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On Galois group of factorized covers of curves

Angel Carocca and Martha Romero Rojas

Abstract. Let Y ψ−→ X ϕ−→ P1 be a sequence of covers of compact Riemann
surfaces. In this work we study and completely characterize the Galois
group G(ϕ◦ψ) of ϕ◦ψ under the following properties: ϕ is a simple cover
of degree m and ψ is a Galois unramified cover of degree n with abelian
Galois group of type (n1, n2, . . . , ns).

We prove thatG(ϕ◦ψ) ∼= (Zn1×Zn2×· · ·×Zns)
m−1�Sm. Furthermore,

we give a natural geometric generator system of G(ϕ ◦ ψ) obtained by
studying the action on the compact Riemann surface Z associated to the
Galois closure of ϕ ◦ ψ.

1. Introduction

Let X be a compact Riemann surface and ϕ : X → P1 a cover of degree m. The
Galois closure of ϕ is a Galois cover ϕ̂ : Z → P1 of smallest possible degree such

that there exists a sequence of compact Riemann surfaces Z ̂ψ−→ X ϕ−→ P1 with
ϕ ◦ ψ̂ = ϕ̂ (up to equivalence the Galois closure is unique). Let C(X ) be the
field of meromorphic functions on X . The Galois group G(ϕ) of the cover ϕ is the
Galois group associated to the Galois closure of the field extension C(X )/C(P1). An
elementary property of G(ϕ) is that it has a natural representation as a transitive
subgroup of the symmetric group Sm.

The problem of determining the structure of the group G(ϕ) in general was
originally considered by O. Zariski [18].

Since then, many authors have worked on it imposing conditions on the cover.
For instance, the cover ϕ is called simple if the fiber ϕ−1(p) over every branch
point p ∈ P1 consists of exactly m−1 different points. In this case it is well known
that the Galois group G(ϕ) is isomorphic to the symmetric group Sm and G(ϕ) is
generated geometrically by transpositions, see [6], [11] and [14]. Related problems
have been considered by other authors, [1], [3], [10], [11] and [14].
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Now, consider Y ψ−→ X ϕ−→ P1 a sequence of covers of compact Riemann surfaces,
and denote by G(ϕ ◦ ψ) the Galois group of the factorized cover ϕ ◦ ψ : Y → P1.
Many authors have studied the problem of determining the geometric structure
of G(ϕ ◦ ψ) based on special properties of the covers ϕ and ψ, see for instance [2],
[8], [9], [11], [12], [15] and [17]. Probably the most studied case of a factorized
cover ϕ ◦ ψ is when ψ : Y → X is an unramified cover of degree two; the results
obtained in this situation involve a systematic study of the Weyl groups WBm
and WDm, see for instance [12] and [17].

Another interesting case of factorized covers ϕ◦ψ was studied by Biggers–Fried
in [4]. Using results on meromorphic functions, they proved that if ϕ is a simple
cover of degree m, and ψ : Y → X is an unramified Galois cover of degree n with
cyclic Galois group, then

G(ϕ ◦ ψ) ∼= (Zn)m−1 � Sm.

In this paper we extend the Biggers–Fried result by considering factorized covers
ϕ ◦ ψ with ϕ a simple cover of degree m, and ψ : Y → X an unramified Galois
cover with abelian Galois group of type (n1, n2, . . . , ns). In this case, using group
theoretical arguments, we prove that

G(ϕ ◦ ψ) ∼= (Zn1 × Zn2 × · · · × Zns)
m−1 � Sm.

Furthermore, we give a natural geometric system of generators of G(ϕ ◦ ψ) as a
transitive subgroup of Smn.

2. Preliminaries

In order to fix the notation, we start by recalling some basic properties on group
action on compact Riemann surfaces. Let X be a compact Riemann surface of
genus g(X ) and G a finite group acting on X . The quotient space X/G := XG
is a smooth surface and the quotient projection X → XG is a branched cover.
This cover may be partially characterized by a vector of numbers (γ;m1, . . . ,mr),
where γ is the genus of XG, the integer 0 ≤ r ≤ 2g(X )+ 2 is the number of branch
points of the cover, and the integers mj are the orders of the cyclic subgroups Gj
of G which fix points on X . We call (γ;m1, . . . ,mr) the branching data of G on X .
These numbers satisfy the Riemann–Hurwitz equation

(2.1)
2(g(X )− 1)

|G| = 2(γ − 1) +

r∑
j=1

(
1− 1

mj

)
.

A (2γ + r)-tuple (a1, . . . , aγ , b1, . . . , bγ , c1, . . . , cr) of elements of G is called a gen-
erating vector of type (γ;m1, . . . ,mr) if

G =
〈
a1, . . . , aγ , b1, . . . , bγ , c1, . . . , cr

/ γ∏
i=1

[ai, bi]

r∏
j=1

cj = 1, |cj | = mj for j = 1, . . . , r, R
〉
,(2.2)
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where R is a set of appropriate relations on {a1, . . . , aγ , b1, . . . , bγ , c1, . . . , cr} and
[ai, bi] = aibia

−1
i b−1

i .

Riemann’s existence theorem then tells us that (see [5]):

Theorem 2.1. The group G acts on a surface X of genus g(X ) with branching
data (γ;m1, . . . ,mr) if and only if G has a generating vector of type (γ;m1, . . . ,mr)
satisfying the Riemann–Hurwitz formula (2.1).

Given an action of G on X , the elements of a generating vector for this action
will be called geometric generators for G.

For a subgroup H ≤ G, the structure of the intermediate cover X → XH is
given by the signature of the action of H , as follows.

Proposition 2.2. Let G be a finite group acting on a compact Riemann sur-
face X with branching data (γ;m1, . . . ,mr). For each j = 1, . . . , r, consider the
stabilizer Gj of the corresponding fixed points on X .

Then for each subgroup H ≤ G we have

(2.3) g( XH ) = |G : H |(γ − 1) + 1 +
1

2

r∑
j=1

(|G : H | − |H\G/Gj |),

where |H\G/Gj | is the number of double cosets H\G/Gj .
Proof. See [16]. �

3. Some properties of factorized covers

In this section we collect some properties of the Galois group of certain factorized
covers. Let

ϕ : X → P1

be a simple cover of degree m; that is, the fiber ϕ−1(p) over every branch point
p ∈ P1 consists of exactly m − 1 different points. We recall that in this case the
Galois group of ϕ is isomorphic to the symmetric group Sm and is geometrically
generated by transpositions, see for instance [6], [11] or [14].

Now consider a Galois cover of degree n

ψ : Y → X .
We denote by ϕ̂ ◦ ψ the Galois cover of the factorized cover ϕ ◦ ψ and by G =
G(ϕ ◦ ψ) the corresponding Galois group of ϕ ◦ ψ. We begin with some general
properties.

Proposition 3.1. Let Z be the Riemann surface associated to ϕ̂ ◦ ψ. Then there
are subgroups N and H of G satisfying the following properties:

(1) ZN ∼= Y, ZH ∼= X and ZG
∼= P1.

(2) NG = {1}, where NG = CoreG(N). In particular, if N � G, then N = {1}
and Z ∼= Y.
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(3) H is a maximal subgroup of G.

(4) G/K ∼= Sm, where Sm is the symmetric group of degree m and K = HG.

(5) N �H.

Proof. (1) and (2) follow from the definition of Galois cover.

(3) and (4) follow since ϕ : X → P1 is a simple cover.

(5) follows since ψ : Y → X is a Galois cover. �

Remark 3.2. The monodromy representation of the cover ϕ ◦ ψ : Y → P1 is
the natural group homomorphism ρ : Π1(P1 \ B, q) → Smn with transitive image
in Snm. It is well known that this representation is equivalent to the permutational
representation given by the action of G on the right cosets of N in G. To obtain
this representation, we consider {1=x1, x2, . . . , xm} a right transversal of H in G
and { 1 = h1, h2, . . . , hn} a right transversal of N in H. Then the set {hjxi / i =
1, . . . ,m, j = 1, . . . , n} is a right transversal of N in G.

Let Ω = Δ1 ∪ Δ2 ∪ · · · ∪ Δm, where Δi = {Nh1xi, Nh2xi, . . . , Nhnxi} for
i = 1, . . . ,m. Then G acts transitively on Ω, G ∼= G/NG ↪→ Snm and G acts
transitively on the set {Δ1,Δ2, . . . ,Δm} with kernel K = HG. We will use the
same letters G, H and N to denote their corresponding images in Snm; we will
also identify the set Δi with the set {i,m+ i, 2m+ i, . . . , (n− 1)m+ i} = Δi.

Thus for each 1 ≤ i ≤ m we have the following results:

• Ni = x−1
i Nxi stabilizes each point in Δi. Here N1 = N.

• Hi = x−1
i Hxi stabilizes the set Δi. Here H1 = H.

• K = HG stabilizes each set Δi.

• If N �= {1}, then H = NG(N), the normalizer of N in G. Since N =
Smn−1 ∩ G we have that |Fix(N)| = |NG(N) : N | = |H : N | = n. Thus N
stabilizes n points. In particular, N =

⋂n
j=1 Stb(j)∩G, where Stb(j) is the

stabilizer in Smn−1 of the point j ∈ Δ1.

• For m ≥ 3, we have K = HG =
⋂m−1
j=1 Hgj and K �= ⋂m−2

j=1 Hgj for any
subset {Hg1 , Hg2 , . . . , Hgm−1} with m− 1 distinct conjugates of H in G.

The following diagram illustrates the relationship between covers and sub-
groups:

Z ker(ρ) 1

Y ∼= ZN ZK ρ
−1

(N) ρ
−1

(K) N = Smn−1 ∩ G K = HG

X ∼= ZH ρ
−1

(H) H

P
1

= ZG Π1(P
1 \ B, q) G ≤ Smn

�
�
���

�

ϕ̂◦ψ

���������

�

��������

�
�
���

�

�
�
���

���������

�ψ�n ���� � ���� �n
���� (m−1)!

���� ϕ
����

m ����
���� m

	ρ

where Z is the Riemann surface associated to ϕ̂ ◦ ψ.
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Proposition 3.3. Let {g1, g2, . . . , gr} be a set of geometric generators of G given
by the action on Z and Gi = 〈gi〉. Then the following properties hold :

(1) The cover ψ : Y → X is unramified if and only

|H : N | |H\G/Gi| = |N\G/Gi| for all 1 ≤ i ≤ r.

(2) If the cover ψ : Y → X is unramified, then K ∩Gi = {1}, for all 1 ≤ i ≤ r.

Proof. (1) Suppose that ψ is unramified. By the Riemann–Hurwitz formula (2.1),
we have

g(Y) = |H : N |(g(X ) − 1) + 1.

On the other hand, using the formula (2.3) (Proposition 2.2), we have

g(Y) = −|G : N |+ 1 +
1

2

r∑
i=1

(|G : N | − |N\G/Gi|), and

g(X ) = −|G : H |+ 1 +
1

2

r∑
i=1

(|G : H | − |H\G/Gi|).

Hence
r∑
i=1

|N\G/Gi| = |H : N |
r∑
i=1

|H\G/Gi|.

Since |N\G/Gi| ≤ |H : N ||H\G/Gi|, we conclude that, for every 1 ≤ i ≤ r,
|H : N | |H\G/Gi| = |N\G/Gi|.

Now, suppose |N\G/Gi| = |H : N | |H\G/Gi| for each i = 1, . . . , r. Since

g(Y) = −|G : N |+ 1 +
1

2

r∑
i=1

(|G : N | − |N\G/Gi|),

we obtain g(Y) = |H : N |(g(X )− 1) + 1. Hence by the Riemann–Hurwitz formula
we conclude that the cover ψ : Y → X is unramified.

(2) Assume that ψ is unramified. Then |H : N | |H\G/Gi| = |N\G/Gi|.
Let CG(g) be the conjugacy class of g in G and C a complete set of repre-

sentatives of the conjugacy classes of G. Applying a well-known formula for the
cardinality of double cosets ([13], p. 55), we have

|H |
|N |

|G|
|H ||Gi|

∑
g∈C

|(CG(g)∩H | |CG(g)∩Gi|
|CG(g)| =

|G|
|N ||Gi|

∑
g∈C

|(CG(g)∩N | |CG(g)∩Gi|
|CG(g)| .

Hence ∑
g∈C

(|CG(g) ∩Gi|) (|CG(g) ∩H | − |CG(g) ∩N |)
|CG(g)| = 0.
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Since N ≤ H for all g ∈ G, we have that CG(g) ∩N ⊆ CG(g) ∩H and

(|CG(g) ∩Gi|) (|CG(g) ∩H | − |CG(g) ∩N |)
|CG(g)| = 0.

Therefore, for all g ∈ C we have

|CG(g) ∩Gi| = 0 or |CG(g) ∩H | = |CG(g) ∩N |.

Let 1 �= k ∈ K = HG. If we assume |CG(k) ∩N | = |CG(k) ∩H | then CG(k) =
CG(k) ∩H = CG(k) ∩N. Hence CG(k) ⊆ NG = {1}, a contradiction.

Therefore, for all 1 �= k ∈ K we have that |CG(k)∩Gi| = 0 and K ∩Gi = {1}.
�

Proposition 3.4. Suppose ψ : Y → X is an unramified cover. Then the following
properties hold.

(1) The action of G on Z induces a geometric presentation of G given by

G =
〈
g1, g2, . . . , gr

/ r∏
i=1

gi = 1, g2i = 1, i = 1, 2, . . . , r, R
〉
,

where R is a set of appropriate relations on {g1, g2, . . . , gr}.
(2) For K = HG, the corresponding action of G/K on ZK induces a geometric

presentation of G/K given by

G/K =
〈
g1K, g2K, . . . , grK

/ r∏
i=1

gi = 1, g2i = 1, i = 1, 2, . . . , r, R′
〉 ∼= Sm,

where R′ is a set of appropriate relations on the set of cosets {Kg1, . . . , Kgr}.
(3) The corresponding image in Smn for each gi has a cycle structure given as a

product of n disjoint transpositions.

(4) The corresponding image in Sm for each giK is a transposition.

(5) H �G if and only if m = 2.

Proof. Since ϕ : X → P1 is a simple cover and ψ : Y → X is an unramified cover we
have that the fiber under the factorized covering ϕ ◦ψ of each branch point b ∈ P1

is given by (ϕ ◦ ψ)−1(b) = {p1, p2, . . . , pn(m−1)}. Then the cycle structure of ϕ ◦ ψ
at b is an n(m−1)-tuple (2n, 1nm−2n) where the ramification index of ϕ◦ψ at each
of the points p1, p2, . . . , pn is 2 and at each of the points pn+1, pn+2, . . . , pmn−2n

is 1. This implies that the corresponding image in Smn for each geometric gener-
ator of G, given by the action of G on Z, has cycle structure as a product of n
disjoint transpositions and that the corresponding image in Sm of each giK is a
transposition. In this way we conclude (1), (2), (3) and (4).

(5) Assume H �G. By Proposition 3.3, we have 〈g1〉 � H. Hence 〈g1〉H = G,
since H is a maximal subgroup of G. Hence m = 2. �
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Remark 3.5. According to Proposition 3.4, if ψ : Y → X is an unramified cover,
then the corresponding image in Smn for each geometric generator gi of G, given by
the action of G on Z, has cycle structure as a product of n disjoint transpositions.
By Proposition 3.3, we have

• ifm ≥ 3, then eachGi = 〈gi〉 is contained in the intersection ofm−2 different
conjugates of N in G and Gi is not contained in K = HG;

• if m = 2, then each Gi = 〈gi〉 is not contained in H.

Proposition 3.6. Suppose ψ : Y → X is an unramified cover. Then the following
are equivalent :

(1) N = {1},
(2) H �G (or, equivalently, m = 2).

Proof. By Proposition 3.4, G has a geometric presentation of the form

G = 〈g1, g2, . . . , gr / g2i = 1, for all i = 1, . . . , r, R〉,
and we can assume that g1 /∈ H.

Assume N = {1}. Then g1 does not fix points of the set Ω = Δ1∪Δ2∪· · ·∪Δm

and interchanges Δ1 with Δk. Since g1 has cycle structure as a product of n disjoint
transpositions and g1 /∈ H , we obtain that m = 2 and H �G.

Suppose H � G (or equivalently m = 2). By Proposition 3.3 we have 〈g1〉 � H.
Hence 〈g1〉H = G. For each 2 ≤ i ≤ r we can write gi = hig1 with hi ∈ H accord-
ing to Remark 3.5. Since g2i = 1 we have g1hig1 = hi

−1 and G = 〈g1, g2, . . . , gr〉 =
〈h2, h3, . . . , hr〉〈g1〉. Therefore H = 〈h2, h3, . . . , hr〉 and g1 normalizes each sub-
group of H. So, N = {1}, since N �H and NG = {1}. �

4. On the structure of Galois Group of factorized covers

In this section we will determine the structure of the Galois group of certain
factorized covers. We recall the notation: ϕ : X → P1 is a simple cover of de-

gree m, the cover ψ : Y → X is Galois of degree n and ϕ̂ ◦ ψ is the Galois cover
of the factorized cover ϕ ◦ ψ. The group G is the corresponding Galois group of

ϕ ◦ ψ. Also Z is the compact Riemann surface associated to ϕ̂ ◦ ψ and the sub-
groups N and H of G correspond to ZN ∼= Y and ZH ∼= X , respectively. We
are using the same letters G, H and N to denote their images in Snm, given
by the permutational representation of G on the set of the right cosets of N
in G. Here we identify the set Δi = {Nh1xi, Nh2xi, . . . , Nhnxi} with the set
{i,m + i, 2m + i, . . . , (n − 1)m + i} = Δi, and we will use the same letters gi to
denote the corresponding image in Snm for each geometric generator gi.

Collecting some results of the previous section, we have the following.

Remark 4.1. As proved in the previous section, if ψ : Y → X is unramified and
m = 2, then N = {1} and H � G. Also, for any geometric generator g ∈ G we
have G = H〈g〉 and ghg = h−1 for all h ∈ H, since g2 = 1.
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Therefore, for the remainder of this section we consider m ≥ 3. Now, we are
able to prove the following.

Proposition 4.2. If ψ : Y → X is unramified, then G contains a subgroup L
which is isomorphic to Sm and L has at least m different conjugates in G.

Proof. Let N1, N2, . . . , Nm be the set of the m different conjugates of N in G. As
follows from Remark 3.5, we can choose elements g1 ∈ (N3 ∩N4 ∩ · · · ∩Nm) \K,
g2 ∈ (N1 ∩N4 ∩ · · · ∩Nm) \K, . . . , gm−1 ∈ (N1 ∩N2 ∩ · · · ∩Nm−3 ∩Nm−2) \K.
The corresponding image of gi in Smn may be written as follows:

gi = (i i+ 1)(m+ i m+ i+ 1) · · · ((n− 1)m+ i (n− 1)m+ i+ 1).

In this way we have

• g2i = 1, for all i = 1, . . . ,m− 1.

• (gigi+1)
3 = 1, for all i = 1, . . . ,m− 2.

• gigj = gjgi, when |i − j| ≥ 2.

Hence L =
〈
g1, g2, . . . , gm−1 / g

2
i = (gigi+1)

3 = [gi, gj] = 1 , |i− j| ≥ 2
〉 ∼= Sm, ac-

cording to the Coxeter presentation for the symmetric group Sm, see [7].
Since for each 1 ≤ i < m we have gi /∈ Hi ∪Hi+1 and since G acts transitively

on the set {Δ1,Δ2, . . . ,Δm}, we obtain that L has at least m different conjugates
in G. �

In [4] Biggers and Fried studied factorized covers ϕ ◦ ψ where ϕ : X → P1 is a
simple cover of degree m and ψ : Y → X is an unramified Galois cover of degree n
with cyclic Galois group. They also characterized, for this case, the Galois group
of ϕ ◦ ψ, by studying the corresponding fields of meromorphic functions.

We will now extend the Biggers–Fried result to the case when ψ : Y → X is
an unramified Galois cover of degree n with abelian Galois group. An interesting
point is that we will give group-theoretical proofs for our results.

We start with the following auxiliary lemma.

Lemma 4.3. Let G be a finite group, and let H ≤ G with |G : H | = k and abelian
core K = HG. If L ≤ G is such that L ∼= Sk and Lg � H for all g ∈ G, then
G = K � L.

Proof. By the action of G on the set of the right cosets of H in G, we have that
G/K � Sk. If K ∩ L = {1}, then KL/K ∼= L ∼= Sk and k! = |KL/K| ≤ |G/K| ≤
|Sk| = k!. Hence G/K ∼= KL/L ∼= Sk and G = K � L.

Let U = K ∩ L and suppose that U �= {1}. Then U is a non-trivial abelian
normal subgroup of L ∼= Sk, and hence 2 ≤ k ≤ 4.

• If k = 2, then S2
∼= L � H and U = {1}, a contradiction.

• If k = 3, then |U | = 3 and |KL/K| = |L/U | = 2. Furthermore, since
|G : H | = 3 and |KL/K| = 2, we have that G/K ∼= S3. Hence H/K and KL/K
are 2-Sylow subgroups of G/K. Thus H/K = (KL/K)g = KLg/K for some
g ∈ G. It follows that H = KLg and Lg ≤ H, a contradiction.
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• If k = 4, then |U | = 4 and |KL/K| = |L/U | = 6. Since |G : H | = 4 and
|KL/K| = 6, we conclude that G/K ∼= S4. Hence H/K andKL/K are normalizers
of 3-Sylow subgroups of G/K. Therefore H/K = (KL/K)g = KLg/K for some
g ∈ G. In this way H = KLg and Lg ≤ H, the final contradiction. �

Proposition 4.4. If ϕ : Y → X is unramified with abelian Galois group, then the
following properties hold :

(1) K = HG is abelian.

(2) G = K � L, with L ∼= Sm. Also, L ∩ H ∼= Sm−1, L ∩ H ≤ N and N =
(L ∩H)(N ∩K).

(3) H = NK.

(4) N ∩K �= {1}.
(5) K = (N ∩K)(Ng ∩K) for each g /∈ H.

Proof. (1) Let {x1, x2, . . . , xm} be a right transversal of H in G. The result follows
by considering the group monomorphism

Φ : K → (H/N)x1 × (H/N)x2 × · · · × (H/N)xm

defined by Φ(k) = (Nx1k,Nx2k, . . . , Nxmk).

(2) By Proposition 4.2, G contains a subgroup L isomorphic to Sm, which is
generated by the elements

gi = (i i+ 1)(m+ i m+ i+ 1) · · · ((n− 1)m+ i (n− 1)m+ i+ 1),

with 1 ≤ i < m.
By Remark 3.2, H stabilizes the set Δ1 = {1,m+1, 2m+1, . . . , (n− 1)m+1}.

Hence for all g ∈ G there exists some i such that ggi /∈ H. Therefore Lg � H, and
G = K � L, according to Lemma 4.3.

We have L∩H = 〈g2, g3, . . . , gm−1〉 ≤ L∩N ∼= Sm−1, since m = |G : H | = |L :
L ∩H |. Now N = (N ∩K)(L ∩H), since H = K(H ∩ L).

(3) Since G = K � L we have G/K ∼= Sm and H/K ∼= Sm−1. Let V �G such
that V/K ∼= Am, the alternating group.

If NK �= H, then N ≤ NK ≤ H ∩ V ≤ V, since N � H. By Proposition 3.4
and Remark 3.5, the group G has a geometric presentation given by

G =
〈
g1, g2, . . . , gr /

r∏
i=1

gi = 1, g2i = 1, i = 1, 2, . . . , r and R
〉
,

where each generator gi is an element of some conjugate of N. Then

G = 〈g1, g2, . . . , gr〉 ≤ 〈Ng / g ∈ G〉 ≤ V,

a contradiction. Hence NK = H.
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(4) If N ∩K = {1}, then the commutator subgroup [N,K] = {1}, since N �H
and K�H. Therefore, K commutes with N and similarly with all conjugates of N.
HenceK commutes with L and L�G, a contradiction, according to Proposition 4.2.

(5) Let g /∈ H. Since H/N is abelian, N(Ng∩K)�H. So (N ∩K)(Ng∩K)�H.
Similarly, (N ∩K)(Ng∩K)�Hg. Hence (N ∩K)(Ng∩K)� 〈H,Hg〉 = G, since H
is a maximal subgroup of G.

By item (2), G = KL with L ∼= Sm and N = (N ∩K)(H ∩L) ≤ (N ∩K)(Ng ∩
K)L. Let x ∈ G and write x = yz with x ∈ K and z ∈ L. Then Nx = Nyz =
Nz ≤ ((N ∩K)(Ng ∩K)L)z ≤ (N ∩K)(Ng∩K)L. Hence (N ∩K)(Ng∩K)L = G,
according to Remark 3.5. Therefore

K = K ∩ (N ∩K)(Ng ∩K)L = (N ∩K)(Ng ∩K)(L∩K) = (N ∩K)(Ng ∩K). �

Proposition 4.5. If ϕ : Y → X is an unramified Galois cover with abelian Galois
group, then K ∼= (H/N)m−1.

Proof. Assume H/N ∼= Zn1 × Zn2 × · · · × Zns and consider Mj ≤ H such that
Mj/N ∼= Znj and Mj ∩Mi = N for all 1 ≤ j, i ≤ s and j �= i.

Let g /∈ H and N2 = Ng. For each 1 ≤ j ≤ s, we have

Mj ∩K = (Mj ∩K)∩K = (Mj ∩K)∩ (N ∩K)(N2 ∩K) = (N ∩K)(Mj ∩N2 ∩K)

and

Mj = N(K ∩Mj) = N(N ∩K)(Mj ∩N2 ∩K) = N(Mj ∩N2 ∩K) = N〈xj〉,
with xj ∈Mj ∩N2 ∩K.

Using the permutational representation described in Remark 3.2, we may iden-
tify the elements (renumbering if necessary)

x1 =(1, m+ 1, 2m+ 1, . . . , (n1 − 1)m+ 1)

(n1m+ 1, (n1 + 1)m+ 1, (n1 + 2)m+ 1, . . . , (2n1 − 1)m+ 1)

(2n1m+ 1, (2n1 + 1)m+ 1, (2n1 + 2)m+ 1, . . . , (3n1 − 1)m+ 1) · · ·
((q1 − 1)n1m+ 1, ((q1 − 1)n1 + 1)m+ 1, ((q1 − 1)n1 + 2)m+ 1,

. . . , (q1n1 − 1)m+ 1) C13 · · · C1m
and for 2 ≤ j ≤ s,

xj =(1, tjm+ 1, 2tjm+ 1, . . . , (nj − 1)tjm+ 1)

(m+ 1, (tj + 1)m+ 1, (2tj + 1)m+ 1, . . . , ((nj − 1)tj + 1)m+ 1)

(2m+ 1, (tj + 2)m+ 1, (2tj + 2)m+ 1, . . . , ((nj − 1)tj + 2)m+ 1) · · ·
((qj − 1)m+ 1, (qj + tj − 1)m+ 1, (2tj + qj − 1)m+ 1,

. . . , ((nj − 1)tj + qj − 1)m+ 1) Cj3 · · · Cjm,
where qj = |H :Mj |, tj = |M1M2 · · ·Mj−1 : N | and Cji is a permutation of Δi for
each 3 ≤ i ≤ m.
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For each 1 ≤ i ≤ m, 2 ≤ j ≤ s and 1 ≤ r ≤ m− 1, consider the elements

P1i = (1, m+ i, 2m+ i, . . . , (n1 − 1)m+ i)

(n1m+ i, (n1 + 1)m+ i, (n1 + 2)m+ i, . . . , ((2n1 − 1)m+ i)

(2n1m+ i, (2n1 + 1)m+ i, (2n1 + 2)m+ i, . . . , ((3n1 − 1)m+ i) · · ·
((q1 − 1)n1m+ i, ((q1 − 1)n1 + 1)m+ i, ((q1 − 1)n1 + 2)m+ i,

. . . , (q1n1 − 1)m+ i)

Pji = (1, tjm+ i, 2tjm+ i, . . . , (nj − 1)tjm+ i)

(m+ i, (tj + 1)m+ i, (2tj + 1)m+ i, . . . , ((nj − 1)tj + 1)m+ i)

(2m+ i, (tj + 2)m+ i, (2tj + 2)m+ i, . . . , ((nj − 1)tj + 2)m+ i) · · ·
((qj − 1)m+ i, (qj + tj − 1)m+ i, (2tj + qj − 1)m+ i,

. . . , ((nj − 1)tj + qj − 1)m+ i)

and

gr = (r, r + 1)(m+ r,m+ r + 1)(2m+ r, 2m+ r + 1)

. . . ((n− 1)m+ r, (n− 1)m+ r + 1).

According to Proposition 4.4 we have G = KL with L = 〈g1, g2, . . . , gm−1〉.
But aj1 = xjg1xj

−1g1 = Pj1P
−1
j2 ∈ K, and also for T = (g1 g2 · · · gm−1)

−1

we have aj2 = Taj1T
−1 = Pj2P

−1
j3 , aj3 = T 2aj2T

−2 = Pj3P
−1
j4 , . . . , ajm =

Tm−1ajm−1T
−(m−1) = PjmP

−1
j1 . Hence, aj1aj2aj3 · · · aj m = 1, and the normal

subgroup Qj = 〈aj1, aj2, aj3, . . . , aj m−1〉 has order nm−1
j . Applying the same ar-

guments for all 1 ≤ j ≤ s, we obtain a normal subgroup Q = Q1Q2 · · · Qs ≤ K of
order (n1n2 · · ·ns)m−1 = nm−1.

Let {N1, N2, . . . , Nm} be the set of the m different conjugates of N in G. For
the group homomorphism

φ : K → K/(N1 ∩K)×K/(N2 ∩K)× · · · ×K/(Nm ∩K)

defined by φ(k) = (k(N1 ∩K), k(N2 ∩K), . . . , k(Nm ∩K)), we have

ker(φ) = N1 ∩K ∩ · · · ∩Nm ∩K = N1 ∩ · · · ∩Nm = {1},

and thus K ∼= Im(φ).

Suppose that

(a11(N1 ∩K), (N2 ∩K), . . . , (Nm ∩K))

= φ(k) = (k(N1 ∩K), . . . , k(Nm ∩K)) ∈ Im(φ).

Then k ∈ N2 ∩ · · · ∩ Nm and hence k = C1 is a permutation of the set Δ1

and a11(N1 ∩ K) = P11P
−1
12 (N1 ∩ K) = C1(N1 ∩ K). Therefore C1 = P11 and

P12 ∈ N2 ∩ K. In this way we obtain P1 = 〈P11, P12, P13, . . . , P1m〉 ≤ K and
P1 = Q1〈P11〉.
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Consider, renumbering if necessary, {a11, a21, . . . , au1} such that Pj ≤ K for
1 ≤ j ≤ u and {au+11, . . . , as1} such that (ai1(N1∩K), (N2∩K), . . . , (Nm∩K)) /∈
Im(φ) for u+ 1 ≤ i ≤ s. Hence

K = P1〈P11〉P2〈P21〉 · · · Pu〈Pu1〉Qu+1 · · · Qs

= P11P21 · · ·Pu1Q1Q2 · · ·Qs = P11P21 · · ·Pu1Q.
Since Pj1

−rg1P rj1 = Pj1
−rPj2rg1 ∈ 〈Pj1Pj2−1, g1〉, we have 〈g1〉G = 〈g1〉KL =

〈g1〉P11P21···Pu1QL ≤ QL, a contradiction. Therefore, for all j, i we have (aji(N1 ∩
K), (N2∩K), . . . , (Nm∩K)) /∈ Im(φ). Therefore K = Q and K ∼= (H/N)

m−1
. �

We summarize the above results in the following:

Theorem 4.6. Let G be the Galois group of a factorized cover ϕ◦ψ with ϕ : X → P1

a simple cover of degree m and ψ : Y → X an unramified Galois cover of degree n,
with abelian Galois group of type (n1, n2, . . . , ns). Then

G = (Zn1 × Zn2 × · · · × Zns)
m−1 � Sm.

Corollary 4.7. Let Z be the Riemann surface associated to the Galois cover of
ϕ ◦ ψ. Then a geometric system of generators for the action of G on Z, as a
transitive subgroup of Smn, is given by{
g1, g1, . . . , gm−1, gm−1, gm, gm, gm+1, gm+1, . . . , gm+s−1, gm+s−1, g1, g1, . . . , g1, g1︸ ︷︷ ︸

2(g(X )−s)

}

where, for 1 ≤ i ≤ m− 1 and 2 ≤ j ≤ s,

gi = (i, i+ 1) (m+ i, m+ i+ 1) (2m+ i, 2m+ i+ 1)(3m+ i, 3m+ i+ 1) · · ·
((n1n2 · · ·ns − 2)m+ i, (n1n2 · · ·ns − 2)m+ i+ 1)

((n1n2 · · ·ns − 1)m+ i, (n1n2 · · ·ns − 1)m+ i+ 1),

gm = x−1
1 g1 x1,

gm+j−1 = x−1
j g1 xj ,

with

x1 = (1,m+ 1, . . . , (n1 − 1)m+ 1)(n1m+ 1, (n1 + 1)m+ 1, . . . , (2n1 − 1)m+ 1) · · ·
((n2 · · ·ns − 2)n1m+ 1, ((n2 · · ·ns − 2)n1 + 1)m+ 1,

. . . , ((n2 · · ·ns − 1)n1 − 1)m+ 1)

((n2 · · ·ns − 1)n1m+1, ((n2 · · ·ns − 1)n1 + 1)m+1, · · · (n1n2 · · ·ns − 1)m+1),

and

xj = (1, tjm+ 1, 2tjm+ 1, . . . , (nj − 1)tjm+ 1)

(m+ 1, (tj + 1)m+ 1, (2tj + 1)m+ 1, . . . , ((nj − 1)tj + 1)m+ 1)

(2m+ 1, (tj + 2)m+ 1, (2tj + 2)m+ 1, . . . , ((nj − 1)tj + 2)m+ 1) · · ·
((qj − 1)m+ 1, (qj + tj − 1)m+ 1, (2tj + qj − 1)m+ 1,

. . . , ((nj − 1)tj + qj − 1)m+ 1).
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Proof. Following the proof of Proposition 4.5, we have that the given set is a
generator system and obviously satisfies the Riemann–Hurwitz equation (2.1) with
branching data (0; 2, 2, . . . , 2, 2︸ ︷︷ ︸

2(g(X )+m−1)

). Also, we have

g(Z) =
nm−1m! (g(X ) +m− 3)

2
+ 1.

Considering N = 〈g2, . . . , gm−1, gm, gm+1, . . . , gm+s−1〉 and H = NG(N), we ob-
tain |G : H | = m, |H : N | = n and H/N is abelian of type (n1, n2, . . . , ns).

For each 1 ≤ i ≤ m+ s− 1 let Gi =< gi > . Since

|H : N | |H\G/Gi| = |N\G/Gi|,
we have that ZN → ZH is an unramified Galois cover, according to Proposition 3.3.
Also, since

|H\G/Gi| = m− 1 and |N\G/Gi| = n(m− 1)

we have g(ZH) = g(X ) and g(ZN ) = |H : N |(g(X )− 1) = n(g(X )− 1). �
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