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Harmonic quasiconformal mappings
between C 1 smooth Jordan domains

David Kalaj

Abstract. We prove the following result. If f is a harmonic quasiconformal map-
ping between two Jordan domains D and � having C1 boundaries, then the func-
tion f is globally Hölder continuous for every ˛ < 1 but it is not necessarily Lipschitz
in general. This result extends and improves a classical theorem of S. Warschawski
for conformal mappings.

1. Introduction

Let U and V be two domains in the complex plane C. We say that a twice differentiable
mapping f D uC ivWU ! V is harmonic if�f WD�uC i�v D 0 in U . Any harmonic
homeomorphism is by Lewy’s theorem a diffeomorphism. If its Jacobian Jf Djfzj2�jfzj2

is positive, then it is sense-preserving.
We say that a function uWD ! R is ACL (absolutely continuous on lines) in the

region D if for every closed rectangle R � D with sides parallel to the x and y-axes, u is
absolutely continuous on a.e. horizontal and a.e. vertical lines in R. Such a function has
partial derivatives ux , uy a.e. in D.

A sense-preserving homeomorphism wWD ! �; where D and � are subdomains of
the complex plane C; is said to be K-quasiconformal (K-q.c), with K � 1, if w is ACL
in D in the sense that its real and imaginary part are ACL in D, and

(1.1) jDwj � Kl.Dw/ a.e. on D;

(cf. [1], pp. 23–24). Here A D D.w/ is the formal differential matrix defined by

A D

�
ux uy
vx vy

�
;

and
jAj D max

jhjD1
jAhj; l.A/ D min

jhjD1
jAhj;

where j � j is the Euclidean norm.
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Notice that the condition (1.1) can be written as

jwzj � kjwzj a.e. on D, where k D
K � 1

K C 1
, i.e., K D

1C k

1 � k
�

The class of quasiconformal harmonic mappings was firstly considered by O. Martio
in [23]. The class of q.c. harmonic mappings contains conformal mappings, and this is
why the class has shown a large interest for experts in geometric function theory.

We should mention here the following result of Pavlović [28], which states that a har-
monic quasiconformal mapping of the unit disk D onto itself is bi-Lipschitz continuous. In
order to explain the importance of his result, let us state the following two separate results.
If we assume that the mapping f WD!D is merely quasiconformal, then it is only Hölder
continuous with the Hölder coefficient ˛ D .1 � k/=.1C k/. This is the celebrated Mori
theorem. On the other hand, if f WD ! D is merely a harmonic diffeomorphism, then by
a result of Hengartner and Schober it has a continuous extension up to the boundary (see
Theorem 4.3 in [9] or Section 3.3 in [8]). However, in view of the Radó–Kneser–Choquet
theorem, this is the best regularity that such a mapping can have at the boundary.

We define the Poisson kernel by

P.z; �/ D
1

2�

1 � jzj2

jz � ei� j2
; jzj < 1; � 2 Œ0; 2�/:

For a mapping f 2 L1.T /, where T is the unit circle, the Poisson integral is defined by

w.z/ D P Œf �.z/ D

Z 2�

0

P.z; �/f .ei� / d�:

The well-known Radó–Kneser–Choquet theorem states the following: if f is a homeo-
morphism of the unit circle onto a convex Jordan curve 
 , then its Poisson integral is a
harmonic diffeomorphism of the unit disk D onto the Jordan domain � bounded by 
 .

A special case is when 
 D T . E. Heinz has proved that, if f is a harmonic diffeo-
morphism of the unit disk onto itself, then the Hilbert–Schmidt norm of its derivative,

(1.2) kDf k2 D jfxj
2
C jfy j

2
� c;

where c > 0, depends only on f .0/. It follows from (1.2) that the inverse of a quasicon-
formal harmonic mapping of the unit disk onto itself is Lipschitz continuous. So the main
achievement of Pavlović in [28] (see also [30]) was to prove that a harmonic quasicon-
formal mapping of the unit disk onto itself is Lipschitz continuous on the closure of the
domain.

In order to formulate some additional results in this topic, recall that a rectifiable
Jordan curve is C , Dini smooth, C1;˛ , for ˛ 2 .0; 1�, if its arch-length parametrisation
gW Œ0; j
 j�! 
 is C1, Dini smooth and C1;˛ , respectively. Here j
 j is the length of 
 .

In [11], the author proved that every quasiconformal harmonic mapping between Jor-
dan domains with C1;˛ boundaries is Lipschitz continuous on the closure of domain. Later,
this result has been extended to Jordan domains with only Dini smooth boundaries [13].

A bi-Lipschitz property for harmonic quasiconformal mappings of the half-plane onto
itself has been established by the author and Pavlović in [16].
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Further, it has been shown (see [12]) that a quasiconformal harmonic mappings be-
tween C1;1 (not necessarily convex) Jordan domains is bi-Lipschitz continuous. The same
conclusion is obtained in [5] by Božin and Mateljević for the case of C1;˛ Jordan domains.
Further results in the two dimensional case can be found in [17]. Some results concerning
the several-dimensional case can be found in [3], [18] and [25]. For a different setting
concerning the class of quasiconformal harmonic mappings, we refer to the papers [7],
[22] and [27]. For example, the article [22] deals with the following problem of the class
of quasiconformal harmonic mappings.

The quasi-hyperbolic metric dh in a domainD of complex plane is defined as follows.
For each z1; z2 2 D,

dh.z1; z2/ D inf
Z



d.z; @D/�1 jdzj;

where the infimum is taken over all rectifiable arcs 
 joining x1 and x2 in D. V. Man-
ojlović in [22] proved the following theorem: if f WD ! D0 is a quasiconformal and
harmonic mapping, then it is bi-Lipschitz with respect to quasihyperbolic metrics on D
and D0.

In order to formulate the main theorem of this paper, let us define the chord-arc curves.
A rectifiable Jordan curve 
 is a B-chord-arc curve if L
 .z1; z2/ � Bjz1 � z2j for all z1,
z2 2 
 , where L
 .z1; z2/ denotes the length of the shortest arc of 
 joining z1 and z2.
Here B � 1.

Theorem 1.1. Let D and � be Jordan domains having C1 boundaries and assume that
a 2 D and b 2 �. Assume that !D .!�/ is the modulus of continuity of the derivative
of arc-length parametrisation of @D .@�/. Assume further that @D and @� satisfy the
B-arc-chord condition for some B � 1. Then for every ˛ 2 .0; 1/ and k 2 Œ0; 1/, there is
a constant M˛ DM˛.a; b; k; B; !D; !�/ so that every harmonic K D .1C k/=.1 � k/-
quasiconformal mapping f D gC h ofD onto� so that f .a/D b satisfies the condition

jf .z/ � f .w/j �M˛jz � wj
˛; z; w 2 D:

Moreover, for every p > 0, there is a constant Bp , that depends on the same parameters
as M˛ , so that

(1.3)
Z
D

jDf.z/jp d�.z/ � Bpp ;

where jDf.z/j D jfzj C jfzj D jg0j C jh0j. In other words, g0 and h0 belong to the Berg-
man space Ap for every p > 0. Here � is the Lebesgue measure in the plane.

Remark 1.2. In Theorem 1.1 we consider the mappings between Jordan domains. The
same conclusion can be made for multiply-connected domain bounded by finite number
of C1 Jordan curves. We also expect that a similar conclusion can be made for non-
bounded domains, but we did not pursue this question seriously.

1.1. The organization of the paper

We continue this section with some immediate corollaries of the main result. We prove
first that a K-quasiconformal mapping between C1 domains is ˇ-Hölder continuous for
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every ˇ < 1=K. In particular, we prove that a conformal mapping is ˇ-Hölder continuous
for every ˇ < 1. In the second section we prove a variation of the main result which will
be needed to prove to prove Theorem 1.1 in full generality. The proof of Theorem 1.1
is presented in the last section. The proof depends on a two-side connection between
the ˛-Hölder constant and the so-called ˛-Bloch type norm of the holomorphic function
defined on the unit disk expressed in Lemma 1.4. By using this connection, and by a subtle
application of C1 smoothness of the boundary curve of the image domain, we first find an
a priori estimate of the ˛-Hölder constant of a harmonic quasiconformal mapping of the
unit disk onto a C1 Jordan domain having C1 extension up to the boundary. Then we use
an approximation argument to get an estimate of ˛-Hölder constant for a harmonic q.c.
mapping which has not necessary smooth extension up to the boundary. To deal with the
mappings whose domain is not the unit disk is a simple matter having proved the results
from the second section.

1.2. Some immediate consequences

Corollary 1.3. If f is a univalent conformal mapping between two Jordan domains D
and� with C1 boundaries, then f is ˛-Hölder continuous for every 0 < ˛ < 1. Moreover,
if @D and @� satisfy the B-arc-chord condition for some B � 1, then for every ˛ 2 .0; 1/
and every a 2 D and b D f .a/ 2 �, there exists M DM.˛; a; b; B; !D; !�/ so that

1

M
jz � wj1=˛ � jf .z/ � f .w/j �M jz � wj˛

for every z; w 2 D.

Proof of Corollary 1.3. Let a be a univalent conformal mapping of the unit disk D ontoD
and let b be a univalent conformal mapping of the unit disk onto �. Then, in view of
Theorem 1.1, b and a�1 are

p
˛-Hölder continuous. Then f D b ı a�1 is ˛-Hölder con-

tinuous.

Now we prove the following theorem, which deals with Hölder continuity of quasicon-
formal mappings between smooth domains.

Theorem 1.4. Assume that D and � are two Jordan domains with C1 boundaries and
assume that a 2 D and b 2 �. Assume further that @D and @� satisfy the B-arc-chord
condition for some B � 1. LetK � 1. Then for every ˇ < 1=K, there is a constantMˇ D

M.ˇ; a; b; !D; !�; B;K/ so that if f WD! � isK-quasiconformal with f .a/D b, then

jf .z/ � f .w/j �Mˇ jz � wj
ˇ ; z; w 2 D:

In connection to Theorem 1.4, we want to mention that some more general results are
known under some more general conditions on the domains, but they do not cover this
result. For example, O. Martio and R. Näkki in [24] showed that if f induces a boundary
mapping which belongs to Lip˛.@D/, then f is in Lipˇ .D/, where

ˇ D min¹˛; 1=KºI

the exponent ˇ is sharp. We also want to refer to the papers [19] and [26], which also con-
sider the global Hölder continuity of quasiconformal mappings. Concerning the integrabi-



Harmonic quasiconformal mappings between C1 smooth Jordan domains 99

lity of the derivative of a quasiconformal mapping and its connection to the global Hölder
continuity, we refer to the paper by Astala and Koskela [2].

Proof or Theorem 1.4. Let �WD ! D and  W�! D be conformal diffeomorphisms so
that �.0/ D a and  .b/ D 0. Then f0 D  ı f ı � is a K-quasiconformal mapping of
the unit disk onto itself so that f0.0/ D 0. Thus by Mori’s theorem,

jf0.z/ � f0.w/j � 16 jz � wj
1=K :

Now, if ˇ < 1=K, then there are two constants ˛1 < 1 and ˛2 < 1 so that ˛1 � ˛2=K D ˇ.
Since f D  �1 ı f0 ı �

�1, by making use of Corollary 1.3, we get and  �1 is ˛1-
Hölder continuous and ��1 is ˛2-Hölder continuous. By having in mind the fact that f0
is 1=K-Hölder continuous, it follows that f is ˇ-Hölder continuous, as claimed.

Remark 1.5. Similar results can be shown for multiply connected domains in the com-
plex plane having a C1 boundary. If f a conformal mapping of the unit disk onto a
Jordan domain with merely C1 boundary, then f is not necessarily Lipschitz continu-
ous. See an example given by Lesley and Warschawski in [21], as well as the example
f0.z/D 2z C .1� z/ log.1� z/ given in Pommerenke’s book [31], which is a conformal
diffeomorphism of the unit disk onto a Jordan domain with merely C1 boundary. Then
jf 00.z/j is not bounded and thus f0 is not Lipschitz continuous. The content of Corol-
lary 1.3 is not new (see for example [20]). See also Warschawski [34], Corollary, p. 255,
for a related result. We should also mention the paper by Brennan [6], where the famous
Brannen conjecture comes from. Theorem 3 of that paper contains a short proof of the
special case of (1.3) for � D D and f being conformal.

2. Auxiliary results

The starting point of this section is the theorem of Warschawski for conformal mappings
which states the following. Assume that f is a conformal mapping of the unit disk onto a
Jordan domain � with a C1 boundary 
 . Assume that g is the arc-length parametrisation
of 
 , and assume that ! D !g 0 is the modulus of continuity of g0. Assume also that 

satisfies the B-chord-arc condition for some constant B > 1. Then for every p 2 R, there
is a constant Ap , depending only on �, !, B , p and f .0/, so that

(2.1)
Z

T
jf 0.z/jpj dzj � Epp :

We first give an extension of (1.3), and prove a variation of the main result needed in
the sequel.

Theorem 2.1. If f D g C h is a K- q.c. harmonic mapping of the unit disk D onto a
domain � with C1 boundary, so that h has holomorphic extension beyond the boundary
of the unit disk, then g0; 1=g0 2 Hp.D/ for every p > 0. Moreover,Z

T
jg0.z/jpjdzj � F pp ;

where Fp is a constant that depends on the same parameters as Ep in (2.1) as well as
on k.
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Now recall the Morrey inequality.

Proposition 2.2 (Morrey’s inequality). Assume that 2 < p � 1 and assume that U is a
bounded domain in R2 with C1 boundary. Then there exists a constant C depending only
on p and U so that

(2.2) kukC0;˛.U / � CkukW 1;p.U /

for every u 2 C1.U / \ Lp.U /, where

kukC0;˛.U / D sup
z¤w

ju.z/ � u.w/j

jz � wj˛
; ˛ D 1 �

2

p
;

and
kukW 1;p.U / D kukLp.U / C kDukLp.U /:

Here W 1;p.U / is the Sobolev space.

Corollary 2.3. Under the conditions of the previous theorem, for every ˛ < 1, f and f �1

are ˛-Hölder continuous. The result is optimal since f is not necessarily Lipschitz in
general.

Remark 2.4. If h � 0, then Theorem 2.1 reduces to the classical result of Warschawski
[33], see also a similar result by Smirnov [32] and Goluzin [10], Theorem 7, p. 415. We
include the proof of Theorem 2.1 for the completeness of the argument.

Proof of Corollary 2.3. Let ˛ < 1 and let us prove that f is ˛-Hölder continuous. We
have

jf .eit / � f .eis/j D

Z t

s

j@�f .e
i� /j d� �

� Z t

s

j@�f .e
i� /jp d�

�1=p� Z t

s

d�
�1=q

:

Therefore for ˛ D 1 � 1=p D 1=q we get

jf .eit / � f .eis/j � k@�f kp js � t j
˛:

As h is smooth in D, it follows that g is ˛-Hölder continuous in T . By using the well-
known Hardy–Littlewood theorem ([10], Theorem 4, p. 413), we get that g is ˛-Hölder
continuous on D. Thus f is ˛-Hölder continuous on D.

To prove that f �1 is ˛-Hölder continuous, observe that for w D f .z/,

@wf
�1.w/ D

fz

Jf
D

g0.z/

jg0.z/j2 � jh0.z/j2
�

ThusZ
�

j@wf
�1.w/jp d�.w/ D

Z
D

�
jg0.z/j

jg0.z/j2 � jh0.z/j2

�p
Jf d�.z/

�

Z
D

jg0.z/jpC2

jg0.z/j2p
1C k2

.1 � k2/p
d�.z/

D
1C k2

.1 � k2/p

Z
D
jg0.z/j2�p d�.z/; k D .K � 1/=.K C 1/:
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Here � is the Lebesgue measure in the plane. Therefore by using the isoperimetric inequal-
ity for holomorphic functions we getZ

�

jDf �1.w/jpd�.w/ �
.1C k2/.1C kp/

.1 � k2/p

Z
D
jg0.z/j2�p d�.z/

�
.1C k2/.1C kp/

4�.1 � k2/p

� Z
T
jg0.z/j1�p=2 jdzj

�2
<1:

From (2.2) we infer that u D f �1 is ˛-Hölder continuous and the corollary is proved.

In the proof of Theorem 2.1, we use the following proposition.

Proposition 2.5 ([14]). If f .z/ D P Œf ��.z/ is a quasiconformal harmonic mapping of
the unit disk onto a Jordan domain bounded by a curve 
 , then the function

U.z/ WD arg
�1
z

@

@'
f .z/

�
is well defined and smooth in D� WD D n ¹0º and has a continuous extension to T if and
only if 
 2 C1. Furthermore, there holds

U.ei'/ D ˇ.'/ � ';

where ˇ.'/ is the tangent angle of 
 at f �.ei'/.

Proof of Theorem 2.1. By the assumption we have that h.z/ D
P1
jD0 bj z

j for jzj < �,
where � is a certain constant bigger than 1.

Therefore, the mapping

h1.z/ D
1

z
h0
�1
z

�
D

1X
jD0

j bj

zj

is a well defined holomorphic function in the domain D1 D ¹z W jzj > 1=�º.
Since � D @� is rectifiable, for z D reit , we have that

F.z/ D @tf .re
it / D izg0.z/ � izh0.z/ 2 h1.D/;

(see e.g. [15], [28]). Therefore, by having in mind the quasiconformality, we get that
g0; h0 2 H 1.D/. In particular, there exist non-tangential limits of those functions almost
everywhere on T . We recall that h1.D/ and H 1.D/ are the Hardy classes of harmonic
and holomorphic functions, respectively, defined in the unit disk D.

Let
H.z/ D i

�
zg0.z/ �

1

z
h1.z/

�
; 1=� < jzj < 1:

Then, for almost every t 2 Œ��; ��, we have

lim
r!1

H.reit / D lim
r!1

F.reit /:
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Then there is a set of points 0 < '1 < '2 < '3 < '4 < 2� so that

(2.3) lim
r!1

H.rei'j / D H.ei'j /;

exist for every j D 1; 2; 3; 4.
Let 1<R<� and let S1D¹zD rei� I� 2 .'1;'4/; r 2 .1=R;1/º, S2D¹zD rei� I� 2

.'3; 2� C '2/; r 2 .1=R; 1/º and let w D ĵ .z/ be a conformal mapping of the unit disk
onto the region Sj so that

(2.4) ˆ1.0/ D
1

2

� 1
R
C 1

�
ei=2.'1C'4/; ˆ2.0/ D �

1

2

� 1
R
C 1

�
ei=2.'2C'3/:

Let s1; s2; s3; s4 2 Œ0; 2�� so that '1 < s1 < s2 < '2, and '3 < s3 < s4 < '4. Then

¹eis W s 2 .s1; s4/ [ .s3; 2� C s2/º D T :

Observe that T � D1.
Define the holomorphic mappingKj .z/DH. ĵ .z//, z 2D, j D 1;2. In view of (2.3),

we have that H is bounded on the boundary arcs Ij D Œ1=R; 1�ei'j , j D 1; 4, of S . Also
it is clear that it is bounded in the inner arc. Therefore Kj is a non-vanishing bounded
analytic function defined in the unit disk. Let Lj .z/ D logKj .z/. Then for j D 1; 2,

vj .z/ D =Lj .z/ D arg.Kj .z//

is a bounded harmonic function, so that limr!1 vj .re
it /D vj .e

it / is a continuous function
on the unit circle.

To show that v is a bounded well-defined function, observe that

H.z/ D zg0
�
1 �

h1.z/

z2

�
;

and so

argH.z/ D arg .zg0/C arg
�
1 �

h1.z/

z2g0.z/

�
:

First of all for jzj close to 1, the function

<

�
1 �

h1.z/

z2g0.z/

�
is bigger than 1 � .1C k/=2, where k is the constant of quasiconformality. On the other
hand, in view of Proposition 2.5, i.g0 � zh0=z/ D ft .eit /=z has a continuous argument
in the punctured disk 0 < jzj � 1. Since <.1 � zh0=.zg0// > 0, we obtain that arg.g0/ is
well-defined and bounded function close to the boundary of the unit disk.

We can also choose R close enough to 1 so that the variation of the argument satisfies

(2.5) �T argKj .eit / � 1C�T argHj .eis/:

Assume that � > 0 so that �jpj < �=2, and let

Pj .t/ D aj;0 C

nX
mD1

cm cosmt C dm sinmt

be a trigonometric polynomial so that

jvj .e
it / � Pj .t/j � � for t 2 Œ0; 2��.
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Let ‰ be the holomorphic function so that =.‰.eit // D Pj .t/ and ‰j .0/ D aj;0.
Observe that

aj;0 D
1

2�

Z �

��

Pj .t/ dt

and

(2.6) jaj;0j �
1

2�

Z �

��

jPj .t/j dt � � C
1

2�

Z �

��

jvj .t/j dt:

Then for every r 2 .0; 1/ we haveZ 2�

0

ep.Lj .re
it /�‰.reit // dt

2�
D ep.‰.0/�Lj .0//:

So by taking the real part and letting r ! 1 we getZ 2�

0

ep<.Lj .e
it /�‰.eit // cos

®
p=

�
Lj .e

it / �‰.eit /
�¯ dt
2�
D <ep.Lj .0/�‰.0//:

Thus Z 2�

0

ep<.Lj .e
it /�‰.eit // dt

2�
�
j<ep.Lj .0/�‰.0//j

cosp�
�

Therefore,Z 2�

0

ep<.Lj .e
it // dt

2�
� max
t2Œ0;2��

ep<.‰.e
it // j<e

p.Lj .0/�‰.0//j

cosp�
D Gp:

The constant Gp depends on the same parameters as the constant Ep from (2.1)
together with the constant of quasiconformality k, and this follows from the fact that
‰.0/ D aj;0, (2.4), (2.6), (2.5) and a Cauchy type inequality for H.z/ in the annulus
1=R < jzj < 1, where 1=R D .1=�C 1/=2. Here � is a given constant bigger than 1 as in
the begging of the proof.

Since p<Lj .z/Dp log jKj .z/j, it follows that exp.p log jKj .z/j/D jKj .z/jp . There-
fore Kj 2 Hp . Now we haveZ

T
jH.eis/jp ds �

Z
¹eis Ws1�s�s4º

jH.eis/jp ds C
Z
¹eis Ws3�s�s2C2�º

jH.eis/jp ds

D

Z
¹eit Wt1�t�t4º

jH.ˆ1.e
it //jpjˆ01.e

it /j dt

C

Z
¹eit Wt3�t�t2C2�º

jH.ˆ2.e
it //jpjˆ02.e

it /j dt;

whereˆ1.ti /D si , i D 1; 4, andˆ2.ti /D si , i D 2; 3. Moreover jˆ01.e
it /j is bounded on

¹eit W t1 � t � t4º and jˆ02.e
it /j on ¹eit W t3 � t � t2 C 2�º. Therefore,Z

T
jH.eis/jp ds � C

Z
¹eit Wt1�t�t4º

jH.ˆ1.e
it /jp dt C C

Z
¹eit Wt3�t�t2C2�º

jH.ˆ2.e
it /jp dt

� C.kK1k
p
p C kK2k

p
p / � L

p
p <1:
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The constantLp depends on the same parameters asEp from (2.1) and the quasiconformal
constant k.

Thus H 2 Hp.D/, and so ft 2 hp.D/. Since f is quasiconformal, it follows that
g0 2 Hp .

Lemma 2.6. Let ˛ 2 .0; 1/. Then there is a positive constant C.˛/ > 1 satisfying the
following property. If f is a holomorphic function defined in the unit disk with continuous
extension up to the boundary, and if

X D sup
eit¤eis

jf .eit / � f .eis/j

jeit � eisj˛
and Y D sup

jzj<1

.1 � jzj/1�˛jf 0.z/j;

then

(2.7)
1

C.˛/
X � Y � C.˛/X:

Remark 2.7. We want to mention that a result similar to Lemma 2.6 is probably valid for
the more general classes of mappings such as, real harmonic functions, or quasiconformal
harmonic mappings, but we do not need such results (see e.g. [29]).

Proof of Lemma 2.6. First we have for z D rei� that

f 0.z/ D
1

2�

Z �

��

f .eit /eit

.eit � z/2
dt D

1

2�

Z �

��

.f .eit / � f .ei� //eit

.eit � z/2
dt:

Therefore

jf 0.z/j �
1

2�

Z �

��

jf .ei.tC�// � f .ei� /j

1C r2 � 2r cos t
dt:

By using the inequality jeit � 1j � jt j, and introducing the change of variables ' D
2t
p
r=� , it follows that

jf 0.z/j �
X

�

Z �

0

t˛

.1 � r/2 C 4r
�2
t2

dt D
X�˛

2˛C1
r�.1C˛/=2

.1 � r/1�˛

Z 2
p
r

1�r

0

'˛

1C '2
d'

�
X�˛

2˛C1
r�.1C˛/=2

.1 � r/1�˛

Z 1
0

'˛

1C '2
d':

So for r > 1=2 we have

.1 � jzj/1�˛jf 0.z/j � X
�˛

2˛C1
2.1C˛/=2

Z 1
0

'˛

1C '2
ds:

Thus, after a long but elementary calculation, we get that

.1 � jzj/1�˛jf 0.z/j � X
�1C˛

2.1C3˛/=2
sec

h�˛
2

i
:
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For r < 1=2 we have

.1 � jzj/1�˛jf 0.z/j �
X.1 � r/˛

�

Z �

0

t˛

.1 � r/2 C 4r
�2
t2

dt

�
X.1 � r/˛

�

Z �

0

t˛

.1 � r/2
ds � X 22�˛

�˛

˛ C 1
�

Conversely, by using the proof of the Hardy–Littlewood theorem (see [10], Theorem 3 on
p. 411), if

.1 � jzj/1�˛jf 0.z/j � Y;

then for js � t j � 1 we get

jf .eit / � f .eis/j � Y.2=˛ C 1/ jt � sj˛:

Therefore for t; s 2 Œ��;��, by noticing that eit D eitC2�i , for the case jt � sj > 1 or for
the case j2� � .t � s/j > 1 we get

jf .eit / � f .eis/j �

4X
jD1

jf .eitj / � f .eitj�1/j

�

4X
jD1

Y.2=˛ C 1/ jtj � tj�1j
˛
� 4Y.2=˛ C 1/jt � sj˛:

So (2.7) is satisfied for

C.˛/ D max
°
22�˛

�˛C1

˛ C 1
;
�1C˛

2.1C3˛/=2
sec

h�˛
2

i
; 4
� 2
˛
C 1

�±
:

3. Proof of the main result (Theorem 1.1)

We divide the proof into two cases.
(a) D is the unit disk D,
(b) D is a general Jordan domain with a C1 boundary.
Case (a). Since 
 2 C1, 
 has the following property. For every point p 2 
 there are

complex numbers jaj D 1 and b so that the parametrisation of the curve

(3.1) 
p D a � .
 � p/

above the point 0 has the form �p.x/ D .x; 'p.x//; so that 'p.0/ D '0p.0/ D 0.
Further, for every p and every � > 0, there is ı0 D ı0.�/ so that

j'p.x/ � 'p.0/ � '
0
p.0/xj � �jxj;

for jxj � ı. Moreover, ı0 can be chosen to be independent on p; that is, it depends on �
and 
 only.
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Let x.t/ D <.f .eit //. Then locally y.t/ D =.f .eit // D '.x.t//. Assume also that
x.0/D 0 and f .1/D .0; 0/. For fixed � > 0, because of Theorem 1.4 there is ı > 0 (ı < 1)
so that jt j � ı implies jx.t/j � ı0 and so that

(3.2) j'p.x.t// � 'p.0/ � '
0
p.0/x.t/j � �jx.t/j:

Since 'p.0/ D '0p.0/ D 0 we get

j'p.x.t//j � �jx.t/j; jt j � ı:

Let
v.z/ D =f .z/ D =.g C h/ D <.i.h.z/ � g.z///

and
u.z/ D <f .z/ D <.g.z/C h.z//:

Then by the Schwarz formula we get

i.h.z/ � g.z// D i=.h.0/ � g.0//C
1

2�

Z �

��

eis C z

eis � z
Qv.s/ ds

where
Qv.s/ D <.i.h.eis/ � g.eis///:

Thus

(3.3) i.h0.z/ � g0.z// D
1

�

Z �

��

Qv.s/ � Qv.0/

.eis � z/2
ds:

From now on we divide the proof into two steps.

3.1. Assume that f is smooth up to the boundary

If f has a smooth extension up to the boundary, then g0 and h0 have continuous extension
to the boundary. Let ˛ 2 .0; 1/ be arbitrary. Define

A D max
jzj<1

.1 � jzj/1�˛ji.h0.z/ � g0.z//j:

We can assume that A D .1 � �/1�˛ji.h0.�/ � g0.�//j for some � 2 Œ0; 1/. Then we get

B D max
jzj<1

.1 � jzj/1�˛.jh0.z/j C jg0.z/j/ � KA;

where K is the constant of the quasiconformality. In particular, from Lemma 2.6, h and g
are ˛-Hölder’s continuous on the boundary T . More precisely,

jh.eit / � h.eis/j � KAC.˛/ jeit � eisj˛

and
jg.eit / � g.eis/j � KAC.˛/ jeit � eisj˛:
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Therefore
jf .eit / � f .eis/j � 2KAC.˛/ jeit � eisj˛:

In particular for Qu.s/ D <.f .eis// D <.g.eit /C h.eit /// we have

j Qu.s/ � Qu.0/j � 2KAC.˛/ jsj˛:

Then, having in mind that for t 2 .�ı; ı/, Qv.t/ D '. Qu.t//, from (3.3), (3.2) and the
proof of Lemma 2.6, we get

ji.h0.�/ � g0.�//j.1 � �/1�˛ � .1 � �/1�˛
Z �

��

j Qv.s/ � Qv.0/j

�2 � 2� cos s C 1
ds
�

D .1 � �/1�˛
Z
Œ�ı;ı�

j Qv.s/ � Qv.0/j

�2 � 2� cos s C 1
ds
�

C .1 � �/1�˛
Z
Œ��;��nŒ�ı;ı�

j Qv.s/ � Qv.0/j

�2 � 2� cos s C 1
ds
�

� 2�KAC.˛/

Z
Œ�ı;ı�

.1 � �/1�˛jsj˛

�2 � 2� cos s C 1
ds
�
CZ

� 2�KAC 2.˛/CZ;

where

Z D .1 � �/1�˛
Z
Œ��;��nŒ�ı;ı�

j Qv.s/ � Qv.0/j

�2 � 2� cos s C 1
ds
�
�

Further,

Z � diam.�/
2�

�

1

1C cos2 ı � 2 cos ı � cos ı
D
2diam.�/

sin2 ı
�

So

A � 2�KAC 2.˛/CX � 2�KAC 2.˛/C
2diam.�/

sin2 ı
�

By choosing � > 0 so that
2�KAC 2.˛/ < A=2;

we get

(3.4) A �
4diam.�/

sin2 ı
�

Observe that ı, and so A depends on K, 
 , ˛ and modulus of continuity of f at the
boundary, but not on a specific point z 2 D.

3.2. Approximation argument

If p 2 @� D 
 and 
 2 C1, then, after possible rotation and translation of� (similarly as
in (3.1)), which preserves the harmonicity and the quasiconformal constant of the corres-
ponding mapping, we can assume that p D 0 and the unit normal vector is Np D .1; 0/.
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So we can find a sub-arc of 
 containing p at its interior which is the graphic of a function
defined as follows:


p.�/ D ¹.x; �.x// W x 2 .��; �/º:

We also can assume that � > 0 is a positive constant that depends only on 
 but not on the
specific point p. Then we have �0.0/ D 0. Let �p � � be a Jordan domain bounded by
a C1 Jordan curve �p consisted of 
p.�=2/ and an interior part, which we denote by �p.�/,
which is subset of � and assume that ap 2 �p be a fixed point. Then for small enough
� D �.
/ > 0, the domain �p.�/ D �p � �Np is a subset of �, for every � 2 Œ0; ��.

Let p̂;� WD ! f �1.�p.�// be a conformal mapping so that

p̂;�.0/ D f
�1.ap � �Np/:

Since T is compact, there is a finite family of Jordan domains �pj , j D 1; : : : ; n; so
that Tj WD f �1.@�\ @�pj /, j D 1; : : : ; n, covers T . Moreover, f ı p̂j ;� W D! �pj is
˛-Hölder continuous in D. Further, there is a constant Apj , which depends only on �pj ,
so that

jf ı p̂j ;�.e
it / � f ı p̂j ;�.e

is/j � Apj je
is
� eit j˛:

Note that Apj also depends on the modulus of continuity of f ı p̂j ;� , where � 2 Œ0; ��,
but this family is uniformly continuous, and we can choose modulus of continuity that
does not depend on �, so Apj will not depend on � either. Namely, the K-quasiconformal
mappings G� WD � C f ı p̂j ;� , � 2 Œ0; ��, map the unit disk onto �pj 2 C1 and satisfy
the condition G�.0/ D apj . By letting � ! 0, we get

jf ı p̂j ;0.e
it / � f ı p̂j ;0.e

is/j � Apj je
is
� eit j˛:

Therefore, by having in mind the fact that ˆ�1pj ;0 is smooth on Tj , we conclude that f
is ˛-Hölder continuous in T 0j � Tj , where T 0j is a little bit smaller arc, but so that T �Sn
jD1 T

0
j . Thus, f is ˛-Hölder continuous in T . By standard arguments, we now obtain

that f is ˛-Hölder continuous in D, concluding the case (a).
If we want to get a more explicit estimate of A, then we repeat the procedure in the

previous subsection, but with

A D sup
jzj<1

.1 � jzj/1�˛ji.g0.z/ � h0.z//j;

and thus we get the estimate

A � " �
4diam.�/

sin2 ı
instead of (3.4) for arbitrary " > 0, and thus (3.4) is valid also in this case. Further,

jDf.z/j D .jg0.z/j C jh0.z/j/ � K.jg0.z/ � h0.z/j/ � KA.1 � jzj/1�˛;

and so, for .1 � ˛/p < 1,Z
D
jDf.z/jpd�.z/ � Kp

Z
D
Ap.1 � jzj/.1�˛/p d�.z/

D
2�KpAp

2 � 3.1 � ˛/p C .1 � ˛/2p2
D Cpp;˛:

(3.5)



Harmonic quasiconformal mappings between C1 smooth Jordan domains 109

For example, by choosing ˛ D 1 � 1=.2p/, we get

Cpp D
8

3
�KpAp:

Case (b). The Hölder continuity follows from the case (a) and Theorem 1.4. To deal
with the integral, we use the change of variables. Namely, let �WD!D be a biholomorph-
ism so that �.0/ D a. Then by using Hölder’s inequality, the isoperimetric inequality and
the relations (2.1) and (3.5), we getZ
D

jDf.z/jp d�.z/ D
Z

D
.jDf.�.�//j � j�0.�/j/p j�0.�/j2�p d�.�/

D

Z
D
.jDf.�.�//j � j�0.�/j/p j�0.�/j2�p d�.�/

�

� Z
D
.jDf.�.�//j � j�0.�/j/q d�.�/

�p=q� Z
D
j�0.�/j.2�p/q

0

d�.�/
�1=q0

� Cpq �
1

.4�/1=q
0

� Z
T
j�0.�/j.1�p=2/q

0

d�.�/
�2=q0

� Cpq �
1

.4�/1=q
0

�
E.1�p=2/q0

�2�p
D Bpp ;

where 1=q C 1=q0 D 1, and q D p C 1.
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