(\overline{X}/X) = \mathbb{Z} = \langle H \rangle$.

• Let $L = aH$, for a a positive integer; clearly L is σ -ample. We have

$$
R^1 \pi_{\sigma*} \mathcal{O}_Y(iL) = H^1(\overline{X}, iL) = 0
$$

for every $i \in \mathbb{Z}$.

We now use Grothendieck's language to give a different characterization of the σ -weighted blow-up.

For a a positive integer, let $L = aH = -aME$. The divisor L is a π_{σ} -ample Cartier divisor.

Consider the graduated $\mathbb{C}[x_1,\ldots,x_n]^{\mathbb{Z}_m}$ -algebra $\bigoplus_{d\geq 0} \pi_* \mathcal{O}_X(dL)$. The construction in section (8.8) of [\[7\]](#page-10-6) gives

$$
\overline{X} = \text{Proj}_X \left(\mathcal{O}_X \oplus \bigoplus_{d>0} \pi_* \mathcal{O}_X(dL) \right) \to X.
$$

Consider now the function

$$
\sigma\text{-wt}:\mathbb{C}[x_1,\ldots,x_n]\to\mathbb{Q}
$$

defined as follows: on a monomial $M = x_1^{s_1} \dots x_n^{s_n}$, we put

$$
\sigma\text{-wt}(M) := \sum_{i=1}^n s_i a_i / m;
$$

for a general $f = \sum_I \alpha_I M_I$, where $\alpha_I \in \mathbb{C}$ and M_I are monomials, we set

$$
\sigma\text{-wt}(f) := \min\{\sigma\text{-wt}(M_I) : \alpha_I \neq 0\}.
$$

Definition 2.2. For a rational number k, the σ -weighted ideal $I^{\sigma}(k)$ is defined as

$$
I^{\sigma}(k) = \{ g \in \mathbb{C}[x_1, ..., x_n] : \sigma\text{-wt}(g) \geq k \} = \left(x_1^{s_1} \cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j / m \geq k \right).
$$

The set $I^{\sigma}(k)$ is a an ideal in $\mathbb{C}[x_1,\ldots,x_n]$ and therefore also in $\mathbb{C}[x_1,\ldots,x_n]^{\mathbb{Z}_m}$; in particular $\mathbb{C}[x_1,\ldots,x_n]^{Z_m} \oplus \bigoplus_{k\in\mathbb{N},d>0} I^\sigma(k)$ is a $\mathbb{C}[x_1,\ldots,x_n]^{Z_m}$ -graded module.

The next lemma follows straightforward from the above discussion; see also Lemma 3.5 in $[10]$.

Lemma 2.3. *Let* π_{σ} : $\overline{X} \rightarrow X$ *be a* σ *-blow-up, E the exceptional divisor; let D be the* Q-Cartier Weil divisor defined by a \mathbb{Z}_m -semi invariant $f \in \mathbb{C}[x_1,\ldots,x_n]$ *. Then we have*

$$
\pi_{\sigma}^*(D) = \overline{D} + (\sigma \cdot wt(f))E,
$$

where \overline{D} *is the proper transform of* D *.*

In particular, for every integer a*, we have* $\pi_* \mathcal{O}_{\overline{X}}(-aE) = I^{\sigma}(a)$ *.*

The Grothendieck set-up and Lemma [2.3](#page-4-0) imply immediately the following characterization of weighted blow-up.

Proposition 2.4. Let $X = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$ and b a positive integer multiple *of* $M = \text{lcm}(a_1, \ldots, a_n)$ *. The weighted blow-up of* X *with weight* σ *defined above,* $\pi_{\sigma} : \overline{X} \to X$ *, is given by*

$$
\overline{X} = \mathrm{Proj}_X \left(\mathcal{O}_X \oplus \bigoplus_{d \in \mathbb{N}, d > 0} I^{\sigma}(db) \right).
$$

Remark 2.5. The above characterization of \overline{X} does not depend on the the choice of b as a positive multiple of M; in fact taking Proj of *truncated* graded algebras we obtain isomorphic objects (see for instance Exercise 5.13 or 7.11, Chapter II in $[9]$).

Note that it is not true that $I^{\sigma}(db) = I^{\sigma}(b)^{d}$: see for instance Example 3.5 in $[2]$. However this is true if b is chosen big enough; this can be proved, for instance, following the proof of Theorem 7.17 in [\[9\]](#page-10-7).

If this is the case we have that $\overline{X} = \text{Proj}_X (\mathcal{O}_X \oplus \bigoplus_{d \in \mathbb{N}, d > 0} I^{\sigma}(b)^d);$ that is, \overline{X} is the blowing-up of $X = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$ with respect to the coherent ideal $I^{\sigma}(b)$ (see the definition in Section 7, Chapter II, [\[9\]](#page-10-7)).

Definition 2.6. Let $X: ((g = 0) \subset \mathbb{C}^{n+1})/\mathbb{Z}_m(a_0,\ldots,a_n)$ be a hyperquotient singularity and let $\pi: \overline{\mathbb{C}^{n+1}/\mathbb{Z}_m(a_0,\ldots,a_n)} \to \mathbb{C}^{n+1}/\mathbb{Z}_m(a_0,\ldots,a_n)$ be the $\sigma =$ (a_0,\ldots,a_n) -blow-up. Let \overline{X} be the proper transform of X via π and call again, by abuse, π its restriction to \overline{X} . Then $\pi: \overline{X} \to X$ is also called the *weighted blow-up of* X *with weight* $\sigma = (a_1, \ldots, a_n)$ (or simply the σ -blow-up).

The above Proposition [2.4,](#page-4-1) together with Corollary 7.15 in Chapter II of [\[9\]](#page-10-7), implies the following.

Proposition 2.7. Let $X: ((g = 0) \subset \mathbb{C}^{n+1})/\mathbb{Z}_m(a_0, \ldots, a_n)$ be a hyperquotient *singularity and let* $i: X \to \mathbb{C}^{n+1}/\mathbb{Z}_m(a_0, \ldots, a_n)$ *be the inclusion. Then*

$$
\overline{X} = \text{Proj}_X \left(\mathcal{O}_X \oplus \bigoplus_{d \in \mathbb{N}, d > 0} J^{\sigma}(db) \right) \to X,
$$

where $J^{\sigma}(db) := i^{-1}(I^{\sigma}(db))^{d} \mathcal{O}_X$.

If b *is big enough, then*

$$
\overline{X} = \text{Proj}_X \left(\mathcal{O}_X \oplus \bigoplus_{d \in \mathbb{N}, d > 0} J^{\sigma}(b)^d \right) \to X.
$$

3. Lifting cyclic quotient singularities

In this section we consider affine varieties Z and W ; we think at them as germs of complex spaces around a point P, (Z, P) and (W, P) . We assume that $P \in Z$ is an isolated Q-factorial singularities; Q-factoriality in this case depends on the analytic type of the singularity.

Proposition 3.1. Let Z be an affine variety of dimension $n \geq 4$ and assume *that* Z *has an isolated* \mathbb{Q} -*factorial singularity at* $P \in \mathbb{Z}$ *.*

Assume that $(W, P) \subset (Z, P)$ *is a Weil divisor which is a cyclic quotient singularity, i.e.,* $W = \mathbb{C}^{n-1}/\mathbb{Z}_m(a_1, ..., a_{n-1}).$

Then Z *is a cyclic quotient singularity, i.e.,* $Z = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_{n-1},a_n)$ *, where* $a_n \in \mathbb{Z}$ *is defined in the proof.*

Proof. Assume first that W is a Cartier divisor, i.e., W is given as a zero locus of a regular function f, $W : (f = 0) \subset Z$. The map $f : Z \to \mathbb{C}$ is flat, since $\dim_{\mathbb{C}} \mathbb{C} = 1$. Quotient singularities of dimension bigger or equal then three are rigid, by a fundamental theorem of M. Schlessinger $([26])$ $([26])$ $([26])$. Since Z has an isolated singularity and dim $W = n - 1 \geq 3$, it implies that W is smooth, i.e., $m = 1$. A variety containing a smooth Cartier divisor is smooth along it, therefore, eventually shrinking around P, Z is also smooth.

In the general case, since Z is $\mathbb Q$ -factorial, we can assume that there exists a minimal positive integer r such that rW is Cartier (r is the index of W). Following Proposition 3.6 in [\[25\]](#page-11-12), we can take a Galois cover $\pi: Z' \to Z$, with group \mathbb{Z}_r , such that Z' is normal, π is etale over $Z \setminus P$, $\pi^{-1}(P) =: Q$ is a single point and the Q-divisor $\pi^*W := W'$ is Cartier, $W' : (f' = 0) \subset Z'.$

Our assumption on W implies that $r|m$, that is, $m = rs$, and that $W' =$ $\mathbb{C}^{n-1}/\mathbb{Z}_s(a_1,\ldots,a_{n-1})$. By the first part of the proof we have that $s=1$, i.e., W' and Z' are smooth.

Taking possibly a smaller neighborhood of Q, we can assume that, if $W' = \mathbb{C}^{n-1}$ with coordinates (x_1, \ldots, x_{n-1}) , then $Z' = \mathbb{C}^n$, with coordinates $(x_1, \ldots, x_{n-1}, x_n)$, where $x_n := f'$.

The action of \mathbb{Z}_m on \mathbb{C}^n , which extends the one on \mathbb{C}^{n-1} , fixes W', therefore f' is an eigenfunction; that is for a primitive m-root of unity ϵ there exists $a_n \in \mathbb{N}$ such that $\epsilon: f' \to \epsilon^{a_n} f'$.

Therefore the Galois cover $\pi: Z' = \mathbb{C}^n \to Z$ is exactly the cover of the cyclic quotient singularity $Z = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_{n-1},a_n).$ \Box

If $n = 3$, the above proposition is false, as the following example shows.

Example 3.2. Let $Z' = \mathbb{C}^4/\mathbb{Z}_r(a, -a, 1, 0);$ let (x, y, z, t) be coordinates in \mathbb{C}^4 and assume $(a, r) = 1$. Let $Z \subset Z'$ be the hypersurface given as the zero set of the function $f := xy + z^{rm} + t^{n}$, with $m \ge 1$ and $n \ge 2$. This is a terminal singularity which is not a cyclic quotient (it is a terminal hyperquotient singularity); in the classification of terminal singularities it is described in Theorem (12.1) of $[24]$ (see also section 6 of [\[25\]](#page-11-12)).

However the surface $W := Z \cap (t = 0)$, which is the surface in $\mathbb{C}^3/\mathbb{Z}_r(a, -a, 1)$ given as the zero set of $(xy + z^{rm})$, is a cyclic quotient singularity of the type $\mathbb{C}^2/\mathbb{Z}_{r^2m}(a,rm-a).$

We give a proof of this last fact for the interested reader. Let \overline{W} be the surface in \mathbb{C}^3 , with coordinate (x, y, z) , given as the zero set of the function $xy + z^{rm}$. W has a singularity of type A_{rm-1} , which is a cyclic quotient singularity of type $\overline{W} = \mathbb{C}^2/\mathbb{Z}_{rm}(1,-1).$

Let (ξ, η) be the coordinate of \mathbb{C}^2 and let $\epsilon = e^{\frac{2\pi i}{r^2 m}}$ a $r^2 m$ root of unit; note that ϵ^r is a rm root of unit. The action of \mathbb{Z}_{rm} on \mathbb{C}^2 can be described as $\epsilon^r(\xi,\eta)=(\epsilon^r\xi,\epsilon^{-r}\eta)$. A base for $\mathbb{C}[\xi,\eta]^{\mathbb{Z}_{rm}}$, the spectrum of the ring of invariant monomials under the group action, is given by $(\xi^{rm}, \eta^{rm}, \xi \eta)$ and therefore $\overline{W} = \text{Spec}(\xi^{rm}, \eta^{rm}, \xi \cdot \eta)$. Let $(x, y, z) = (\xi^{rm}, \eta^{rm}, \xi \cdot \eta)$, then W is obtained as the quotient of \overline{W} by the action of \mathbb{Z}_r with weights $(a, -a, 1)$ given by $\epsilon^{rm}(x, y, z)=(\epsilon^{rma}x, \epsilon^{-rma}y, \epsilon^{rm}z)$. It is easy to check that this action can be lifted directly to \mathbb{C}^2 as the action: $\epsilon(\xi,\eta)=(\epsilon^a\xi,\epsilon^{rm-a}\eta)$. This extends the previously defined \mathbb{Z}_{rm} -action on \mathbb{C}^2 and has W as quotient.

Proposition 3.3. *Let* Z *be an affine variety of dimension* $n \geq 4$ *with an isolated* \mathbb{Q} -factorial singularity at $P \in \mathbb{Z}$. Assume also that $(W, P) \subset (\mathbb{Z}, P)$ is a Weil *divisor which has a hyperquotient singularity at* P*.*

Then (Z, P) *is a hyperquotient singularity.*

Proof. Let $W: (g = 0) \subset \mathbb{C}^n/\mathbb{Z}_m(a_1, \ldots, a_n)$.

As in the previous proof we assume first that W is a Cartier divisor, i.e., W is given as the zero locus of a regular function f. The map $f: Z \to \mathbb{C}$ is flat and it gives a deformation of W . Since W is a hypersurface singularity, its infinitesimal deformations are all embedded deformations, i.e., they extend to a deformation of the ambient space. That is, there exists a flat map $\hat{f} : \hat{Z} \to \mathbb{C}$ such that $\tilde{f}^{-1}(0) = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$, Z is a hypersurface in \tilde{Z} , i.e., Z: $(\tilde{g}=0) \subset \tilde{Z}$, and $f_{|Z} = f$.

By Schlessinger's theorem ([\[26\]](#page-11-11)), this deformation \tilde{f} is rigid, therefore $\tilde{Z} =$ $\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)\times\mathbb{C}=\mathbb{C}^{n+1}/\mathbb{Z}_m(a_1,\ldots,a_n,0).$ Thus $Z: (\tilde{g} = 0) \subset \mathbb{C}^{n+1}/\mathbb{Z}_m(a_1,\ldots,a_n,0).$

In the general case, as in [\[25\]](#page-11-12), Proposition 3.6, we take the \mathbb{Z}_r -Galois cover $\pi: Z' \to Z$, such that Z' is normal, π is etale over $Z \setminus P$, $\pi^{-1}(P) =: Q$ is a single point and the Q-divisor $\pi^*W := W'$ is a Cartier divisor: $W' : (f' = 0) \subset Z'.$

The map $W' \to W$ is an etale cover of W ramified at P and it depends on (a subgroup of) the local fundamental group $\pi_1(W \setminus \{0\})$. By our assumption on the dimensions and the Lefschetz theorem, this is equal to $\pi_1(\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n) \setminus \mathbb{C}^n)$ $\{0\} = \mathbb{Z}_m$. Therefore the etale cover extends to $\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$ and we have that W' : $(g' = 0) \subset \mathbb{C}^n/\mathbb{Z}_s(a_1,\ldots,a_n)$, with $m = rs$. By the first part of the proof, Z' : $(\tilde{g}' = 0) \subset \mathbb{C}^{n+1}/\mathbb{Z}_s(a_1,\ldots,a_n,0)$. Therefore Z : $(\tilde{g} := \tilde{g}' \circ \pi^{-1} = 0) \subset$ $\mathbb{C}^{n+1}/\mathbb{Z}_m(a_1,\ldots,a_n,a_{n+1}).$

4. Lifting weighted blow-ups

This section is dedicated to the proof of Theorem [1.1;](#page-1-0) therefore $f: X \to Z$ will be a local, projective, divisorial contraction which contracts an irreducible divisor E to $P \in Z$. We assume that X (as a projective variety over Z) and Z (as affine variety) are Q-factorial; factoriality on Z depends only on the analytic type of the singularities, on X also on their relative position.

By assumption, $Y \subset X$ is a f- ample Cartier divisor such that $f' = f|_Y : Y \to Y$ $f(Y) = W$ is a $\sigma' = (a_1, \ldots, a_{n-1})$ -blow-up, $\pi_{\sigma'} : Y \to W$.

In particular $W = (g = 0) \subset \mathbb{C}^{n-1}/\mathbb{Z}_m(a_1,\ldots,a_{n-1}),$ possibly with $g \equiv 0$. Proposition [3.3](#page-6-0) implies that $Z = (\tilde{g} = 0) \subset \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_{n-1},a_n)$. Note that $W = f(Y)$ is given as $(x_n = 0) \subset Z$.

We have also $Pic(Y/W) = \langle L|_E \rangle$, where $L = -ME$, $M = lcm(a_1, \ldots, a_{n-1})$. By the relative Lefschetz theorem, $Pic(X/Z) = Pic(Y/W) = \langle L \rangle$; note that we simply use the injectivity of the restriction map $Pic(X/Z) \longrightarrow Pic(Y/W)$, true even in the singular case (see for instance p. 305 of [\[20\]](#page-11-14), or [\[8\]](#page-10-8)).

Since Y is Cartier and ample, there exists a positive integer a such that $\mathcal{O}_X(Y) \sim_f aL$. We claim that $a_n = aM$. To show this consider the $\sigma :=$ (a_1,\ldots,a_n) -blow up of Z, \tilde{f} : $\tilde{X}\to Z$. Let \tilde{E} be the exceptional divisor. Note that Y sits in \tilde{X} as an ample divisor, therefore by the Lefschetz theorem there exists a Cartier divisor \tilde{L} on \tilde{X} which extends $L_{|E'}$, $\tilde{L} = -M\tilde{E}$ and $Y = -aM\tilde{E}$. Since $\tilde{f}(\tilde{Y})$: $(x_n = 0)$, by Lemma [2.3](#page-4-0) we compute that $a_n = \sigma$ -wt $(x_n) = aM$.

The map f is proper, so, as in Section [2,](#page-2-0) we can apply Grothendieck's language, section 8 of [\[7\]](#page-10-6), to say that

$$
X = \operatorname{Proj}_Z \left(\mathcal{O}_Z \oplus \bigoplus_{d>0} I_d \right),
$$

where $I_d := f_* \mathcal{O}_X(-d(ME)) = f_* \mathcal{O}_X(dL)$.

Note that, since E is effective, $I_d = f_*\mathcal{O}_X(dL) \subset \mathcal{O}_Z \subset \mathbb{C}^n[x_1,\ldots,x_n]$ is an ideal for positive d and $I_d = f_* \mathcal{O}_X(dL) = \mathcal{O}_Z \subset \mathbb{C}^n[x_1,\ldots,x_n]$ for non positive d. By Propositions [2.4](#page-4-1) and [2.7,](#page-5-0) X will be the weighted blow-up if for positive d

$$
f_*\mathcal{O}_X(dL) = i^{-1}\Big(x_1^{s_1}\cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j \ge db\Big) \mathcal{O}_Z
$$

where $b = M$, s_i are non negative integers and $i: Z \to \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$ is the inclusion.

We now mimic the proof of Theorem 3.6 in [\[23\]](#page-11-15). Consider the exact sequence

(4.1)
$$
0 \to \mathcal{O}_X(iL - aL) \to \mathcal{O}_X(iL) \to \mathcal{O}_Y(iL) \to 0,
$$

for every integer i.

We have noticed in Section [2](#page-2-0) that $R^1f'_* \mathcal{O}_Y(iL) = 0$ for $i \in \mathbb{Z}$. Therefore, by [\(4.1\)](#page-8-0), we obtain surjections $R^1f_*\mathcal{O}_X((i-a j)L) \to R^1f_*\mathcal{O}_X(iL)$, $i, j \in \mathbb{Z}, j \geq 0$. On the other hand $R^1f_*\mathcal{O}_X(-jL) = 0$ for sufficiently large j. Hence we obtain

 $R^1f_*\mathcal{O}_X(iL) = 0$ for every integer *i*.

Let $\mathcal{O}_Z = (\mathbb{C}[x_1,\ldots,x_n]/(\tilde{g}))^{\mathbb{Z}_m}$. All above implies the following exact sequences of \mathcal{O}_Z -algebras:

(4.2)
$$
0 \to f_*\mathcal{O}_X((i-a)L) \to f_*\mathcal{O}_X(iL) \to f_*\mathcal{O}_Y(iL) \to 0.
$$

In particular, for $i = a$, we have

$$
0 \to \mathcal{O}_Z \to f_*\mathcal{O}_X(aL) \to f_*\mathcal{O}_Y(aL) \to 0.
$$

Let θ be the image of 1 by the map $\mathcal{O}_Z \to f_*\mathcal{O}_X(aL)$; then [\(4.2\)](#page-8-1) becomes

(4.3)
$$
0 \to f_*\mathcal{O}_X((i-a)L) \stackrel{\times \theta}{\to} f_*\mathcal{O}_X(iL) \to f_*\mathcal{O}_Y(iL) \to 0;
$$

here, $\times \theta$ is exactly $\times (x_n)$.

We will prove, by induction on d , that

$$
f_*\mathcal{O}_X(dL) = \left(x_1^{s_1} \cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j \ge db\right) \mathcal{O}_Z.
$$

By assumption we have that

$$
f_*\mathcal{O}_Y(dL) = \left(x_1^{s_1} \cdots x_n^{s_n} : \sum_{j=1}^{n-1} s_j a_j \ge db\right) \mathcal{O}_W
$$

where $s_j \in \mathbb{N}$.

By induction on d , we can assume that

$$
f_*\mathcal{O}_X((d-a)L) = \left(x_1^{s_1}\cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j \ge (d-a)b\right) \mathcal{O}_Z,
$$

the case $d - a \leq 0$ being trivial.

1818 M. ANDREATTA

Let $g = x_1^{s_1} \cdots x_n^{s_n} \in f_* \mathcal{O}_X(dL)$ be a monomial.

If $s_n \geq 1$ then, looking at the sequence [\(4.3\)](#page-8-2), g comes from $f_*\mathcal{O}_X((d-a)L)$ by the multiplication by (x_n) ; therefore

$$
\sum_{j=1}^{n} s_j a_j = \sum_{j=1}^{n-1} s_j a_j + s_n a_n \ge (d-a)b + s_n a_n \ge db - ab + ab = db.
$$

If $s_n = 0$, then $q \in f_*\mathcal{O}_Y(dL)$ and so

$$
\sum_{j=1}^{n} s_j a_j = \sum_{j=1}^{n-1} s_j a_j \ge db.
$$

The non-monomial case follows immediately.

5. Application to MMP with scaling

The proof of Theorem [1.3,](#page-2-1) as explained in the introduction, follows via a standard induction procedure using Theorem [1.1,](#page-1-0) Theorem 1.1 in [\[3\]](#page-10-3) and, for dimension 3, assuming [1.2.](#page-1-1) It is actually very similar to the proof of Theorem 1.2.A in [\[3\]](#page-10-3), we rewrite it for the reader's convenience.

Proof of Theorem [1.3](#page-2-1). Let $f: X \to Z$ be a local projective, divisorial contraction which contracts a prime divisor E to $P \in Z$ as in the theorem.

The *nef-value* of the pair $(f : X \to Z, L)$ is defined as $\tau_f(X, L) := \inf\{t \in \mathbb{R} :$ $K_X + tL$ is f-nef}. By the rationality theorem of Kawamata (Theorem 3.5 in [\[22\]](#page-11-1)), $\tau_f(X, L) := \tau$ is a rational non-negative number. Moreover f is an adjoint contraction supported by $K_X + \tau L$, that is $K_X + \tau L \sim_f \mathcal{O}_X$ (\sim_f stays for numerical equivalence over f).

By our assumption, $\tau > (n-3)$. Therefore $\tau + 3 > n > n-1 = \dim E$ and, by Proposition 3.3.2 in $[3]$, there exists a section of L not vanishing along E; in particular $|L|$ is not empty.

Let $H_i \in |L|$ be general divisors for $i = 1, \ldots, n-3$. By Theorem 1.1 in [\[3\]](#page-10-3), quoted in the introduction, for any i , H_i is a variety with terminal singularities and the morphism $f_i = f_{|H_i} : H_i \to f(H_i) =: Z_i$ is a local contraction supported by $K_{H_i} + (\tau - 1)L_{|H_i}$. Since Z is terminal and Q-factorial (see Corollaries 3.36 and 3.43 in [\[22\]](#page-11-1)), then the Z_i 's are Q-Cartier divisors on Z.

For any $t = n-3, ..., 0$ define $Y_t = \bigcap_{i=1}^{n-3-t} H_i$ and $g_t = f_{|Y_t} : Y_t \to f(Y_t) = W_t$; in particular $Y_{n-3} = X$, $g_{n-3} = f$ and $W_{n-3} = Z$.

By induction on t, applying Theorem 1.1 in [\[3\]](#page-10-3), one sees that, for any $t =$ $n-4,\ldots,0$, Y_t is terminal and $g_t: Y_t \to W_t$ is a local Fano–Mori contraction supported by $K_{Y_t} + (\tau - (n-3-t)L_{|Y_t|})$. Therefore W_t is a terminal variety (by Corollary 3.43 in [\[22\]](#page-11-1)) and it is a \mathbb{Q} -Cartier divisor in W_{t+1} , because intersection of Q-Cartier divisors (by construction $W_t = \bigcap_{i=1}^{n-3-t} Z_i$).

Lifting weighted blow-ups 1819

Set $L_t := L_{|W_t}$. By Proposition 3.3.4 of [\[3\]](#page-10-3), $Bs|L_t|$ has dimension at most 1; by Bertini's theorem (see Theorem 6.3 in [\[13\]](#page-11-16)), $E_t := Y_t \cap E$ is a prime divisor. E_t is the intersection of Q-Cartier divisors and hence it is Q-Cartier.

Let $X'' = Y_0$ and $f'' = g_0$; by what said above, $f'' : X'' \to Z''$ is a divisorial contraction from a 3-fold X'' with terminal singularities, which contracts a prime Q-Cartier divisor E'' to a point $P \in Z''$. Using the classification in dimension 3 of terminal $\mathbb Q$ -factorial singularities ([\[24\]](#page-11-13)) and of divisorial contractions (for a summary see $[5]$), one can see that Z'' has a hyperquotient singularity at P, which is actually contained in a special list.

By Proposition [3.3](#page-6-0) and by induction on t, also Z has a hyperquotient singularity at P.

Assume now (1.2) , that is that f'' is a weighted blow-up of P; applying Theo-rem [1.1](#page-1-0) inductively on t, we have that f is a weighted blow-up of a hyperquotient singularities.

Acknowledgments. I like to thank Alessio Corti for suggesting to use Schlessinger theorem in the proof of Proposition [3.1](#page-5-1) and for providing Example [3.2.](#page-6-1) I thank Roberto Pignatelli and Luca Tasin for very helpful conversations.

References

- [1] Andreatta, M.: Minimal model program with scaling and adjunction theory. *Internat. J. Math.* **24** (2013), no. 2, 1350007, 13 pp.
- [2] Andreatta, M. and Tasin, L.: Fano–Mori contractions of high length on projective varieties with terminal singularities. *Bull. Lond. Math. Soc.* **46** (2014), no. 1, 185–196.
- [3] ANDREATTA, M. AND TASIN, L.: Local Fano–Mori contractions of high nef-value. *Math. Res. Lett.* **23** (2016), no. 5, 1247–1262.
- [4] Birkar, C., Cascini, P., Hacon, C. D., and McKernan, J.: Existence of minimal models for varieties of log general type. *J. Amer. Math. Soc.* **23** (2010), no. 2, 405–468.
- [5] Chen, J. A.: Birational maps of 3-folds. *Taiwanese J. Math.* **19** (2015), no. 6, 1619–1642.
- [6] Cox, D. A., Little, J. B. and Schenck, H. K.: *Toric varieties.* Graduate Studies in Mathematics 124, American Mathematical Society, Providence, RI, 2011.
- [7] Grothendieck, A.: *El´ ´ ements de g´eom´etrie alg´ebrique II. Etude globale ´ ´ el´ementaire de quelques classes de morphismes.* Inst. Hautes Etudes Sci. Publ. Math. 8, 1961. ´
- [8] GROTHENDIECK, A.: *Cohomologie locale des faisceaux cohérents et théorèmes de* Lefschetz locaux et globaux *(SGA 2)*. Séminaire de Géométrie Algébrique du Bois-Marie, 1962. Advanced Studies in Pure Mathematics 2, North-Holland, Amsterdam; Masson, Paris, 1968.
- [9] Hartshorne, R.: *Algebraic geometry.* Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977.
- [10] Hayakawa, T.: Blowing ups of 3-dimensional terminal singularities. *Publ. Res. Inst. Math. Sci.* **35** (1999), no. 3, 515–570.
- [11] Hayakawa, T.: Blowing ups of 3-dimensional terminal singularities. II. *Publ. Res. Inst. Math. Sci.* **36** (2000), no. 3, 423–456.
- [12] Hayakawa, T.: Divisorial contractions to 3-dimensional terminal singularities with discrepancy one. *J. Math. Soc. Japan* **57** (2005), no. 3, 651–668.
- [13] JOUANOLOU, J.-P.: *Théorèmes de Bertini et applications*. Progress in Mathematics 42, Birkhäuser, Boston, MA, 1983.
- [14] Kawakita, M.: General elephants of three–fold divisorial contractions. *J. Amer. Math. Soc.* **16** (2003), no. 2, 331–362.
- [15] KAWAKITA, M.: Three-fold divisorial contractions to singularities of higher indices. *Duke Math. J.* **130** (2005), no. 1, 57–126.
- [16] Kawakita, M.: Supplement to classification of threefold divisorial contractions. *Nagoya Math. J.* **206** (2012), 67–73.
- [17] KAWAKITA, Y.: Divisorial contractions in dimension three which contract divisors to smooth points. *Invent. Math.* **145** (2001), no. 1, 105–119.
- [18] Kawakita, Y.: Divisorial contractions in dimension three which contract divisors to compound *A*1 points. *Compositio Math.* **133** (2002), no. 1, 95–116.
- [19] Kawamata, Y.: Divisorial contractions to 3-dimensional terminal quotient singularities. In *Higher-dimensional complex varieties (Trento, 1994),* 241–246*.* De Gruyter, Berlin, 1996.
- [20] Kleiman, S. L.: Toward a numerical theory of ampleness. *Ann. of Math. (2)* **84** (1966), 293–344.
- [21] Kollar, J. and Mori, S.: ´ Classification of three-dimensional flips. *J. Amer. Math. Soc.* **5** (1992), no. 3, 533–703.
- [22] Kollar, J. and Mori, S.: ´ *Birational geometry of algebraic varieties.* Cambridge Tracts in Mathematics 134, Cambridge University Press, Cambridge, 1998.
- [23] Mori, S.: On a generalization of complete intersections. *J. Math. Kyoto Univ.* **15** (1975), no. 3, 619–646.
- [24] Mori, S.: On 3-dimensional terminal singularities. *Nagoya Math. J.* **98** (1985), 43–66.
- [25] REID, M.: Young person's guide to canonical singularities. In *Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985),* 345–414*.* Proc. Sympos. Pure Math. 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.
- [26] Schlessinger, M.: Rigidity of quotient singularities. *Invent. Math.* **14** (1971), 17–26.

Received August 19, 2016; revised December 22, 2016. Published online December 6, 2018.

MARCO ANDREATTA: Dipartimento di Matematica, Università di Trento, I-38123 Povo (TN), Italia.

E-mail: marco.andreatta@unitn.it

Supported by the MIUR grant PRIN-2010 and 2015.