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Harmonic quasiconformal mappings
between €1 smooth Jordan domains

David Kalaj

Abstract. We prove the following result. If f is a harmonic quasiconformal map-
ping between two Jordan domains D and  having €! boundaries, then the func-
tion f is globally Holder continuous for every o < 1 but it is not necessarily Lipschitz
in general. This result extends and improves a classical theorem of S. Warschawski
for conformal mappings.

1. Introduction

Let U and V be two domains in the complex plane C. We say that a twice differentiable
mapping f =u +iv:U — V isharmonic if A f:= Au + i Av = 0in U. Any harmonic
homeomorphism is by Lewy’s theorem a diffeomorphism. If its Jacobian Jr =| f; |*—| fz|?
is positive, then it is sense-preserving.

We say that a function u: D — R is ACL (absolutely continuous on lines) in the
region D if for every closed rectangle R C D with sides parallel to the x and y-axes, u is
absolutely continuous on a.e. horizontal and a.e. vertical lines in R. Such a function has
partial derivatives uy, uy a.e.in D.

A sense-preserving homeomorphism w: D — €2, where D and €2 are subdomains of
the complex plane C, is said to be K-quasiconformal (K-q.c), with K > 1, if w is ACL
in D in the sense that its real and imaginary part are ACL in D, and

(1.1) |[Dw| < KI(Dw) a.e.onD,

(cf. [1], pp. 23-24). Here A = D(w) is the formal differential matrix defined by
A= ( oty )
Vx Uy

|A| = max |4h|, [(A) = min |Ah|,
lhl=1 |h|=1

and

where | - | is the Euclidean norm.
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Notice that the condition (1.1) can be written as

K-1 . 1+k

|lwz| < k|w;| ae.on D, wherek = K——I-l’ ie., K= %

The class of quasiconformal harmonic mappings was firstly considered by O. Martio
in [23]. The class of g.c. harmonic mappings contains conformal mappings, and this is
why the class has shown a large interest for experts in geometric function theory.

We should mention here the following result of Pavlovi¢ [28], which states that a har-
monic quasiconformal mapping of the unit disk D onto itself is bi-Lipschitz continuous. In
order to explain the importance of his result, let us state the following two separate results.
If we assume that the mapping f:D — D is merely quasiconformal, then it is only Holder
continuous with the Holder coefficient « = (1 — k) /(1 + k). This is the celebrated Mori
theorem. On the other hand, if f:1D — D is merely a harmonic diffeomorphism, then by
a result of Hengartner and Schober it has a continuous extension up to the boundary (see
Theorem 4.3 in [9] or Section 3.3 in [8]). However, in view of the Rad6—Kneser—Choquet
theorem, this is the best regularity that such a mapping can have at the boundary.

We define the Poisson kernel by

1 1—]z?

P(Z,9)=2—

nm, |Z|<1,9€[0,27T).

For a mapping f € L'(T), where T is the unit circle, the Poisson integral is defined by

2w

w(z) = P[f1(2) :/o P(z,0) f(e'%) do.

The well-known Rad6—Kneser—Choquet theorem states the following: if f is a homeo-
morphism of the unit circle onto a convex Jordan curve y, then its Poisson integral is a
harmonic diffeomorphism of the unit disk D onto the Jordan domain €2 bounded by y.

A special case is when y = T. E. Heinz has proved that, if f is a harmonic diffeo-
morphism of the unit disk onto itself, then the Hilbert—Schmidt norm of its derivative,

(1.2) IDFIP = 1 /x> + 151 = e,

where ¢ > 0, depends only on f(0). It follows from (1.2) that the inverse of a quasicon-
formal harmonic mapping of the unit disk onto itself is Lipschitz continuous. So the main
achievement of Pavlovi¢ in [28] (see also [30]) was to prove that a harmonic quasicon-
formal mapping of the unit disk onto itself is Lipschitz continuous on the closure of the
domain.

In order to formulate some additional results in this topic, recall that a rectifiable
Jordan curve is €, Dini smooth, €1, for « € (0, 1], if its arch-length parametrisation
2:[0,|y]] = y is €1, Dini smooth and €%, respectively. Here || is the length of y.

In [11], the author proved that every quasiconformal harmonic mapping between Jor-
dan domains with €!-% boundaries is Lipschitz continuous on the closure of domain. Later,
this result has been extended to Jordan domains with only Dini smooth boundaries [13].

A bi-Lipschitz property for harmonic quasiconformal mappings of the half-plane onto
itself has been established by the author and Pavlovi¢ in [16].



Harmonic quasiconformal mappings between €! smooth Jordan domains 97

Further, it has been shown (see [12]) that a quasiconformal harmonic mappings be-
tween €11 (not necessarily convex) Jordan domains is bi-Lipschitz continuous. The same
conclusion is obtained in [5] by BoZin and Mateljevi¢ for the case of €!* Jordan domains.
Further results in the two dimensional case can be found in [17]. Some results concerning
the several-dimensional case can be found in [3], [18] and [25]. For a different setting
concerning the class of quasiconformal harmonic mappings, we refer to the papers [7],
[22] and [27]. For example, the article [22] deals with the following problem of the class
of quasiconformal harmonic mappings.

The quasi-hyperbolic metric dj in a domain D of complex plane is defined as follows.
Foreach zy,z, € D,

dp(z1,22) = inf/ d(z,0D) ! |dz|,
¥

where the infimum is taken over all rectifiable arcs y joining x; and x, in D. V. Man-
ojlovié¢ in [22] proved the following theorem: if f: D — D’ is a quasiconformal and
harmonic mapping, then it is bi-Lipschitz with respect to quasihyperbolic metrics on D
and D’.

In order to formulate the main theorem of this paper, let us define the chord-arc curves.
A rectifiable Jordan curve y is a B-chord-arc curve if L, (z1,z2) < B|z; — z3| for all z;,
zp € y, where L, (z1, z») denotes the length of the shortest arc of y joining z; and z,.
Here B > 1.

Theorem 1.1. Let D and Q be Jordan domains having €' boundaries and assume that
a € D and b € Q. Assume that wp (wq) is the modulus of continuity of the derivative
of arc-length parametrisation of dD (0R2). Assume further that 0D and 02 satisfy the
B-arc-chord condition for some B > 1. Then for every a € (0, 1) and k € [0, 1), there is
a constant My = My(a, b, k, B, wp, wq) so that every harmonic K = (1 + k) /(1 —k)-
quasiconformal mapping f = g + h of D onto Q so that f(a) = b satisfies the condition

|f(2) = f(w)| < Ma|z —wl|*, z,weD.

Moreover, for every p > 0, there is a constant By, that depends on the same parameters
as My, so that

(13 RECITCEN
D
where |Df(z)| = | fz| + | fz| = |g'| + |F'|. In other words, g’ and h' belong to the Berg-

man space AP for every p > 0. Here A is the Lebesgue measure in the plane.

Remark 1.2. In Theorem 1.1 we consider the mappings between Jordan domains. The
same conclusion can be made for multiply-connected domain bounded by finite number
of €! Jordan curves. We also expect that a similar conclusion can be made for non-
bounded domains, but we did not pursue this question seriously.

1.1. The organization of the paper

We continue this section with some immediate corollaries of the main result. We prove
first that a K-quasiconformal mapping between €' domains is -Holder continuous for
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every 8 < 1/K. In particular, we prove that a conformal mapping is S-Holder continuous
for every B < 1. In the second section we prove a variation of the main result which will
be needed to prove to prove Theorem 1.1 in full generality. The proof of Theorem 1.1
is presented in the last section. The proof depends on a two-side connection between
the a-Holder constant and the so-called «-Bloch type norm of the holomorphic function
defined on the unit disk expressed in Lemma 1.4. By using this connection, and by a subtle
application of €! smoothness of the boundary curve of the image domain, we first find an
a priori estimate of the a-Holder constant of a harmonic quasiconformal mapping of the
unit disk onto a €! Jordan domain having €! extension up to the boundary. Then we use
an approximation argument to get an estimate of «-Holder constant for a harmonic q.c.
mapping which has not necessary smooth extension up to the boundary. To deal with the
mappings whose domain is not the unit disk is a simple matter having proved the results
from the second section.

1.2. Some immediate consequences

Corollary 1.3. If f is a univalent conformal mapping between two Jordan domains D
and Q with €' boundaries, then f is a-Holder continuous for every 0 < a < 1. Moreover,
if 0D and 02 satisfy the B-arc-chord condition for some B > 1, then for every o € (0, 1)
and everya € D and b = f(a) € Q, there exists M = M(«,a,b, B, wp, wg) so that

1
SlE Wl S 1£E) — fw)] = Mz - wl®

foreveryz,w € D.

Proof of Corollary 1.3. Leta be a univalent conformal mapping of the unit disk D onto D
and let b be a univalent conformal mapping of the unit disk onto 2. Then, in view of
Theorem 1.1, b and a~! are \/a-Holder continuous. Then f = b o a™! is a-Holder con-
tinuous. ]

Now we prove the following theorem, which deals with Holder continuity of quasicon-
formal mappings between smooth domains.

Theorem 1.4. Assume that D and Q are two Jordan domains with €' boundaries and
assume that a € D and b € Q. Assume further that 0D and 092 satisfy the B-arc-chord
condition for some B > 1. Let K > 1. Then for every B < 1/K, there is a constant Mg =
M(B,a,b,wp,weq, B, K) so that if f: D — Q is K-quasiconformal with f(a) = b, then

|f(2) = f(w)| < Mglz —w|?, z,weD.

In connection to Theorem 1.4, we want to mention that some more general results are
known under some more general conditions on the domains, but they do not cover this
result. For example, O. Martio and R. N#kki in [24] showed that if f induces a boundary
mapping which belongs to Lip, (0D), then f is in Lipg (D), where

B = min{a, 1/K};

the exponent f is sharp. We also want to refer to the papers [19] and [26], which also con-
sider the global Holder continuity of quasiconformal mappings. Concerning the integrabi-
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lity of the derivative of a quasiconformal mapping and its connection to the global Holder
continuity, we refer to the paper by Astala and Koskela [2].

Proof or Theorem 1.4. Let ¢: D — D and ¢¥: Q2 — D be conformal diffeomorphisms so
that ¢(0) = a and ¥ (b) = 0. Then fy = ¥ o f o ¢ is a K-quasiconformal mapping of
the unit disk onto itself so that f;(0) = 0. Thus by Mori’s theorem,

| fo(z) = fo(w)| < 16]z — w|/X.

Now, if 8 < 1/K, then there are two constants ¢y < 1 and oy < 1 sothata; - /K = B.
Since f = ¥~ o fy 0 ¢~!, by making use of Corollary 1.3, we get and ¥~ ! is oy-
Holder continuous and ¢! is a»-Holder continuous. By having in mind the fact that f;
is 1/ K-Holder continuous, it follows that f is B-Holder continuous, as claimed. L]

Remark 1.5. Similar results can be shown for multiply connected domains in the com-
plex plane having a €! boundary. If f a conformal mapping of the unit disk onto a
Jordan domain with merely €! boundary, then f is not necessarily Lipschitz continu-
ous. See an example given by Lesley and Warschawski in [21], as well as the example
fo(z) =2z + (1 — z) log(1 — z) given in Pommerenke’s book [31], which is a conformal
diffeomorphism of the unit disk onto a Jordan domain with merely €' boundary. Then
| f3(2)] is not bounded and thus f is not Lipschitz continuous. The content of Corol-
lary 1.3 is not new (see for example [20]). See also Warschawski [34], Corollary, p. 255,
for a related result. We should also mention the paper by Brennan [6], where the famous
Brannen conjecture comes from. Theorem 3 of that paper contains a short proof of the
special case of (1.3) for @ = D and f being conformal.

2. Auxiliary results

The starting point of this section is the theorem of Warschawski for conformal mappings
which states the following. Assume that f is a conformal mapping of the unit disk onto a
Jordan domain  with a €! boundary y. Assume that g is the arc-length parametrisation
of y, and assume that @ = w, is the modulus of continuity of g’. Assume also that y
satisfies the B-chord-arc condition for some constant B > 1. Then for every p € R, there
is a constant A,, depending only on Q, w, B, p and f(0), so that

e | iremre < .

We first give an extension of (1.3), and prove a variation of the main result needed in
the sequel.

Theorem 2.1. If f = g + hisa K- q.c. harmonic mapping of the unit disk D onto a
domain Q with €' boundary, so that h has holomorphic extension beyond the boundary
of the unit disk, then g’,1/g’ € HP (D) for every p > 0. Moreover,

/ 1¢/(2)[P|dz| < F2,
T

where I}, is a constant that depends on the same parameters as Ep, in (2.1) as well as
onk.
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Now recall the Morrey inequality.

Proposition 2.2 (Morrey’s inequality). Assume that 2 < p < oo and assume that U is a
bounded domain in R? with €' boundary. Then there exists a constant C depending only
on p and U so that

22) ulleoew)y < Clullwirw)
for everyu € €1 (U) N LP(U), where
e -uw)| 2
[ulleoa@) = sup ———— a=1-——,
z#w |Z_w| p
and

lullwrr@wy = llullLe@w) + 1 DullLr ).
Here WP (U) is the Sobolev space.

Corollary 2.3. Under the conditions of the previous theorem, for everyo < 1, f and f~!
are a-Holder continuous. The result is optimal since f is not necessarily Lipschitz in
general.

Remark 2.4. If 1 = 0, then Theorem 2.1 reduces to the classical result of Warschawski
[33], see also a similar result by Smirnov [32] and Goluzin [10], Theorem 7, p. 415. We
include the proof of Theorem 2.1 for the completeness of the argument.

Proof of Corollary 2.3. Let < 1 and let us prove that f is a-Ho6lder continuous. We
have

. . ! . ! . / t /
= s = [ pesenlar < ([ locseniran) ([ ar)”
Therefore fora =1 —1/p = 1/ we get
£ = £ = 10c S Iy ls =11

As h is smooth in D, it follows that g is a-Holder continuous in T. By using the well-
known Hardy-Littlewood theorem ([10], Theorem 4, p. 413), we get that g is o-Holder
continuous on . Thus f is a-Holder continuous on D.

To prove that 1 is a-Holder continuous, observe that for w = f(z),

!
T R -
Jro 1§ @ =)

Thus

-1 _ 1g'(2)] 4
fytowr s = [ (G ) s
[P 14k
= lg@rr G-k O

1+k2

= gy [ EOPT @G, k= K= D/K + .
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Here A is the Lebesgue measure in the plane. Therefore by using the isoperimetric inequal-
ity for holomorphic functions we get

1+ k%1 + k?
[ ot wiran) < D [ geprac)

(1 + k%) (1 + kP) o )
= 4n(1 —k2)P (/TIg(Z)I1 ”2|dz|) < 0.

From (2.2) we infer that u = ! is a-Holder continuous and the corollary is proved. m

In the proof of Theorem 2.1, we use the following proposition.
Proposition 2.5 ([14]). If f(z) = P[f*](z) is a quasiconformal harmonic mapping of
the unit disk onto a Jordan domain bounded by a curve y, then the function

UG) = arg (%%f@))

is well defined and smooth in D* := D \ {0} and has a continuous extension to T if and
only if y € €. Furthermore, there holds

U(e') = Blg) — ¢,
where B(¢) is the tangent angle of y at f*(e'?).

Proof of Theorem 2.1. By the assumption we have that i(z) = Y 72, b;z/ for |z| < p,
where p is a certain constant bigger than 1.
Therefore, the mapping

17 /1 X jb;
e = (1) - £ 2

is a well defined holomorphic function in the domain Dy = {z : |z] > 1/p}.
Since I' = 9<2 is rectifiable, for z = re'’, we have that

F(z) =0, f(re') =izg'(z) —izh'(z) € h' (D),

(see e.g. [15], [28]). Therefore, by having in mind the quasiconformality, we get that
g'.h' € H'(D). In particular, there exist non-tangential limits of those functions almost
everywhere on T. We recall that 2! (D) and H'!(D) are the Hardy classes of harmonic
and holomorphic functions, respectively, defined in the unit disk D.

Let

1
H(z) = i(zg'(z) — —hl(z)), 1/p<|z| <1.
z
Then, for almost every ¢ € [—m, 7], we have

lim H(re'') = lim F(re').
r—1 r—1
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Then there is a set of points 0 < ¢; < @2 < @3 < @4 < 27 so that
(2.3) lim H(re'%) = H(e'%),
r—
exist forevery j = 1,2, 3,4. _ _
Letl <R <pandlet Sy ={z =re'?;¢ € (p1,¢a), 7 € (1/R, 1)}, S2 ={z=re'?;¢
(93,2 4+ @2),r € (1/R, 1)} and let w = P, (z) be a conformal mapping of the unit disk
onto the region S; so that

_ A i/2(p1+¢4) — 11 i/2(p2+9¢3)
24)  ®(0) = E(E + 1)e . ®,(0) = §<E + l)e .

Let 51, 52,53,54 € [0,27] sothat 91 < 51 < §2 < @2, and @3 < 53 < 54 < @4. Then
{e"S 15 € (s1.54) U (53,2 + 52)} = T.
Observe that T C D;.
Define the holomorphic mapping K (z) = H(®;(z)),z €D, j = 1,2. Inview of (2.3),
we have that H is bounded on the boundary arcs I; = [1/R, 1]e'%, j = 1,4, of S. Also

it is clear that it is bounded in the inner arc. Therefore K; is a non-vanishing bounded
analytic function defined in the unit disk. Let L;(z) = log K;(z). Then for j = 1,2,

v;(2) = SL;j(2) = arg(K; (2))
is a bounded harmonic function, so that lim, 1 v; (re’’) = v; (e'?) is a continuous function
on the unit circle.

To show that v is a bounded well-defined function, observe that

H(z) = Zg’(] - h12(22)>,

and so
’ hi(z)
arg H(z) = arg (zg’) + arg (1 — zzg’(z))'
First of all for |z| close to 1, the function
h
Eﬁ(l _ 1(2) )
z%g'(2)

is bigger than 1 — (1 + k)/2, where k is the constant of quasiconformality. On the other
hand, in view of Proposition 2.5, i(g' — zh'/z) = f; (¢'")/z has a continuous argument
in the punctured disk 0 < |z| < 1. Since R(1 — zh’/(zg’)) > 0, we obtain that arg(g’) is
well-defined and bounded function close to the boundary of the unit disk.

We can also choose R close enough to 1 so that the variation of the argument satisfies
(2.5) ArargK;(e') < 1+ ArargH;(e™).

Assume that € > 0 so that €|p| < /2, and let

n
Pi(t) =ajo+ Z cmcosmt + dy, sinmt

m=1

be a trigonometric polynomial so that

lvj(e'') — P;(t)| <€ fort e [0,2x].
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Let ¥ be the holomorphic function so that J(¥(e')) = P;(t) and ¥;(0) = ajp.

Observe that . .
0= — P;(t)dt
aj.o e /;n j()
and
1 4 1 T
2.6 io] < — Pi(t)|dt < — (1) dt.
.6 ol =5 [ 1B@lar et [l

Then for every r € (0, 1) we have

2w R R dt
/ oPLire)=wret) 90 pw©0)-L;0)
0 2

So by taking the real part and letting r — 1 we get

2m . .
/ PR €)=V (g {p:?s [Lj €'y — \Il(e”)]} j—t = ReP L O-YO)
0 b4
Thus 2 (L;(0)—¥(0))
/ T el’m(Lj (Eit)_\p(eit)) E < |§H€p J - | .
0 27 cos pe
Therefore,

o . o e L ©—¥©)
/ oPRLEny 4 ety e | _
0

21w T tefo0,27] cos pe P

The constant G, depends on the same parameters as the constant £, from (2.1)
together with the constant of quasiconformality k, and this follows from the fact that
W (0) = ajo, (2.4), (2.6), (2.5) and a Cauchy type inequality for H(z) in the annulus
1/R < |z| < 1,where 1/R = (1/p + 1)/2. Here p is a given constant bigger than 1 as in
the begging of the proof.

Since pRL;(z) = plog|K;(z)|, it follows that exp(plog|K;(z)|) = |K;(z)|?. There-
fore K; € H?. Now we have

/T H (e[ ds < [{ | IHE ) ds + / |H(e)|? ds
elsis1<s<sy

{eis:s3<s<sr+2m}
- [ [H (@1 (e1))|7] @ (¢7)] di
{eit:ty <t<t4}
+ / |H(@(e)|?|®) ()] 1,
{eit:t3<t<tr+2m}

where Dy (t;) =s5,i = 1,4, and (I>2(t,-_) =s;,1 = 2,3. Moreover |® (¢'")| is bounded on
{e'" 111 <t <t4}and |D,(e')| on {e'’ : 13 <t <t + 27}. Therefore,

/ [H(E)|? ds < C / [H(@ ()P dr + C / H(@a(e")|P dr
T {eit:ty<t<ts} {eit:t3<t<tr+2m}

< C(IK1ly + IK2[If) < L} < oo.
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The constant L, depends on the same parameters as £}, from (2.1) and the quasiconformal
constant k.

Thus H € H?(D), and so f; € h?(D). Since f is quasiconformal, it follows that
g eHP. [

Lemma 2.6. Let « € (0, 1). Then there is a positive constant C(«) > 1 satisfying the
following property. If f is a holomorphic function defined in the unit disk with continuous
extension up to the boundary, and if

|f(e") = f(e™)]

X = . . and Y = sup (1 —|zD'"%| f(2)|.
eit Feis le’t — ets|@ |z|<1
then
1
2.7 —X <Y <C(w)X.
2.7 Cay == (@)

Remark 2.7. We want to mention that a result similar to Lemma 2.6 is probably valid for
the more general classes of mappings such as, real harmonic functions, or quasiconformal
harmonic mappings, but we do not need such results (see e.g. [29]).

Proof of Lemma 2.6. First we have for z = re’ 9 that

™ ity it - it P
Py = L [T LTS — fe))e

- = - dr.
27 J_p (€'t —z)? 27 (eft — z2)?

Therefore t+0) »
1 T 1 _ 1
27 J_p 14+r2—2rcost

By using the inequality |e’’ — 1| < |¢|, and introducing the change of variables ¢ =
2t 4/r/m, it follows that

X [T 1o X% r—(1+a)/2 %—f (p“
_/ o5 4= oo 1- / > de
7l Gorptr e Ty T4y
- X ¢ r—(1+o¢)/2 /oo gDot
2ot (1 —p)lme Jo 149

|f'(2)]

IA

5 do.

So for r > 1/2 we have

(1= |21 £/(2)] = X o pl1a)/2 /°° o~
= 20¢+1 o 1 T (p2

Thus, after a long but elementary calculation, we get that
1+a To

— Y
A= [2D"11C)] = X Simgrs see [ 5|
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For r < 1/2 we have

X(1 — r) 4 a
(1 |zt ()] < X020 / !
0

dt
b/ (1-r)2+ %12

_ o pT a a
X1 -1) / T as<xore ™
b o (1—r)2 a+1

Conversely, by using the proof of the Hardy—Littlewood theorem (see [10], Theorem 3 on
p. 411),if
(1=1zD""f' @) <Y,

then for |s — ] < 1 we get
|f(e") = f(e*)] < YQ2/a+ 1) |t —5]*

Therefore for ¢, s € [—, ], by noticing that ¢'* = ¢** 27! for the case |t — 5| > 1 or for
the case |2 — (t — s)| > 1 we get

4
|f(e") = f()] <Y 1f(e) — f(e')]

j=1
4
<Y YQ/a+ Dt — 1" < 4YQ2/a + 1|t —s|*
j=1
So (2.7) is satisfied for

a+1 1+o
C(oz)—max{Z w11 20737 sec > 4 oz+1 . [

3. Proof of the main result (Theorem 1.1)

We divide the proof into two cases.
(a) D is the unit disk D,
(b) D is a general Jordan domain with a €! boundary.

Case (a). Since y € €, y has the following property. For every point p € y there are
complex numbers |a| = 1 and b so that the parametrisation of the curve

(3.1 yp=a-(y—p)

above the point 0 has the form 7, (x) = (x, ¢, (x)), so that ¢, (0) = <pfp (0) =0.
Further, for every p and every € > 0, there is §9 = o (€) so that

|0p(X) = ¢p(0) — 0, (0)x] < €lx],

for |x| < 8. Moreover, §p can be chosen to be independent on p; that is, it depends on €
and y only.
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Let x(1) = R(f(e')). Then locally y(r) = J(f(e'!)) = @(x(t)). Assume also that
x(0) =0and f(1) = (0,0). For fixed € > 0, because of Theorem 1.4 thereis§ >0 (5 < 1)
so that || < § implies |x(¢)| < 8o and so that

(3.2) |0p (x (1)) = 9 (0) — ¢, (0)x ()] < €|x(1)].
Since ¢, (0) = ¢,,(0) = 0 we get
lop(x(@)| = €[x@)]. |t] =4.

Let
v(z) =3/(2) = (g + h) = R (h(z) — g(2)))
and
u(z) =R f(z) = R(g(2) + h(2).
Then by the Schwarz formula we get

el 4z

l T
i)~ g2) = 130~ gO) + 5 [ S i)

where - A
U(s) = NG (h(e*®) — g(e*))).
Thus
1 (™ 0(s)—0(0
(33 0 -gen = [ T

From now on we divide the proof into two steps.

3.1. Assume that f is smooth up to the boundary

If f has a smooth extension up to the boundary, then g’ and &’ have continuous extension
to the boundary. Let & € (0, 1) be arbitrary. Define

A4 = max(1 - 1z i (W (2) — &' ()]

We can assume that A = (1 — p)!=%|i (W' (p) — g’ (p))| for some p € [0, 1). Then we get

B = gl‘égi(l — 2D )] + Ig' () < KA,

where K is the constant of the quasiconformality. In particular, from Lemma 2.6, & and g
are «-Holder’s continuous on the boundary T. More precisely,

h(e') = h(e™)| < KAC(a) |e' —e'*|*

|g(e') —g(e")] < KAC(a) ' —e"*|”.
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Therefore ‘ . . '
|f(e") — f(e")] <2KAC(a) e’ —e™|*.

In particular for i (s) = R(f(e’*)) = R(g(e'’) + h(e'?))) we have

lii(s) —u(0)| < 2KAC(a)|s]*.

Then, having in mind that for ¢ € (=8, 8), v(¢t) = @(#(?)), from (3.3), (3.2) and the

proof of Lemma 2.6, we get

g g iea [T IO =TO]ds
() =g oI =p = < =y [ O

=(1—p)1—a/ _3) — 5O _ds
[—5.8] P> —2pcoss + 1 x
+(1—p)' / i) =3O ds
[—m.a]\[-5.8] P> —2pcoss + 1 7

1— 1—a o d
< ZeKAC(oz)/ Ep)—m =4z
[—8,5] P> —2pcoss + 1
<2¢KAC*(a) + Z,
where O U
s HLOEOTES
[—ma]\[-6,6] P> —2pcoss +1 7
Further,
o7 1 2diam(2)
Z < di Q) — = '
= diam(Q) w1+ cos28—2cosé-cosé sin? §
So i
2diam(2)

A<2eKAC?*(a) + X <2eKAC?(0r) + —— 75
S

By choosing € > 0 so that
26KAC?* (o) < A/2,

we get

4diam(£2
(3.4) 4 < Hdiam(@)
sin“ §

Observe that §, and so A depends on K, y, @ and modulus of continuity of f at the

boundary, but not on a specific point z € D.

3.2. Approximation argument

If p € dQ =y and y € €, then, after possible rotation and translation of  (similarly as
in (3.1)), which preserves the harmonicity and the quasiconformal constant of the corres-

ponding mapping, we can assume that p = 0 and the unit normal vector is N, = (1,

0).
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So we can find a sub-arc of y containing p at its interior which is the graphic of a function
defined as follows:

o) ={(x,¢(x)) : x € (=n,n)}.

We also can assume that n > 0 is a positive constant that depends only on y but not on the

specific point p. Then we have ¢’(0) = 0. Let Q, C Q be a Jordan domain bounded by

a'€! Jordan curve T, consisted of y,(7/2) and an interior part, which we denote by x, (1),

which is subset of € and assume that a, € 2, be a fixed point. Then for small enough

o =o(y) > 0, the domain Q, (k) = 2, — kN, is a subset of 2, for every « € [0, o].
Let ®,,:D — f~1(Q,(k)) be a conformal mapping so that

®pic(0) = 7 (ap — kNp).

Since T is compact there is a finite family of Jordan domains 2, j = 1,...,n, so
that Tj := f~1(02 N 3Q,,), j = 1,...,n, covers T. Moreover, f o @, : D — Qp is
a-Holder continuous in D. Further, there is a constant A, , which depends only on €2, ,
so that

|f 0 ®p, (€)= f 0 Pp, ()] < Ap e — e[,
Note that 4, also depends on the modulus of continuity of f o ®,, ,, where « € [0, 0],
but this family is uniformly continuous, and we can choose modulus of continuity that
does not depend on k, so Ap; will not depend on « either. Namely, the K-quasiconformal
mappings G, := k + f o ®p, «, k € [0, 0], map the unit disk onto ), € €! and satisfy
the condition G, (0) = ay,. By letting « — 0, we get

|/ 0 ®@p,0(e”) = f o @y, 0(e")] < Ay le™ —e|*.

Therefore, by having in mind the fact that d>_ o is smooth on 7}, we conclude that f
is a-Holder continuous in T/ C T;, where T/ is a little bit smaller arc, but so that T C
U? =1 Tj’ Thus, f is a- Holder continuous in T. By standard arguments, we now obtain
that f is ¢-Holder continuous in D, concluding the case (a).
If we want to get a more explicit estimate of 4, then we repeat the procedure in the
previous subsection, but with
A= sup (1—1zD'7i(g'(2) = ' (2))],

lz|<1

and thus we get the estimate
_ 4 diam($2)

A— —

sin” §

instead of (3.4) for arbitrary ¢ > 0, and thus (3.4) is valid also in this case. Further,
IDf(2) = (18" () + | (2)]) < K(1g'(z) =K' (2)]) < KA1 — |z])' ™,

and so, for (1 —a)p < 1,

IA

(3.5) /D IDF(2)|PdA(z) < K? /D AP(1 — |2)) 3= gi ()

. 2w KP AP o

= =Cp..
2-31—-a)p+ (1 —a)?p? b
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For example, by choosing« = 1 —1/(2p), we get

8
Cy = nKPAP.
3

Case (b). The Holder continuity follows from the case (a) and Theorem 1.4. To deal
with the integral, we use the change of variables. Namely, let ¢:[D — D be a biholomorph-
ism so that ¢ (0) = a. Then by using Holder’s inequality, the isoperimetric inequality and
the relations (2.1) and (3.5), we get

[ 10717 83) = [ ADF@EI-18OD” 16O ai )
D D
= [aDr@ @18 D" 1§ O P A
/ / /
= (Lapra@n-won ao)™ ([ 1w ao)
¢ ( [1#@10727 a0)™

<} Gy

, 1 ”

" — ’ p = p
=G (4m)1/d’ (E(l—P/Z)II) By,

where 1/¢g +1/¢' =1,andg = p + 1.

Acknowledgements. Iam very grateful to the referee for numerous typographic and styl-
istic corrections that have improved this paper.
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