

Lifting weighted blow-ups

Marco Andreatta

Abstract. Let $f: X \to Z$ be a local, projective, divisorial contraction between normal varieties of dimension n with \mathbb{Q} -factorial singularities.

Let $Y \subset X$ be a f-ample Cartier divisor and assume that $f_{|Y} \colon Y \to W$ has a structure of a weighted blow-up. We prove that $f \colon X \to Z$, as well, has a structure of weighted blow-up.

As an application we consider a local projective contraction $f\colon X\to Z$ from a variety X with terminal \mathbb{Q} -factorial singularities, which contracts a prime divisor E to an isolated \mathbb{Q} -factorial singularity $P\in Z$, such that $-(K_X+(n-3)L)$ is f-ample, for a f-ample Cartier divisor L on X. We prove that (Z,P) is a hyperquotient singularity and f is a weighted blow-up.

1. Introduction

Let X be a normal variety over \mathbb{C} and let $n = \dim X$. A contraction is a surjective morphism $\varphi \colon X \to Z$ with connected fibres onto a normal variety Z. If Z is affine then $f \colon X \to Z$ will be called a local contraction.

We always assume that f is *projective*, that is, we assume the existence of f-ample Cartier divisors L.

If f is birational and its exceptional set is an irreducible divisor, then it is called *divisorial*. We say that the contraction is \mathbb{Q} -factorial if X and Z have \mathbb{Q} -factorial singularities. Note that if X is \mathbb{Q} -factorial and f is a divisorial contraction of an extremal ray (in the sense of Mori theory), then Z is also \mathbb{Q} -factorial (see Corollary 3.18 in [22]).

A fundamental example of local contraction in algebraic geometry is the blowup of $\mathbb{C}^n = \operatorname{Spec} \mathbb{C}[x_1, \ldots, x_n]$ at 0. More generally, given $\sigma = (a_1, \ldots, a_n) \in \mathbb{N}^n$ such that $a_i > 0$ and $m \in \mathbb{N}$, one can define the σ -blow-up (or the weighted blow-up with weight σ) of a hyperquotient singularity $Z : ((g = 0) \subset \mathbb{C}^n)/\mathbb{Z}_m(a_1, \ldots, a_n)$. The definition is given in Section 2, in accordance with Section 10 in [21].

The main goal of the paper is to prove the following theorem.

Theorem 1.1. Let $f: X \to Z$ be a local, projective, divisorial and \mathbb{Q} -factorial contraction, which contracts an irreducible divisor E to an isolated \mathbb{Q} -factorial singularity $P \in Z$. Assume that $\dim X \geq 4$.

Let $Y \subset X$ be a f-ample Cartier divisor such that $f' = f_{|Y} \colon Y \to f(Y) = W$ is a $\sigma' = (a_1, \ldots, a_{n-1})$ -blow-up, $\pi_{\sigma'} \colon Y \to W$.

Then $f: X \to Z$ is a $\sigma = (a_1, \dots, a_{n-1}, a_n)$ -blow-up, $\pi_{\sigma}: X \to Z$, where a_n is such that $Y \sim_f -a_n E$ (\sim_f means linearly equivalent over f).

We apply the above theorem to the study of birational contractions which appear in a minimal model program (MMP) with scaling on polarized pairs.

More precisely, if X is a variety with terminal \mathbb{Q} -factorial singularities and L is an ample Cartier divisor on X, the pair (X, L) is called a *polarized pair*. Given a non negative rational number r, there exists an effective \mathbb{Q} -divisor Δ^r on X such that $\Delta^r \sim_{\mathbb{Q}} rL$ and (X, Δ^r) is Kawamata log terminal. Consider the pair (X, Δ^r) and the \mathbb{Q} -Cartier divisor $K_X + \Delta^r \sim_{\mathbb{Q}} K_X + rL$.

By Theorem 1.2 and Corollary 1.3.3 of [4], we can run a $K_X + \Delta^r$ -minimal model program (MMP) with scaling. This type of MMP was studied in deeper details in the case $r \geq (n-2)$ in [1].

To perform such a program one needs to understand local birational maps (divisorial or small contractions), $f: X \to Z$, which are contractions of an extremal rays $R := \mathbb{R}^+[C] \subset N_1(X/Z)$, where C is a rational curve such that $(K_X + rL) \cdot C < 0$ for a f-ample Cartier divisor L. We will call these maps Fano–Mori contractions or contractions for a MMP.

In [2] we classified local birational contractions for a MMP if $r \ge (n-2)$: they are σ -blow-up of a smooth point with $\sigma = (1, 1, b, \dots, b)$, where b is a positive integer.

In [3], Theorem 1.1, we proved that if r > (n-3) > 0 then one can find a general divisor $X' \in |L|$ which is a variety with at most \mathbb{Q} -factorial terminal singularities and such that $f_{|X'} \colon X' \to f(X') =: Z'$ is a contraction of an extremal ray $R' := \mathbb{R}^+[C']$ such that $(K_{X'} + (r-1)L') \cdot C' < 0$, where $L' := L_{|X'}$.

On the other hand, a very hard program, aimed to classify local divisorial contractions to a point for a MMP in dimension 3, was started long ago by Y. Kawamata ([19]); it was further carried on by M. Kawakita, T. Hayakawa and J. A. Chen (see, among other papers, [17], [18], [14], [15], [16], [10], [11], [12], [5]). They are all weighted blow-ups of (particular) cyclic quotient or hyperquotient singularities, and this should be the case for the few remaining ones. It is reasonable to make the following:

Assumption 1.2. The divisorial contractions to a point for a MMP in dimension 3 are weighted blow-ups.

The next result is a consequence, via a standard induction procedure, called the *Apollonius method*, of Theorem 1.1, the above quoted Theorem 1.1 in [3] and Assumption 1.2 in dimension 3.

Theorem 1.3. Let X be a variety with \mathbb{Q} -factorial terminal singularities of dimension $n \geq 3$ and let $f: X \to Z$ be a local, projective, divisorial contraction which contracts a prime divisor E to an isolated \mathbb{Q} -factorial singularity $P \in Z$ such that $-(K_X + (n-3)L)$ is f-ample, for a f-ample Cartier divisor L on X.

Then $P \in Z$ is a hyperquotient singularity.

Moreover, if we assume that 1.2 holds, f is a weighted blow-up.

2. Weighted blow-ups

We recall the definition of weighted blow-up; our notation is compatible with that of Section 10 in [21] and of Section 3 in [10].

Let $\sigma = (a_1, \ldots, a_n) \in \mathbb{N}^n$ such that $a_i > 0$ and $\gcd(a_1, \ldots, a_n) = 1$; let $M = \operatorname{lcm}(a_1, \ldots, a_n)$.

The weighted projective space with weight (a_1, \ldots, a_n) , denoted by $\mathbb{P}(a_1, \ldots, a_n)$, can be defined either as

$$\mathbb{P}(a_1,\ldots,a_n) := (\mathbb{C}^n - \{0\})/\mathbb{C}^*,$$

where $\xi \in \mathbb{C}^*$ acts by $\xi(x_1, \dots, x_n) = (\xi^{a_1} x_1, \dots, \xi^{a_n} x_n)$, or as

$$\mathbb{P}(a_1,\ldots,a_n) := \operatorname{Proj}_{\mathbb{C}} \mathbb{C}[x_1,\ldots,x_n],$$

where $\mathbb{C}[x_1,\ldots,x_n]$ is the polynomial algebra over \mathbb{C} graded by the condition $deg(x_i)=a_i$, for $i=1,\ldots,n$.

A cyclic quotient singularity, denoted by $\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n):=X$, is an affine variety defined as the quotient of \mathbb{C}^n by the action $(x_1,\ldots,x_n)\to(\epsilon^{a_1}x_1,\ldots,\epsilon^{a_n}x_n)$, where ϵ is a primitive m-th root of unity. Equivalently X is isomorphic to the spectrum Spec $\mathbb{C}[x_1,\ldots,x_n]^{\mathbb{Z}_m}$ of the ring of invariant monomials under the group action.

Let $Q \in Y : (g = 0) \subset \mathbb{C}^{n+1}$ be a hypersurface singularity with a \mathbb{Z}^m action. The point $P \in Y/\mathbb{Z}^m := X$ is called a hyperquotient singularity. In suitable local analytic coordinates, the action on Y extends to an action on \mathbb{C}^{n+1} (in fact it acts on the tangent space $T_{Y,Q}$) and we can assume that \mathbb{Z}_m acts diagonally by $\epsilon : (x_0, \ldots, x_n) \to (\epsilon^{a_0} x_0, \ldots, \epsilon^{a_n} x_n)$, where ϵ is a primitive m-th root of unity. Since Y is fixed by the action of \mathbb{Z}_m , it follows that g is an eigenfunction, so that $\epsilon : g \to \epsilon^e g$. We define the type of the hyperquotient singularity $P \in X$ with the symbol $\frac{1}{m}(a_0, \ldots, a_n; e)$. Note that if m = 1 this is simply a hypersurface singularity, while if $g = x_0$ this is a cyclic quotient singularity.

Let $X = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$ be a cyclic quotient singularity and consider the rational map

$$\varphi \colon X \to \mathbb{P}(a_1, \dots, a_n)$$

given by $(x_1, \ldots, x_n) \mapsto (x_1 : \cdots : x_n)$.

Definition 2.1. The weighted blow-up of $X = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$ with weight $\sigma = (a_1,\ldots,a_n)$ (or simply the σ -blow-up), \overline{X} , is defined as the closure in $X \times \mathbb{P}(a_1,\ldots,a_k)$ of the graph of φ , together with the morphism $\pi_{\sigma} \colon \overline{X} \to X$ given by the projection on the first factor.

The weighted blow-up can be described by the theory of torus embeddings, as in section 10 of [21]. Namely, let $e_i = (0, ..., 1, ..., 0)$ for i = 1, ..., n and let $e = 1/m(a_1, ..., a_n)$. Then X is the toric variety which corresponds to the lattice $\mathbb{Z}e_1 + \cdots + \mathbb{Z}e_n + \mathbb{Z}e$ and the cone $C(X) = \mathbb{Q}_+e_1 + \cdots + \mathbb{Q}_+e_n$ in \mathbb{Q}^n , where $\mathbb{Q}_+ = \{z \in \mathbb{Q} : z \geq 0\}$.

We denote with $\pi_{\sigma} \colon \overline{X} \to X$ the proper birational morphism from the normal toric variety \overline{X} corresponding to the cone decomposition of C(X) consisting of $C_i = \sum_{j \neq i} \mathbb{Q}_+ e_j + \mathbb{Q}_+ e$, for $i = 1, \ldots, n$, and their intersections.

The following facts can be easily checked in many ways, for instance via toric geometry (see also section 10 in [21] or section 3 in [10]).

- The map π_{σ} is birational and contracts an exceptional irreducible divisor $E \cong \mathbb{P}(a_1, \ldots, a_k)$ to $0 \in X$.
- Let $(y_1 : \ldots : y_n)$ be homogeneous coordinates on $\mathbb{P}(a_1, \ldots, a_n)$. For any $1 \le i \le k$ consider the open affine subset $U_i = \overline{X} \cap \{y_i \ne 0\}$; these affine open subset are described as follows:

$$U_i \cong \operatorname{Spec}\mathbb{C}[\bar{x}_1,\ldots,\bar{x}_n]/\mathbb{Z}_{a_i}(-a_1,\ldots,m,\ldots,-a_n).$$

The morphism $\varphi_{\sigma|U_i} \colon U_i \to X$ is given by

$$(\bar{x}_1,\ldots,\bar{x}_n)\mapsto (\bar{x}_1\bar{x}_i^{a_1/m},\ldots,\bar{x}_i^{a_i/m},\ldots,\bar{x}_k\,\bar{x}_i^{a_k/m}).$$

- In the affine set U_i the divisor E is defined by $\{\bar{x}_i = 0\}$; it is a \mathbb{Q} -Cartier divisor and $\mathcal{O}_{\overline{X}}(-aE) \otimes \mathcal{O}_E = \mathcal{O}_{\mathbb{P}}(ma)$, for a divisible by Πa_i . The divisor H := -ME is actually Cartier, it is generated over π_{σ} by global
 - sections and it is the generator of $\operatorname{Pic}(\overline{X}/X) = \mathbb{Z} = \langle H \rangle$.
- Let L = aH, for a a positive integer; clearly L is σ -ample. We have

$$R^1 \pi_{\sigma *} \mathcal{O}_Y(iL) = H^1(\overline{X}, iL) = 0$$

for every $i \in \mathbb{Z}$.

We now use Grothendieck's language to give a different characterization of the σ -weighted blow-up.

For a positive integer, let L = aH = -aME. The divisor L is a π_{σ} -ample Cartier divisor.

Consider the graduated $\mathbb{C}[x_1,\ldots,x_n]^{\mathbb{Z}_m}$ -algebra $\bigoplus_{d\geq 0} \pi_* \mathcal{O}_X(dL)$. The construction in section (8.8) of [7] gives

$$\overline{X} = \operatorname{Proj}_X \left(\mathcal{O}_X \oplus \bigoplus_{d>0} \pi_* \mathcal{O}_X(dL) \right) \to X.$$

Consider now the function

$$\sigma$$
-wt: $\mathbb{C}[x_1,\ldots,x_n] \to \mathbb{Q}$

defined as follows: on a monomial $M = x_1^{s_1} \dots x_n^{s_n}$, we put

$$\sigma\text{-wt}(M) := \sum_{i=1}^{n} s_i a_i / m;$$

for a general $f = \sum_{I} \alpha_{I} M_{I}$, where $\alpha_{I} \in \mathbb{C}$ and M_{I} are monomials, we set

$$\sigma\text{-wt}(f) := \min\{\sigma\text{-wt}(M_I) : \alpha_I \neq 0\}.$$

Definition 2.2. For a rational number k, the σ -weighted ideal $I^{\sigma}(k)$ is defined as

$$I^{\sigma}(k) = \{g \in \mathbb{C}[x_1, \dots, x_n] : \sigma\text{-wt}(g) \ge k\} = \left(x_1^{s_1} \cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j / m \ge k\right).$$

The set $I^{\sigma}(k)$ is a an ideal in $\mathbb{C}[x_1,\ldots,x_n]$ and therefore also in $\mathbb{C}[x_1,\ldots,x_n]^{\mathbb{Z}_m}$; in particular $\mathbb{C}[x_1,\ldots,x_n]^{\mathbb{Z}_m}\oplus \bigoplus_{k\in\mathbb{N},d>0}I^{\sigma}(k)$ is a $\mathbb{C}[x_1,\ldots,x_n]^{\mathbb{Z}_m}$ -graded module.

The next lemma follows straightforward from the above discussion; see also Lemma 3.5 in [10].

Lemma 2.3. Let $\pi_{\sigma} \colon \overline{X} \to X$ be a σ -blow-up, E the exceptional divisor; let D be the \mathbb{Q} -Cartier Weil divisor defined by a \mathbb{Z}_m -semi invariant $f \in \mathbb{C}[x_1, \ldots, x_n]$. Then we have

$$\pi_{\sigma}^{*}(D) = \overline{D} + (\sigma \operatorname{-wt}(f))E,$$

where \overline{D} is the proper transform of D.

In particular, for every integer a, we have $\pi_*\mathcal{O}_{\overline{X}}(-aE) = I^{\sigma}(a)$.

The Grothendieck set-up and Lemma 2.3 imply immediately the following characterization of weighted blow-up.

Proposition 2.4. Let $X = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$ and b a positive integer multiple of $M = \text{lcm}(a_1,\ldots,a_n)$. The weighted blow-up of X with weight σ defined above, $\pi_{\sigma} \colon \overline{X} \to X$, is given by

$$\overline{X} = \operatorname{Proj}_X \left(\mathcal{O}_X \oplus \bigoplus_{d \in \mathbb{N}, d > 0} I^{\sigma}(db) \right).$$

Remark 2.5. The above characterization of \overline{X} does not depend on the the choice of b as a positive multiple of M; in fact taking Proj of truncated graded algebras we obtain isomorphic objects (see for instance Exercise 5.13 or 7.11, Chapter II in [9]).

Note that it is not true that $I^{\sigma}(db) = I^{\sigma}(b)^d$: see for instance Example 3.5 in [2]. However this is true if b is chosen big enough; this can be proved, for instance, following the proof of Theorem 7.17 in [9].

If this is the case we have that $\overline{X} = \operatorname{Proj}_X \left(\mathcal{O}_X \oplus \bigoplus_{d \in \mathbb{N}, d > 0} I^{\sigma}(b)^d \right)$; that is, \overline{X} is the blowing-up of $X = \mathbb{C}^n / \mathbb{Z}_m(a_1, \dots, a_n)$ with respect to the coherent ideal $I^{\sigma}(b)$ (see the definition in Section 7, Chapter II, [9]).

Definition 2.6. Let $\underline{X}: ((g=0) \subset \mathbb{C}^{n+1})/\mathbb{Z}_m(a_0,\ldots,a_n)$ be a hyperquotient singularity and let $\pi: \overline{\mathbb{C}^{n+1}}/\mathbb{Z}_m(a_0,\ldots,a_n) \to \mathbb{C}^{n+1}/\mathbb{Z}_m(a_0,\ldots,a_n)$ be the $\sigma=(a_0,\ldots,a_n)$ -blow-up. Let \overline{X} be the proper transform of X via π and call again, by abuse, π its restriction to \overline{X} . Then $\pi: \overline{X} \to X$ is also called the *weighted blow-up* of X with weight $\sigma=(a_1,\ldots,a_n)$ (or simply the σ -blow-up).

The above Proposition 2.4, together with Corollary 7.15 in Chapter II of [9], implies the following.

Proposition 2.7. Let $X: ((g=0) \subset \mathbb{C}^{n+1})/\mathbb{Z}_m(a_0,\ldots,a_n)$ be a hyperquotient singularity and let $i: X \to \mathbb{C}^{n+1}/\mathbb{Z}_m(a_0,\ldots,a_n)$ be the inclusion.

Then

$$\overline{X} = \operatorname{Proj}_X \left(\mathcal{O}_X \oplus \bigoplus_{d \in \mathbb{N}, d > 0} J^{\sigma}(db) \right) \to X,$$

where $J^{\sigma}(db) := i^{-1}(I^{\sigma}(db)) \mathcal{O}_X$. If b is big enough, then

$$\overline{X} = \operatorname{Proj}_X \left(\mathcal{O}_X \oplus \bigoplus_{d \in \mathbb{N}, d > 0} J^{\sigma}(b)^d \right) \to X.$$

3. Lifting cyclic quotient singularities

In this section we consider affine varieties Z and W; we think at them as germs of complex spaces around a point P, (Z,P) and (W,P). We assume that $P \in Z$ is an isolated \mathbb{Q} -factorial singularities; \mathbb{Q} -factoriality in this case depends on the analytic type of the singularity.

Proposition 3.1. Let Z be an affine variety of dimension $n \geq 4$ and assume that Z has an isolated \mathbb{Q} -factorial singularity at $P \in Z$.

Assume that $(W, P) \subset (Z, P)$ is a Weil divisor which is a cyclic quotient singularity, i.e., $W = \mathbb{C}^{n-1}/\mathbb{Z}_m(a_1, \ldots, a_{n-1})$.

Then Z is a cyclic quotient singularity, i.e., $Z = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_{n-1},a_n)$, where $a_n \in \mathbb{Z}$ is defined in the proof.

Proof. Assume first that W is a Cartier divisor, i.e., W is given as a zero locus of a regular function f, W: $(f=0) \subset Z$. The map $f: Z \to \mathbb{C}$ is flat, since $\dim_{\mathbb{C}} \mathbb{C} = 1$. Quotient singularities of dimension bigger or equal then three are rigid, by a fundamental theorem of M. Schlessinger ([26]). Since Z has an isolated singularity and $\dim W = n - 1 \geq 3$, it implies that W is smooth, i.e., m = 1. A variety containing a smooth Cartier divisor is smooth along it, therefore, eventually shrinking around P, Z is also smooth.

In the general case, since Z is \mathbb{Q} -factorial, we can assume that there exists a minimal positive integer r such that rW is Cartier (r is the index of W). Following Proposition 3.6 in [25], we can take a Galois cover $\pi \colon Z' \to Z$, with group \mathbb{Z}_r , such that Z' is normal, π is etale over $Z \setminus P$, $\pi^{-1}(P) =: Q$ is a single point and the \mathbb{Q} -divisor $\pi^*W := W'$ is Cartier, $W' : (f' = 0) \subset Z'$.

Our assumption on W implies that r|m, that is, $m = r \cdot s$, and that $W' = \mathbb{C}^{n-1}/\mathbb{Z}_s(a_1,\ldots,a_{n-1})$. By the first part of the proof we have that s=1, i.e., W' and Z' are smooth.

Taking possibly a smaller neighborhood of Q, we can assume that, if $W' = \mathbb{C}^{n-1}$ with coordinates (x_1, \ldots, x_{n-1}) , then $Z' = \mathbb{C}^n$, with coordinates $(x_1, \ldots, x_{n-1}, x_n)$, where $x_n := f'$.

The action of \mathbb{Z}_m on \mathbb{C}^n , which extends the one on \mathbb{C}^{n-1} , fixes W', therefore f' is an eigenfunction; that is for a primitive m-root of unity ϵ there exists $a_n \in \mathbb{N}$ such that $\epsilon \colon f' \to \epsilon^{a_n} f'$.

Therefore the Galois cover $\pi\colon Z'=\mathbb{C}^n\to Z$ is exactly the cover of the cyclic quotient singularity $Z=\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_{n-1},a_n)$.

If n = 3, the above proposition is false, as the following example shows.

Example 3.2. Let $Z' = \mathbb{C}^4/\mathbb{Z}_r(a, -a, 1, 0)$; let (x, y, z, t) be coordinates in \mathbb{C}^4 and assume (a, r) = 1. Let $Z \subset Z'$ be the hypersurface given as the zero set of the function $f := xy + z^{rm} + t^n$, with $m \ge 1$ and $n \ge 2$. This is a terminal singularity which is not a cyclic quotient (it is a terminal hyperquotient singularity); in the classification of terminal singularities it is described in Theorem (12.1) of [24] (see also section 6 of [25]).

However the surface $W := Z \cap (t = 0)$, which is the surface in $\mathbb{C}^3/\mathbb{Z}_r(a, -a, 1)$ given as the zero set of $(xy + z^{rm})$, is a cyclic quotient singularity of the type $\mathbb{C}^2/\mathbb{Z}_{r^2m}(a, rm - a)$.

We give a proof of this last fact for the interested reader. Let \overline{W} be the surface in \mathbb{C}^3 , with coordinate (x, y, z), given as the zero set of the function $xy + z^{rm}$. \overline{W} has a singularity of type A_{rm-1} , which is a cyclic quotient singularity of type $\overline{W} = \mathbb{C}^2/\mathbb{Z}_{rm}(1, -1)$.

Let (ξ,η) be the coordinate of \mathbb{C}^2 and let $\epsilon=e^{\frac{2\pi i}{r^2m}}$ a r^2m root of unit; note that ϵ^r is a rm root of unit. The action of \mathbb{Z}_{rm} on \mathbb{C}^2 can be described as $\epsilon^r(\xi,\eta)=(\epsilon^r\xi,\epsilon^{-r}\eta)$. A base for $\mathbb{C}[\xi,\eta]^{\mathbb{Z}_{rm}}$, the spectrum of the ring of invariant monomials under the group action, is given by $(\xi^{rm},\eta^{rm},\xi\cdot\eta)$ and therefore $\overline{W}=\operatorname{Spec}(\xi^{rm},\eta^{rm},\xi\cdot\eta)$. Let $(x,y,z)=(\xi^{rm},\eta^{rm},\xi\cdot\eta)$, then W is obtained as the quotient of \overline{W} by the action of \mathbb{Z}_r with weights (a,-a,1) given by $\epsilon^{rm}(x,y,z)=(\epsilon^{rma}x,\epsilon^{-rma}y,\epsilon^{rm}z)$. It is easy to check that this action can be lifted directly to \mathbb{C}^2 as the action: $\epsilon(\xi,\eta)=(\epsilon^a\xi,\epsilon^{rm-a}\eta)$. This extends the previously defined \mathbb{Z}_{rm} -action on \mathbb{C}^2 and has W as quotient.

Proposition 3.3. Let Z be an affine variety of dimension $n \geq 4$ with an isolated \mathbb{Q} -factorial singularity at $P \in Z$. Assume also that $(W, P) \subset (Z, P)$ is a Weil divisor which has a hyperquotient singularity at P.

Then (Z, P) is a hyperquotient singularity.

Proof. Let $W: (g=0) \subset \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$.

As in the previous proof we assume first that W is a Cartier divisor, i.e., W is given as the zero locus of a regular function f. The map $f: Z \to \mathbb{C}$ is flat and it gives a deformation of W. Since W is a hypersurface singularity, its infinitesimal deformations are all embedded deformations, i.e., they extend to a deformation of the ambient space. That is, there exists a flat map $\tilde{f}: \tilde{Z} \to \mathbb{C}$ such that $\tilde{f}^{-1}(0) = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$, Z is a hypersurface in \tilde{Z} , i.e., $Z: (\tilde{g}=0) \subset \tilde{Z}$, and $\tilde{f}|_{Z}=f$.

By Schlessinger's theorem ([26]), this deformation \tilde{f} is rigid, therefore $\tilde{Z} = \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n) \times \mathbb{C} = \mathbb{C}^{n+1}/\mathbb{Z}_m(a_1,\ldots,a_n,0)$.

Thus $Z: (\tilde{g} = 0) \subset \mathbb{C}^{n+1}/\mathbb{Z}_m(a_1, \dots, a_n, 0)$.

In the general case, as in [25], Proposition 3.6, we take the \mathbb{Z}_r -Galois cover $\pi\colon Z'\to Z$, such that Z' is normal, π is etale over $Z\setminus P$, $\pi^{-1}(P)=:Q$ is a single point and the \mathbb{Q} -divisor $\pi^*W:=W'$ is a Cartier divisor: $W':(f'=0)\subset Z'$.

The map $W' \to W$ is an etale cover of W ramified at P and it depends on (a subgroup of) the local fundamental group $\pi_1(W \setminus \{0\})$. By our assumption on the dimensions and the Lefschetz theorem, this is equal to $\pi_1(\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n) \setminus \{0\}) = \mathbb{Z}_m$. Therefore the etale cover extends to $\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n)$ and we have that $W': (g'=0) \subset \mathbb{C}^n/\mathbb{Z}_s(a_1,\ldots,a_n)$, with m=rs. By the first part of the proof, $Z': (\tilde{g}'=0) \subset \mathbb{C}^{n+1}/\mathbb{Z}_s(a_1,\ldots,a_n,0)$. Therefore $Z: (\tilde{g}:=\tilde{g}'\circ\pi^{-1}=0) \subset \mathbb{C}^{n+1}/\mathbb{Z}_m(a_1,\ldots,a_n,a_{n+1})$.

4. Lifting weighted blow-ups

This section is dedicated to the proof of Theorem 1.1; therefore $f\colon X\to Z$ will be a local, projective, divisorial contraction which contracts an irreducible divisor E to $P\in Z$. We assume that X (as a projective variety over Z) and Z (as affine variety) are \mathbb{Q} -factorial; factoriality on Z depends only on the analytic type of the singularities, on X also on their relative position.

By assumption, $Y \subset X$ is a f- ample Cartier divisor such that $f' = f_{|Y} \colon Y \to f(Y) = W$ is a $\sigma' = (a_1, \ldots, a_{n-1})$ -blow-up, $\pi_{\sigma'} \colon Y \to W$.

In particular $W=(g=0)\subset \mathbb{C}^{n-1}/\mathbb{Z}_m(a_1,\ldots,a_{n-1})$, possibly with $g\equiv 0$. Proposition 3.3 implies that $Z=(\tilde{g}=0)\subset \mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_{n-1},a_n)$. Note that W=f(Y) is given as $(x_n=0)\subset Z$.

We have also $\operatorname{Pic}(Y/W) = \langle L_{|E} \rangle$, where L = -ME, $M = \operatorname{lcm}(a_1, \dots, a_{n-1})$. By the relative Lefschetz theorem, $\operatorname{Pic}(X/Z) = \operatorname{Pic}(Y/W) = \langle L \rangle$; note that we simply use the injectivity of the restriction map $\operatorname{Pic}(X/Z) \longrightarrow \operatorname{Pic}(Y/W)$, true even in the singular case (see for instance p. 305 of [20], or [8]).

Since Y is Cartier and ample, there exists a positive integer a such that $\mathcal{O}_X(Y) \sim_f aL$. We claim that $a_n = aM$. To show this consider the $\sigma := (a_1, \ldots, a_n)$ -blow up of Z, $\tilde{f} : \tilde{X} \to Z$. Let \tilde{E} be the exceptional divisor. Note that Y sits in \tilde{X} as an ample divisor, therefore by the Lefschetz theorem there exists a Cartier divisor \tilde{L} on \tilde{X} which extends $L_{|E'}$, $\tilde{L} = -M\tilde{E}$ and $Y = -aM\tilde{E}$. Since $\tilde{f}(\tilde{Y}) : (x_n = 0)$, by Lemma 2.3 we compute that $a_n = \sigma$ -wt $(x_n) = aM$.

The map f is proper, so, as in Section 2, we can apply Grothendieck's language, section 8 of [7], to say that

$$X = \operatorname{Proj}_Z \left(\mathcal{O}_Z \oplus \bigoplus_{d>0} I_d \right),$$

where $I_d := f_* \mathcal{O}_X(-d(ME)) = f_* \mathcal{O}_X(dL)$.

Note that, since E is effective, $I_d = f_* \mathcal{O}_X(dL) \subset \mathcal{O}_Z \subset \mathbb{C}^n[x_1, \dots, x_n]$ is an ideal for positive d and $I_d = f_* \mathcal{O}_X(dL) = \mathcal{O}_Z \subset \mathbb{C}^n[x_1, \dots, x_n]$ for non positive d.

By Propositions 2.4 and 2.7, X will be the weighted blow-up if for positive d

$$f_*\mathcal{O}_X(dL) = i^{-1} \Big(x_1^{s_1} \cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j \ge db \Big) \cdot \mathcal{O}_Z$$

where b = M, s_i are non negative integers and $i: Z \to \mathbb{C}^n/\mathbb{Z}_m(a_1, \ldots, a_n)$ is the inclusion.

We now mimic the proof of Theorem 3.6 in [23].

Consider the exact sequence

$$(4.1) 0 \to \mathcal{O}_X(iL - aL) \to \mathcal{O}_X(iL) \to \mathcal{O}_Y(iL) \to 0,$$

for every integer i.

We have noticed in Section 2 that $R^1 f'_* \mathcal{O}_Y(iL) = 0$ for $i \in \mathbb{Z}$. Therefore, by (4.1), we obtain surjections $R^1 f_* \mathcal{O}_X((i-aj)L) \to R^1 f_* \mathcal{O}_X(iL)$, $i, j \in \mathbb{Z}, j \geq 0$. On the other hand $R^1 f_* \mathcal{O}_X(-jL) = 0$ for sufficiently large j. Hence we obtain

$$R^1 f_* \mathcal{O}_X(iL) = 0$$
 for every integer i.

Let $\mathcal{O}_Z = \left(\mathbb{C}[x_1,\ldots,x_n]/(\tilde{g})\right)^{\mathbb{Z}_m}$. All above implies the following exact sequences of \mathcal{O}_Z -algebras:

$$(4.2) 0 \to f_*\mathcal{O}_X((i-a)L) \to f_*\mathcal{O}_X(iL) \to f_*\mathcal{O}_Y(iL) \to 0.$$

In particular, for i = a, we have

$$0 \to \mathcal{O}_Z \to f_*\mathcal{O}_X(aL) \to f_*\mathcal{O}_Y(aL) \to 0.$$

Let θ be the image of 1 by the map $\mathcal{O}_Z \to f_*\mathcal{O}_X(aL)$; then (4.2) becomes

$$(4.3) 0 \to f_* \mathcal{O}_X((i-a)L) \stackrel{\times \theta}{\to} f_* \mathcal{O}_X(iL) \to f_* \mathcal{O}_Y(iL) \to 0;$$

here, $\times \theta$ is exactly $\times (x_n)$.

We will prove, by induction on d, that

$$f_*\mathcal{O}_X(dL) = \left(x_1^{s_1} \cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j \ge db\right) \cdot \mathcal{O}_Z.$$

By assumption we have that

$$f_*\mathcal{O}_Y(dL) = \left(x_1^{s_1} \cdots x_n^{s_n} : \sum_{j=1}^{n-1} s_j a_j \ge db\right) \cdot \mathcal{O}_W$$

where $s_i \in \mathbb{N}$.

By induction on d, we can assume that

$$f_*\mathcal{O}_X((d-a)L) = \left(x_1^{s_1} \cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j \ge (d-a)b\right) \cdot \mathcal{O}_Z,$$

the case $d-a \leq 0$ being trivial.

Let $g = x_1^{s_1} \cdots x_n^{s_n} \in f_* \mathcal{O}_X(dL)$ be a monomial.

If $s_n \ge 1$ then, looking at the sequence (4.3), g comes from $f_*\mathcal{O}_X((d-a)L)$ by the multiplication by (x_n) ; therefore

$$\sum_{j=1}^{n} s_j a_j = \sum_{j=1}^{n-1} s_j a_j + s_n a_n \ge (d-a)b + s_n a_n \ge db - ab + ab = db.$$

If $s_n = 0$, then $g \in f_*\mathcal{O}_Y(dL)$ and so

$$\sum_{j=1}^{n} s_j a_j = \sum_{j=1}^{n-1} s_j a_j \ge db.$$

The non-monomial case follows immediately.

5. Application to MMP with scaling

The proof of Theorem 1.3, as explained in the introduction, follows via a standard induction procedure using Theorem 1.1, Theorem 1.1 in [3] and, for dimension 3, assuming 1.2. It is actually very similar to the proof of Theorem 1.2.A in [3], we rewrite it for the reader's convenience.

Proof of Theorem 1.3. Let $f: X \to Z$ be a local projective, divisorial contraction which contracts a prime divisor E to $P \in Z$ as in the theorem.

The nef-value of the pair $(f: X \to Z, L)$ is defined as $\tau_f(X, L) := \inf\{t \in \mathbb{R} : K_X + tL \text{ is } f\text{-nef}\}$. By the rationality theorem of Kawamata (Theorem 3.5 in [22]), $\tau_f(X, L) := \tau$ is a rational non-negative number. Moreover f is an adjoint contraction supported by $K_X + \tau L$, that is $K_X + \tau L \sim_f \mathcal{O}_X$ (\sim_f stays for numerical equivalence over f).

By our assumption, $\tau > (n-3)$. Therefore $\tau + 3 > n > n - 1 = \dim E$ and, by Proposition 3.3.2 in [3], there exists a section of L not vanishing along E; in particular |L| is not empty.

Let $H_i \in |L|$ be general divisors for $i=1,\ldots,n-3$. By Theorem 1.1 in [3], quoted in the introduction, for any i, H_i is a variety with terminal singularities and the morphism $f_i = f_{|H_i|} : H_i \to f(H_i) =: Z_i$ is a local contraction supported by $K_{H_i} + (\tau - 1)L_{|H_i|}$. Since Z is terminal and \mathbb{Q} -factorial (see Corollaries 3.36 and 3.43 in [22]), then the Z_i 's are \mathbb{Q} -Cartier divisors on Z.

For any $t=n-3,\ldots,0$ define $Y_t=\cap_{i=1}^{n-3-t}H_i$ and $g_t=f_{|Y_t}:Y_t\to f(Y_t)=W_t;$ in particular $Y_{n-3}=X,\ g_{n-3}=f$ and $W_{n-3}=Z.$

By induction on t, applying Theorem 1.1 in [3], one sees that, for any $t=n-4,\ldots,0$, Y_t is terminal and $g_t\colon Y_t\to W_t$ is a local Fano–Mori contraction supported by $K_{Y_t}+(\tau-(n-3-t)L_{|Y_t})$. Therefore W_t is a terminal variety (by Corollary 3.43 in [22]) and it is a \mathbb{Q} -Cartier divisor in W_{t+1} , because intersection of \mathbb{Q} -Cartier divisors (by construction $W_t=\cap_{i=1}^{n-3-t}Z_i$).

Set $L_t := L_{|W_t}$. By Proposition 3.3.4 of [3], $Bs|L_t|$ has dimension at most 1; by Bertini's theorem (see Theorem 6.3 in [13]), $E_t := Y_t \cap E$ is a prime divisor. E_t is the intersection of \mathbb{Q} -Cartier divisors and hence it is \mathbb{Q} -Cartier.

Let $X'' = Y_0$ and $f'' = g_0$; by what said above, $f'': X'' \to Z''$ is a divisorial contraction from a 3-fold X'' with terminal singularities, which contracts a prime \mathbb{Q} -Cartier divisor E'' to a point $P \in Z''$. Using the classification in dimension 3 of terminal \mathbb{Q} -factorial singularities ([24]) and of divisorial contractions (for a summary see [5]), one can see that Z'' has a hyperquotient singularity at P, which is actually contained in a special list.

By Proposition 3.3 and by induction on t, also Z has a hyperquotient singularity at P.

Assume now (1.2), that is that f'' is a weighted blow-up of P; applying Theorem 1.1 inductively on t, we have that f is a weighted blow-up of a hyperquotient singularities.

Acknowledgments. I like to thank Alessio Corti for suggesting to use Schlessinger theorem in the proof of Proposition 3.1 and for providing Example 3.2. I thank Roberto Pignatelli and Luca Tasin for very helpful conversations.

References

- [1] Andreatta, M.: Minimal model program with scaling and adjunction theory. *Internat. J. Math.* **24** (2013), no. 2, 1350007, 13 pp.
- [2] Andreatta, M. and Tasin, L.: Fano-Mori contractions of high length on projective varieties with terminal singularities. Bull. Lond. Math. Soc. 46 (2014), no. 1, 185-196.
- [3] Andreatta, M. and Tasin, L.: Local Fano-Mori contractions of high nef-value. *Math. Res. Lett.* **23** (2016), no. 5, 1247–1262.
- [4] BIRKAR, C., CASCINI, P., HACON, C. D., AND MCKERNAN, J.: Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.
- [5] CHEN, J. A.: Birational maps of 3-folds. Taiwanese J. Math. 19 (2015), no. 6, 1619–1642.
- [6] Cox, D. A., Little, J. B. and Schenck, H. K.: *Toric varieties*. Graduate Studies in Mathematics 124, American Mathematical Society, Providence, RI, 2011.
- [7] GROTHENDIECK, A.: Éléments de géométrie algébrique II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math. 8, 1961.
- [8] GROTHENDIECK, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). Séminaire de Géométrie Algébrique du Bois-Marie, 1962. Advanced Studies in Pure Mathematics 2, North-Holland, Amsterdam; Masson, Paris, 1968.
- [9] Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977.
- [10] HAYAKAWA, T.: Blowing ups of 3-dimensional terminal singularities. Publ. Res. Inst. Math. Sci. 35 (1999), no. 3, 515–570.

[11] HAYAKAWA, T.: Blowing ups of 3-dimensional terminal singularities. II. Publ. Res. Inst. Math. Sci. 36 (2000), no. 3, 423–456.

- [12] HAYAKAWA, T.: Divisorial contractions to 3-dimensional terminal singularities with discrepancy one. J. Math. Soc. Japan 57 (2005), no. 3, 651–668.
- [13] JOUANOLOU, J.-P.: Théorèmes de Bertini et applications. Progress in Mathematics 42, Birkhäuser, Boston, MA, 1983.
- [14] KAWAKITA, M.: General elephants of three-fold divisorial contractions. J. Amer. Math. Soc. 16 (2003), no. 2, 331–362.
- [15] KAWAKITA, M.: Three-fold divisorial contractions to singularities of higher indices. Duke Math. J. 130 (2005), no. 1, 57–126.
- [16] KAWAKITA, M.: Supplement to classification of threefold divisorial contractions. Nagoya Math. J. 206 (2012), 67–73.
- [17] KAWAKITA, Y.: Divisorial contractions in dimension three which contract divisors to smooth points. *Invent. Math.* 145 (2001), no. 1, 105–119.
- [18] KAWAKITA, Y.: Divisorial contractions in dimension three which contract divisors to compound A1 points. Compositio Math. 133 (2002), no. 1, 95–116.
- [19] KAWAMATA, Y.: Divisorial contractions to 3-dimensional terminal quotient singularities. In Higher-dimensional complex varieties (Trento, 1994), 241–246. De Gruyter, Berlin, 1996.
- [20] KLEIMAN, S.L.: Toward a numerical theory of ampleness. Ann. of Math. (2) 84 (1966), 293–344.
- [21] KOLLÁR, J. AND MORI, S.: Classification of three-dimensional flips. J. Amer. Math. Soc. 5 (1992), no. 3, 533–703.
- [22] KOLLÁR, J. AND MORI, S.: Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics 134, Cambridge University Press, Cambridge, 1998.
- [23] MORI, S.: On a generalization of complete intersections. J. Math. Kyoto Univ. 15 (1975), no. 3, 619–646.
- [24] MORI, S.: On 3-dimensional terminal singularities. Nagoya Math. J. 98 (1985), 43–66.
- [25] Reid, M.: Young person's guide to canonical singularities. In Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345–414. Proc. Sympos. Pure Math. 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.
- [26] SCHLESSINGER, M.: Rigidity of quotient singularities. Invent. Math. 14 (1971), 17–26.

Received August 19, 2016; revised December 22, 2016. Published online December 6, 2018.

Supported by the MIUR grant PRIN-2010 and 2015.

MARCO ANDREATTA: Dipartimento di Matematica, Università di Trento, I-38123 Povo (TN), Italia.

E-mail: marco.andreatta@unitn.it