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Isoperimetric inequalities and monotonicity
formulas for submanifolds

in warped products manifolds

Hilário Alencar and Gregório Silva Neto

Abstract. In this paper we first prove some linear isoperimetric in-
equalities for submanifolds in the de Sitter–Schwarzschild and Reissner–
Nordstrom manifolds. Moreover, the equality is attained. Next, we prove
some monotonicity formulas for submanifolds with bounded mean cur-
vature vector in warped product manifolds and, as consequences, we give
lower bound estimates for the volume of these submanifolds in terms of the
warping function. We conclude the paper with an isoperimetric inequality
for minimal surfaces.

1. Introduction

Let I ⊂ R be an open interval and Nn−1 be a Riemannian manifold. We define
the n-dimensional warped product manifold by Mn = I ×Nn−1, n ≥ 2, endowed
with the warped metric

(1.1) g = dr2 + h(r)2gN ,

where h : I → R is a smooth and positive function, called the warping function,
and gN is the metric of Nn−1.

These manifolds were first introduced by R. Bishop and B. O’Neill in 1969,
see [2], and has had increasing importance due its applications as model spaces
in general relativity. There are many interesting papers in this subject, see for
example [12], [3], [5], [4], [1], [18], [19], [8], and [6] for more references and results.

In the following we introduce some examples of warped product manifolds used
in this paper.

Example 1.1 (The space forms R
n, H

n(c), c < 0, and S
n(c), c > 0, n ≥ 2).

We can consider the space forms as warped product manifolds endowed with the
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warped metric g = dr2 + h(r)2gSn−1 , where gSn−1 denotes the standard metric of
unit (n− 1)-dimensional sphere S

n−1.

(i) For Rn, the warping function is h(r) = r, r ∈ (0,∞);

(ii) For Hn(c), the warping function is h(r) = 1√−c
sinh(

√−cr), r ∈ (0,∞);

(iii) For Sn(c), the warping function is h(r) = 1√
c
sin(

√
cr), r ∈ (0, π).

Example 1.2 (The de Sitter–Schwarzschild manifolds). Let n ≥ 3, m > 0 and
c ∈ R. Let

(s0, s1) = {s > 0; 1−ms2−n − cs2 > 0}.
If c ≤ 0, then s1 = ∞. If c > 0, assume that nn

4(n−2)n−2 m
2cn−2 < 1. The de Sitter–

Schwarzschild manifold is defined by Mn(c) = (s0, s1) × S
n−1 endowed with the

metric

g =
1

1−ms2−n − cs2
ds2 + s2gSn−1 .

In order to write the metric g in the form (1.1), define F : [s0, s1) → R by

F ′(s) =
1√

1−ms2−n − cs2
, F (s0) = 0.

Taking r = F (s), we can write g = dr2+h(r)2gSn−1 , where h : [0, F (s1)) → [s0, s1)
denotes the inverse function of F. The function h(r) clearly satisfies

(1.2) h′(r) =
√
1−mh(r)2−n − ch(r)2, h(0) = s0, and h′(0) = 0.

Example 1.3 (The Reissner–Nordstrommanifold). The Reissner–Nordstromman-
ifold is defined by Mn = (s0,∞)× S

n−1, n ≥ 3, with the metric

g =
1

1−ms2−n + q2s4−2n
ds2 + s2gSn−1 ,

where m > 2q > 0 and s0 =
(

2q2

m−
√

m2−4q2

)1/(n−2)
is the larger of the two solutions

of 1−ms2−n+ q2s4−2n = 0. In order to write the metric g in the form (1.1), define
F : [s0,∞) → R by

F ′(s) =
1√

1−ms2−n + q2s4−2n
, F (s0) = 0.

Taking r = F (s), we can write g = dr2 + h(r)2gSn−1 , where h : [0,∞) → [s0,∞)
denotes the inverse function of F. The function h(r) clearly satisfies

(1.3) h′(r) =
√
1−mh(r)2−n + q2h(r)4−2n, h(0) = s0, and h′(0) = 0.

In this paper we first prove some linear isoperimetric inequalities for subman-
ifolds in the de Sitter–Schwarzschild and Reissner–Nordstrom manifolds. In par-
ticular, we obtain some known isoperimetric inequalities for submanifolds in space
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forms. Next, we prove some monotonicity formulas for submanifolds with bounded
mean curvature vector in warped product manifolds and, as consequences, we give
lower bound estimates for the volume of these submanifolds in terms of the warp-
ing function. We conclude the paper with an isoperimetric inequality for minimal
surfaces.

The first result is an isoperimetric inequality for submanifolds in the de Sitter–
Schwarzschild manifold.

Theorem 1.1. Let Σ be a k-dimensional, compact, oriented, submanifold, k ≥ 2,
of the de Sitter–Schwarzschild manifold Mn(c) = (s0, s1)× S

n−1, n ≥ 3.

(i) If Σ ⊂ (
s0, (mn/2)1/(n−2)

)× S
n−1, then

|Σ| ≤ dΣ

k
√
1−md2−n

Σ − cd2Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]

− d2Σ
k(n− 1)(1−md2−n

Σ − cd2Σ)

∫
Σ

RicMn(c)(∇r)|∇Σr|2 dΣ,
(1.4)

where dΣ = min{s ∈ (s0, s1); Σ ∩ {{s} × S
n−1} �= ∅}. In particular,

(1.5) |Σ| ≤ C1(dΣ)
[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]
,

where

C1(dΣ) =
dΣ

√
1−md2−n

Σ − cd2Σ

(1− mn
2 d2−n

Σ ) + (k − 1)(1−md2−n
Σ − cd2Σ)

.

(ii) If c > 0 and Σ ⊂ (
(m(n− 2)/(2c))

1/n
, s1

)× S
n−1, then

|Σ| ≤ RΣ

k
√
1−mR2−n

Σ − cR2
Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]

− d2Σ
k(n− 1)(1−md2−n

Σ − cd2Σ)

∫
Σ

RicMn(c)(∇r)|∇Σr|2 dΣ,
(1.6)

where RΣ = max
{
s ∈ (s0, s1) ; Σ ∩ {{s} × S

n−1} �= ∅} .
(iii) If c ≤ 0 and Σ ∈ (

(mn/2)1/(n−2),∞) × S
n−1, or if c > 0 and Σ ⊂(

(mn/2)1/(n−2), (m(n− 2)/(2c))1/n
)× S

n−1, then

|Σ| ≤ RΣ

k
√
1−mR2−n

Σ − cR2
Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]

− R2
Σ

k(n− 1)(1−mR2−n
Σ − cR2

Σ)

∫
Σ

RicMn(c)(∇r)|∇Σr|2 dΣ.
(1.7)
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(iv) For c ∈ R and Σ ⊂ (
(mn/2)1/(n−2), s1

)× S
n−1, we have also

(1.8) |Σ| ≤ RΣ

(k − 1)
√
1−mR2−n

Σ − cR2
Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]
.

In particular, if c < 0, then

(1.9) |Σ| ≤ 1√−c (k − 1)

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]
.

Moreover, if Σ is a slice {s}×S
n−1, then the equality holds for the inequalities (1.4),

(1.6), and (1.7). Here, RicMn(c) denotes the Ricci curvature of Mn(c), ∇r denotes
the gradient of the distance function r, ∇Σr denotes the component of ∇r tangent
to Σ, and �H denotes the normalized mean curvature vector of Σ.

Remark 1.1. Since C1(dΣ) < 0 for dΣ near from s0, the inequality (1.5) holds
only away from s0, for those dΣ such that C1(dΣ) > 0. Since C1

(
(mn/2)1/(n−2)

)
=

1/(k − 1) > 0, there exists s ∈ (
s0, (mn/2)1/(n−2)

)
, depending on m,n, c and k,

such that C1(dΣ) > 0 for every dΣ ∈ (
s, (mn/2)1/(n−2)

)
.

If k = n, we obtain an isoperimetric inequality for domains in the de Sitter–
Schwarzschild manifold:

Corollary 1.1. Let Ω be a domain of the de Sitter–Schwarzschild manifold with
smooth boundary ∂Ω.

(i) If Ω ⊂ (
s0, (mn/2)1/(n−2)

)× S
n−1, n ≥ 3, then

(1.10) |Ω| ≤ C1(dΩ) |∂Ω|,
where

C1(dΩ) =
dΩ

√
1−md2−n

Ω − cd2Ω

(1− mn
2 d2−n

Ω ) + (n− 1)(1−md2−n
Ω − cd2Ω)

,

and dΩ = min
{
s ∈ (

s0, (mn/2)1/(n−2)
)
; Ω ∩ {{s} × S

n−1} �= ∅} .
(ii) If Ω ⊂ (

(mn/2)1/(n−2), s1
)× S

n−1, n ≥ 3, then

(1.11) |Ω| ≤ RΩ

(n− 1)
√
1−mR2−n

Ω − cR2
Ω

|∂Ω|,

where RΩ = max
{
s ∈ (

(mn/2)1/(n−2), s1
)
; Ω ∩ {{s} × S

n−1} �= ∅} . In par-
ticular, if c < 0, then

(1.12) |Ω| ≤ 1√−c (n− 1)
|∂Ω|.

Taking m → 0 in the de Sitter–Schwarzschild manifold, it becomes H
n(c)

for c < 0, Sn(c) for c > 0 and R
n for c = 0. Thus, as consequences of Theorem 1.1

we obtain isoperimetric inequalities for submanifolds in space forms. First, we
present an isoperimetric inequality for submanifolds of the hyperbolic space.
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Corollary 1.2. Let Σ be a k-dimensional, compact, oriented, submanifold, k ≥ 2,
of the hyperbolic space H

n(c), n ≥ 3, c < 0. Then

(1.13) |Σ| ≤ tanh(
√−c R̃Σ)√−c k

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]
+

1

k

∫
Σ

tanh2(
√−cr)|∇Σr|2 dΣ,

where R̃Σ is the radius of the smallest extrinsic ball which contains Σ. If Σ is a
geodesic sphere, then the equality holds.

Remark 1.2. It is possible to obtain another proof of Corollary 1.2 from the
proofs of Theorem 6 (b), p. 185 of [7], for �H = 0, and Corollary 3.6, p. 533 of [16],

for arbitrary �H.

Remark 1.3. Since the de Sitter–Schwarzschild manifold, c < 0, becomes Hn(c)
when m → 0, the inequality (1.12) holds also for Hn(c). This fact was proved first
by S.-T. Yau in [20], see Proposition 3, p. 498.

The next corollary is an isoperimetric inequality for submanifolds of the open
hemisphere S

n
+(c).

Corollary 1.3. Let Σ be a k-dimensional, compact, oriented, submanifold, k ≥ 2,
of the open hemisphere S

n
+(c), n ≥ 3, c > 0. Then

(1.14) |Σ| ≤ tan(
√
c R̃Σ)

k
√
c

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]
− 1

k

∫
Σ

tan2(
√
cr)|∇Σr|2 dΣ,

where R̃Σ is the radius of the smallest extrinsic ball which contains Σ. If Σ is a
geodesic sphere, then the equality holds.

Remark 1.4. It is possible to obtain another proof of Corollary 1.2 from the proofs
of Theorem 6 (a), p. 185, of [7], for �H = 0, and Corollary 3.4, p. 533, of [16], for

arbitrary �H.

Our second result is the following isoperimetric inequality for submanifolds in
the Reissner–Nordstrom manifold.

Theorem 1.2. Let Σ be a k-dimensional, compact, oriented, submanifold, k ≥ 2,
of the Reissner–Nordstrom manifold Mn = (s0,∞) × S

n−1, n ≥ 3. Let s2 =( 4(n−1)q2

mn−
√

m2n2−16(n−1)q2

)1/(n−2)
.

(i) If Σ ⊂ (s0, s2)× S
n−1, then

|Σ| ≤ dΣ

k
√
1−md2−n

Σ + q2d4−2n
Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]

− d2Σ
k(n− 1)(1−md2−n

Σ + q2d4−2n
Σ )

∫
Σ

RicMn(∇r)|∇Σr|2 dΣ.
(1.15)
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In particular,

(1.16) |Σ| ≤ dΣ

(C2(dΣ)− k)
√
1−md2−n

Σ + q2d4−2n
Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]
,

where dΣ = min
{
s ∈ (s0,∞); Σ ∩ {{s} × S

n−1} �= ∅} .
(ii) If Σ ⊂ (s2,∞)× S

n−1, then

|Σ| ≤ RΣ

k
√
1−mR2−n

Σ + q2R4−2n
Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]

− R2
Σ

k(n− 1)(1−mR2−n
Σ + q2R4−2n

Σ )

∫
Σ

RicMn(∇r)|∇Σr|2 dΣ.(1.17)

In particular,

(1.18) |Σ| ≤ RΣ

(C2(dΣ)− k)
√
1−mR2−n

Σ + q2R4−2n
Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]
,

where RΣ = max
{
s ∈ (s2,∞); Σ ∩ {{s} × S

n−1} �= ∅} .
Moreover, if Σ is a slice {s} × S

n−1 then the equality holds for both inequali-
ties (1.15) and (1.17). Here,

C2(dΣ) =
n− 2

2dn−2
Σ

(
m− 2q2

dn−2
Σ

) 1

1−md2−n
Σ + q2d4−2n

Σ

=
m(n−2)

2
d2−n
Σ +O(d4−2n

Σ ).

Remark 1.5. Since C2(dΣ) → ∞ when dΣ → s0, the inequalities (1.16) and (1.18)
hold only away from s0, i.e., for C2(dΣ) < k. On the other hand, since C2(dΣ) → 0
when dΣ → ∞, there exists s ∈ (s0,∞) depending on m, q, n and k, such that
C2(dΣ) < k for every dΣ ∈ (s,∞).

If k = n, we obtain an isoperimetric inequality for domains in the Reissner–
Nordstrom manifold.

Corollary 1.4. Let Ω be a compact domain in the Reissner–Nordstrom manifold
with smooth boundary ∂Ω.

(i) If Ω ⊂ (s0, s2)× S
n−1, n ≥ 3, then

|Ω| ≤ dΩ

(C2(dΩ)− n)
√
1−md2−n

Ω + q2d4−2n
Ω

|∂Ω|,

where dΩ = min
{
s ∈ (s0,∞); Ω ∩ {{s} × S

n−1} �= ∅} .
(ii) If Ω ⊂ (s2,∞)× S

n−1, n ≥ 3, then

|Ω| ≤ RΩ

(C2(dΩ)− n)
√
1−mR2−n

Ω + q2R4−2n
Ω

|∂Ω|,

where RΩ = max
{
s ∈ (s2,∞); Ω ∩ {{s} × S

n−1} �= ∅} .
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Remark 1.6. If Σ is a compact, without boundary, embedded, orientable hyper-
surface of the de Sitter–Schwarzschild manifold or the Reissner–Nordstrom mani-
fold, with constant mean curvature, S. Brendle in [4], see Corollary 1.2 and Corol-
lary 1.3, pp. 249–250, proved that Σ is a slice.

If we suppose in addition that the norm of the mean curvature vector is
bounded, we obtain the following monotonicity formula for submanifolds in warped
product manifolds. Let Mn = I ×Nn−1 be the warped product manifold. Here-
after, we denote by

Br = {s ∈ I | s ≤ r} ×Nn−1 ⊂ Mn.

Theorem 1.3. Let I ⊂ R be an open interval and Nn−1, n ≥ 3, be a (n − 1)-
dimensional Riemannian manifold. Let Mn = I × Nn−1 be endowed with the
warped metric ds2 = dr2+h(r)2gN , where gN is the metric of Nn−1 and h′(r) > 0
for all r ∈ I. Assume also that h(r)/h′(r) is non-decreasing for all r ∈ I. If Σ is a
k-dimensional, proper, oriented, submanifold of Mn such that its mean curvature
vector satisfies k| �H | ≤ α for some α ≥ 0, then

(i) the function V1 : I → R given by

V1(r) =
eαr

h(r)k

∫
Σ∩Br

h(s) dΣ

is monotone non-decreasing. Moreover,

(1.19) |Σ ∩Br| ≥ C1(r0) e
−αr h(r)k−1,

for every r > r0, r0, r ∈ I, where C1(r0) =
eαr0

h(r0)k

∫
Σ∩Br0

h(s) dΣ;

(ii) the function V2 : I → R given by

V2(r) =
eαr

h(r)k

∫
Σ∩Br

h′(s) dΣ

is monotone non-decreasing. Moreover, if h′(r) ≤ B, B > 0, then

(1.20) |Σ ∩Br| ≥ C2(r0)

B
e−αr h(r)k,

and if h′′(r) > 0 then

(1.21) |Σ ∩Br| ≥ C2(r0)

h′(r)
e−αr h(r)k,

for every r > r0, r0, r ∈ I, where C2(r0) =
eαr0

h(r0)k

∫
Σ∩Br0

h′(s) dΣ.
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In the next corollary we assume

(1.22) 〈 �H,∇r〉 ≥ 0.

This condition holds, for example, for minimal submanifolds ( �H = 0) or cones

(〈 �H,∇r〉 = 0) in the warped product manifolds. If k = n − 1, we say that Σ is
a star-shaped hypersurface if there is a choice of unit normal η of Σ such that
〈η,∇r〉 ≥ 0. In this case, the condition (1.22) means that Σ is star–shaped.

Corollary 1.5. Let I ⊂ R be an open interval and Nn−1, n ≥ 3, be a (n − 1)-
dimensional Riemannian manifold. Let Mn = I × Nn−1 be endowed with the
warped metric ds2 = dr2+h(r)2gN , where gN is the metric of Nn−1 and h′(r) > 0
for all r ∈ I. Assume also that h(r)/h′(r) is non-decreasing for all r ∈ I. If Σ is a

k-dimensional, proper, oriented, submanifold, k ≥ 2, of Mn such that 〈 �H,∇r〉 ≥ 0,
then the functions

r �−→ 1

h(r)k

∫
Σ∩Br

h(s) dΣ and r �−→ 1

h(r)k

∫
Σ∩Br

h′(s) dΣ

are monotone non-decreasing for all r ∈ I. In particular,

(1.23) |Σ ∩Br| ≥ C̃1(r0)h(r)
k−1.

Moreover, if there exists B > 0 such that h′(r) ≤ B for every r ∈ I, then

(1.24) |Σ ∩Br| ≥ C̃2(r0)

B
h(r)k

and, if h′′(r) > 0 then

|Σ ∩Br| ≥ C̃2(r0)

h′(r)
h(r)k

for every r > r0, where

C̃1(r0) =
1

h(r0)k

∫
Σ∩Br0

h(s) dΣ and C̃2(r0) =
1

h(r0)k

∫
Σ∩Br0

h′(s) dΣ.

As applications of Theorem 1.3 we have the following results:

Corollary 1.6. Let Σ be a k-dimensional, proper, oriented, submanifold, k ≥ 2,
of the de Sitter–Schwarzschild manifold Mn(c), n ≥ 3, such that k| �H | ≤ α for
some α ≥ 0. Then, for every r > r0 such that h(r0) > (mn/2)1/(n−2), we have

(i) for c > 0,

|Σ ∩Br| ≥ C2(r0) e
−αr h(r)k,

where C2(r0) =
eαr0

h(r0)k

∫
Σ∩Br0

h′(s) dΣ;
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(ii) for c ≤ 0,
|Σ ∩Br| ≥ C1(r0) e

−αr h(r)k−1;

where C1(r0) =
eαr0

h(r0)k

∫
Σ∩Br0

h(s) dΣ. Moreover, for c < 0,

(1.25)

h(r) =
1√−c

sinh(
√−cr) +

m

2n
√−c

sinh1−n(
√−cr) +O(sinh−n−1(

√−cr)).

In particular, if c < 0, Σ is complete, non compact, and α < k − 1, then Σ
has at least exponential volume growth at infinity and |Σ| = ∞.

Remark 1.7. The equation (1.25), with c = −1, was proved by S. Brendle, see [6],
Lemma 2.1, p. 128.

For submanifolds of the Reissner–Nordstrom manifold, we have:

Corollary 1.7. Let Σ be a k-dimensional, proper, oriented, submanifold, k ≥ 2, of
the Reissner–Nordstrom manifold Mn = (s0,∞)×S

n−1, n ≥ 3, such that k| �H | ≤ α
for some α ≥ 0. Then, for every r > r0 such that h(r0) > s2, we have

|Σ ∩Br| ≥ C2(r0) e
−αrh(r)k,

where s2 =
( 4q2(n−1)

mn−
√

m2n2−16q2(n−1)

)1/(n−2)
and C2(r0) =

eαr0

h(r0)k

∫
Σ∩Br0

h′(s) dΣ.

Moreover, if n ≥ 4, then

h(r) = r +
m

2(n− 3)
r3−n +O(r5−2n).

In particular, if n ≥ 4 and Σ is a complete minimal submanifold, then the volume
of Σ has at least polynomial growth of order k at infinity and |Σ| = ∞.

Another interesting application of Theorem 1.3 is for warped manifolds I× S
n−1,

where I = (0, b) or I = (0,∞), which warping function satisfies h(0) = 0 and
h′(0) = 1.

Corollary 1.8. Let I ⊂ R be an open interval of the form (0, b) or (0,∞), let
Nn−1, n ≥ 3, be a Riemannian manifold, and let Mn = I × Nn−1 endowed with
the metric ds2 = dr2 + h(r)2gN , such that h(0) = 0, h′(0) = 1 and h′(r) > 0 for
every r > 0. Assume also that h(r)/h′(r) is non-decreasing for all r ∈ I. If Σ is a
k-dimensional, proper, oriented, submanifold of Mn such that its mean curvature
vector satisfies k| �H | ≤ α for some α ≥ 0, then∫

Σ∩Br(x0)

h′(s) dΣ ≥ ωk e
−αrh(r)k,

for all Br(x0) ⊂ Mn such that x0 ∈ Σ, where ωk is the volume of the k-dimensional
Euclidean unit round ball. In particular, if there exists B > 0 such that h′(r) ≤ B
for every r ∈ I, then

(1.26) |Σ ∩Br| ≥ ωk

B
e−αrh(r)k,
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and if h′′(r) > 0, then

(1.27) |Σ ∩Br| ≥ ωk
e−αrh(r)k

h′(r)
.

Remark 1.8. Clearly the space forms Rn, Hn(c), and the open hemisphere Sn+(c)
satisfy the hypothesis of Theorem 1.3 and Corollary 1.8. Other classes of manifolds
satisfying these hypothesis are given in the Example 3.2 and the Example 3.3 in
the Appendix.

When the submanifolds have dimension 2, we obtain other type of isoperimetric
inequality, namely:

Theorem 1.4. Let I ⊂ R be an open interval of the form (0, b) or (0,∞), let
Nn−1, n ≥ 3, be a Riemannian manifold, and let Mn = I × Nn−1 endowed with
the metric ds2 = dr2 + h(r)2gN , such that h(0) = 0, h′(0) = 1 and h′(r) > 0 for
every r > 0. Let Σ2 ⊂ [r0, r1] × Nn−1 ⊂ Mn, [r0, r1] ⊂ I, be a compact minimal
surface with non-empty boundary ∂Σ.

(i) If the function u(r) := r + h(r)/h′(r) is non-decreasing for r ∈ [r0, r1], then

2πA ≤ L2 +
A

n− 1

∫
Σ

RicM (∇r) dΣ;

(ii) If the function u(r) := r + h(r)/h′(r) is non-increasing for r ∈ [r0, r1] and
the scalar curvature of N satisfies scalN ≥ 0, then

2πA ≤ L2 +
2A

(n− 1)(n− 2)

∫
Σ

(scalM −2RicM (∇r)) dΣ,

where A = Area(Σ), L = Lenght(∂Σ), scalM denotes the scalar curvature of M,
and RicM (∇r) denotes the Ricci curvature of M in the radial direction ∇r.

Remark 1.9. The function u(r) = r+h(r)/h′(r) in the hypothesis of Theorem 1.4
deserves some comments about where it is non-decreasing or non-increasing:

(a) since u′(0) = 2, there exists an interval [0, s] ⊂ I such that u′(r) > 0;

(b) there are manifolds where u′(r) > 0 everywhere, as we can see in the space
forms Rn, S

n(c), Hn(c), the Example 3.2, and the Example 3.3;

(c) if u′(r) < 0 somewhere, this happens only for compact intervals. In fact, if
u′(r) < 0 for r > r0, then 0 < u(r) < u(r0) implies r < r0 + h(r0)/h

′(r0). A
typical case is the Example 3.1 of the Appendix, where there exist r0 and r1
such that u′(r) > 0 for r ∈ (0, r0) ∪ (r1,∞) and u′(r) < 0 for r ∈ (r0, r1).

Remark 1.10. The hypothesis of Theorem 1.4 are not satisfied by the de Sitter–
Schwarzschild manifold nor by the Reissner–Nordstrom manifold.

As immediate consequences of the item (i) of Theorem 1.4, we obtain the
isoperimetric inequalities of J. Choe and R. Gulliver, see Theorem 5, p. 183, of [7]:
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Corollary 1.9. Let Σ2 be compact minimal surface of S
n(c) or H

n(c), n ≥ 3.
If Σ2 ⊂ S

n(c), assume further that diamΣ ≤ π
2
√
c
. Let A = Area(Σ) and L =

Lenght(∂Σ). Then
2πA ≤ L2 + cA2.

2. Proof of the main results

We start with a well-known result, which we give a proof here for the sake of
completeness. The proof presented here is essentially in [4], Lemma 2.2, p. 253.

Lemma 2.1. Let Mn = I × Nn−1, n ≥ 3, be a warped product manifold with
metric g = dr2 + h(r)2gN , where gN is the metric of Nn−1 and r is the distance
function of Mn. Then

(2.1) Hess r(U, V ) =
h′(r)
h(r)

[〈U, V 〉 − 〈∇r, U〉〈∇r, V 〉],

for all U, V ∈ TM. Moreover, if Σ is a k-dimensional submanifold of Mn, then

(2.2) ΔΣr =
h′(r)
h(r)

[k − |∇Σr|2] + k〈 �H,∇r〉.

Here 〈U, V 〉 = g(U, V ), ∇r is the gradient of r in Mn, ∇Σr and ΔΣr denote the
gradient and the Laplacian of r in Σ, respectively.

Proof. Taking the Lie derivative of g in the direction of ∂r = ∇r, we have

L∂r (g) = L∂r (dr ⊗ dr) + L∂r (h(r)
2gN ) = 2L∂r (dr) ⊗ dr + L∂r (h(r)

2)gN

= 2d(L∂rr)⊗ dr + 〈∇(h(r)2), ∂r〉gN = 2d(〈∇r, ∂r〉)⊗ dr + 2h′(r)h(r)gN
= 2h′(r)h(r)gN ,

where L∂rgN = 0 provided gN does not depends on r. On the other hand,

(L∂r (g))(U, V ) = 〈U,∇V ∂r〉+ 〈∇U∂r, V 〉 = 2Hess r(U, V ).

Since gN = 1
h(r)2 (g − dr2), we have

Hess r(U, V ) =
h′(r)
h(r)

[g(U, V )− dr2(U, V )] =
h′(r)
h(r)

[〈U, V 〉 − 〈U, ∂r〉〈V, ∂r〉].

The expression (2.2) follows by tracing the known identity

HessΣ r(U, V ) = Hess r(U, V ) + 〈II(U, V ),∇r〉

=
h′(r)
h(r)

[〈U, V 〉 − 〈∇r, U〉〈∇r, V 〉] + 〈II(U, V ),∇r〉

over Σ, where HessΣ r denotes the Hessian of r in Σ and II(U, V ) is the second
fundamental form of Σ. �
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The next proposition will give the fundamental inequalities for the proof of
Theorem 1.1 and Theorem 1.2.

Proposition 2.1. Let Mn = I×Nn−1, n ≥ 3, be a warped product manifold, with
the warping function h : I → R satisfying h(r) > 0 and h′(r) �= 0 for all r ∈ I. If Σ
is a k-dimensional, compact, oriented submanifold of Mn, possibly with boundary,
then∫

Σ

f dΣ =
1

k

[ ∫
∂Σ

f
h(r)

h′(r)
〈∇Σr, ν〉dSΣ+

∫
Σ

(〈−k �H,∇r〉f − 〈∇Σf,∇Σr〉
) h(r)
h′(r)

dΣ
]

− 1

k(n− 1)

∫
Σ

f RicM (∇r)
( h(r)

h′(r)

)2

|∇Σr|2 dΣ,(2.3)

for every non-negative smooth function f : Σ → R, where �H denotes the mean
curvature vector field of Σ, ν is the unitary conormal vector field of ∂Σ pointing
outward, ∇Σr denotes the gradient of r in Σ and ∇r denotes the gradient of r
in Mn. In particular, for f ≡ 1 and h′(r) > 0, r ∈ I, we have

|Σ| ≤ 1

k

[ ∫
∂Σ

h(r)

h′(r)
dSΣ +

∫
Σ

〈−k �H,∇r〉 h(r)

h′(r)
dΣ

]

− 1

k(n− 1)

∫
Σ

RicM (∇r)
( h(r)

h′(r)

)2

|∇Σr|2 dΣ.
(2.4)

Moreover, if Σ = {r} × Nn−1 is a slice, or Σ is a totally geodesic submanifold of
dimension k, then the equality in (2.4) holds.

Proof. Let u : I → R be a real function such that u′(r) = h(r). By tracing the
expression

HessΣ u(r)(U, V ) = HessM u(r)(U, V ) + 〈II(U, V ),∇u(r)〉
over Σ, we have

ΔΣu(r) =

k∑
i=1

HessM u(r)(ei, ei) + k〈 �H,∇u(r)〉

for any orthonormal frame {e1, e2, . . . , ek} of Σ. On the other hand, since

ΔΣu(r) = divΣ(∇Σu(r)) = divΣ(h(r)∇Σr)

and, by using Lemma 2.1,

k∑
i=1

HessM u(r)(ei, ei) =

k∑
i=1

〈∇ei∇u(r), ei〉 =
k∑

i=1

〈∇ei (h(r)∇r), ei〉

= h′(r) |∇Σr|2 + h(r)

k∑
i=1

HessM r(ei, ei)

= h′(r) |∇Σr|2 + h(r)

k∑
i=1

h′(r)
h(r)

[〈ei, ei〉 − 〈ei,∇r〉2]

= k h′(r),
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we obtain

(2.5) divΣ(h(r)∇Σr) = kh′(r) + kh(r)〈 �H,∇r〉.
Let f : Σ → R be a smooth function. By using equation (2.5), we have

divΣ

( f

h′(r)
h(r)∇Σr

)
=

〈
∇Σ

( f

h′(r)

)
, h(r)∇Σr

〉
+

f

h′(r)
divΣ(h(r)∇Σr)

=
h(r)

h′(r)
〈∇Σf,∇Σr〉 − f

h(r)h′′(r)
h′(r)2

|∇Σr|2

+ kf + kf
h(r)

h′(r)
〈 �H,∇r〉

=
h(r)

h′(r)
〈∇Σf,∇Σr〉 − f

h′′(r)
h(r)

( h(r)

h′(r)

)2

|∇Σr|2

+ kf + kf
h(r)

h′(r)
〈 �H,∇r〉.

Integrating the expression above over Σ and using the divergence theorem, we have

k

∫
Σ

f dΣ =

∫
Σ

divΣ

(
f
h(r)

h′(r)
∇Σr

)
dΣ−

∫
Σ

h(r)

h′(r)
〈∇Σf,∇Σr〉 dΣ

+

∫
Σ

f
h′′(r)
h(r)

( h(r)

h′(r)

)2

|∇Σr|2 dΣ− k

∫
Σ

f
h(r)

h′(r)
〈 �H,∇r〉 dΣ

=

∫
∂Σ

f
h(r)

h′(r)
〈∇Σr, ν〉dSΣ −

∫
Σ

h(r)

h′(r)
〈∇Σf,∇Σr〉 dΣ

+

∫
Σ

f
h′′(r)
h(r)

( h(r)

h′(r)

)2

|∇Σr|2 dΣ− k

∫
Σ

f
h(r)

h′(r)
〈 �H,∇r〉 dΣ,

(2.6)

where ν is the unitary conormal vector field of ∂Σ pointing outward. The iden-
tity (2.3) follows from (2.6) by noting that

RicM (∇r) = −(n− 1)
h′′(r)
h(r)

.

The inequality (2.4) follows considering f ≡ 1 and observing that

〈∇Σr, ν〉 ≤ |∇Σr| |ν| ≤ |∇r| |ν| = 1.

To see the cases of the equality in the inequality (2.4), notice that, if Σ = {r0} ×
Nn−1 is a slice, then ∂Σ = ∅, ∇Σr = 0, h(r) = h(r0), h′(r) = h′(r0) and �H =

−h′(r0)
h(r0)

∇r. If Σ is totally geodesic, then ∇Σr = ∇r = ν and �H = 0. This implies

that the inequalities in the proof of Proposition 2.1 become equalities. �

Example 2.1. Even in the simplest case of surfaces in R
3 we can find classes of

examples different from the slices (i.e., the round spheres centered in the origin)
which satisfy the equality in the inequality (2.4) of Proposition 2.1. In fact, consider
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the right cones with central angle 2α parametrized in spherical coordinates by
Fα : (0, 2π)× (0, R) → R

3,

Fα(θ, r) = (r sinα cos θ, r sinα sin θ, r cosα).

If Σα = Fα((0, 2π)× (0, R)), then

|Σα| =
∫ 2π

0

∫ R

0

‖Fα
r × Fα

θ ‖ dr dθ = πR2 sinα,

|∂Σα| = 2πR sinα, 〈 �H,∇r〉 = 0, and, since ∂Σα lies in the sphere of radius R we
have

|Σα| = πR2 sinα =
R

2
|∂Σα| = 1

2

∫
∂Σα

r dSΣα =
1

2

∫
∂Σα

h(r)

h′(r)
dSΣα ,

which is the equality in the inequality (2.4), since R
3 is Ricci flat.

When Σ is compact without boundary, the identity (2.5) in the proof of Propo-
sition 2.1 gives rise to the following Hsiung–Minkowski type identity.

Corollary 2.1. Let Mn = I × Nn−1, n ≥ 3, be a warped product manifold, with
the warping function h : I → R satisfying h(r) > 0 and h′(r) > 0 for all r ∈ I.
If Σ is a k-dimensional, compact, without boundary, oriented submanifold of Mn,
then

(2.7)

∫
Σ

[h′(r) + h(r)〈 �H,∇r〉] dΣ = 0.

In particular, there is no compact, without boundary, minimal submanifold in Mn.

Remark 2.1. The identity (2.7) can be compared with the known Hsiung–Min-
kowski inequalities of [10], [15] and [9] for compact hypersurfaces in the space
forms Rn, Sn(c) and H

n(c).

Remark 2.2. It is a classical result that there is no compact, without boundary,
minimal surfaces in R

3. This result was generalized by S. Myers in [13], who proved
the non-existence of compact, without boundary, minimal hypersurfaces in simply
connected Riemannian manifolds of non positive sectional curvature and in the
open hemisphere of Sn(c). For complete, non-compact, Riemannian manifolds of
positive sectional curvature, the non-existence result was proved by K. Shiorama,
see [17], and for Riemannian manifolds of sectional curvature bounded above by a
constant, the non-existence of compact, without boundary, minimal submanifolds
was proved by J. Lu and M. Tanaka, see [11].

In the following, we prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. We start with the expression (1.2). This expression is equiv-
alent to

(2.8) h′(r)2 = 1−mh(r)2−n − ch(r)2.



Isoperimetric inequalities in warped products manifolds 1835

By taking implicit derivatives in (2.8), we have

2h′(r)h′′(r) = m(n− 2)h(r)1−nh′(r) − 2c h(r)h′(r).

Therefore,

(2.9) − 1

(n− 1)
RicMn(c)(∇r) =

h′′(r)
h(r)

=
m(n− 2)

2h(r)n
− c,

since h′(r) > 0. Replacing the estimate

〈− �H,∇r〉 ≤ | �H| |∇r| = | �H |,
in the isoperimetric inequality (2.4), we obtain

|Σ| ≤ 1

k

[ ∫
∂Σ

h(r)

h′(r)
dΣ + k

∫
Σ

| �H | h(r)
h′(r)

dΣ
]

− 1

k(n− 1)

∫
Σ

RicMn(c)(∇r)
( h(r)

h′(r)

)2

|∇Σr|2 dΣ.
(2.10)

In order to conclude the proof of Theorem 1.1, we need to estimate the function
h(r)/h′(r), and for that we will analyse when h(r)/h′(r) is increasing or decreasing.
By using (2.8) and (2.9), we have

d

dr

( h(r)

h′(r)

)
=

h′(r)2 − h(r)h′′(r)
h′(r)2

=
1−mh(r)2−n−ch(r)2 − m(n−2)

2 h(r)2−n+ch(r)2

h′(r)2
=

1− mn
2 h(r)2−n

h′(r)2
.(2.11)

This implies that h(r)/h′(r) is decreasing for h(r) ∈ (
s0, (mn/2)1/(n−2)

)
and

that h(r)/h′(r) is increasing for h(r) ∈ (
(mn/2)1/(n−2), s1

)
.

To estimate the third integral of (2.10), we need to know the sign of the Ricci
curvature. By using (2.9), if c ≤ 0, then − 1

n−1 RicMn(c)(∇r) > 0 everywhere in

(s0,∞), and if c > 0, then it happens for h(r) < (m(n− 2)/(2c))1/n. Notice also
that the condition nn

4(n−2)n−2m
2cn−2 < 1 is equivalent to (m(n− 2)/(2c))1/n >

(mn/2)1/(n−2), i.e., (m(n− 2)/(2c))1/n ∈ (
(mn/2)1/(n−2), s1

)
.

Let
dΣ = min{s ∈ (s0, s1)|Σ ∩ {{s} × S

n−1} �= ∅}
and

RΣ = max{s ∈ (s0, s1)|Σ ∩ {{s} × S
n−1} �= ∅}.

Since h(r)/h′(r) is decreasing for s = h(r) ∈ (
s0, (mn/2)1/(n−2)

)
, we have, for

s ∈ (s0, (mn/2)1/(n−2)),

(2.12)
h(r)

h′(r)
=

s√
1−ms2−n − cs2

≤ dΣ√
1−md2−n

Σ − cd2Σ

Since − 1
n−1 RicMn(c)(∇r) > 0 for s = h(r) ∈ (s0, (mn/2)1/(n−2)), by using (2.12)

into (2.10), we obtain the inequality (1.4).
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In order to prove (1.5), notice that

− 1

n− 1
RicMn(c)(∇r)

( h(r)

h′(r)

)2

=
(m(n− 2)

2h(r)n
− c

) h(r)2

1−mh(r)2−n − ch(r)2
.

Let f : (s0, s1) → R defined by

(2.13) f(t) =
(m(n− 2)

2 tn
− c

) t2

1−mt2−n − c t2
=

1
2m(n− 2) t2−n − c t2

1−mt2−n − c t2
.

Since f is a product of two decreasing functions in the interval
(
s0, (mn/2)1/(n−2)

)
,

we have

f(h(r)) ≤ f(dΣ).

This and the fact |∇Σr| ≤ 1 imply

|Σ| ≤ dΣ

k
√
1−md2−n

Σ − cd2Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]

+
1

k

∫
Σ

−1

n− 1
RicMn(c)(∇r)

( h(r)

h′(r)

)2

|∇Σr|2 dΣ

≤ dΣ

k
√
1−md2−n

Σ − cd2Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]
+

f(dΣ)

k
|Σ|,

i.e.,

|Σ| ≤ dΣ

(k − f(dΣ))
√

1−md2−n
Σ − cd2Σ

[
|∂Σ|+ k

∫
Σ

| �H| dΣ
]
.

Since

k − f(dΣ) = k −
1
2m(n− 2)d2−n

Σ − cd2Σ
1−md2−n

Σ − cd2Σ

=
k − m

2 (n+ 2k − 2)d2−n
Σ − c(k − 1)d2Σ

1−md2−n
Σ − cd2Σ

=

(
1− mn

2 d2−n
Σ

)
+ (k − 1)(1−md2−n

Σ − cd2Σ)

1−md2−n
Σ − cd2Σ

,

the inequality (1.5) follows. This concludes the proof of the item (i) of Theorem 1.1.

Now, we prove the item (ii) of Theorem 1.1. Notice that, since h(r)/h′(r) is
increasing for s = h(r) ∈ (

(mn/2)1/(n−2), s1
)
, we have

(2.14)
h(r)

h′(r)
=

s√
1−ms2−n − cs2

≤ RΣ√
1−mR2−n

Σ − cR2
Σ

.
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Since, if c > 0, − 1
n−1 Ric(∇r) < 0 for s = h(r) ∈ (

(m(n− 2)/(2c))1/n, s1
)
, by

using

(2.15)
h(r)

h′(r)
=

s√
1−ms2−n − cs2

≥ dΣ√
1−md2−n

Σ − cd2Σ

,

for s = h(r) ∈ (
(mn/2)1/(n−2), s1

)
, and (2.14) in (2.10), we obtain (1.7). This

proves the item (ii) of Theorem 1.1.

Let us prove the item (iii) of Theorem 1.1.
Since − 1

n−1 Ric(∇r) > 0 for s = h(r) ∈ (
(mn/2)1/(n−2),∞)

, when c ≤ 0,

and for s = h(r) ∈ (
(mn/2)1/(n−2), (m(n− 2)/(2c))1/n

)
, when c > 0, then by

using (2.14) in (2.10) we obtain (1.7). This proves the item (iii) of Theorem 1.1.

Let us prove the item (iv). In order to prove (1.8), notice that the function f(t)
defined in (2.13) satisfies f(t) < 1 for t ∈ (

(mn/2)1/(n−2), s1
)
. This implies

|Σ| ≤ RΣ√
1−mR2−n

Σ − cR2
Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]

+
1

k

∫
Σ

−1

n− 1
RicMn(c)(∇r)

( h(r)

h′(r)

)2

|∇Σr|2 dΣ

≤ RΣ√
1−mR2−n

Σ − cR2
Σ

[
|∂Σ|+ k

∫
Σ

| �H | dΣ
]
+

1

k
|Σ|,

provided |∇Σr| ≤ 1. Therefore, the inequality (1.8) follows immediately. The
inequality (1.9) follows observing that

RΣ√
1−mR2−n

Σ − cR2
Σ

<
1√−c

for c < 0. This concludes the proof of the item (iv) and the proof of Theorem 1.1.
�

Proof of Corollary 1.2. Taking m → 0 in the equation (1.2), for c < 0, we have

h′(r) =
√
1− ch(r)2, h(0) = 0,

with solution h(r) = 1√−c
sinh(

√−cr). Replacing h(r)/h′(r) = tanh(
√−cr)/

√−c

and

RicHn(c)(∇r) = −(n− 1)
h′′(r)
h(r)

= (n− 1) c,

in the inequality (2.10) in the proof of Theorem 1.1, for c < 0, and by using that

tanh(
√−cr) < tanh(

√−c R̃Σ) in Σ, we have the result. �

Proof of Corollary 1.3. Taking m → 0 in the equation (1.2), for c > 0, we have

h′(r) =
√
1− ch(r)2, h(0) = 0,
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with solution h(r) = 1√
c
sin(

√
cr). Replacing h(r)/h′(r) = tan(

√
cr)/

√
c, and

RicSn+(c)(∇r) = −(n− 1)
h′′(r)
h(r)

= (n− 1)c,

in the inequality (2.10) in the proof of Theorem 1.1, for c > 0, and by using that

tan(
√
cr) < tan(

√
c R̃Σ) in Σ, we have the result. �

Now we prove Theorem 1.2.

Proof of Theorem 1.2. The identity (1.3) is equivalent to

(2.16) h′(r)2 = 1−mh(r)2−n + q2h(r)4−2n.

By taking implicit derivatives in (2.16), we have

2h′(r)h′′(r) = m(n− 2)h(r)1−nh′(r) − 2(n− 2)q2h(r)3−2nh′(r),

which gives

h′′(r)
h(r)

=
m(n− 2)

2
h(r)−n − (n− 2)q2h(r)2−2n =

n− 2

2h(r)n

(
m− 2q2

h(r)n−2

)
,

i.e.,

(2.17) − 1

n− 1
RicMn(∇r) =

h′′(r)
h(r)

=
n− 2

2h(r)n

(
m− 2q2

h(r)n−2

)
,

provided h′(r) > 0.

We have − 1
n−1 RicMn(∇r) > 0 if, and only if, s = h(r) > (2q2/m)1/(n−2).

Since (2q2/m)1/(n−2) <
(

2q2

m−
√

m2−4q2

)1/(n−2)
= s0, we have − 1

n−1 RicMn(∇r) > 0

everywhere in the Reissner–Nordstrom manifold.
Replacing the estimate

〈− �H,∇r〉 ≤ | �H |,
into the isoperimetric inequality (2.4) of Proposition 2.1, we have

|Σ| ≤ 1

k

[ ∫
Σ

h(r)

h′(r)
dΣ +

∫
Σ

| �H | h(r)
h′(r)

dΣ
]

− 1

k(n− 1)

∫
Σ

RicMn(∇r)
( h(r)

h′(r)

)2

|∇Σr|2 dΣ.
(2.18)

In order to conclude the proof of Theorem 1.2, we need to estimate the quotient
h(r)/h′(r), and for that we will analyse when h(r)/h′(r) is increasing or decreasing.
By using (2.16) and (2.17), we obtain

d

dr

( h(r)

h′(r)

)
=

h′(r)2 − h(r)h′′(r)
h′(r)2

=
1−mh(r)2−n + q2h(r)4−2n − m(n−2)

2 h(r)2−n + (n− 2)q2h(r)4−2n

h′(r)2

=
1− mn

2 h(r)2−n + (n− 1)q2h(r)4−2n

h′(r)2
.
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Notice that the expression 1−mn
2 h(r)2−n+(n−1)q2h(r)4−2n is a quadratic function

of u = h(r)2−n. Let

P (u) = 1− mn

2
u+ (n− 1)q2u2,

which has the two different roots

α1 :=
mn−√

m2n2 − 16(n− 1)q2

4(n− 1)q2
and α2 :=

mn+
√
m2n2 − 16(n− 1)q2

4(n− 1)q2
.

Since P (u) > 0 for u < α1 and for u > α2, and u = h(r)2−n, we have that
d
dr (h(r)/h

′(r)) > 0 for

h(r) > α
−1/(n−2)
1 := s2 and h(r) < α

−1/(n−2)
2 := s3.

Now, we need to see if s2 ∈ (s0,∞) and s3 ∈ (s0,∞). Define Q(u) = 1−mu+q2u2.
Since

Q(u)− P (u) =
(n− 2)

2
u (m− 2q2u2),

we have Q(u) > P (u) for 0 < u < m/(2q2). If we denote by β1 < β2 the roots of
Q(u), we have also

β1 <
m

2q2
< β2.

These facts imply that α1 < β1. Since P (u) > Q(u) for u > m/(2q2) and
P (m/(2q2)) = Q(m/(2q2)) = 1−m2/(2q2) < 0, we have α2 < β2, i.e.,

α1 < β1 < α2 < β2.

Since α1 = s2−n
2 , β1 = s2−n

0 and α2 = s2−n
3 , we have

s3 < s0 < s2,

i.e., s2 ∈ (s0,∞) and s3 �∈ (s0,∞). Therefore

d

dr

( h(r)

h′(r)

)
< 0 for h(r) ∈ (s0, s2) and

d

dr

( h(r)

h′(r)

)
> 0 for h(r) ∈ (s2,∞).

Since Σ is compact, we can consider

dΣ = min{s ∈ (s0,∞)|Σ ∩ {{s} × S
n−1} �= ∅}

and

RΣ = max{s ∈ (s0,∞)|Σ ∩ {{s} × S
n−1} �= ∅}.

We have

(2.19)
h(r)

h′(r)
=

s√
1−ms2−n+q2s4−2n

≤ dΣ√
1−md2−n

Σ +q2d4−2n
Σ

for s ∈ (s0, s2)
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and

(2.20)
h(r)

h′(r)
=

s√
1−ms2−n+q2s4−2n

≤ RΣ√
1−mR2−n

Σ +q2R4−2n
Σ

for s∈(s2,∞).

Replacing these estimates into (2.18) we obtain the inequalities (1.15) and (1.17).
On the other hand,

− 1

n− 1
RicMn(∇r)

( h(r)

h′(r)

)2

=
n− 2

2h(r)n

(
m− 2q2

h(r)n−2

)( h(r)

h′(r)

)2

=
n− 2

2h(r)n−2

(
m− 2q2

h(r)n−2

) 1

1−mh(r)2−n + q2h(r)4−2n
= f(h(r)2−n),

where

f(t) =
(n− 2)(mt− 2q2 t2)

2(1−mt+ q2 t2)
.

Since

f ′(t) =
(n− 2)(mq2 t2 − 4q2t+m)

2(1−mt+ q2 t2)2

and m > 2q, we have that f(t) is increasing for every t. This implies that f̃(r) =
f(h(r)2−n) is decreasing for every r > 0 and thus

(2.21) − 1

n− 1
RicMn(∇r)

( h(r)

h′(r)

)2

= f(h(r)2−n) ≤ f(d2−n
Σ ) = C3(dΣ).

Replacing the estimates (2.19) and (2.21) in (2.18), and by using that |∇Σr| ≤ 1,
we obtain

|Σ| ≤ dΣ

k
√
1−md2−n

Σ + q2d4−2n
Σ

[
|∂Σ|+

∫
Σ

| �H | dΣ
]
+

C3(dΣ)

k
|Σ|,

and then the inequality (1.16) follows. Analogously, replacing the estimates (2.20)
and (2.21) in (2.18), we obtain the inequality (1.18). This concludes the proof of
Theorem 1.2. �

Proof of Theorem 1.3. Let λ : R → R be a smooth function such that λ(t) = 0 for
t ≤ 0 and λ′(t) > 0 for t > 0. By using (2.5), we have

divΣ(λ(R − r)h(r)∇Σr) = h(r)〈∇Σr,∇Σ(λ(R − r))〉 + λ(R − r) divΣ(h(r)∇Σr)

= −λ′(R− r)h(r)|∇Σr|2 + kλ(R − r)h′(r)(2.22)

+ kλ(R − r)h(r)〈 �H,∇r〉
for each R > 0. Since Σ is proper, then λ(R− r)h(r)∇Σr has compact support in
Σ ∩BR. Thus, by using the divergence theorem in (2.22), we have∫

Σ

λ′(R− r)h(r)|∇Σr|2 dΣ

= k

∫
Σ

λ(R − r)h′(r) dΣ + k

∫
Σ

λ(R − r)h(r)〈 �H,∇r〉 dΣ.(2.23)
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From now on, we will continue the proof of the items (i) and (ii) separately.

Conclusion of the proof of the item (i). Replacing the estimate∫
Σ

λ′(R − r)h(r)|∇Σr|2 dΣ ≤
∫
Σ

λ′(R− r)h(r) dΣ =
d

dR

( ∫
Σ

λ(R − r)h(r) dΣ
)
,

in (2.23), by using the hypothesis that h(r)/h′(r) is non-decreasing (i.e., h′(r)/h(r)
is non-increasing), and that λ(R − r) = 0 for r > R, we obtain

d

dR

(∫
Σ

λ(R − r)h(r) dΣ
)
≥ k

h′(R)

h(R)

∫
Σ

λ(R − r)h(r) dΣ

+ k

∫
Σ

λ(R − r)h(r) 〈 �H,∇r〉 dΣ.

By using the fact

h(R)k
d

dR

( 1

h(R)k

∫
Σ

λ(R − r)h(r) dΣ
)
=

d

dR

( ∫
Σ

λ(R − r)h(r) dΣ
)

− kh′(R)

h(R)

∫
Σ

λ(R− r)h(r) dΣ,

we have

d

dR

( 1

h(R)k

∫
Σ

λ(R − r)h(r) dΣ
)
≥ k

h(R)k

∫
Σ

λ(R − r)h(r) 〈 �H,∇r〉 dΣ.

Considering a sequence of functions λ(t) converging to the characteristic function
of the interval [0,∞), we obtain

(2.24)
d

dR

( 1

h(R)k

∫
Σ∩BR

h(r) dΣ
)
≥ k

h(R)k

∫
Σ∩BR

h(r)〈 �H,∇r〉 dΣ.

By using the hypothesis k| �H| ≤ α, we have

d

dR

( 1

h(R)k

∫
Σ∩BR

h(r) dΣ
)
≥ −α

1

h(R)k

∫
Σ∩BR

h(r) dΣ,

i.e.,

(2.25)
d

dR
log

( 1

h(R)k

∫
Σ∩BR

h(r) dΣ
)
≥ −α.

Now, let r0, r1 ∈ I such that r0 < r1. Integrating (2.25) from r0 to r1, we obtain

eαr0

h(r0)k

∫
Σ∩Br0

h(s) dΣ ≤ eαr1

h(r1)k

∫
Σ∩Br1

h(s) dΣ,

i.e., the function

V1(r) =
eαr

h(r)k

∫
Σ∩Br

h(s) dΣ
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is monotone non-decreasing. This implies∫
Σ∩Br

h(s) dΣ ≥ e−α(r−r0)
( h(r)

h(r0)

)k
∫
Σ∩Br0

h(s) dΣ,

for every r > r0. Since h is an increasing function, we have

h(r)|Σ ∩Br| ≥
∫
Σ∩Br

h(s) dΣ ≥ e−α(r−r0)
( h(r)

h(r0)

)k
∫
Σ∩Br0

h(s) dΣ.

This proves the estimate (1.19) and concludes the proof of the item (i) of Theo-
rem 1.3.

Conclusion of the proof of the item (ii). The identity (2.23) gives∫
Σ

λ(R−r)h′(r) dΣ =
1

k

∫
Σ

λ′(R−r)h(r)|∇Σr|2 dΣ−
∫
Σ

λ(R−r)h(r)〈 �H,∇r〉 dΣ.

This implies

d

dR

( 1

h(R)k

∫
Σ

λ(R − r)h′(r) dΣ
)

= − kh′(R)

h(R)k+1

∫
Σ

λ(R − r)h′(r) dΣ +
1

h(R)k

∫
Σ

λ′(R − r)h′(r) dΣ

= − h′(R)

h(R)k+1

∫
Σ

λ′(R − r)h(r)|∇Σr|2 dΣ

+
kh′(R)

h(R)k+1

∫
Σ

λ(R− r)h(r)〈 �H,∇r〉 dΣ

+
1

h(R)k

∫
Σ

λ′(R − r)h′(r) dΣ.(2.26)

On the other hand, by using the hypothesis that h(r)/h′(r) is non-decreasing, i.e.,
−h(r)/h′(r) is non-increasing, we have

− h′(R)

h(R)k+1

∫
Σ

λ′(R − r)h(r)|∇Σr|2 dΣ +
1

h(R)k

∫
Σ

λ′(R − r)h′(r) dΣ

=
1

h(R)k

[
− h′(R)

h(R)

∫
Σ

λ′(R − r)h(r)|∇Σr|2 dΣ

+

∫
Σ

λ′(R − r)h′(r) dΣ
]

≥ 1

h(R)k

[
− h′(R)

h(R)

h(R)

h′(R)

∫
Σ

λ′(R− r)h′(r)|∇Σr|2 dΣ

+

∫
Σ

λ′(R − r)h′(r) dΣ
]

=
1

h(R)k

∫
Σ

λ′(R − r)[1 − |∇Σr|2]h′(r) dΣ.(2.27)
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Thus, replacing (2.27) in the right-hand side of (2.26), we obtain

d

dR

( 1

h(R)k

∫
Σ

λ(R − r)h′(r) dΣ
)
≥ 1

h(R)k

∫
Σ

λ′(R − r)[1 − |∇Σr|2]h′(r) dΣ

+
kh′(R)

h(R)k+1

∫
Σ

λ(R − r)h(r)〈 �H,∇r〉 dΣ

≥ kh′(R)

h(R)k+1

∫
Σ

λ(R− r)h(r)〈 �H,∇r〉 dΣ.

Considering a sequence of functions λ(t) converging to the characteristic function
of [0,∞), we obtain

(2.28)
d

dR

( 1

h(R)k

∫
Σ∩BR

h′(r) dΣ
)
≥ kh′(R)

h(R)k+1

∫
Σ∩BR

h(r)〈 �H,∇r〉 dΣ.

By using the hypothesis k| �H | ≤ α and that −h(r)/h′(r) is non-increasing, we have

d

dR

( 1

h(R)k

∫
Σ∩BR

h′(r) dΣ
)
≥ −α

h′(R)

h(R)k+1

∫
Σ∩BR

h(r) dΣ

≥ −α
h′(R)

h(R)k+1
· h(R)

h′(R)

∫
Σ∩BR

h(r) · h
′(r)
h(r)

dΣ

= −α
1

h(R)k

∫
Σ∩BR

h′(r) dΣ,

i.e.,

(2.29)
d

dR
log

( 1

h(R)k

∫
Σ∩BR

h′(r) dΣ
)
≥ −α.

Now, let r0, r1 ∈ I such that r0 < r1. Integrating (2.29) from r0 to r1, we obtain

eαr0

h(r0)k

∫
Σ∩Br0

h′(r) dΣ ≤ eαr1

h(r1)k

∫
Σ∩Br1

h′(r) dΣ,

i.e., the function

V2(r) =
eαr

h(r)k

∫
Σ∩Br

h′(s) dΣ

is monotone non-decreasing. This implies∫
Σ∩Br

h′(s) dΣ ≥ e−α(r−r0)
( h(r)

h(r0)

)k
∫
Σ∩Br0

h′(s) dΣ,

for every r > r0. If there exists B > 0 such that h′(r) < B, then

B|Σ ∩Br| ≥
∫
Σ∩Br

h′(s) dΣ ≥ e−α(r−r0)
( h(r)

h(r0)

)k
∫
Σ∩Br0

h′(s) dΣ.
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This proves the inequality (1.20). Analogously, if h′′(r) > 0, then

h′(r)|Σ ∩Br| ≥
∫
Σ∩Br

h′(s) dΣ ≥ e−α(r−r0)
( h(r)

h(r0)

)k
∫
Σ∩Br0

h′(s) dΣ.

This proves the inequality (1.21) and concludes the proof of the item (ii) of Theo-
rem 1.3. �

In the following, we prove the corollaries of Theorem 1.3.

Proof of Corollary 1.5. The proof follows immediately from the inequalities (2.24)
and (2.28). �

Proof of Corollary 1.6. First notice that, since

h′(r) =
√
1−mh(r)2−n − ch(r)2,

we have
d

dr

( h(r)

h′(r)

)
=

1− mn
2 h(r)2−n

1−mh(r)2−n − ch(r)2
> 0

for h(r) > (mn/2)1/(n−2). If c > 0, the condition nn

4(n−2)n−2m
2cn−2 < 1 implies

(mn/2)1/(n−2) ∈ (s0, s1). Since h
′(r) =

√
1−mh(r)2−n − ch(r)2 ≤ 1 for c > 0, by

using the inequality (1.20), we have

|Σ ∩Br| ≥ C2(r0) e
−αrh(r)k,

for every r > r0. This proves the item (i) of Corollary 1.6. The estimate of the
item (ii) is an immediate consequence of the inequality (1.19). If c < 0 and
α < k − 1, then the asymptotic expansion

h(r) =
1√−c

sinh(
√−cr) +

m

2n
√−c

sinh1−n(
√−cr) +O(sinh−n−1(

√−cr))

implies that |Σ ∩ Br| has at least exponential volume growth at infinity. This
proves the item (ii) of Corollary 1.6. �

In order to prove Corollary 1.7, we will explore the asymptotic behaviour of
the warping function for the Reissner–Nordstrom manifold.

Lemma 2.2. The warping function h of the Reissner–Nordstrom manifold Mn,
n ≥ 4, satisfies

(2.30) h(r) = r +
m

2(n− 3)
r3−n +O(r5−2n).

Proof. Define the function

(2.31) r(s) = s−
∫ ∞

s

( 1√
1−mt2−n + q2 t4−2n

− 1
)
dt.
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Since for any a > b > 0 the following identity holds:

1√
a− b

− 1√
a
=

b√
a(a− b) (

√
a− b +

√
a)

,

we have

1√
1−mt2−n + q2t4−2n

−1=
mt2−n − q2t4−2n√

1−mt2−n + q2t4−2n(
√
1−mt2−n + q2t4−2n + 1)

=
mt2−n

2

2(1− q2

m t2−n)√
1−mt2−n + q2t4−2n(

√
1−mt2−n + q2t4−2n + 1)

=
m

2
t2−n +O(t4−2n).

Thus, the improper integral in (2.31) converges for n ≥ 4 and r(s) is well defined.
Moreover

(2.32) r(s) = s− m

2(n− 3)
s3−n +O(s5−2n).

Notice that the inverse function s(r) satisfies the differential equation

ds

dr
=

√
1−ms2−n + q2s4−2n.

Therefore s(r) = h(r). By using (2.32), we have

s = r(s) +
m

2(n− 3)
s3−n +O(s5−2n).

This implies

(2.33) h(r) = s(r) = r +
m

2(n− 3)
r3−n +O(r5−2n),

which proves the lemma. �

Proof of Corollary 1.7. By using the proof of Theorem 1.2 we have that h(r)/h′(r)
is non-increasing for h(r) > s2. On the other hand, we have that h′(r) < 1 for
h(r) > (q2/m)1/(n−2). Since (q2/m)1/(n−2) < s0, we have h′(r) < 1 everywhere.
The result then follows from the inequality (1.20).

If Σ is a minimal submanifold, then the asymptotic expansion of h(r) in
Lemma 2.2 implies that |Σ ∩ Br| has at least polynomial volume growth at in-
finity. The result then follows. �

Proof of Corollary 1.8. Notice that, by using the hypothesis h(0) = 0 and h′(0) = 1
in the first order Taylor expansion of h(r) we have h(r) = r + R(r), where
limr→0 R(r)/r = 0. This implies that limr→0 h(r)/r = 1 and thus

V2(0
+) = lim

r→0
V2(r) = lim

r→0
e−αr ωk

rk

h(r)k
1

ωk rk

∫
Σ∩Br

h′(s) dΣ = ωk h
′(0) = ωk.

Since V2(r) ≥ V2(0
+), we have the result. �
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We conclude this section with the proof of Theorem 1.4.

Proof of Theorem 1.4. Let p ∈ Σ and consider the distance function

r(x) = distM (x, p)

of the ambient space Mn. Let {e1, e2} be a geodesic frame of Σ and fij be the
coefficients of the Hessian matrix of the smooth function f in this frame. Since

(log h(r))ii =
h′′(r)h(r) − h′(r)2

h(r)2
r2i +

h′(r)
h(r)

rii

and, by using identity (2.2) of Lemma 2.1 for minimal surfaces in warped product
manifolds, we have

ΔΣ log h(r) =
h′′(r)h(r) − h′(r)2

h(r)2
|∇Σr|2 + h′(r)

h(r)
ΔΣr

=
h′′(r)h(r) − h′(r)2

h(r)2
|∇Σr|2 +

(h′(r)
h(r)

)2 (
2− |∇Σr|2

)
= 2

(h′(r)
h(r)

)2

− |∇Σr|2
(
2
(h′(r)
h(r)

)2

− h′′(r)
h(r)

)
.

(2.34)

Now, let us prove the item (i) of Theorem 1.4. If u(r) = r + h(r)/h′(r) is
non-decreasing, then

d

dr

(
r +

h(r)

h′(r)

)
=

2h′(r)2 − h(r)h′′(r)
h′(r)2

≥ 0 ⇔ 2h′(r)2 ≥ h(r)h′′(r)

⇔ 2
(h′(r)
h(r)

)2

≥ h′′(r)
h(r)

⇔ 2
(h′(r)
h(r)

)2

− h′′(r)
h(r)

≥ 0.

(2.35)

By using (2.35) and that −|∇Σr|2 ≥ −1 in (2.34), we have

ΔΣ log h(r) = 2
(h′(r)
h(r)

)2

− |∇Σr|2
(
2
(h′(r)
h(r)

)2

− h′′(r)
h(r)

)

≥ h′′(r)
h(r)

= − 1

n− 1
RicM (∇r).

(2.36)

Notice that h(0) = 0 implies log h(r) is not defined in p ∈ Σ. Consider Σt =
Σ − B(p, t), where B(p, t) is the extrinsic ball of center p and radius t. Thus,
integrating the inequality (2.36) above over Σt, we have

− 1

n− 1

∫
Σt

RicM (∇r) dΣt ≤
∫
Σt

ΔΣ log h(r) dΣt

= −
∫
∂Σt

h′(r)
h(r)

∂r

∂ν
dSΣt +

∫
∂Σ

h′(r)
h(r)

∂r

∂ν
dSΣ,

(2.37)
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where we are using the abuse of notation ∂Σt = Σ∩ ∂B(p, t) and ν is the outward
unit normal vector field of Σt. The Taylor expansion of h(t) near 0,

h(t) = h(0) + h′(0)t+R(t), lim
t→0

R(t)

t
= 0,

and the hypothesis h(0) = 0 and h′(0) = 1 gives

(2.38) lim
t→0

h(t)

t
= 1.

Taking t → 0 in (2.37), by using (2.38), h′(0) = 1, and limt→0 ∂r/∂ν = 1, we have

− 1

n− 1

∫
Σ

RicM (∇r) dΣ ≤ − lim
t→0

∫
∂Σt

h′(r)
h(r)

∂r

∂ν
dSΣt +

∫
∂Σ

h′(r)
h(r)

∂r

∂ν
dSΣ

= − lim
t→0

h′(t)
t

h(t)

1

t

∫
∂Σt

∂r

∂ν
dSΣt +

∫
∂Σ

h′(r)
h(r)

∂r

∂ν
dSΣ

= −2π +

∫
∂Σ

h′(r)
h(r)

∂r

∂ν
dSΣ.

Since h depends on the choice of p ∈ Σ,
∫
∂Σ

h′(r)
h(r)

∂r
∂ν is a function of p. Ranging p

over Σ, integrating over Σ, and by using Fubini’s theorem, we have

− A

n− 1

∫
Σ

RicM (∇r) dΣ ≤ −2πA+

∫
Σ

∫
∂Σ

h′(r)
h(r)

∂r

∂ν
dSΣ dΣ

≤ −2πA+

∫
∂Σ

∫
Σ

h′(r)
h(r)

dΣdSΣ ≤ −2πA+

∫
∂Σ

∫
Σ

ΔΣr dΣdSΣ

= −2πA+

∫
∂Σ

∫
∂Σ

∂r

∂ν
dSΣdSΣ ≤ −2πA+

∫
∂Σ

∫
∂Σ

1dSΣdSΣ

= −2πA+ L2,

where we used that ∂r/∂ν ≤ 1 and that

ΔΣr =
h′(r)
h(r)

(2− |∇Σr|2) ≥ h′(r)
h(r)

.

This proves the item (i) of Theorem 1.4.

In order to prove the item (ii), notice that, analogously to (2.35),

d

dr

(
r +

h(r)

h′(r)

)
≤ 0 ⇔ 2

(h′(r)
h(r)

)2

− h′′(r)
h(r)

≤ 0.

Thus the inequality (2.34) becomes

(2.39) ΔΣ log h(r) = 2
(h′(r)
h(r)

)2

− |∇Σr|2
(
2
(h′(r)
h(r)

)2

− h′′(r)
h(r)

)
≥ 2

(h′(r)
h(r)

)2

.
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On the other hand, using that scalN ≥ 0, we have

scalM =
scalN −(n− 1)(n− 2)h′(r)2

h2
− 2(n− 1)

h′′(r)
h(r)

≥ −(n− 1)(n− 2)
(h′(r)
h(r)

)2

+ 2RicM (∇r),

i.e., (h′(r)
h(r)

)2

≥ − 1

(n− 1)(n− 2)
(scalM −2RicM (∇r)) .

Replacing the inequality above in (2.39), we obtain

ΔΣ log h(r) ≥ − 2

(n− 1)(n− 2)
(scalM −2RicM (∇r)) .

The rest of the proof of the item (ii) is analogous to the proof of the item (i). This
concludes the proof of Theorem 1.4. �

3. Appendix

The metric g = dr2 + h(r)2gN of a warped product M = (0, b) × S
n−1 such that

h(0) = h(b) = 0 is smooth at 0 if and only if h(0) = 0, h′(0) = 1 and all the even
order derivatives are zero, i.e., h(2m)(0) = 0,m > 0. The metric is smooth at b if
and only if h(b) = 0, h′(b) = −1, and all the even order derivatives are zero, i.e.,
h(2m)(b) = 0,m > 0, see [14], Proposition 1 and Proposition 2, p. 13. Otherwise,
the metric is singular at the respective extremal point. In particular, if h(r) is an
odd function of r, then by the Taylor expansion of h(r) near zero, we have that
h(2m)(0) = h(2m)(b) = 0,m > 0.

Below we give three examples of smooth warped product manifolds which sat-
isfy the conditions of Theorem 1.4 and Theorem 1.3.

Example 3.1. Let B �= 0 and p > 0 be real numbers. Let I = (0,∞) for B > 0
and I = (0, (−B)−1/p) for B < 0. Define h : I → R by

h(r) = r +B rp+1.

We introduce the warped product manifold Mn(B) = I × S
n−1, with the metric

g = dr2 + h(r)2gSn−1 . Clearly, h(0) = 0 and h′(0) = 1.

Since h′(r) = 1 + B(p + 1)rp, we have h′(r) > 0 for r ∈ (0,∞), when B > 0,
and for

r ∈ (0, ((p+ 1)(−B))−1/p) ⊂ (0, (−B)−1/p),

when B < 0. Thus h′(r) > 0 everywhere in Mn(B) when B > 0, and for

Mn
+(B) = (0, ((p+ 1)(−B))−1/p)× S

n−1



Isoperimetric inequalities in warped products manifolds 1849

when B < 0. On the other hand,

u(r) = r +
h(r)

h′(r)
=

r(2 + (p+ 2)Brp)

1 +B(p+ 1)rp

and

u′(r) =
B2(p+ 1)(p+ 2)r2p −B(p+ 1)(p− 4)rp + 2

(1 +B(p+ 1)rp)2
.

In order to analyse the sign of u′(r) = d
dr (r+h(r)/h′(r)), notice that the expression

B2(p+ 1)(p+ 2)r2p −B(p+ 1)(p− 4)rp + 2 is a quadratic function of t = rp. The
function

f(t) = B2(p+ 1)(p+ 2)t2 −B(p+ 1)(p− 4)t+ 2

has the roots

r0 =
p− 4− p

√
p−7
p+1

2B(p+ 2)
and r1 =

p− 4 + p
√

p−7
p+1

2B(p+ 2)
.

Thus we have u′(r) > 0 everywhere in Mn
+(B), for B < 0 and, if p < 7, u′(r) > 0

everywhere in Mn(B), B > 0. If p > 7 and B > 0, then u′(r) > 0 for r ∈
(0, r0) ∪ (r1,∞).

These metrics are smooth at 0 for even p, since in this case h(r) is an odd
function.

Example 3.2 (Asymptotically cylindrical manifolds). Let Mn = (0,∞) × S
n−1

with the metric g = dr2 + h(r)2gSn−1 , where h : [0,∞) → R is given by

h(r) =
1

K
arctan(Kr).

We have h(0) = 0, h′(0) = 1,

u(r) = 2 +
1

K
(1 +K2r2) arctan(Kr), and u′(r) = 2 + 2Kr arctan(Kr) > 2 > 0.

Notice that, since
d

dr

( h(r)

h′(r)

)
= 1 + 2Kr arctan(Kr),

this manifold also satisfies the hypothesis of Theorem 1.3. Since h(r) is an odd
function, the metric is smooth at 0. More generally, let h : [0,∞) → R such that
h(0) = 0, h′(0) = 1, h′(r) > 0, h′′(r) < 0 for all r ∈ [0,∞),

lim
r→∞h(r) = K > 0, and lim

r→∞h′(r) = lim
r→∞h′′(r) = 0.

We have

u′(r) = 2− h(r)h′′(r)
h′(r)2

> 2 > 0.
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Since
d

dr

( h(r)

h′(r)

)
= 1− h(r)h′′(r)

h′(r)2
> 1 > 0,

these manifolds satisfies also the hypothesis of Theorem 1.3. We call these mani-
folds “asymptotically cylindrical” because the sectional curvatures satisfy

lim
r→∞KM (X,Y ) = lim

r→∞
1− h′(r)2

h(r)2
=

1

K2

and

lim
r→∞KM (X,∇r) = − lim

r→∞
h′′(r)
h(r)

= 0,

for every X,Y ∈ TM, X ⊥ ∇r and Y ⊥ ∇r.
Another example of asymptotically cylindrical manifold is given by Mn =

(0,∞)× S
n−1 with the metric g = dr2 + h(r)2gSn−1 , where

h(r) =
r

(1 + arp)1/p
, a > 0, p > 0.

We have h(0) = 0, h′(0) = 1,

h′(r) =
1

(1 + arp)1+1/p
> 0, and h′′(r) = − (p+ 1)arp−1

(1 + arp)2+1/p
< 0.

This implies that

lim
r→∞h(r) =

1

a1/p
, and lim

r→∞h′(r) = lim
r→∞h′′(r) = 0,

and thus Mn is asymptotically cylindrical. Since, for even p, h(r) is an odd func-
tion, the metric is also smooth at 0 for even p.

Example 3.3. Let Mn = (0,∞) × S
n−1 with the metric g = dr2 + h(r)2gSn−1 ,

where h : (0,∞) → R is given by

h(r) = r ln(ar2 + e), a > 0,

and e is the basis of the natural logarithm. We have that h(0) = 0, h′(0) = 1,

h′(r) = ln(ar2 + e) + 2ar2

ar2+e > 0, and

d

dr

( h(r)

h′(r)

)
=

a2r4(ln2(ar2 + e) + 2 ln(ar2 + e) + 4) + e2 ln2(ar2 + e)

((ar2 + e) ln(ar2 + e) + 2ar2)2

+
2aer2 ln(ar2 + e)(ln(ar2 + e)− 1)

((ar2 + e) ln(ar2 + e) + 2ar2)2
> 0.

Thus Mn satisfies the hypothesis of Theorem 1.3 and the item (i) of Theorem 1.4.
Moreover, since h(r) is a odd function, the metric g is smooth at 0.
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Remark 3.1. We can construct many more examples by considering h(r) = rf(r),
where f(r) is a positive function which satisfies f(0) = 1. In this case h(0) = 0
and h′(0) = 1. If we choose an even function f(r), the metric is also smooth
at 0. Since h′(r) = f(r) + rf ′(r), if we consider f ′(r) ≥ 0, then we have trivially
h′(r) > 1 > 0. Notice also that, conversely, by using Taylor expansion of h(r)
near 0, the conditions h(0) = 0 and h′(0) = 1 imply the existence of a function
f(r) such that h(r) = rf(r) in the interval of convergence of the Taylor expansion.
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