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On smooth Fano fourfolds of Picard number two

Jürgen Hausen, Antonio Laface and Christian Mauz

Abstract. We classify the smooth Fano 4-folds of Picard number two that have a
general hypersurface Cox ring.

1. Introduction

By a Fano variety, we mean a normal projective complex variety with an ample anticanon-
ical divisor. Our aim is to contribute to the explicit classification of smooth Fano varieties.
In dimension two, these are the well known smooth del Pezzo surfaces. The smooth
Fano threefolds have been classified by Iskovskih [26, 27] and Mori–Mukai [34, 35].
From dimension four on the classification problem is widely open in general, but there
are trendsetting partial results, such as Batyrev’s classification of the smooth toric Fano
fourfoulds [3].

In the present article, we focus on the case of Picard number at most two. In this
situation, all smooth Fano varieties coming with a torus action of complexity at most one
are known [19] and in [21] one finds a natural extension to complexity two. As in [19,21],
our approach goes via the Cox ring. Recall that for any normal projective variety X with
finitely generated divisor class group Cl.X/, the Cox ring is defined as

R.X/ D
M

Cl.X/

�.X;OX .D//:

In case of a smooth Fano variety X , the Cox ring is known to be a finitely generated
C-algebra [6]. We restrict our attention to simply structured Cox rings: we say that a
variety X with divisor class group Cl.X/ D K has a hypersurface Cox ring if we have a
K-graded presentation

R.X/ D Rg D CŒT1; : : : ; Tr � =hgi;

where g is homogeneous of degree � 2 K and T1; : : : ; Tr define a minimal system of
K-homogeneous generators. In this situation, we call R.X/ spread if each monomial of
degree � is a convex combination of monomials of g. Moreover, we call R.X/ gen-
eral .smooth, Fano) if g admits an open neighbourhood U in the vector space of all
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�-homogeneous polynomials such that every h 2 U yields a hypersurface Cox ring Rh of
a normal (smooth, Fano) variety Xh with divisor class group K; see also Definition 4.5.

Among the del Pezzo surfaces, there are no smooth ones with a hypersurface Cox ring,
but in the singular case, we encounter many examples [14]. The first examples of smooth
Fano varieties with a hypersurface Cox ring show up in dimension three; see Theorems 4.1
and 4.5 in [15], where, based on the classifications mentioned before, the Cox rings of the
smooth Fano threefolds of Picard numbers one and two have been computed. For the
smooth Fano fourfolds of Picard number one having a hypersurface Cox ring, we refer to
numbers 2, 4, 5 and 8 in Küchle’s list (Proposition 2.2.1 in [31]) in case of Fano index
one, and in case of higher Fano index, to the numbers 14, 15, 18, 19, 20 and 22 in the list
of Przyjalkowski and Shramov [36], p. 12.

We approach our main result, concerning Fano fourfolds of Picard number two. The
notation is as follows. For any hypersurface Cox ring R.X/D Rg graded by Cl.X/DK,
we write wi D deg.Ti / 2 K for the generator degrees and �D deg.g/ 2 K for the degree
of the relation. Moreover, in this setting, the anticanonical class of X is given by

�K D w1 C � � � C wr � � 2 Cl.X/ D K:

If Rg is the Cox ring of a Fano variety X , then X can be reconstructed as the GIT quo-
tient of the set of .�K/-semistable points of SpecRg by the quasitorus Spec CŒK�. In
this setting, we refer to the Cox ring generator degrees w1; : : : ; wr 2 K and the rela-
tion degree � 2 K as the specifying data of the Fano variety X . In the case of a smooth
Fano fourfould X of Picard number two, Cl.X/ equals Z2 and thus Spec CŒK� is a two-
dimensional torus. Hence the hypersurface Cox ring Rg is of dimension six and has seven
generators.

Theorem 1.1. The following table lists the specifying data w1; : : : ;w7 and � in Cl.X/D
Z2, the anticanonical class �K and K4 for all smooth Fano fourfolds of Picard number
two with a spread hypersurface Cox ring.

No. Œw1; : : : ; w7� deg.g/ �K K4

1 h
1 1 1 1 0 0 0

0 0 0 0 1 1 1

i .1; 1/ .3; 2/ 432

2 .2; 1/ .2; 2/ 256

3 .3; 1/ .1; 2/ 80

4 .1; 2/ .3; 1/ 270

5 .2; 2/ .2; 1/ 112

6 .3; 2/ .1; 1/ 26

7 h
1 1 1 1 0 0 �1

0 0 0 0 1 1 1

i .1; 1/ .2; 2/ 416

8 .1; 2/ .2; 1/ 163

9 .2; 1/ .1; 2/ 224

10 .2; 2/ .1; 1/ 52

11
h
1 1 1 1 0 0 �2

0 0 0 0 1 1 1

i
.1; 1/ .1; 2/ 464

12 .1; 2/ .1; 1/ 98

No. Œw1; : : : ; w7� deg.g/ �K K4

13
h
1 1 1 1 0 0 0

0 0 0 1 1 1 1

i
.1; 2/ .3; 2/ 352

14 .2; 3/ .2; 1/ 65

15
h
1 1 1 1 0 0 �1

0 0 0 1 1 1 1

i
.1; 3/ .2; 1/ 83

16
h
1 1 1 1 1 0 0

0 0 0 0 1 1 1

i
.2; 1/ .3; 2/ 352

17 .3; 2/ .2; 1/ 81

18 h
1 1 1 1 0 0 0

�1 0 0 0 1 1 1

i .3; 1/ .1; 1/ 38

19 .2; 1/ .2; 1/ 192

20 .1; 1/ .3; 1/ 432

21
h
1 1 1 1 1 0 0

�1 0 0 0 1 1 1

i
.3; 1/ .2; 1/ 113
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No. Œw1; : : : ; w7� deg.g/ �K K4

22
h
1 1 1 1 0 0 0

0 0 1 1 1 1 1

i
.2; 2/ .2; 3/ 272

23 .3; 3/ .1; 2/ 51

24
h
1 1 1 2 0 0 0

0 0 1 2 1 1 1

i
.4; 4/ .1; 2/ 34

25
h
1 1 2 3 0 0 0

0 0 2 3 1 1 1

i
.6; 6/ .1; 2/ 17

26
h
1 1 1 0 0 0 0

0 0 1 1 1 1 1

i
.2; 2/ .1; 3/ 216

27
h
1 1 1 0 0 0 0

0 0 2 1 1 1 1

i
.2; 4/ .1; 2/ 64

28
h
1 1 1 0 0 0 0

0 0 3 1 1 1 1

i
.2; 6/ .1; 1/ 8

29
h
1 1 1 1 0 0 0

0 0 0 1 1 1 1

i
.2; 2/ .2; 2/ 192

30 .3; 3/ .1; 1/ 18

31
h
1 1 1 2 0 0 0

0 0 0 1 1 1 1

i
.4; 2/ .1; 2/ 48

32
h
1 1 1 2 0 0 0

0 0 0 2 1 1 1

i
.4; 4/ .1; 1/ 12

33
h
1 1 2 1 0 0 0

0 1 3 2 1 1 1

i
.4; 6/ .1; 3/ 50

34 h
1 1 1 1 1 0 0

0 1 1 1 1 1 1

i .2; 2/ .3; 4/ 378

35 .3; 3/ .2; 3/ 144

36 .4; 4/ .1; 2/ 20

37
h
1 1 1 1 2 0 0

0 1 1 1 2 1 1

i
.4; 4/ .2; 3/ 96

38
h
1 1 1 1 3 0 0

0 1 1 1 3 1 1

i
.6; 6/ .1; 2/ 10

39
h
1 1 1 2 3 0 0

0 1 1 2 3 1 1

i
.6; 6/ .2; 3/ 48

40
h
1 1 1 1 0 0 0

0 1 1 1 1 1 1

i
.2; 2/ .2; 4/ 352

41 .3; 3/ .1; 3/ 99

42
h
1 1 1 1 0 0 0

0 2 2 2 1 1 1

i
.2; 4/ .2; 5/ 304

43 .3; 6/ .1; 3/ 54

44
h
1 1 1 2 0 0 0

0 1 1 2 1 1 1

i
.4; 4/ .1; 3/ 66

45
h
1 1 1 2 0 0 0

0 2 2 4 1 1 1

i
.4; 8/ .1; 3/ 36

46
h
1 1 2 3 0 0 0

0 1 2 3 1 1 1

i
.6; 6/ .1; 3/ 33

No. Œw1; : : : ; w7� deg.g/ �K K4

47
h
1 1 2 3 0 0 0

0 2 4 6 1 1 1

i
.6; 12/ .1; 3/ 18

48
h
1 1 1 1 1 0 0

0 1 1 1 2 1 1

i
.2; 2/ .3; 5/ 433

49
h
1 1 1 1 1 0 0

0 2 2 2 3 1 1

i
.3; 6/ .2; 5/ 145

50
h
1 1 1 1 0 0 0

0 1 1 2 1 1 1

i
.2; 4/ .2; 3/ 144

51
h
1 1 1 2 0 0 0

0 1 1 3 1 1 1

i
.4; 6/ .1; 2/ 22

52
h
1 1 1 2 1 0 0

0 1 1 3 2 1 1

i
.4; 6/ .2; 3/ 65

53
h
1 1 1 1 1 1 0

�1 0 0 0 0 1 1

i
.2; 0/ .4; 1/ 431

54 .4; 0/ .2; 1/ 62

55
h
1 1 1 1 1 2 0

�1 0 0 0 0 1 1

i
.3; 0/ .4; 1/ 376

56
h
1 1 1 1 1 3 0

�1 0 0 0 0 1 1

i
.4; 0/ .4; 1/ 341

57
h
1 1 1 1 3 1 0

�1 0 0 0 0 1 1

i
.6; 0/ .2; 1/ 31

58
h
1 1 1 1 3 0 0

0 0 0 0 0 1 1

i
.6; 0/ .1; 2/ 16

59
h
1 1 1 2 3 0 0

0 0 0 0 0 1 1

i
.6; 0/ .2; 2/ 64

60
h
1 1 1 2 3 1 0

0 0 0 0 0 1 1

i
.6; 0/ .3; 2/ 80

61
h
1 1 1 1 2 0 0

0 0 0 0 0 1 1

i
.4; 0/ .2; 2/ 128

62
h
1 1 1 1 2 1 0

0 0 0 0 0 1 1

i
.4; 0/ .3; 2/ 160

63
h
1 1 1 1 1 0 0

0 0 0 0 0 1 1

i
.3; 0/ .2; 2/ 192

64
h
1 1 1 1 1 1 0

0 0 0 0 0 1 1

i
.3; 0/ .3; 2/ 240

65
h
1 1 1 1 1 0 0

0 0 0 0 0 1 1

i
.2; 0/ .3; 2/ 432

66
h
1 1 1 1 1 1 0

0 0 0 0 0 1 1

i
.2; 0/ .4; 2/ 480

67
h
1 1 1 1 1 2 0

0 0 0 0 0 1 1

i
.2; 0/ .5; 2/ 624

Any two smooth Fano fourfolds of Picard number two with specifying data from distinct
items of the table are not isomorphic to each other. Moreover, each of the items 1 to 67 even
defines a general smooth Fano hypersurface Cox ring and thus provides the specifying
data for a whole family of smooth Fano fourfolds.

Let us compare the result with existing classifications. Wiśniewski classified in [39]
the smooth Fano fourfolds of Picard number and Fano index at least two, where the Fano
index is the largest integer � such that �K D �H holds with an ample divisor H .
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Remark 1.2. In eight cases, the families listed in Theorem 1.1 consist of varieties of
Fano index two and in all other cases, the varieties are of Fano index one. The conversion
between Theorem 1.1 and Wiśniewski’s results as presented in Table 12.7 of [37] is as
follows:

Theorem 1.1 2 7 29 40 59 61 63 66
Table 12.7 in [37] 5 12 4 10 1 2 3 13

Theorem 1.1 has no overlap with Batyrev’s classification [3] of smooth toric Fano
fourfolds. Indeed, toric varieties have polynomial rings as Cox rings which are by defini-
tion no hypersurface Cox rings. However, there is some interaction with the case of torus
actions of complexity one.

Remark 1.3. Eleven of the families of Theorem 1.1 admit small degenerations to smooth
Fano fourfolds with an effective action of a three-dimensional torus. Here are these fam-
ilies and the corresponding varieties from Theorem 1.2 in [19].

Theorem 1.1 Theorem 1.2 in [19]
1 4.A: m D 1, c D 0
4 4.C: m D 1
7 2

13 5: m D 1
20 4.A: m D 1, c D �1
34 1
48 10: m D 2
53 7: m D 1
65 12: m D 2, a D b D c D 0
66 11: m D 2, a2 D 1
67 11: m D 2, a2 D 2

Moreover, observe that for the families 1, 20, 48, 53, 65, 66 and 67 of Theorem 1.1, the
degeneration process gives a Fano smooth intrinsic quadric; compare [18], Theorem 1.3.

Remark 1.4. Coates, Kasprzyk and Prince classified in [10] the smooth Fano fourfolds
that arise as complete intersections of ample divisors in smooth toric Fano varieties of
dimension at most eight. Comparing anticanonical self-intersection numbers as well as the
first six coefficients of the Hilbert series yields that at least the 17 families 14, 15, 24, 25,
28, 30, 32, 33, 38, 44, 45, 46, 47, 51, 52, 57 and 58 of Theorem 1.1 do not show up in [10].

In Sections 6 to 8, we investigate the geometry of the Fano varieties from Theorem 1.1.
We take a look at the elementary contractions, see Proposition 6.2, we determine the
Hodge numbers, see Propositions 7.1 and 7.2, and in many cases the infinitesimal deform-
ations, see Corollary 8.2.

2. Factorial gradings

Here we provide the first part of the algebraic and combinatorial tools used in our classi-
fication. We recall the basic concepts on factorially graded algebras and, as a new result,
prove Proposition 2.4, locating the relation degrees of a factorially graded complete inter-
section algebra. Moreover, we recall and discuss the GIT-fan of the quasitorus action
associated with a graded affine algebra.
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For the moment, K is any field. Let R be a K-graded algebra, which, in this article,
means that K is a finitely generated abelian group and R is a K-algebra coming with a
direct sum decomposition into K-vector subspaces

R D
M
w2K

Rw

such that RwRw 0 � RwCw 0 holds for all w;w0 2 R. An element f 2 R is homogeneous
if f 2 Rw holds for some w 2 K; in that case, w is the degree of f , written w D deg.f /.
We say that R is K-integral if it has no homogeneous zero divisors.

Consider the rational vector space KQ WD K ˝Z Q associated with K. The effective
cone of R is the convex cone generated by all degrees admitting a non-zero homogeneous
element:

Eff.R/ WD cone.w 2 KI Rw ¤ 0/ � KQ:

The K-grading of R is called pointed if R0 D K holds and the effective cone Eff.R/
contains no line. Note that Eff.R/ is polyhedral, if the K-algebra R is finitely generated.

Lemma 2.1. LetR be aK-graded algebra. Assume thatR isK-integral and every homo-
geneous unit of R is of degree zero.

(i) If R0 D K holds, then the K-grading is pointed, and for every non-zero torsion
element w 2 K, we have Rw D 0.

(ii) TheK-grading is pointed if and only if there is a homomorphism �WK! Z defin-
ing a pointed Z-grading with effective cone Q�0.

Proof. We prove (i). It suffices to show that there is no non-zero w 2 K with Rw ¤ 0 and
R�w ¤ 0. Consider f 2 Rw and f 0 2 R�w , both being non-zero. Then ff 0 is a non-zero
element ofR0 and hence constant. Thus, f and f 0 are both units. By assumption, we have
w D 0.

We prove (ii). If the K-grading is pointed, then we find a hyperplane U � KQ inter-
secting Eff.X/ precisely in the origin. Let KU � K be the subgroup consisting of all
elements w 2 K with w ˝ 1 2 U . Then K=KU Š Z holds and we may assume that the
projection �WK ! Z sends the effective cone to the positive ray. Using (i), we see that for
the induced Z-grading all homogeneous elements of degree zero are constant. The reverse
implication is clear according to (i).

Let R be a K-integral algebra. A homogeneous non-zero non-unit f 2 R is K-irre-
ducible, if admits no decomposition f D f 0f 00 with homogeneous non-zero non-units
f 0; f 00 2 R. A homogeneous non-zero non-unit f 2 R is K-prime, if for any two homo-
geneous f 0; f 00 2 R we have that f j f 0f 00 implies f j f 0 or f j f 00. Every K-prime
element is K-irreducible. The algebra R is called K-factorial, or the K-grading just
factorial, if R is K-integral and every homogeneous non-zero non-unit is a product of
K-primes. In a K-factorial algebra, the K-prime elements are exactly the K-irreducible
ones.

An ideal a�R is homogeneous if it is generated by homogeneous elements. Moreover,
an ideal a � R is K-prime if for any two homogeneous f; f 0 2 R we have that ff 0 2 a
implies f 2 a or f 0 2 a. A homogeneous ideal a � R is K-prime if and only if R=a is
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K-integral. We say that homogeneous elements g1; : : : ; gs 2 R minimally generate the
K-homogeneous ideal a � R if they generate a and no proper subcollection of g1; : : : ; gs
does so.

Lemma 2.2. Let R be a K-graded algebra such that the grading is pointed, factorial
and every homogeneous unit is of degree zero. If g1; : : : ; gs 2 R minimally generate a
K-prime ideal of R, then each gi is a K-prime element of R.

Proof. Assume that g1 is not K-prime. Then g1 is not K-irreducible and we can write
g1D g

0
1g
00
1 , with homogeneous non-zero non-units g01;g

00
1 2R. As the ideal hg1; : : : ;gsi �

R is K-prime, it contains one of g01 and g001 , say g01. That means that

g01 D h1g1 C � � � C hsgs

holds with homogeneous elements hi 2 R. Take a coarsening K ! Z of the K-grading
as provided by Lemma 2.1 (ii). Then the above representation of g01 yields

degZ.g
0
1/ D degZ.h1/C degZ.g1/ D � � � D degZ.hs/C degZ.gs/:

Consequently, degZ.g
0
1/ � degZ.g1/ or h1 D 0. Since the Z-grading of R is pointed, we

have degZ.g
0
1/ < degZ.g

0
1/C degZ.g

00
1/ D degZ.g1/. Thus, h1 D 0 holds. This implies

g1 D g
0
1g
00
1 2 hg2; : : : ; gsi. A contradiction.

Given a finitely generated abelian group K and w1; : : : ; wr 2 K, there is a unique
K-grading on the polynomial algebra KŒT1; : : : ; Tr � satisfying deg.Ti / D wi for i D
1; : : : ; r . We call such grading a linear grading of KŒT1; : : : ; Tr �.

Lemma 2.3. Consider a linear K-grading on KŒT1; : : : ; Tr � and a K-homogeneous g 2
KŒT1; : : : ; Tr �. Moreover, let 1 � i1; : : : ; iq � r be pairwise distinct. Assume that Ti1
is not a monomial of g and that g; Ti2 ; : : : ; Tiq minimally generate a K-prime ideal in
KŒT1; : : : ; Tr �. Then we have a presentation

deg.g/ D
X

aj deg.Tj /; j ¤ i1; : : : ; iq; aj 2 Z�0:

Proof. Suppose that deg.g/ allows no representation as a positive combination over the
deg.Tj / with j 62 ¹i1; : : : ; iqº. Then each monomial of g must have a factor Tij for some
j D 1; : : : ; q. Write

g D g1Ti1 C g2Ti2 C � � � C gqTiq D g1Ti1 C h;

with polynomials gj 2 KŒT1; : : : ; Tr � such that g1 depends on none of Ti2 ; : : : ; Tiq . By
assumption, g1Ti1 is non-zero and we have a K-integral factor ring

KŒT1; : : : ; Tr � =hg; Ti2 ; : : : ; Tiq i Š KŒTj I j ¤ i2; : : : ; ir � =hg1Ti1i:

Consequently, g1Ti1 is a K-prime polynomial. This implies g1 D c 2 K� and thus we
arrive at g D cTi1 C h; a contradiction to the assumption that Ti1 is not a monomial
of g.
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If R is a finitely generated K-graded algebra, then R admits homogeneous generat-
ors f1; : : : ; fr . Turning the polynomial ring KŒT1; : : : ; Tr � into a K-graded algebra via
deg.Ti / WD deg.fi /, we obtain an epimorphism of K-graded algebras:

� WKŒT1; : : : ; Tr � ! R; Ti 7! fi :

Together with a choice of K-homogeneous generators g1; : : : ; gs for the ideal ker.�/, we
arrive at K-graded presentation of R by homogeneous generators and relations:

R D KŒT1; : : : ; Tr � =hg1; : : : ; gsi:

We call such presentation irredundant if ker.�/ contains no elements of the form Ti � hi
with hi 2 KŒT1; : : : ; Tr � not depending on Ti .

Proposition 2.4. Let R be a finitely generatedK-graded algebra such that the grading is
pointed, factorial and every homogeneous unit is of degree zero. Let

R D KŒT1; : : : ; Tr � =hg1; : : : ; gsi

be an irredundantK-graded presentation with dim.R/D r � s such that T1; : : : ;Tr define
K-prime elements in R. Then, for every l D 1; : : : ; s, we have

deg.gl / 2
\

1�i<j�r

cone.deg.Tk/I k ¤ i; k ¤ j / � KQ:

Proof. It suffices to show that for any two 1 � i < j � r , we can represent each deg.gl /
as a positive combination over the deg.Tk/, where k ¤ i; j . For l D 1; : : : ; s, set

gl;j WD gl .T1; : : : ; Tj�1; 0; TjC1; : : : ; Tr / 2 KŒT1; : : : ; Tr �:

Since Tj defines a K-prime element in R, the ideal hTj i � R is K-prime and hTj i lifts to
a K-prime ideal

Ij WD hg1; : : : ; gs; Tj i D hg1;j ; : : : ; gs;j ; Tj i � KŒT1; : : : ; Tr �:

Then KŒT1; : : : ;Tr �=Ij is isomorphic toR=hTj i. The latter algebra is of dimension r�s�1
due to our assumptions. Thus, g1;j ; : : : ; gs;j ; Tj minimally generate Ij . By Lemma 2.2,
each gl;j is K-prime and hence defines a K-integral factor algebra

KŒTmI m ¤ j � =hgl;j i Š KŒT1; : : : ; Tr � =hgl ; Tj i:

We conclude that gl ; Tj minimally generate a K-prime ideal in KŒT1; : : : ; Tr �. Thus, we
may apply Lemma 2.3 and obtain the assertion.

We turn to the geometric point of view. So, K is now algebraically closed of char-
acteristic zero and R an affine K-graded algebra, where affine means that R is finitely
generated over K and has no nilpotent elements. Then we have the affine variety NX withR
as its algebra of global functions and the quasitorus H with K as its character group:

NX D SpecR; H D Spec KŒK�:
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The K-grading of R defines an action of H on NX , which is uniquely determined by the
property that each f 2 Rw satisfies f .h � x/ D �w.h/f .x/ for all x 2 NX and h 2 H ,
where �w is the character corresponding to w 2 K. We take a look at the geometric
invariant theory of the H -action on NX ; see [2, 4]. The orbit cone !x � KQ associated
with x 2 NX and the GIT-cone �w � KQ associated with w 2 Eff.R/ are defined as

!x D cone.w 2 KI f .x/ ¤ 0 for some f 2 Rw/; �w WD
\

x2 NX;w2!x

!x :

Orbit cones as well as GIT-cones are convex polyhedral cones and there are only finitely
many of them. The basic observation is that the GIT-cones form a fan ƒ.R/ in KQ, the
GIT-fan, having the effective cone Eff.R/ as its support.

Remark 2.5. Let K be a finitely generated abelian group and R a K-integral affine
algebra. Fix a K-graded presentation

R D KŒT1; : : : ; Tr � =hg1; : : : ; gsi:

This yields an H -equivariant closed embedding NX D V.g1; : : : ; gs/ � Kr of affine vari-
eties. Moreover, we have a homomorphism

Q W Zr ! K; � 7! �1 deg.T1/C � � � C �r deg.Tr /:

An NX -face is a face 
0 � 
 of the orthant 
 WD Qr
�0 admitting a point x 2 NX such that

one has
xi ¤ 0 ” ei 2 
0

for the coordinates x1; : : : ; xr of x and the canonical basis vectors e1; : : : ; er 2 Zr . Write
S. NX/ for the set of all NX -faces of 
 � Qr . Then we have

¹Q.
0/I 
0 2 S. NX/º D ¹!x I x 2 NXº:

That means that the projected NX -faces are exactly the orbit cones. The NX -faces define a
decomposition into locally closed subsets,

NX D
[


02S.X/

NX.
0/; NX.
0/ WD ¹x 2 NX I xi ¤ 0, ei 2 
0º � NX:

Definition 2.6. Let I D ¹i1; : : : ; ikº be a subset of ¹1; : : : ; rº. Then the face 
I of the
orthant 
 D Qr

�0 associated with I is defined as


I WD 
i1;:::;ik WD cone.ei1 ; : : : ; eik /:

Moreover, for a polynomial g 2 KŒT1; : : : ; Tr �, the polynomial gI associated with I is
defined as

gI WD g. QT1; : : : ; QTr /; QTi WD

´
Ti ; i 2 I;

0; i 62 I:

Remark 2.7. In the setting of Remark 2.5, let I D ¹i1; : : : ; ikº be a subset of ¹1; : : : ; rº.
(i) 
I is an NX -face if and only if hg1;I ; : : : ; gs;I i contains no monomial.
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(ii) If deg.gj / 62 cone.wi I i 2 I / holds for j D 1; : : : ; s, then 
I is an NX -face.
(iii) If .wi I i 2 I / is linearly independent in K, then 
I is an NX -face if and only if

none of g1; : : : ; gs has a monomial T l1i1 � � �T
lk
ik

with l1; : : : ; lk 2 Z�0.

Proposition 2.8. Let K be a finitely generated abelian group and R an affine algebra
with a pointed K-grading. Consider a K-graded presentation

R D KŒT1; : : : ; Tr � =hg1; : : : ; gsi

such that T1; : : : ; Tr define non-constant elements in R. Assume that there are a GIT-cone
� 2 ƒ.R/ of dimension at least two and an index i with deg.Ti / 2 �ı.

(i) There exists a j such that gj has a monomial T lii with li 2 Z�0.

(ii) There exists a j such that deg.gj / D li deg.Ti / holds with li 2 Z�0.

(iii) If s D 1 holds, then, deg.Tk/ generates a ray of ƒ.R/ whenever k ¤ i .

Proof. Because of deg.Ti / 2 �ı, the ray � generated by deg.Ti / is not an orbit cone. Thus,
Q�0ei is not an NX -face. This means that some gj has a monomial T lii , which in particular
proves (i) and (ii). To obtain (iii), first observe that deg.Tk/ 2KQ is non-zero and thus lies
in the relative interior of some GIT-cone % 2 ƒ.R/ of positive dimension. Suppose that
% is not a ray. Then (i) yields that besides T lii also T lk

k
is a monomial of the relation g1.

We conclude that 
i;k is an NX -face. Thus, deg.Ti / and deg.Tk/ lie on a ray of ƒ.R/. A
contradiction.

3. Mori dream spaces

Mori dream spaces, introduced in [25], behave optimally with respect to the minimal
model programme and are characterized as the normal projective varieties with finitely
generated Cox ring. Well-known example classes are the projective toric or spherical vari-
eties and, most important for the present article, the smooth Fano varieties. In this section,
we provide a brief summary of the combinatorial approach [2,5,20] to Mori dream spaces,
adapted to our needs. Moreover, as a new observation, we present Proposition 3.6, locating
the relation degrees of a Cox ring inside the effective cone of a quasismooth Mori dream
space.

Let K be an algebraically closed field of characteristic zero, R be a K-graded affine
K-algebra and consider the action ofH D SpecKŒK� on variety NX D SpecR. Mori dream
spaces are obtained as quotients of theH -action. We briefly recall the general framework.
Each cone � 2 ƒ.R/ of the GIT-fan defines an H -invariant open set of semistable points
and a good quotient:

NX ss.�/ D ¹x 2 NX I � � !xº � NX; NX ss.�/ ! NX ss.�/==H;

where !x �KQ denotes the orbit cone of x 2 NX . Each of the quotient varieties NX ss.�/==H
is projective over SpecR0 and whenever �0 � � holds for two GIT-cones, then we have
NX ss.�/ � NX ss.�0/ and thus an induced projective morphism NX ss.�/==H ! NX ss.�0/==H

of the quotient spaces.
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TheK-grading ofR is almost free if the (open) set NX0 � NX of points x 2 NX with trivial
isotropy group Hx � H has complement of codimension at least two in NX . Moreover,
the moving cone of R is the convex cone Mov.R/ � KQ obtained as the union over all
� 2 ƒ.R/, where NX ss.�/ has a complement of codimension at least two in NX .

Remark 3.1. Let R be a K-graded affine algebra such that the grading is factorial and
any homogeneous unit is constant. Then R admits a system f1; : : : ; fr of pairwise non-
associated K-prime generators. Moreover, if f1; : : : ; fr is such a system of generators
for R, then the following holds.

(i) The K-grading is almost free if and only if any r � 1 of deg.f1/; : : : ; deg.fr /
generate K as a group.

(ii) If the K-grading is almost free, then the orbit cones !x , where x 2 NX , and the
moving cone are given by

!x D cone.deg.fi /I fi .x/ ¤ 0/; Mov.R/ D
r\
iD1

cone.deg.fj /I j ¤ i/:

We say that aK-graded affine K-algebraR is an abstract Cox ring if it is integral, nor-
mal, has only constant homogeneous units, theK-grading is almost free, pointed, factorial
and the moving cone Mov.R/ is of full dimension in KQ.

Construction 3.2. LetR be an abstract Cox ring and consider the action of the quasitorus
H D Spec KŒK� on the affine variety NX D SpecR. For every GIT-cone � 2 ƒ.R/ with
�ı � Mov.R/ı, we set

X.�/ WD NX ss.�/==H:

The following proposition tells us in particular that Construction 3.2 delivers Mori
dream spaces; see Theorem 3.2.14, Proposition 3.3.2.9 and Remark 3.3.4.2 in [2].

Proposition 3.3. LetX DX.�/ arise from Construction 3.2. ThenX is normal, projective
and of dimension dim.R/ � dim.KQ/. The divisor class group and the Cox ring of X are
given as

Cl.X/ D K; R.X/ D
M

Cl.X/

�.X;OX .D// D
M
K

Rw D R:

Moreover, the cones of effective, movable, semiample and ample divisor classes of X are
given in ClQ.X/ D KQ as

Eff.X/ D Eff.R/; Mov.X/ D Mov.R/;
SAmple.X/ D �; Ample.X/ D �ı:

By Corollary 3.2.1.11 in [2], all Mori dream space arise from Construction 3.2. For
the subsequent work, we have to get more concrete, meaning that we will work in terms
of generators and relations.

Construction 3.4. LetR be an abstract Cox ring andX DX.�/ be as in Construction 3.2.
Fix a K-graded presentation

R D KŒT1; : : : ; Tr � =hg1; : : : ; gsi
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such that the variables T1; : : : ; Tr define pairwise non-associatedK-primes inR. Consider
the orthant 
 D Qr

�0 and the projection

QW Zr ! K; ei 7! wi WD deg.Ti /:

An X -face is an NX -face 
0 � 
 with �ı � Q.
0/ı. Let rlv.X/ be the set of all X -faces
and � W NX ss.�/! X the quotient map. Then we have a decomposition

X D
[


02rlv.X/

X.
0/

into pairwise disjoint locally closed setsX.
0/ WD�. NX.
0//, which we also call the pieces
of X .

Recall that X is Q-factorial if for every Weil divisor on X some non-zero multiple
is locally principal. Moreover, X is locally factorial if every stalk Ox , where x 2 X is a
(closed) point, is a unique factorization domain. Finally, X is quasismooth if the open set
NX ss.�/ � NX of semistable points is a smooth variety.

Proposition 3.5. Consider the situation of Construction 3.4.

(i) The variety X is Q-factorial, if and only if dim.�/ D dim.KQ/ holds for � D
SAmple.X/.

(ii) The variety X is locally factorial if and only if for every X -face 
0 � 
 , the
group K is generated by Q.
0 \ Zr /.

(iii) The varietyX is quasismooth if and only if every NX.
0/ consists of smooth points
of NX for every X -face 
0 � 
 .

(iv) The variety X is smooth if and only if X is locally factorial and quasismooth.

We refer to Corollaries 1.6.2.6, 3.3.1.8, and 3.3.1.9 in [2] for the above statements.
Next we describe the impact of quasismoothness has an impact the position of the relation
degrees.

Proposition 3.6. In the situation of Construction 3.4, assume dim.R/ D r � s and let X
be quasismooth. Then, for every j D 1; : : : ; s, we have

deg.gj / 2
\


02rlv.X/

�
Q.
0 \ Zr / [

r[
iD1

wi CQ.
0 \ Zr /
�
:

Proof. Consider any X -face 
I , where I � ¹1; : : : ; rº, and choose a point x 2 NX.
I /.
Then xi ¤ 0 holds if and only if i 2 I . For any monomial T � , we have

@T �

@Tk
.x/ ¤ 0 ) � 2 
I [ 
I C ek ) deg.T �/ D Q.�/ 2 Q.
I / [Q.
I /C wk :

Now, since X is quasismooth, we have gradgj .x/¤ 0 for all j D 1; : : : ; s. Thus, every gj
must have a monomial T �j with non-vanishing gradient at x.

Finally, in case of a complete intersection Cox ring, we have an explicit description of
the anticanonical class; see Proposition 3.3.3.2 in [2].
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Proposition 3.7. In the situation of Construction 3.4, assume that dim.R/D r � s holds.
Then the anticanonical class of X is given in K D Cl.X/ as

�KX D deg.T1/C � � � C deg.Tr / � deg.g1/ � � � � � deg.gs/:

4. General hypersurface Cox rings

First, we make our concept of a general hypersurface Cox ring precise. Then we present
the toolbox to be used in the proof of Theorem 1.1 for verifying that given specifying
data, that means a collection of the generator degrees and a relation degree, allow indeed
a smooth general hypersurface Cox ring. We will have to deal with the following setting.

Construction 4.1. Consider a linear, pointed, almost free K-grading on the polynomial
ring S WD KŒT1; : : : ; Tr � and the quasitorus action H � NZ ! NZ, where

H WD Spec KŒK�; NZ WD SpecS D Kr :

As earlier, we write QWZr ! K, ei 7! wi WD deg.Ti / for the degree map. Assume that
Mov.S/ � KQ is of full dimension and fix � 2 ƒ.S/ with �ı � Mov.S/ı. Set

OZ WD NZss.�/; Z WD OZ==H:

Then Z is a projective toric variety with divisor class group Cl.Z/ D K and Cox ring
R.Z/ D S . Moreover, fix 0 ¤ � 2 K, and for g 2 S� set

Rg WD S=hgi; NXg WD V.g/ � NZ; OXg WD NXg \ OZ; Xg WD OXg==H � Z:

Then the factor algebra Rg inherits a K-grading from S and the quotient Xg � Z is a
closed subvariety. Moreover, we have

Xg � Zg � Z;

where Zg � Z is the minimal ambient toric variety of Xg , that means the (unique) min-
imal open toric subvariety containing Xg .

Remark 4.2. In the situation of Construction 4.1, there is a (unique) GIT-cone � 2ƒ.Rg/
such that we have

OXg D NX
ss
g .�/; Xg D NX

ss
g .�/==H:

Thus, if Rg is an abstract Cox ring and T1; : : : ; Tr define pairwise non-associated K-
primes in Rg , then Xg is as in Construction 3.4. In particular

Cl.X/ D K; R.Xg/ D Rg

hold for the divisor class group and the Cox ring of Xg . Moreover, in KQ we have the
following

�ı D Ample.Z/ � Ample.Zg/ D Ample.Xg/ D �ı:

We are ready to formulate the precise definitions for our notions around hypersurface
Cox rings.
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Definition 4.3. Consider the situation of Construction 4.1.
(i) We call Rg a hypersurface Cox ring if T1; : : : ; Tr define a minimal system of

K-homogeneous generators for Rg .
(ii) We say that Rg is spread if every monomial T � 2 KŒT1; : : : ; Tr � of degree � D

deg.g/ 2 K is a convex combination of monomials of g.

Here, we tacitly identify a monomial T � D T �11 � � � T
�r
r with its exponent vector � D

.�1; : : : ; �r / 2 Qr when we speak about convex combinations of monomials.

Remark 4.4. In the setting of Construction 4.1, assume that Rg is a hypersurface Cox
ring.

(i) Since T1; : : : ; Tr define a minimal system of K-homogeneous generators, Rg is
not a polynomial ring.

(ii) As the K-grading is pointed, the Ti define pairwise non-associated K-prime ele-
ments in Rg .

(iii) Rg is spread if and only if the Newton polytope of g equals the convex hull over
all monomials of degree � D deg.g/ 2 K.

Definition 4.5. Consider the situation of Construction 4.1 and denote by S� � S D
KŒT1; : : : ; Tr � the homogeneous component of degree � 2 K.

(i) A general hypersurface Cox ring is a family Rg , where g 2 U with a non-empty
open U � S�, such that each Rg is a hypersurface Cox ring.

(ii) We say that a general hypersurface Cox ring Rg is spread if each Rg , where
g 2 U , is spread.

(iii) We say that a general hypersurface Cox ring Rg is smooth (Fano) if for some
� 2 ƒ.S/ all the resulting Xg , where g 2 U , are smooth (Fano).

We turn to the toolbox for verifying that given specifying data w1; : : : ; wr 2 K and
� 2 K as in Construction 4.1 lead to a smooth Fano general hypersurface Cox ring Rg in
the above sense.

Remark 4.6. In the notation of Construction 4.1, a general hypersurface Cox ring Rg is
Fano if and only if the generator and relation degrees satisfy

�K D w1 C � � � C wr � � 2 Mov.Rg/ı:

In this case, the unique cone � 2 ƒ.S/ with �K 2 �ı defines Fano varieties Xg for all
g 2 U ; see Proposition 3.7 and Remark 4.2.

In the notation of Construction 4.1, we denote by U� � S� the non-empty open set of
polynomials f 2 S of degree � 2 K such that each monomial of S� is a convex combin-
ation of monomials of f.

Remark 4.7. If Rg , where g 2 U , is a general hypersurface Cox ring, then Rg , where
g 2 U \ U�, is a spread general hypersurface Cox ring. In particular, we can always
assume a general hypersurface Cox ring to be spread.

Remark 4.8. In the situation of Construction 4.1, consider the ringsRg for g 2 U�. Then
the following statements are equivalent.
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(i) The variables T1; : : : ; Tr form a minimal system of generators for all Rg , where
g 2 U�.

(ii) The variables T1; : : : ; Tr form a minimal system of generators for one Rg with
g 2 U�.

(iii) We have � ¤ wi for i D 1; : : : ; r .
(iv) The polynomial g 2 U� is not of the form g D Ti C h with h 2 S� not depending

on Ti .

Lemma 4.9. Consider a linear, pointedK-grading on S WD KŒT1; : : : ; Tr �. Then, for any
0 ¤ � 2 K, the irreducible polynomials g 2 S� form an open subset of S�.

Proof. Lemma 2.1 (ii) provides us with a coarsening homomorphism �WK ! Z that
turns S into a pointed Z-graded algebra. Then S� is a vector subspace of the (finite dimen-
sional) vector space S�.�/ of �.�/-homogeneous polynomials and we may assumeK DZ
for the proof. Since the K-grading of S is pointed, we have S� D S0 n ¹0º. Thus, a poly-
nomial g 2 S� is reducible if and only if it is a product of homogeneous polynomials of
non-zero K-degree.

Now, let u;v 2Z with uC vD� and Su ¤ ¹0º ¤ Sv . Then the set of �-homogeneous
polynomials g admitting a factorization g D f h with f 2 Su, h 2 Su is exactly the affine
cone over the image of the projectivized multiplication map,

P .Su/ � P .Sv/ ! P .S�/; .Œf �; Œh�/ 7! Œf h�

and thus is a closed subset of S�. As there are only finitely many such presentations
uC v D �, the reducible g 2 S� form a closed subset of S�.

Proposition 4.10. Consider the setting of Construction 4.1. For 1 � i � r denote by
Ui � S� the set of all g 2 S� such that g is prime in S and Ti is prime in Rg . Then
Ui � S� is open. Moreover, Ui is non-empty if and only if there is a �-homogeneous
prime polynomial not depending on Ti .

Proof. By Lemma 4.9, the g 2 S� being prime in S form an open subset U � S�. For
any g 2 U , the variable Ti defines a prime in Rg if and only if the polynomial gi WD
g.T1; : : : ; Ti�1; 0; TiC1; : : : ; Tn/ is prime in KŒTj I j ¤ i �. Thus, using again Lemma 4.9,
we see that the g 2 U with Ti 2 Rg prime form the desired open subset Ui � U . The
supplement is clear.

Checking the normality andK-factoriality of Rg amounts, in our situation, to proving
factoriality. We will use Dolgachev’s criterion, see Theorem 1.2 in [16] and [17], which
tells us that a polynomial g D

P
a�T

� in KŒT1; : : : ; Tr � defines a unique factorization
domain if the Newton polytope � � Qr of g satisfies the following conditions:

(i) dim.�/ � 4,
(ii) each coordinate hyperplane of Qr intersects � non-trivially,
(iii) the dual cone of cone.� � uI u 2 �0/ is regular for each one-dimensional face

�0 � �,
(iv) for each face �0 � � the zero locus of

P
�2�0

a�T
� is smooth along the torus

T r D .K�/r .
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We will call for short a convex polytope � � Qr
�0 with properties (i)-(ii) from above

a Dolgachev polytope.

Proposition 4.11. In the situation of Construction 4.1, suppose that one of the following
conditions is fulfilled:

(i) K is of rank at most r � 4 and torsion free, there is a g 2 S� such that T1; : : : ; Tr
define primes in Rg , we have � 2 �ı and � is base point free on Z.

(ii) The set conv.� 2 Zr�0I Q.�/ D �/ is a Dolgachev polytope.

Then there is a non-empty open subset of polynomials g 2 S� such that the ring Rg is
factorial.

Proof. Assume that (i) is satisfied. If � D deg.Ti / holds for some i , then, as the grading
is pointed, we have a non-empty open set of polynomials g D Ti C h in S� with h not
depending on Ti . The corresponding Rg are all factorial. Now assume � ¤ deg.Ti / for
all i . By Proposition 4.10, the set U � S� of all prime g 2 S� such that T1; : : : ; Tr define
primes in Rg is open and, by assumption, U � S� is non-empty. Remark 4.8 yields that
T1; : : : ; Tr form a minimal system of generators for Rg . We conclude that for all f 2 U ,
the complement of OXg in NXg is of codimension at least two. Since � is base point free
and ample on Z, we can apply Corollary 2.3 in [1], telling us that after suitably shrinking,
U is still non-empty and Rg is the Cox ring of Xg for all g 2 U . In particular, Rg is
K-factorial. Since K is torsion free, Rg is a unique factorization domain.

Assume that (ii) holds. As� WD conv.� 2 Zr�0I Q.�/ D �/ is a Dolgachev polytope,
we infer from Theorem 2 in §2 of [29] that there is a non-empty open subset of polyno-
mials g 2 S� with Newton polytope � satisfying the above conditions (i) to (iv). Thus,
Dolgachev’s criterion shows that Rg is a factorial ring.

Proposition 4.12. In the setting of Construction 4.1, assume that Zg and OXg both are
smooth. Then Xg is smooth.

Proof. Consider the quotient map pW OZ ! Z. Since Zg is smooth, H acts freely on
p�1.Zg/. Thus, Xg inherits smoothness from OXg D p

�1.Xg/.

Lemma 4.13. Consider a linear, pointedK-grading on S WDKŒT1; : : : ;Tr �. Let � 2ƒ.S/
and setW WD .Kr /ss.�/. Then, for any � 2 K, the polynomials g 2 S� such that grad.g/
has no zeroes in W form an open subset of S�.

Proof. Consider the morphism 'W S� � W ! Kr sending .g; z/ to gradz.g/ and the
projection pr1W S� � W ! S� onto the first factor. Then our task is to show that S� n
pr1.'

�1.0// is open in S�. We make use of the action of H D Spec KŒK� on W given by
the K-grading and the commutative diagram

S� �W //

pr1 ##

S� �W==H

pr1
zz

S�
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where the horizontal arrow is the good quotient for H , acting trivially on S� and on W
as indicated above. Since '�1.0/ � S� �W is invariant under the H -action, the image
of '�1.0/ in S� �W==H is closed. Since W==H is projective, the image pr1.'

�1.0// is
closed in S�.

Proposition 4.14. Consider the situation of Construction 4.1. Then the polynomials g2S�
such that g 2 S is prime and OXg is smooth form an open subset U � S�. Moreover, U is
non-empty if and only if there are g1; g2 2 S� such that g1 2 S is prime and grad.g2/ has
no zeroes in OZ.

Proof. By Lemma 4.9, the set V1 of all prime polynomials of S� is open. Moreover, by
Lemma 4.13, the set of all polynomials of S� such that grad.g/ has no zeroes in OZ is
open. The assertion follows from U D V1 \ V2.

Corollary 4.15. Let X be a variety with a general hypersurface Cox ring R. If X is
smooth, then R is a smooth general hypersurface Cox ring.

Proposition 4.16. Consider the situation of Construction 4.1. If � 2 Cl.Z/ is base point
free, then there is a non-empty open subset of g 2 S� such that Xg \Zreg is smooth.

Proof. Observe that P .S�/ is the complete linear system associated with the divisor class
� 2 Cl.Z/. If � is a base point free class on Z, we can apply Bertini’s first theorem
(Theorem 4.1 in [30]) stating that there is a non-empty open subset U � S� such that for
each g 2 U the singular locus of Xg is precisely Xg \ Zsing. In particular, Xg \ Zreg is
smooth for all g 2 U .

Remark 4.17. In the situation of Construction 4.1, let N.g/ be the Newton polytope
of g. For I � ¹1; : : : ; rº, let 
I 4 
 and gI 2 KŒT1; : : : ; Tr � be as in Definition 2.6
and assume Z.
I / ¤ ;. Then Proposition 3.1.1.12 in [2] yields the equivalence of the
following statements.

(i) We have Xg \Z.
I / ¤ ;.
(ii) We have NXg \ NZ.
I / ¤ ;.
(iii) The polynomial gI is not a monomial.
(iv) The number of vertices of N.g/ contained 
I differs from one.

In particular, for the non-empty open subset U� � S� of polynomials f 2 S of degree
� D deg.g/ 2 K such that each monomial of S� is a convex combination of monomials
of f , we obtain Zg D Zg 0 for all g; g0 2 U�.

Definition 4.18. In the setting of Remark 4.17, we call Z� WD Zg , where g 2 U�, the
�-minimal ambient toric variety.

Corollary 4.19. In the setting of in Construction 4.1, assume rank.K/ D 2 and that
Z� � Z is smooth. If � 2 � holds, then � is base point free. Moreover, then there is a
non-empty open subset of polynomials g 2 S� such that Xg is smooth.
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Proof. According to Proposition 3.3.2.8 in [2], the class� 2Cl.Z/ is base point free onZ
if and only if the following holds:

� 2
\


02 rlv.Z/

Q.
0 \ Zr /:

To check the latter, let 
0 2 rlv.Z/. As KQ is two-dimensional, we find 1 � i; j � r with
ei ; ej 2 
0 and �ı � cone.wi ; wj /ı. If wi ; wj generate K as a group, then K is torsion-
free, wi ; wj form a Hilbert basis for cone.wi ; wj / and thus � is a positive combination of
wi ; wj . Otherwise, the toric orbit Z.
i;j / is not smooth, hence not contained in Z�. The
latter means V.g/\ NZ.
i;j / D ;, which in turn shows that g has a monomial of the form
T
li
i T

lj
j where li C lj > 0. Thus, � is a positive combination of wi and wj .

Knowing that � is base point free, we obtain the supplement as a direct consequence
of smoothness of Z� and Proposition 4.16.

5. Proof of Theorem 1.1

We work in the combinatorial framework for Mori dream spaces provided in the preceding
sections. The ground field is now K D C, due to the references we use; see Remark 5.4.
The major part of proving Theorem 1.1, is to figure out the candidates for specifying
data of smooth general hypersurface Cox rings of Fano fourfolds of Picard number two.
Having found the candidates, the remaining task is to verify them, that means to show that
the given specifying data indeed define a smooth general hypersurface Cox ring of a Fano
fourfold. The precise setting for the elaboration is the following.

Setting 5.1. Consider a K-graded algebra R and X D X.�/, where � 2 ƒ.R/ with �ı �
Mov.R/ı, as in Construction 3.2. Assume that dim.KQ/ D 2 holds and that we have an
irredundant K-graded presentation

R D Rg D CŒT1; : : : ; Tr � =hgi

such that the Ti define pairwise nonassociatedK-primes in R. Write wi WD deg.Ti /, � WD
deg.g/ for the degrees in K, also when regarded in KQ. Suitably numbering w1; : : : ; wr ,
we ensure counter-clockwise ordering, that means that we always have

i � j H) det.wi ; wj / � 0:

Note that each ray ofƒ.R/ is of the form %i D cone.wi /, but not vice versa. We assumeX
to be Q-factorial. According to Proposition 3.5 (i), this means dim.�/D 2. Then the effect-
ive cone of X is uniquely decomposed into three convex sets,

Eff.X/ D �� [ �ı [ �C;

where �� and �C are convex polyhedral cones not intersecting �ı D Ample.X/ and �� \
�C consists of the origin. By Remark 3.1 (ii) and Proposition 3.3, each of �� and �C

contains at least two of the degrees w1; : : : ; wr .
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�ı

wr

�C

w1

��

Note that �� as well as �C might be one-dimensional. As a GIT-cone in KQ Š Q2, the
closure � D SAmple.X/ of �ı D Ample.X/ is the intersection of two projected NX -faces
and thus we find at least one of the wi on each of its bounding rays.

Remark 5.2. Setting 5.1 is respected by orientation preserving automorphisms of K. If
we apply an orientation reversing automorphism of K, then we regain Setting 5.1 by
reversing the numeration of w1; : : : ; wr . Moreover, we may interchange the numeration
of Ti and Tj if wi and wj share a common ray without affecting Setting 5.1. We call these
operations admissible coordinate changes.

Remark 5.3. In Setting 5.1, consider the rays %i WD cone.wi / �Q2, where i D 1; : : : ; r ,
and the degree � D deg.g/ of the relation. Set

� WD %1 [ : : : [ %r ; �ı WD � \ Eff.R/ı:

Then a suitable admissible coordinate change turns the setting into one of the following:
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λ◦

wr

λ+

w1

λ−

Note that λ− as well as λ+ might be one-dimensional. As a GIT-cone in KQ ∼= Q2,
the closure λ = SAmple(X) of λ◦ = Ample(X) is the intersection of two projected
X̄-faces and thus we find at least one of the wi on each of its bounding rays.

Remark 5.2. Setting 5.1 is respected by orientation preserving automorphisms
of K. If we apply an orientation reversing automorphism of K, then we regain Set-
ting 5.1 by reversing the numeration of w1, . . . , wr. Moreover, we may interchange
the numeration of Ti and Tj if wi and wj share a common ray without affecting
Setting 5.1. We call these operations admissible coordinate changes.

Remark 5.3. In Setting 5.1, consider the rays ̺i := cone(wi) ⊆ Q2, where i =
1, . . . , r, and the degree µ = deg(g) of the relation. Set

Γ := ̺1 ∪ . . . ∪ ̺r, Γ◦ := Γ ∩ Eff(R)◦.

Then a suitable admissible coordinate change turns the setting into one of the
following

(I) µ 6∈ Γ
µ ∈ Γ◦

(IIa) ̺1 = ̺2
̺r−1 = ̺r

µ ∈ Γ◦

(IIb) ̺1 6= ̺2
̺r−1 = ̺r

µ ∈ Γ◦

(IIc) ̺1 6= ̺2
̺r−1 6= ̺r

(III) µ ∈ ̺1

where the figures exemplarily sketch the case r = 5, the black dots indicate the
generator degrees and the white dot stands for the relation degree.

Our proof of Theorem 1.1 will be split into Parts I, IIa, IIb, IIc and III according
to the constellations of Remark 5.3. We exemplarily present Parts I, IIa and III.
The remaining parts use analogous arguments and will be made available in [35].
The reason why we restrict Theorem 1.1 to the ground field K = C is that we use
the following references on complex Fano varieties.

Remark 5.4. Let X be a smooth complex Fano variety. Then the divisor class
group Cl(X) of X is torsion free; see for instance [39, Prop. 2.1.2]. Moreover,
if dim(X) = 4 holds, then [9, Rem. 3.6] tells us that any Q-factorial projective
variety being isomorphic in codimension one to X is smooth as well. In terms
of Construction 3.2, the latter means that all varieties X(η) are smooth, where
η ∈ Λ(R) is full-dimensional with η◦ ⊆ Mov(R)◦.

We treat Case 5.3 I that means that the degree of the defining relation is not
proportional to any of the Cox ring generator degrees. Here are first constraints
on the possible specifying data in this situation.

where the figures exemplarily sketch the case r D 5, the black dots indicate the generator
degrees, and the white dot stands for the relation degree.

Our proof of Theorem 1.1 will be split into Parts I, IIa, IIb, IIc and III according to the
constellations of Remark 5.3. We exemplarily present Parts I, IIa and III. The remaining
parts use analogous arguments and will be made available in [33]. The reason why we
restrict Theorem 1.1 to the ground field K D C is that we use the following references on
complex Fano varieties.

Remark 5.4. Let X be a smooth complex Fano variety. Then the divisor class group
Cl.X/ ofX is torsion free; see for instance Proposition 2.1.2 in [37]. Moreover, if dim.X/
D 4 holds, then Remark 3.6 in [8] tells us that any Q-factorial projective variety being
isomorphic in codimension one to X is smooth as well. In terms of Construction 3.2, the
latter means that all varieties X.�/ are smooth, where � 2 ƒ.R/ is full-dimensional with
�ı � Mov.R/ı.

We treat Case 5.3 I that means that the degree of the defining relation is not propor-
tional to any of the Cox ring generator degrees. Here are first constraints on the possible
specifying data in this situation.
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Proposition 5.5. In Setting 5.1, assume that r D 7,K ŠZ2 holds, every two-dimensional
� 2 ƒ.R/ with �ı � Mov.R/ı defines a locally factorial X.�/ and � does not lie on
any of the rays %1; : : : ; %7. Then, after a suitable admissible coordinate change, we have
� 2 cone.w4; w5/ı and one of the following holds:

.i/ w1 D w2 and w5 D w6; .iv/ w2 D w3 and w6 D w7;

.ii/ w1 D w2 and w6 D w7; .v/ w3 D w4 and w5 D w6,

.iii/ w2 D w3 and w5 D w6; .vi/ w3 D w4 and w6 D w7:

Lemma 5.6. Consider a locally factorial X D X.�/ arising from Construction 3.4 with
only one relation, i.e., s D 1. Let i; j with � � cone.wi ; wj /. Then either wi ; wj gener-

ateK as a group, or g1 has precisely one monomial of the form T lii T
lj
j , where li C lj > 0.

Proof. If 
i;j is an X -face, then Proposition 3.5 (ii) tells us that wi and wj generate K as
a group. Now consider the case that 
i;j not anX -face. Then we must have �ı 6�Q.
i;j /ı

or 
i;j is not an NX -face. Proposition 3.5 (i) excludes the first possibility. Thus, the second
one holds, which in turn means that g1 has precisely one monomial of the form T

li
i T

lj
j ,

where li C lj > 0.

Lemma 5.7. LetX D X.�/ be as in Setting 5.1 and let 1 � i < j < k � r . IfX is locally
factorial, then wi ;wj ;wk generateK as a group provided that one of the following holds:

(i) wi ; wj 2 �
�, wk 2 �C and g has no monomial of the form T

lk
k

,

(ii) wi 2 ��, wj ; wk 2 �C and g has no monomial of the form T
li
i .

Proof. Assume that (i) holds. If K is generated by wi ; wk or by wj ; wk , then we are
done. Consider the case that none of the pairs wi ; wk and wj ; wk generates K. Applying
Lemma 5.6 to each of the pairs shows that g has precisely one monomial of the form

T
li
i T

lk
k

with li C lk > 0 and precisely one monomial of the form T
lj
j T

l 0
k

k
with lj C l 0k > 0.

By assumption, we must have li ; lj > 0. We conclude that 
i;j;k is an X -face. Since X is
locally factorial, Proposition 3.5 (ii) yields that wi ; wj ; wk generate K. If (ii) holds, then
a suitable admissible coordinate change leads to (i).

Lemma 5.8. Assume u;w1;w2 generate the abelian group Z2. If wi D aiw holds with a
primitive w 2 Z2 and ai 2 Z, then .u;w/ is a basis for Z2 and u is primitive.

Lemma 5.9. Let w1; : : : ; w4 2 Z2 be such that det.w1; w3/, det.w1; w4/, det.w2; w3/
and det.w2; w4/ all equal one. Then w1 D w2 or w3 D w4 holds.

Proof of Proposition 5.5. The assumption � 62 %i yields %i 2 ƒ.R/ for i D 1; : : : ; 7, see
Remark 2.7 (ii). Proposition 2.4 gives � 2 cone.w3; w5/. The latter cone is the union of
cone.w3; w4/ and cone.w4; w5/; both are GIT-cones, one of them is two-dimensional
and hosts � in its relative interior. A suitable admissible coordinate change yields � 2
cone.w4; w5/ı.

First we show that if wi 2 %j holds for some 1 � i < j � 4, then two of w5; w6; w7
coincide. Consider the case w5; w6 2 %5. By assumption, X.�/ is locally factorial for
� D cone.w4; w5/. Thus, we can apply Lemma 5.7 to wi ; wj ; w5 and also to wi ; wj ; w6
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and obtain that each of the triples generates K as a group. Lemma 5.8 yields that w5
and w6 are primitive and hence, lying on a common ray, coincide. Now, assume w6 62 %5.
Then we consider X D X.�/ for � D cone.w5; w6/. Using Lemma 5.7 as before, we
see that wi ; wj ; w6 as well as wi ; wj ; w7 generate K as a group. For the primitive gen-
erator w of %i D %j , we infer det.w; w6/ D 1 and det.w; w7/ D 1 from Lemma 5.8.
Moreover, 
5;6 and 
5;7 are X -faces due to Remark 2.7 (ii). Thus, Proposition 3.5 (ii)
yields det.w5; w6/ D 1 and det.w5; w7/ D 1. Lemma 5.9 yields w6 D w7.

We conclude the proof by showing that at least two of w1; : : : ; w4 coincide. Con-
sider the case w2 2 %3. Then, by the first step, there are 5 � i < j � 7 with wi D wj .
Taking X.�/ for � D cone.w4; w5/ and applying Lemma 5.7 to w2; wi ; wj as well as to
w3;wi ;wj , we obtain that each of these triples generatesK. Because of wi D wj , we dir-
ectly see that w2 and w3, each being part of a Z-basis, are primitive and hence coincide.
We are left with the case that �0 D cone.w2; w3/ is of dimension two. By assumption, the
varietyX 0 defined by �0 is locally factorial. Moreover, Remark 2.7 (ii) provides us with the
X 0-faces 
1;3; 
2;3; 
1;4 and 
2;4. By Proposition 3.5 (ii), all corresponding determinants
det.wk ; wm/ equal one. Lemma 5.9 shows that at least two of w1; : : : ; w4 coincide.

We are ready to enter Part I of the proof of Theorem 1.1. The task is to work out
further the degree constellations left by Proposition 5.5. This leads to major multistage
case distinctions. We demonstrate how to get through for two of the constellations of
Proposition 5.5, chosen in a manner that basically all the necessary arguments of Part I of
the proof show up. For the full elaboration of all cases we refer to [33].

Proof of Theorem 1.1, Part I. In this part, we treat the case that � D deg.g/ does not lie
on any of the rays %i D cone.wi /. In particular, by Remark 2.7 (ii), all rays %1; : : : ; %7
belong to the GIT-fanƒ.R/. By Remark 5.4, every two-dimensional � 2 ƒ.R/ with �ı �
Mov.R/ı produces a smooth variety X.�/. Thus, we can apply Proposition 5.5, which
leaves us with � 2 cone.w4;w5/ı and the six possible constellations for w1; : : : ;w7 given
there. Again by Remark 5.4, the divisor class group of X is torsion free, that means that
we have K D Z2.

Constellation 5.5 (i). We have w1 D w2 and w5 D w6. Lemma 5.7 applied to w1; w2; w5
shows thatw1;w5 form a basis of Z2. Thus, a suitable admissible coordinate change gives
w1 D .1; 0/ and w6 D .0; 1/. Applying Lemma 5.7 also to w1; w2; w7 and wi ; w5; w6,
where i D 1; : : : ; 4, yields the first coordinate of w1; : : : ; w4 and the second coordinate
of w7 equal one. Thus, the degree matrix has the form

Q D Œw1; : : : ; w7� D

�
1 1 1 1 0 0 �a7
0 0 b3 b4 1 1 1

�
; b3; b4; a7 2 Z�0:

We determine the possible values of b3 and b4. If b3 > 0 holds, then � D cone.w2; w3/
is two-dimensional and satisfies �ı � Mov.R/ı. Because of � 2 cone.w4; w5/ı, none of
the monomials of g is of the form T

l1
1 T

lj
j with j D 3; 4. Lemma 5.6 applied toX.�/ gives

bj D det.w1; wj / D 1 for j D 3; 4. If b3 D 0 and b4 > 0 hold, we argue similarly with
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� D cone.w2; w4/ and obtain b4 D 1. Altogether, we arrive at the three cases:

5.5 (i-a): b3 D b4 D 0, 5.5 (i-b): b3 D 0, b4 D 1, 5.5 (i-c): b3 D b4 D 1.

Case 5.5 (i-a). Here, the semiample cone � of X D X.�/ must be the positive orthant.
Thus, X being Fano just means that both coordinates of the anticanonical class �KX 2

K D Z2 are strictly positive. According to Proposition 3.7, we have

�KX D .4 � a7 � �1; 3 � �2/:

We conclude 1 � �2 � 2 and 1 � �1 < 4 � a7, which implies in particular 0 � a7 � 2.
Thus, the weights w1; : : : ; w7 and the degree � must be as in Theorem 1.1, Numbers 1
to 12. We exemplarily verify the candidate Number 12; the others are settled analogously.
We have to deal with the specifying data

Q D Œw1; : : : ; w7� D

�
1 1 1 1 0 0 �2

0 0 0 0 1 1 1

�
; � D .1; 2/:

We run Construction 4.1 with � 2ƒ such that�K D .1;1/2 �ı, and show that the result is
a smooth general hypersurface Cox ringRg . First, one directly checks that the convex hull
over the � 2 Z7 withQ.�/D � is Dolgachev polytope. Thus, Proposition 4.11(i) delivers
a non-empty open set U � S� such that Rg is factorial for all g 2 U . Since �¤ wi holds
for all i , Remark 4.8 ensures that T1; : : : ; T7 are a minimal system of generators for Rg ,
whenever g 2 U . For i ¤ 5; 6, the degree wi of Ti is indecomposable in the monoid
Eff.Rg/ \K. We conclude that Ti is irreducible and thus prime in Rg , whenever g 2 U .
To see primality of T5 and T6, we use Proposition 4.10, where we can take T1T 2i � T

5
2 T

2
7

for i D 6; 5 as the required �-homogeneous polynomial in both cases. The ambient toric
variety Z is smooth due to Proposition 3.5 (iv). Thus, also Z� is smooth. Because of
� 2 �ı, Corollary 4.19 applies and, suitably shrinking U , we achieve that Xg is smooth
for all g 2 U .

Case 5.5 (i-b). Here, either �D cone.w3;w4/ or �D cone.w4;w5/ holds. In any case, the
anticanonical class is given as

�KX D .4 � a7 � �1; 4 � �2/:

First assume that �D cone.w3;w4/ holds. Then, X being Fano, we have �KX 2 �
ı. The

latter is equivalent to the inequalities

4 � �2 > 0; �2 � �1 � a7 > 0:

Using � 2 cone.w4; w5/ı, we conclude 1 � �1 < �2 � 3 and 0 � a7 � 1. Thus, we end
up with

a7 D 0 and � D .1; 2/; .1; 3/; .2; 3/; a7 D 1 and � D .1; 3/:
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Note that in all cases, 
1;2;3;4 is an X -face according to Remark 2.7 (ii). Since X is quas-
ismooth, Proposition 3.6 yields

� 2 Q.
1;2;3;4/ [ w7 CQ.
1;2;3;4/:

This excludes a7 D 0 and � D .1; 3/. The remaining three cases are Numbers 13 to 15
of Theorem 1.1. All these candidates can be verified. Indeed, take � D cone.w3; w4/ for
all three cases and observe �K 2 cone.w3; w4/ı. As in Case 5.5 (i-a), we find a non-
empty open subset U of polynomials g 2 S� such that Rg admits unique factorization,
see that T1; : : : ; T7 define pairwise non-associated primes in Rg and observe that Z and
thus also Z� are smooth. For smoothness of Xg , it suffices to show that OXg is smooth;
see Proposition 4.12. By Proposition 4.14, it suffices to find some g 2 S� such that grad.g/
has no zeroes in OZ, then shrinking U suitably yields that OXg is smooth for all g 2 U . We
just chose a random g of degree � and verified this using [22]. For instance, for a7 D 0
and � D .1; 2/, that means Number 13, the following g does the job:

8T1T
2
5 C 7T1T5T6 C 7T1T5T7 C 6T1T

2
6 C 4T1T6T7 C T1T

2
7 C 7T2T

2
5 C 7T2T5T6

C 3T2T5T7 C 8T2T
2
6 C 5T2T6T7 C 8T2T

2
7 C 5T3T

2
5 C 4T3T5T6 C 9T3T5T7

C 2T3T
2
6 C 9T3T6T7 C T3T

2
7 C 8T4T5 C 3T4T6 C 6T4T7:

Now, assume that � D cone.w4; w5/ holds. The condition that X D X.�/ is Fano means
�KX 2 �

ı, which translates into the inequalities 0 < 4 � a7 � �1 < 4 � �2. Moreover,
� 2 �ı implies �1 < �2 and we conclude

1 � �1 < �2 < �1 C a7 � 3:

This is only possible for a7 D 2 and � D .1; 2/. Then we have w4 D .1; 1/ and w7 D
.�2; 1/. In particular, g admits no monomial of the form T

l4
4 T

l7
7 . Lemma 5.6 tells us that

w4 and w7 generate K D Z2 as a group. A contradiction.

Case 5.5 (i-c). Remark 5.4 and Lemma 5.7 applied to X.�/ with � D cone.w4; w5/ and
w3;w4;w7 yield det.w4;w7/D1. From this we infer a7D0. Thus, either �D cone.w2;w3/
or � D cone.w4; w5/ holds. In any case, the anticanonical class is

�KX D .4 � �1; 5 � �2/:

Assume � D cone.w2; w3/. Then the Fano condition �KX 2 �
ı implies �1 C 1 < �2.

Remark 2.7 (ii) says that 
1;2;3;4 is an X -face. As before, Proposition 3.6 gives

� 2 Q.
1;2;3;4/ [ w7 CQ.
1;2;3;4/:

We conclude �1C 1 � �2. A contradiction. Now, assume �D cone.w4;w5/. Then �KX

2 �ı yields �1 � �2. But we have � 2 cone.w4; w5/ı, hence �1 < �2. A contradiction.

Constellation 5.5 (ii). We have w1 D w2 and w6 D w7. Lemma 5.7 applied to w1; w6; w7
shows that w1; w7 generate Z2. Hence, a suitable admissible coordinate change yields
w1 D w2 D .1; 0/ and w6 D w7 D .0; 1/. Now, applying Lemma 5.7 to w3; w6; w7 and
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w4; w6; w7, we obtain that the first coordinates of w3 and w4 both equal one. Thus, the
degree matrix has the form

Q D Œw1; : : : ; w7� D

�
1 1 1 1 a5 0 0

0 0 b3 b4 1 1 1

�
; a5; b3; b4 2 Z�0:

By assumption w4 and w5 do not lie on a common ray. Consequently, b4 D 0 or a5 D 0
holds. If a5 D 0 holds, then we are in Constellation 5.5 (i) just treated. So, assume a5 > 0.
Then b3 D b4 D 0 holds. Taking X.�/ for � D cone.w5; w6/ and applying Lemma 5.6 to
w5; w6 yields a5 D 1. We arrive at the degree matrix

Q D Œw1; : : : ; w7� D

�
1 1 1 1 1 0 0

0 0 0 0 1 1 1

�
:

Observe that either � D cone.w4; w5/ or � D cone.w5; w6/ holds. In any case, the anti-
canonical class of X D X.�/ is given as

�KX D .5 � �1; 3 � �2/:

First, assume �D cone.w4;w5/. ThenX being Fano means 0< 3��2 <5��1. We con-
clude �2 � 2 and �1 � �2 C 1. Moreover, � 2 cone.w4; w5/ı gives 0 < �2 < �1. Thus,
we have �1 D �2 C 1 and arrive at the possibilities � D .2; 1/; .3; 2/, which are Num-
bers 16 and 17 in Theorem 1.1. Showing that these constellations indeed define smooth
Fano varieties runs exactly as in Case 5.5 (i-a). Now, let �D cone.w5;w6/. Then X being
Fano gives 0< 5��1 <3��2. We conclude�D .4;1/. Remark 2.7 (ii) provides us with
theX -face 
5;6;7. Proposition 3.6 says that � should lie inQ.
5;6;7/ or inw1CQ.
5;6;7/.
A contradiction.

We treat Case 5.3 IIa, that means that the degree of the relation lies in the interior of
the effective cone, is proportional to some Cox ring generator degree and %1 D %2, as well
as %r�1 D %r hold.

Lemma 5.10. In Setting 5.1, assume that Mov.R/D Eff.R/ and � 2 Eff.R/ı hold. Let�
denote the set of two-dimensional � 2 ƒ.R/ with �ı � Mov.R/ı.

(i) If X.�/ is locally factorial for some � 2 �, then Eff.R/ is a regular cone and
every wi on the boundary of Eff.R/ is primitive.

(ii) If X.�/ is locally factorial for each � 2 �, then, for any wi 2 Eff.R/ı, we have
wi D w1 C wr or g has a monomial of the form T

li
i .

Proof. We show (i). Let wi 2 %r . Due to � 2 Eff.R/ı, the relation g has no monomial
of the form T

li
i . Thus, Lemmas 5.7 and 5.8 applied to the triple w1; w2; wi show that wi

is primitive. Analogously, we see that any wi 2 %1 is primitive. In particular, we have
w1 D w2. Thus, applying Lemma 5.7 to w1; w2; wr , we obtain that Eff.R/ is a regular
cone.

We turn to (ii). By (i), we may assume w1 D w2 D .1; 0/ and wr�1 D wr D .0; 1/.
Considerwi 2 Eff.R/ı such that T lii is not a monomial of g. Then we find GIT-cones �1 �
cone.w1;wi / and �2 � cone.wi ;wr / defining locally factorial varietiesX.�1/ andX.�2/
respectively. Lemma 5.7, applied to w1; w2; wi together with X.�1/ and to wi ; wr�1; wr
together with X.�2/ shows wi D .1; 1/ D w1 C wr .
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Lemma 5.11. In Setting 5.1, assume that X D X.�/ is locally factorial and Rg is a
spread hypersurface Cox ring.

(i) If wi lies on the ray through �, then g has a monomial of the form T
li
i , where

li � 2.

(ii) If wi ; wj , where i ¤ j , lie on the ray through �, then %i D %j 2 ƒ.Rg/ holds.

Proof. We show (i). Suppose that g has no monomial of the form T
li
i where li � 2. AsRg

is a hypersurface Cox ring, also Ti is not a monomial of g. Then, on one of the extremal
rays of Eff.R/, we find a wj such that 
i;j is a X -face; see Remark 2.7 (i). Proposi-
tion 3.5 (ii) yields that wi ;wj generate Z2 as a group. In particular, wi is primitive. Hence
� D kwi holds for some k 2 Z�1. As Rg is spread, T ki must be a monomial of g. In
addition, we obtain k � 2. A contradiction.

We prove (ii). Assertion (i) just proven and Remark 2.7 (i) tell us that 
i;j is an NX -face.
Thus, being a ray, Q.
i;j / D %i D %j belongs to the GIT-fan ƒ.Rg/.

Proof of Theorem 1.1, Part IIa. We deal with the specifying data of a smooth general
hypersurface Cox ring R as in Remark 5.3 IIa defining a smooth Fano fourfould X D
X.�/. By Proposition 2.4, the relation degree � lies on %3, %4 or %5. We claim that we
cannot have %3 D %4 D %5. Otherwise Lemma 5.11 shows � D cone.w1; w3/ 2 ƒ.R/.
Since X.�/ is smooth by Remark 5.4, we may apply Lemma 5.7 to the triple w1; w3; w4.
According to Lemma 5.8, we obtain det.w1; v/D 1, where v denotes the primitive gener-
ator of the ray %3. Analogous arguments yield det.v; w7/ D 1. Using both determinantal
equations, we conclude that v andw1Cw7 are collinear. In particular,w1Cw7 generates
%3 D %4 D %5. Lemma 5.10 (i) tells usw1 Dw2 andw6 Dw7. As a result, Proposition 3.7
gives �KX 2 %3. Moreover, Lemma 5.11 (ii) tells us %3 2ƒ.Rg/ and thus �D %3, which
contradicts Q-factoriality, see Proposition 3.5 (i). A suitable admissible coordinate change
yields � … %5 and we are left with the following three constellations:

(i) %3 D %4; � 2 %3 (ii) %3 ¤ %4; � 2 %3 (iii) %3 ¤ %4; � 2 %4

By Lemma 5.10 (i), we can assume w1 D w2 D .1; 0/ and w6 D w7 D .0; 1/. We show
w5 D .0; 1/. Otherwise, by Lemma 5.10 (ii), we must have w5 D .1; 1/. Consider �0 D
cone.w5; w6/. Then � 62 �0 holds. Remark 2.7 (ii) tells us that 
5;6 is an X 0-face and
hence �0 is a GIT-cone. The associated variety X 0 is smooth according to Remark 5.4.
Thus, Proposition 3.6 yields � 2 wi C �0 for some 1 � i � 7. By the geometry of the
possible degree constellations, only i D 1; 2 come into consideration. We conclude � D
.e C 1; e C f / with e; f 2 Z�0. Positive orientation of .�; w5/ gives f D 0. Hence, �
is primitive. By Lemma 5.11 (i), this contradicts Rg being a spread hypersurface ring.

Constellation (i). Let v D .v1; v2/ be the primitive generator of %3 D %4. Thanks to
Lemma 5.11 (ii), we have %3 2 ƒ.Rg/ and thus also �0 D cone.w3; w7/ is a GIT-cone.
The associated variety X 0 is smooth by Remark 5.4. Applying Lemmas 5.7 and 5.8 to
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the triple w3; w4; w7 yields v1 D 1 and that the first coordinates of w3, w4 are coprime.
Arguing similarly with w1; w3; w4 gives v2 D 1. So, the degree matrix has the form

Q D Œw1; : : : ; w7� D

�
1 1 a b 0 0 0

0 0 a b 1 1 1

�
; a; b 2 Z�1; gcd.a; b/ D 1:

We may assume a � b. By Lemma 5.11 (i), the relation g has monomials of the form T
l3
3

and T l44 . Since gcd.a; b/ D 1 holds, we conclude �1 D �2 D dab with d 2 Z�1. In
particular �1 � ab holds. By Proposition 3.7, the anticanonical class is given as

�KX D .2C aC b � �1; 3C aC b � �2/:

FromX being Fano we deduce �KX 2 Eff.R/ı, that means that each coordinate of �KX

is positive. Thus, we obtain

2C aC b > dab � ab:

This implies a D 1 or a D 2; b D 3. In the case a D 1, using the inequality again leads to
3C .1 � d/b > 0 and we end up with possibilities

b D 1; d D 2; 3; b D 2; d D 2;

leading to the specifying data of Numbers 22 to 24 of Theorem 1.1. The constellation
a D 2; b D 3 immediately implies d D 1, which gives the specifying data of Number 25
of Theorem 1.1.

It remains to show that these specifying data yield Fano smooth general hypersurface
Cox rings. We work in the setting of Construction 4.1 and treat exemplarily Number 25.
From Remark 4.8 we infer that for all g 2 U� the algebra Rg has T1; : : : ; T7 as a minimal
system of generators Rg . Moreover, Proposition 4.10 provides us with a non-empty open
subsetU � S� such that T1; : : : ;T7 define primes inRg for all g 2U , provided we deliver
for each i a �-homogeneous prime polynomial not depending on Ti . Here they are:

T 33 � T
2
4 for i D 1; 2; 5; 6; 7; T 61 T

6
5 � T

6
2 T

5
6 T7 for i D 3; 4:

In Construction 4.1, consider �D cone.w3/ 2ƒ.Rg/. Then �ı �Mov.S/ı holds and we
have � 2 �ı. One directly verifies that � is basepoint free forZ. Thus, Proposition 4.11 (i)
shows that after shrinking U suitably, Rg admits unique factorization in Rg for all g 2 U .
Since Xg should be a Fano variety, �K D .1; 2/ has to be ample and thus we have to take
� D cone.w4; w5/. Then Z� is smooth and � 2 � holds. Thus, Proposition 4.19 shows
that after possibly shrinking U again, Xg is smooth for all g 2 U .

Constellation (ii). Here we obtain w4 D .0; 1/ by the same arguments used for showing
w5 D .0; 1/. Write w3 D .a3; b3/ and let k be the unique positive integer with � D kw3.
Then k � 2 as Rg is spread and T1; : : : ; T7 form a minimal system of generators. By
Proposition 3.7, the anticanonical class of X D X.�/ is given as

�KX D .2C .1 � k/a3; 4C .1 � k/b3/:

Moreover, we have %3 62 ƒ.Rg/ due to Lemma 5.11 (i) and Remark 2.7 (i), the defining
GIT-cone � ofX is the positive orthant. Thus the Fano condition�KX 2 �

ı simply means
that both coordinates of �KX are positive. This leads to a3 D 1, k D 2 and b3 � 3. These
are Numbers 26 to 28 of Theorem 1.1.
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The verification of these candidates as specifying data of a general smooth Fano hyper-
surface Cox ring is done by the same arguments as in Case 5.5 (i-a) from Part I, except
that for Numbers 27 and 28 one has to verify smoothness of Z� explicitly.

Constellation (iii). We obtain w3 D .1; 0/ by analogous arguments as used for showing
w5 D .0; 1/ before. The degree w4 D .a4; b4/ has to be determined. A suitable admissible
coordinate change yields a4 � b4. By Proposition 3.7, the anticanonical class ofX DX.�/
is given as

�KX D .3C .1 � k/a4; 3C .1 � k/b4/;

where k 2 Z�0 is defined via � D kw3. As in the preceding constellation, we see that �
is the positive orthant. Thus, X.�/ being Fano just means that both coordinates of �KX

are positive. We end up with the specifying data from Numbers 29 to 32 of Theorem 1.1.
In order to verify these candidates, one proceeds by the same arguments as used in

Case 5.5 (i-a) from Part I, except that smoothness of Z� has to be checked explicitly.

We treat Case 5.3 III, that means that the degree � of the relation lies in the bounding
ray %1 of the effective cone.

Lemma 5.12. Let X D X.�/ be as in Setting 5.1, and let 1 � i < j � r be such that g
neither depends on Ti nor on Tj . If X is quasismooth, then wi ; wj lie either both in ��

or both in �C.

Proof. Otherwise, we may assume wi 2 �� and wj 2 �C. Then 
i;j is an X -face and
NX.
i;j / is a singular point of NX . According to Proposition 3.5 (iv), this contradicts quas-

ismoothness of X .

Proof of Theorem 1.1, Part III. We may assume that the ray %1 is generated by the vec-
tor .1; 0/. Let m be the number with w1; : : : ; wm 2 %1 and wmC1; : : : ; w7 62 %1. Observe
that due to � 2 %1, the relation g only depends on T1; : : : ; Tm.

The first step is to show that only for m D 5, the specifying data w1; : : : ; w7 and � in
K D Z2 allow a hypersurface Cox ring. Since � 2 %1, Proposition 2.4 yields m � 3. As
Mov.X/ is of dimension two, we must have m � 5; see Setting 5.1. Lemma 5.12 shows
wmC1; : : : ;wr 2 �

C. Applying Lemma 5.7 to triples w1;w2;wi for i � mC 1, we obtain

� D .�1; 0/; wi D .ai ; 0/; i D 1; : : : ; m; wi D .ai ; 1/; i D mC 1; : : : ; 7;

where, for any two 1� i < j �m, the numbers ai and aj are coprime and we may assume
a7 D 0. Moreover, we must have amC1 D � � � D a6, because otherwise we obtain a GIT
cone �¤ �2ƒ.R/with �ı 2Mov.R/ı and the associated varietyX.�/ is not quasismooth
by Lemma 5.12, contradicting Remark 5.4. Proposition 3.7 and the fact that X is Fano
give us

.a1 C � � � C a6 � �1; 7 �m/ D �KX 2 �
ı
D cone..1; 0/; .amC1; 1//ı:

Since a1; : : : ; am are pairwise coprime, the component �1 of the degree of the relation g
is greater or equal to a1 � � � am. Using moreover amC1 D � � � D a6, we derive from the
above Fano condition

a1 � � � am � �1 < a1 C � � � C am � amC1;
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where we may assume a1 � � � � � am. We exclude m D 3: here, g D g.T1; T2; T3/, the
above inequality forces a1D a2D 1, hence g.T1;T2;0/ is classically homogeneous and T3
is not prime inR, a contradiction. Let us discussmD 4. The above inequality and pairwise
coprimeness of the ai leave us with

a1 D a2 D a3 D 1; a1 D a2 D 1; a3 D 2; a4 D 3:

In the case a3 D 1, we must have �1 D ka4 with some k 2 Z�2, because otherwise,
the relation would be redundant or, seen similarly as above, one of T1; T2; T3 would not
be prime in R. The inequality gives .k � 1/a4 < 3 � amC1. We arrive at the following
possibilities:

amC1 D a4 D 1; k D 2; amC1 D 0; a1 D 1; k D 2; 3; amC1 D 0; a1 D k D 2:

The first constellation implies that R is not factorial and hence is excluded. In the each of
remaining ones, X is a product of P2 and a surface Y which must be smooth as X is so.
Moreover, for the Picard numbers, we have

�.X/ D �.P2/C �.Y /:

Thus, �.Y /D 1. Finally, being a Mori fiber, Y is a del Pezzo surface. We arrive at Y D P2
and hence X is toric. A contradiction to X having a hypersurface Cox ring. We conclude
that m D 5 is the only possibility. In this case, � D cone.w1; w6/ holds and our degree
matrix is of the form

Q D Œw1; : : : ; w7� D

�
a1 : : : a5 a6 0

0 : : : 0 1 1

�
; 1 � a1 � � � � � a5; 0 � a6:

As mentioned before, g neither depends on T6 nor on T7. Consequently, we can write R
as a polynomial ring over a K-graded subalgebra R0 � R as follows:

R D R0ŒT6; T7�; R0 WD CŒT1; : : : ; T5� =hgi:

Moreover, R0 is Z-graded via deg.Ti / WD ai . We claim that the Z-graded algebra R0 is a
smooth Fano hypersurface Cox ring. if theK-graded algebra R is so. First observe that R0

inherits the properties of an abstract Cox ring from R. Moreover, with NX 0 D V.g/ � C5,
we have NX D NX 0 � C2. Now, the action of the one-dimensional torus H 0 D Spec CŒZ�
on NX 0 admits a unique projective quotient in the sense of Construction 3.2, namely

X 0 D OX 0==H 0; OX 0 D NX 0 n ¹0º:

Propositions 3.3 and 3.7 show that X 0 is a Fano variety. Observe that each X 0-face of

 00 4 
 0 of the orthant 
 0 � Q5 defines and X -face 
0 D 
 00 C cone.e6; e7/. In particular,
using Proposition 3.5 (ii) and (iv), we see that X 0 is smooth if X is so. Moreover, R0 is a
smooth hypersurface Cox ring if R is so. The smooth Fano threefolds with hypersurface
Cox ring are listed in Theorem 4.1 of [15], which gives us the possible values of a1; : : : ; a5
and from the Fano condition onX , we infer a6C�1 < a1C � � � C a5. So, we end up with
the specifying data as in Theorem 1.1 Numbers 58 to 67. To show that these data indeed
produce smooth Fano general hypersurface Cox rings, one proceeds by using our toolbox
in a similar way as in the previously presented parts of the proof.
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6. Birational geometry

We begin with a look at the birational geometry of the Fano fourfolds from Theorem 1.1.
Let us briefly recall the necessary background. Consider any Q-factorial Mori dream space
X D X.�/ arising from an abstract Cox ring R D ˚KRw as in Construction 3.2. Assume
that KQ D ClQ.X/ is of dimension two. Then the GIT-fan ƒ.R/ looks as follows:

w1

w2

wr�1wr

�

where, as in Setting 5.1, we order the generator degrees w1; : : : ; wr 2 K of R counter-
clockwise. The moving cone Mov.X/ is spanned by w2 and wr�1. If w2 2 � holds, then
with � D cone.w2/ we have

NX ss.�/ � NX ss.�/;

which induces a morphism � WX! Y fromX D NX ss.�/==H onto Y D NX ss.�/==H . Recall
that � is an elementary contraction in the sense of [8]. In particular, we have the following
two possibilities:
• If w2 62 cone.w1/ holds, then � WX ! Y is birational and contracts the prime divisor

D1 � X corresponding to the ray through w1. In this case, we write X � Y for the
morphism � and denote by C � Y the center of the contraction.

• � WX ! Y is a proper fibration with dim.Y / < dim.X/. In this case, we write X ! Y

for the morphism � and denote by F � X the general fiber.
Similarly, if wr�2 2 Mov.X/ holds, we use the same notation. In general, � need not

to have common rays with Mov.X/. However, given a ray % � Mov.X/, we find a small
quasimodification X Ü X 0, where X 0 stems from a chamber �0 2 ƒ.R/ sharing the ray
% with Mov.X/. We then write X 0 � Y or X 0 ! Y etc. accordingly.

Remark 6.1. IfX is as in Theorem 1.1, thenX admits at least one elementary contraction
and at most one small quasimodification X Ü X 0. If there is one, then X 0 is smooth due
to Remark 5.4.

Now assume in addition that X has a hypersurface Cox ring and consider the toric
embedding X D Xg � Z from Construction 4.1. Given an elementary contraction of
� WXg ! Y , a suitable choice of the cone � in Construction 4.1 leads to a commutative
diagram

X �

�

��

Z

�Z

��
Y � W

where �Z WZ ! W is an elementary contraction of the ambient toric variety Z. In partic-
ular, we have in this setting that for every point y 2 Y , the fiber ��1.y/ � X is contained
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in the fiber ��1Z .y/�Z. This gives in particular a description for the general fiber F �X
as a subvariety of the general fiber FZ � Z.

Let us fix the necessary notation to formulate the result. By Y
d Ia

k1
1 ;:::;a

kn
n

we denote

a (not necessarily general) hypersurface of degree d in the weighted projective space
P
a
k1
1 ;:::;a

kn
n

, where, as usual, akii means that ai 2 Z�1 is repeated ki times. For a hypersur-

face of degree d in the classical projective space Pn we just write Yd In. In our situation,
this notation applies to the target spaces Y � W in case of a birational elementary con-
traction and to the general fiber F � FZ in case of a fibration.

Proposition 6.2. The subsequent table lists the possible elementary contractions for X
as in Theorem 1.1, where X is not a cartesian product; the notation Y � in the context of
a birational contraction indicates that the target space is singular.

No. Contraction 1 Contraction 2

1
X ! P3 X ! P2
F D Y1I2 F D Y1I3

2
X ! P3 X ! P2
F D Y1I2 F D Y2I3

3
X ! P3 X ! P2
F D Y1I2 F D Y3I3

4
X ! P3 X ! P2
F D Y2I2 F D Y1I3

5
X ! P3 X ! P2
F D Y2I2 F D Y2I3

6
X ! P3 X ! P2
F D Y2I2 F D Y3I3

7
X ! P3 X � Y2I5
F D Y1I2 C D P1

8
X ! P3 X � Y3I5
F D Y2I2 C D P1

9
X ! P3 X � Y �3I5
F D Y1I2 C D P1

10
X ! P3 X � Y �4I5
F D Y2I2 C D P1

11
X ! P3 X � Y �

3I14;22

F D Y1I2 C D P1

12
X ! P3 X � Y �

5I14;22

F D Y2I2 C D P1

13
X ! P2 X 0 ! P2
F D Y2I3 F D Y1I3

No. Contraction 1 Contraction 2

14
X ! P2 X 0 ! P2
F D Y3I3 F D Y2I3

15
X ! P2 X 0 � Y4I15;2
F D Y3I2 C D P1

16
X ! P3 X 0 ! P1
F D Y1I2 F D Y2I4

17
X ! P3 X 0 ! P1
F D Y2I2 F D Y3I4

18
X � Y4I5 X ! P2
C D P2 F D Y3I3

19
X � Y3I5 X ! P2
C D P2 F D Y2I3

20
X � Y2I5 X ! P2
C D P2 F D Y1I3

21
X � Y4I15;2 X ! P1
C D P2 F D Y3I4

22
X 0 ! P1 X ! P2
F D Y2I4 F D Y2I3

23
X 0 ! P1 X ! P2
F D Y3I4 F D Y3I3

24
X 0 ! P1 X ! P2
F D Y4I14;2 F D Y4I13;2

25
X 0 ! P1 X ! P2

F D Y6I13;2;3 F D Y6I12;2;3

26
X ! P1 X ! P3
F D Y2I4 F D Y2I2
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No. Contraction 1 Contraction 2

27
X ! P1 X ! P3

F D Y4I14;2 F D Y2I2

28
X ! P1 X ! P3

F D Y6I14;3 F D Y2I2

29
X ! P2 X ! P2
F D Y2I3 F D Y2I3

30
X ! P2 X ! P2
F D Y3I3 F D Y3I3

31
X ! P2 X ! P2
F D Y2I3 F D Y4I13;2

32
X ! P2 X ! P2

F D Y4I13;2 F D Y4I13;2

33
X 0 � Y �

6I14;2;3
X ! P2

C D ¹ptº F D Y4I13;2

34
X � Y2I5 X ! P1

C D P1 � P1 F D Y2I4

35
X � Y3I5 X ! P1
C D Y3I3 F D Y3I4

36
X � Y4I5 X ! P1
C D Y4I3 F D Y4I4

37
X � Y4I15;2 X ! P1
C D Y4I13;2 F D Y4I14;2

38
X � Y6I15;3 X ! P1
C D Y6I13;3 F D Y6I14;3

39
X � Y6I14;2;3 X ! P1
C D Y6I12;2;3 F D Y6I13;2;3

40
X � Y2I5 X ! P2
C D P1 F D Y2I3

41
X � Y3I5 X ! P2
C D Y3I2 F D Y3I3

42
X � Y �

4I13;23
X ! P2

C D P1 F D Y2I3

43
X � Y �

6I12;23
X ! P2

C D Y3I2 F D Y3I3

44
X � Y4I15;2 X ! P2
C D Y4I12;2 F D Y4I13;2

No. Contraction 1 Contraction 2

45
X � Y �

8I13;22;4
X ! P2

C D Y4I12;2 F D Y4I13;2

46
X � Y6I14;2;3 X ! P2
C D Y6I1;2;3 F D Y6I12;2;3

47
X � Y �

12I13;2;4;6
X ! P2

C D Y6I1;2;3 F D Y6I12;2;3

48
X � P4 X 0 ! P1
C D P1 F D Y2I4

49
X � Y �

6I12;23;3
X 0 ! P1

C D Y6I23;4 F D Y3I4

50
X � Y �

4I15;2
X ! P2

C D P1 F D Y2I3

51
X � Y �

6I15;3
X ! P2

C D P1 F D Y4I13;2

52
X � Y �

6I14;2;3
X ! P1

C D P1 F D Y4I14;2

53
X � P4 X � Q4

C D P1 � P1 C D ¹ptº

54
X � Y4I15;2 X � Y4
C D Y4I3 C D ¹ptº

55
X � P4 X � Y �

3I15;2

C D Y3I3 C D ¹ptº

56
X � P4 X � Y3I15;3
C D Y4I3 C D ¹ptº

57
X � Y6I14;2;3 X � Y6I15;3
C D Y4I13;3 C D ¹ptº

60
X ! Y6I13;2;3 X � Y �

6I14;2;3

F D P1 C D ¹ptº

62
X ! Y4I14;2 X � Y �

4I15;2

F D P1 C D ¹ptº

64
X ! Y3I4 X � Y �3I5
F D P1 C D ¹ptº

66
X ! Y2I4 X � Y �2I5
F D P1 C D ¹ptº

67
X ! Y2I4 X � Y �

2I15;2

F D P1 C D ¹ptº
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The remaining families of Theorem 1.1 consist of cartesian products Y � P1 where the
first factor Y is a smooth threedimensional Fano hypersurface of Picard number one as
displayed in the following table.

No. 58 59 61 63 65

Y Y6I14;3 Y6I13;2;3 Y4I14;2 Y3I4 Y2I4

The proof of this proposition is basically a case by case analysis of the contraction
maps in coordinates. We restrict ourselves to perform this in the subsequent remark for
one case, where we even go a bit deeper into the matter and specify also the singular fibers
of the fibration.

Remark 6.3. We take a closer look at the varieties X from No. 9 of Theorem 1.1. In this
case the specifying data, that means the degree matrix Q and the degree � of the relation
g, are given by

Q D

�
1 1 1 1 0 0 �1

0 0 0 0 1 1 1

�
; � D .2; 1/:

Due to �K D .1; 2/, we have � D cone.w1; w5/. Observe that Mov.R/ and � share the
rays %1 and %5. Thus X admits two elementary contractions �1WX ! Y1 and �2WX ! Y2
associated to %1 resp. %5. To study �1 and �2 we make use of the toric embedding X D
Xg � Z from Construction 4.1.

First, we discuss �1. Since w2 2 %1 holds, the morphism �1 is a fibration. Moreover,
�1 is the restriction of the corresponding ambient toric elementary contraction �1;Z of Z,
which in turn is explicitly given as follows:

NX �

��

K7

��

.z1;:::;z7/7!.z1;:::;z4/ // K4

��
X � Z

�1;Z // P3

Suitably sorting the terms of g yields a presentation g D q1T5 C q2T6 C f T7 where
q1; q2 2 KŒT1; : : : ; T4� both are quadrics and f 2 KŒT1; : : : ; T4� is a cubic, each of
which is general. Note that V.g/ � K7 projects onto K4 thus Y1 D P3. For any point
y D Œy1; : : : ; y4� 2 P3 the fiber ��11;Z.y/ of the ambient toric variety is given by the equa-
tions

y2T1 � y1T2 D y3T2 � y2T3 D y4T3 � y3T4 D 0:

Besides we have yi ¤ 0 for some i . Taking this into account one directly checks ��11;Z.y/Š
P2. Being homogeneous g is compatible with this isomorphism, thereby we obtain

��11 .y/ Š V.yiq1.y/T0 C yiq2.y/T1 C f .y/T2/ � P2:

We conclude that the general fiber ��11 .y/ is isomorphic to P1. In addition, V.q1; q2;f /�
P3 consists of precisely 12 points p1; : : : ; p12, each of which has fiber ��11 .pi / Š P2.
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We turn to �2. From w7 … %5 follows that �2 is a birational morphism contracting
the prime divisor V.T7/ � X . The according elementary contraction �2;Z of the ambient
toric variety Z is the blow-up of P5 along C D VP5.T0; : : : ; T3/ Š P1. The situation is as
in the subsequent diagram:

NX �

��

K7

��

.z1;:::;z7/7!.z1z7;:::;z4z7;z5;z6/ // K6

��
X � Z

�2;Z // P5

The target variety Y2 � P5 of �2 is V.g0/ � P5 where g0 D g.T0; : : : ; T6; 1/. From this
we infer C � Y2, so C is the center of �2 as well. In particular �2 is the blow-up of Y2
along C . Moreover, the polynomial g0 is an irreducible cubic living in hT0; : : : ; T3i

2.
Consequently, Y2 is singular at every point of C .

7. Hodge numbers

Here we determine the Hodge numbers of the Fano fourfolds from Theorem 1.1. First, we
note the following simple observation.

Proposition 7.1. Let X be a smooth projective Fano fourfold of Picard rank 2. Then the
Hodge diamond of X is the following :

1

0 0

0 2 0

0 h1;2 h2;1 0

0 h1;3 h2;2 h3;1 0

0 h3;2 h2;3 0

0 2 0

0 0

1

Proof. Ampleness of �KX and the Kawamata–Viehweg vanishing theorem give hp;0.X/
D 0 for any p > 0. Moreover, plugging H i .X;O/ D 0 for i D 1; 2 into the cohomology
sequence associated with the exponential sequence yields H 2.X;C/ Š C2. The Hodge
decomposition together with h1;0.X/ D h0;1.X/ D 0 shows h1;1.X/ D 2.

By symmetry, we are left with computing the Hodge numbers h2;1, h3;1 and h2;2. Here
comes our result.

Proposition 7.2. The subsequent table lists the Hodge numbers h2;1, h3;1 and h2;2 for X
as in Theorem 1.1.
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No. h2;1 h3;1 h2;2

1 0 0 3
2 0 0 10
3 0 0 29
4 0 0 3
5 0 3 40
6 0 30 185
7 0 0 4
8 0 1 23
9 0 0 14
10 0 18 126
11 0 0 5
12 0 12 95
13 0 0 4
14 0 6 65
15 0 5 55
16 0 0 6
17 0 9 77
18 0 21 143
19 0 1 22
20 0 0 3
21 0 5 53
22 0 0 10

No. h2;1 h3;1 h2;2

23 0 13 103
24 0 35 218
25 0 114 591
26 0 0 10
27 0 20 138
28 0 112 570
29 0 1 22
30 0 45 255
31 0 10 94
32 0 100 508
33 0 24 162
34 0 0 4
35 0 1 28
36 0 22 162
37 0 5 60
38 0 71 402
39 0 24 170
40 0 0 4
41 1 1 23
42 0 0 10
43 1 19 131
44 1 5 54

No. h2;1 h3;1 h2;2

45 1 50 288
46 1 24 163
47 1 159 793
48 0 0 3
49 1 2 31
50 0 3 40
51 0 65 356
52 0 20 139
53 0 0 3
54 0 6 72
55 0 0 8
56 0 1 21
57 0 25 181
58 52 0 2
59 21 0 2
60 21 0 2
61 10 0 2
62 10 0 2
63 5 0 2
64 5 0 2
65 0 0 2
66 0 0 2
67 0 0 2

Proof. We consider the toric embedding X D Xg � Zg as provided by Construction 4.1.
The five-dimensional toric ambient variety Zg is smooth and the decomposition

X D
[


02rlv.X/

X.
0/

from Construction 3.4 is obtained by cutting down the toric orbit decomposition of Zg .
Now the idea is to compute the Hodge numbers in question via the Hodge–Deligne poly-
nomial, being defined for any variety Y as

e.Y / WD
X
p;q

ep;q.Y /xp Nxq 2 ZŒx; Nx�;

with ep;q.Y / as in [13], p. 280. We also write ep;q instead of ep;q.Y /. Recall that ep;q D
eq;p holds. Moreover, in case that Y is smooth and projective, the ep;q are related to the
Hodge numbers as follows:

ep;q.Y / D .�1/pCq hp;q.Y /:

The Hodge–Deligne polynomial is additive on disjoint unions, multiplicative on cartesian
products. We list the necessary steps for computing it in low dimensions. On Y D C�,
it evaluates to x Nx � 1. For a hypersurface Y � .C�/n with no torus factors, one has the
Lefschetz type formula

ep;q.Y / D epC1;qC1..C�/n/; for p C q > n � 1;
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see [13], p. 290. Moreover, according to [13], p. 291, with the Newton polytope � of the
defining equation of Y , one has the following identity:X

q�0

ep;q.Y / D .�1/pCn�1
�

n

p C 1

�
C .�1/n�1 'n�p.�/;

where, denoting by l�.B/ the number of interior points of a polytope B , the function 'i
is defined as

'0.�/ WD 0; 'i .�/ WD

iX
jD1

.�1/iCj
�
nC 1

i � j

�
l�.j�/;

This leads to an explicit formula for all ep;0.Y /. Moreover, for dim.Y / � 3, all the num-
bers ep;q are directly calculated using the above formulas. For dim.Y / D 4, the values
of e1;1 C e1;2 C e1;3 and e2;1 C e2;2 and e3;1 can be directly computed using the above
formulas. By the symmetry ep;q D eq;p these sums involve just four numbers which thus
can be expressed in terms of one of them, say e1;2, plus known quantities. To determine
the value of e1;2 one passes to a smooth compactification Y 0 of Y for which

e1;2.Y 0/ D �h1;2.Y 0/ D �h3;2.Y 0/ D e3;2.Y 0/

holds by Serre’s duality and then observes that e3;2 can be computed for all the strata via
the Lefschetz formula. Now, we apply these principles to the strata Y D X.
0/ that have
no torus factor and compute the desired ep;q . If Y D X.
0/ has a torus factor, then we use
multiplicativity of the Hodge–Deligne polynomial and again the above principles.

Finally, we extend the discussion of the varieties X from Number 9 of Theorem 1.1
started in Remark 6.3 by some topological aspects.

Remark 7.3. Let X be as in Theorem 1.1, No. 9. Recall that we have a fibration X !
P3 with general fiber F D P1 and precisely 12 special fibers F1; : : : ; F12, lying over
p1; : : : ; p12 2 P3, each of the Fi being isomorphic to P2. We claim

F 2i D 1 for i D 1; : : : 12; Fi � Fj D 0 for 1 � i < j � 12:

The second part is clear because of Fi and Fj do not intersect for i < j . In order to
establish the first part, we show F 21 D 1, where we may assume p1 D Œ1; 0; 0; 0�. Consider
the zero sets L1; L2 � X of two general polynomials in the variables T2; T3; T4. By
definition L1 \ L2 D F and L1 � L2, that is the two surfaces are rationally equivalent.
Thus Li � F C Si for some surface Si . Observe that we have

F � Li D 0; Si � Li D 0

because Li is rationally equivalent to a complete intersection of two general polynomials
in T1; : : : ; T4, which has empty intersection with Li . We deduce

F 2 D �F � S1 D S1 � S1 D S1 � S2;
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using S1 � S2 in the last step. For computing the last intersection number, we may assume
L1 D V.T2; T3; g/ and L2 D V.T2; T4; g/. Then S1 D V.T2; T3; h1/ with

h1 D T
�1
4 .q1.T1; 0; 0; T4/T5 C q2.T1; 0; 0; T4/T6 C f .T1; 0; 0; T4/T7/;

where the division by T4 can be performed because by hypothesis q1; q2 and f do not
contain a pure power of T1. Similarly S2 D V.T2; T4; h2/, where

h2 D T
�1
3 .q1.T1; 0; T3; 0/T5 C q2.T1; 0; T3; 0/T6 C f .T1; 0; T3; 0/T7/:

It follows that

S1 \ S2 D V.T2; T3; T4; ˛1T1T5 C ˛2T1T6 C ˛3T
2
1 T7; ˇ1T1T5 C ˇ2T1T6 C ˇ3T

2
1 T7/

D V.T2; T3; T4; ˛1T5 C ˛2T6 C ˛3T1T7; ˇ1T5 C ˇ2T6 C ˇ3T1T7/:

Now one directly checks that S1 \ S2 is a point and the intersection is transverse. Thus,
we arrive at S1 � S2 D 1, proving the F 21 D 1. Now, fix two general linear forms `1; `2 2
CŒT1; : : : ; T4� and set

E WD V.T6; T7; g/ � X; L WD V.`1; `2; g/ � X:

We claim that the classes of E; L; F1; : : : ; F12 in H 2;2.X/ \ H 4.X;Q/ are linearly
independent. First observe that F1; : : : ; F12 are linearly independent: passing to the self-
intersection,

P
i aiFi � 0 turns into

P
i a
2
i D 0 and thus, being rational numbers, all ai

vanish. Now, by definition of L one has L2 D L � Fi D 0 for any i , in particular the class
of L cannot be in the linear span of the classes of the 12 fibers. The statement then follows
from E � L D 2, which in turn holds due to

E \ L D V.`1; `2; T6; T7; g/ D V.`1; `2; T6; T7; q1T5/ D V.`1; `2; T6; T7; q1/:

Combining linear independence ofE;L;F1; : : : ;F122H 2;2.X/\H 4.X;Q/with h2;2.X/
D 14 as provided by Proposition 7.2, we retrieve that the varieties X from Number 9 of
Theorem 1.1 satisfy the Hodge conjecture; which, in this case, is known to hold also
by [11] and [38], proof of Lemma 15.2.

8. Deformations and automorphisms

We take a look at the deformations of the varieties from Theorem 1.1. For any variety X ,
we denote by TX its tangent sheaf. If X is Fano, then it is unobstructed and thus its versal
deformation space is of dimension h1.X; TX /. The following observation makes precise
how the problem of determining h1.X;TX / is connected with determining the automorph-
isms in our setting.

Proposition 8.1. LetX be a smooth Fano varietyX with a general hypersurface Cox ring
R.X/DCŒT1; : : : ;Tr �=hgi and associated minimal toric embeddingX �Z. Assume that
�D deg.g/2Cl.Z/ is base point free and nowi D deg.Ti /2Cl.Z/ lies in�CZ�0w1C
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� � � C Z�0wr . Then we have

h1.X; TX / D dim.R.Z/�/ � 1C rank.Cl.Z// �
rX
iD1

dim.R.Z/wi /C h
0.X; TX /

D �1C dim.R.Z/�/ � dim.Aut.Z//C dim.Aut.X//:

Proof. First look at 0 ! TX ! {�TZ ! NX ! 0, the normal sheaf sequence for the
inclusion {WX � Z. By assumption, � �KX is ample and thus we obtain

h1.X; TX / � h
0.X; TX / D �h

0.X; {�TZ/C h
0.X;NX /C h

1.X; {�TZ/;

according to the Kawamata–Viehweg vanishing theorem. The task is to evaluate the right
hand side. First, note that we have

h0.X;NX / D dim.R.X/�/ D dim.R.Z/�/ � 1:

For the remaining two terms, we use the Euler sequence of Z restricted to X which in our
setting is given by

0 // OX ˝ Cl.Z/ //Lr
iD1 OX .Di / // {�TZ // 0;

where Di � X denotes the prime divisor defined by the Cox ring generator Ti . Since X
is Fano, hi .X;OX / vanishes for all i > 0. As a first consequence, we obtain

h0.X; {�TZ/ D

rX
iD1

dim.R.X/wi / � rank.Cl.Z// D
rX
iD1

dim.R.Z/wi / � rank.Cl.Z//;

using R.X/wi ŠH
0.X;Di / and R.X/wi DR.Z/wi , where the latter holds by assump-

tion. Moreover, we can conclude

h1.X; {�TZ/ D

rX
iD1

h1.X;Di /:

We evaluate the right hand side. SinceX has a general hypersurface Cox ring,Z is smooth
(Proposition 3.3.1.12 in [2]) and � is base point free, we can infer smoothness of

Di D V.g/ \ V.Ti / � Z

from Bertini’s theorem. Now choose " > 0 such that "Di �KX is nef and big. Then, using
once more the Kawamata–Viehweg vanishing theorem, we obtain

h1.X;Di / D h
1.X; KX C ."Di �KX /C .1 � "/Di / D 0:

Consequently, h1.X; {�TZ/ vanishes. This gives the first equality of the assertion. The
second one follow from Theorem 4.2 in [12] and Lemma 3.4 in [32].
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Observe that Proposition 8.1 applies in particular to all smooth Fano non-degenerate
toric hypersurfaces in the sense of Khovanskii ([29] and Definition 4.1 in [24]), where
Lemma 3.3 (v) of the latter guarantees base point freeness of � 2 Cl.Z/. Concerning the
varieties from Theorem 1.1, we can say the following.

Corollary 8.2. For each of the Fano varieties X listed in Theorem 1.1, except possibly
numbers 13, 14, 15, 33 and 67, we have

h1.X; TX / D �1C dim.R.Z/�/ � dim.Aut.Z//C dim.Aut.X//:

Proof. Using Proposition 3.3.2.8 in [2], one directly checks that � 2 Cl.X/ and hence
also � 2 Cl.Z/ are base point free in all cases except the Numbers 13, 14, 15 and 33.
Number 67 violates the assumption on the generator degrees.

The only serious task left open by Proposition 8.1 for explicitly computing h1.X; TX /
is to determine the dimension of Aut.X/. As general tools, we mention Theorem 4.4
in [23], the algorithms presented thereafter and their implementation provided by [28].
The subsequent example discussions indicate how one might proceed in concrete cases.

Example 8.3. The variety X from No. 65 is a product of the smooth projective quadric
Q4 � P4 and a projective line. So, X is known to be infinitesimally rigid. Via Proposi-
tion 8.1, this is seen as follows:

h1.X; TX / D �1C dim.R.Z/�/ � dim.Aut.Z//C dim.Aut.X//
D �1C 15 � 27C 13 D 0:

All ingredients are classical: first, by Corollary I.2 in [7] the unit component of the auto-
morphism group of a product is the product of the unit components of the respective
automorphism groups. Second, the group Aut.Qn/ D O.n/ is of dimension n.n � 1/=2.

Example 8.4. For the varieties X from No. 1, the algorithm [28] is feasible and tells us
that Aut.X/ is of dimension 12. In particular, we see that also these varieties are infinites-
imally rigid:

h1.X; TX / D �1C dim.R.Z/�/ � dim.Aut.Z//C dim.Aut.X//
D �1C 12 � 23C 12 D 0:

In suitable linear coordinates respecting the grading, g D T1T5 C T2T6 C T3T7 holds
and the automorphisms on X are induced by the five-dimensional diagonally acting torus
respecting g and the group GL.3/ acting on R.X/w1 ˚R.X/w5 via

A � .T1; T2; T3; T4IT5; T6; T7/ WD .A � .T1; T2; T3/; T4I .A
�1/t � .T5; T6; T7//:

The two previous examples fit into the class of intrinsic quadrics, that means varieties
having a hypersurface Cox ring with a quadric as defining relation. The ideas just observed
lead to the following general observation.

Corollary 8.5. Let X be a variety satisfying all the assumptions of Proposition 8.1 and
assume that AutH . NZ/ acts almost transitively on R.Z/�.
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(i) The varietyX is infinitesimally rigid and the dimension of its automorphism group
is given by

dim.Aut.X// D dim.AutH . NZ// � .dim.R.Z/�/ � 1/ � rank.Cl.Z//:

(ii) IfX is an intrinsic quadric, then AutH . NZ/ acts almost transitively on R.Z/� and
thus the statements from (i) hold for X .

Proof. We take X � Z as in Construction 4.1. According to Theorem 4.4 (iv) in [23],
the unit component Aut.X/0 equals the stabilizer Aut.Z/0X of X � Z under the action of
Aut.Z/0 on Z. Thus, using Theorem 4.2.4.1 in [2], we obtain

dim.Aut.X// D dim.Aut.Z/0X / D dim.AutH . NZ/0NX / � dim.H/

D dim.AutH . NZ/0/ � .dim.R.Z/�/ � 1/ � rank.Cl.Z//;

where R.Z/� is the space of defining equations and “�1” pops up as we are looking for
only the zero sets of these equations. Thus, Proposition 8.1 gives the first statement. For the
second one, note that AutH . NZ/ acts almost transitively on R.Z/� due to Proposition 2.1
in [18].

Let us take up once more the geometric discussion of the varieties from No. 9 of
Theorem 1.1 started in Remarks 6.3 and 7.3. Using geometric properties observed so far,
we see Aut.X/ is trivial.

Remark 8.6. Let X be as in Theorem 1.1, No. 9. We claim that Aut.X/ is finite in this
case. As a consequence, we obtain

h1.X; TX / D dim.R.Z/�/ � 1C rank.Cl.Z// �
rX
iD1

dim.R.Z/wi /

D 40 � 1C 2 � 29 D 12:

Look at the fibration �1WX ! Y1 D P3 from Remark 6.3. By Proposition I.1 in [7], there
is an induced action of the unit component Aut.X/0 on Y1 turning �1 into an equivariant
map. This means in particular that the induced action permutes the image points of the 12
singular fibers of �1. By the generality assumption, these 12 points do not lie in a common
hyperplane and thus induced action of Aut.X/0 on Y1 must be trivial. Recall that any point
of the fiber �1 over Œy� D Œy1; : : : ; y4� has Cox coordinates

Œy; x; z� D Œy1; : : : ; y4; x1; x2; z�; where q1.y/x1 C q2.y/x2 C f .y/z D 0;

with general quadrics q1; q2 and a general cubic f in the first four variables. Let us see
in these terms what it means that the �1-fibers are invariant under Aut.X/0. Consider
the action of the characteristic quasitorus H D Spec CŒCl.Z/� on NZ D Cr given by the
Cl.Z/-grading of CŒT1; : : : ; Tr �. The group AutH . NZ/ ofH -equivariant automorphisms is
concretely given as

G D GL.4/ � GL.2/ �K�:

According to Theorem 4.4 in [23], we obtain Aut.X/0 as a factor group of the unit com-
ponent of the subgroup AutH . NX/ of AutH . NZ/ stabilizing NX � NZ. We take a closer look
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at the action of an element 
 D diag.A1; A2; ˛3/ of AutH . NX/ on OX � NX . Given gen-
eral y 2 C4 and x 2 C2, we find z 2 C such that Œy; x; z� is a point of OX . In particular,

 � Œy; x; z� belongs to the fiber of �1 over Œy�. The latter implies A1 � y D �y with � 2 K�

and for the matrix A2 D .aij / it gives

0 D q1.y/.a11x1 C a12x2/C q2.y/.a21x1 C a22x2/C ˛3f .y/z

D q1.y/..a11 � ˛3/x1 C a12x2/C q2.y/.a21x1 C .a22 � ˛3/x2/:

Recall that this holds for any general choice of y and x. As a consequence, we arrive
at a11 � ˛3 D 0 D a12, because otherwise q1q�12 2 C.T1; T2/ holds in C.X/ which is
impossible due to the general choice of q1 and q2. By the same argument, we see a22 �
˛3 D 0 D a21. Thus, 
 acts trivially on each fiber of �1 and we conclude that Aut.X/ is
of dimension zero.

Proposition 8.1 suggests that the infinitesimal deformations of X can be obtained by
varying the coefficients of the defining equation in the Cox ring. As a possible approach
to turn this impression into a precise statement, we mention the comparison theorem of
Christophersen and Kleppe (Theorem 6.2 in [9]), which relates in particular deformations
of a variety to deformations of its Cox ring.
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