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Optimal control with learning on the fly: a toy problem

Charles L. Fefferman, Bernat Guillén Pegueroles, Clarence W. Rowley
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Abstract. We exhibit optimal control strategies for a simple toy problem in which
the underlying dynamics depend on a parameter that is initially unknown and must
be learned. We consider a cost function posed over a finite time interval, in contrast to
much previous work that considers asymptotics as the time horizon tends to infinity.
We study several different versions of the problem, including Bayesian control, in
which we assume a prior distribution on the unknown parameter; and “agnostic”
control, in which we assume nothing about the unknown parameter. For the agnostic
problems, we compare our performance with that of an opponent who knows the
value of the parameter. This comparison gives rise to several notions of “regret”,
and we obtain strategies that minimize the “worst-case regret” arising from the most
unfavorable choice of the unknown parameter. In every case, the optimal strategy
turns out to be a Bayesian strategy or a limit of Bayesian strategies.

1. Motivation and introduction

We investigate control problems in which we must make decisions with little time and little
data available. Our motivating example is the success of pilots learning in real time to fly
and safely land an airplane after it has been severely damaged, for instance as documented
in [5].

Control with learning has been considered in many different application areas; see, for
example, books such as [4,7,9,11], as well as recent papers such as [1,2]. Much is known
also about the closely related “multi-armed bandit” problem; see, for instance, the classic
papers [3, 10] and the more recent survey [6].

A standard approach to control with learning is to start by estimating the parameters
in the model, and then to design a controller that is optimal for that model. A related
approach is to divide the available time into epochs, and within each epoch, first refine
the model, and then update the controller accordingly. In [8], it is shown that this latter
approach gives results that are optimal (in some sense) in the asymptotic limit of large
time. For the problem we consider, such an approach cannot lead to an optimal control
strategy. We are interested in results that are optimal for a fixed time interval, rather than
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for large time. Our optimal strategies do not divide into distinct phases of exploration and
exploitation, but instead take past history into account at every moment.

This article analyzes a toy problem in which we apply a time-dependent control to
keep the position of a moving particle close to zero. The position q.t/ 2 R is governed by
Brownian motion with a drift. The drift rate is given by aC u.t/, where a is an unknown
constant, and u.t/ is our control at time t . For this simple one-dimensional toy model, we
consider several different notions of optimality, and we exhibit control policies that are
optimal with respect to each of these. At the end of the paper, we mention two additional
toy problems to which we hope to return in later work.

2. The toy problem

We begin with a time interval Œ0; T � subdivided into discrete timesteps of size �t . From t

to t C�t , the change in the position q is given by

(2.1) �q D .aC u.t//�t C�W;

where a is an unknown constant, u.t/ is our control, and �W is a normally distributed
random variable with zero mean and standard deviation �0.�t/1=2 for a known coef-
ficient �0. A simple scaling allows us to take �0 D 1, which we do from now on. In the
limit as�t tends to zero, we obtain a control system in continuous time, for whichW.t/ is
Brownian motion and dW.t/ is white noise. Our goal is to find optimal control strategies
for this continuous-time system.

From time 0 to some given time T0, we are allowed only to observe the particle: i.e.,
we must take u D 0. From time T0 to time T , we may apply any control strategy we
please, provided that u.t/ is determined by the history q.�/ for � � t . We want to pick a
control strategy to minimize the expected value of a cost function

(2.2) J D

Z T

T0

.q2 C �u2/ dt;

where � > 0 is a known coefficient. If the parameter a is known, then the only randomness
in the system arises from the Brownian motion, so the notion of expected value is well
defined. If a is unknown, the meaning of the expected value is not immediately clear. We
will discuss it carefully in Sections 3.2 and 3.3.

The most interesting case arises when T0 D 0. Also, a simple scaling allows us to
take �D 1 without disturbing the normalization �0 D 1. Unless we say otherwise, we will
assume that �D 1 and T0 D 0. Furthermore, we suppose that our particle starts at position
q.0/ D 0.

3. Notions of optimality

In this section, we provide careful definitions of optimal strategies, first assuming that
the parameter a is known (classical control), then assuming a prior belief regarding a
(Bayesian control), and finally assuming no prior knowledge of a (“agnostic” control).
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3.1. Known parameter value a

If the value of a is known, then we simply ask for a control strategy that minimizes the
expected value of (2.2). As observed above, the expected value is well defined because a
is known. To calculate such an optimal control strategy is a classical problem of control
theory, and we review its solution in Section 4 below.

3.2. Bayesian control

Next, suppose that we are given a probability measure �.a/ reflecting our prior belief
about the unknown a. That is, the probability that a lies between ˛ and ˇ is given byZ ˇ

˛

d�.a/:

Then as in the classical case, we can make sense of the expected value of J . We compute
the expected value of J assuming a given value of a; call that quantity J.a/. We then
average over all a according to the probability measure �:

E.J / D

Z
J.a/ d�.a/:

The goal of Bayesian control is to find a control strategy u that minimizes E.J /. This
strategy will of course depend on our prior belief �, and the optimal strategy is discussed
in Section 5.

3.3. Agnostic control

Finally, suppose we know nothing about the parameter a. We hope to pick our strategy to
minimize one of several notions of regret, which we spell out below. In all variants, we
play against an opponent who knows the value of a and plays perfectly, while we know
nothing about a. Suppose we pick a control strategy Q without knowing a. Given the true
value of a, we can compute the expected cost JQ.a/ of our strategy as in the classical
case. We want to compare JQ.a/ with the expected cost Jopponent.a/ for our opponent.

We can now give precise descriptions of three problems of agnostic control:

Additive regret. The additive regret, often called simply regret, is the difference

ARQ.a/ D JQ.a/ � Jopponent.a/ � 0:

We can look for a control strategy Q that minimizes the worst-case additive regret

AR�Q D sup
a

ARQ.a/:

Multiplicative regret. The multiplicative regret, often called the competitive ratio, is the
ratio

MRQ.a/ D
JQ.a/

Jopponent.a/
� 1:

We can look for a control strategy Q that minimizes the worst-case multiplicative regret

MR�Q D sup
a

MRQ.a/:
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Fuel tax regret. As before, we compute our expected cost using formula (2.2) (which
depends on our strategy Q), with � D 1. However, we now assume that our opponent
incurs a cost

J D

Z T

T0

.q2 C �u2/ dt;

where � > 1. Thus, our opponent pays a fuel tax. We can look for a control strategy Q

such that, for any assumed value of a, our expected cost is at most that of our opponent.
We want to find such a strategy with � as small as possible. We define the fuel tax regret
to be the above minimal �.

Solutions of the above agnostic control problems are shown in Section 7.

3.4. A constant-regret Bayesian strategy is optimal

Our solutions to the agnostic control problems will be Bayesian for a particular choice of
prior belief �. We explain the idea for multiplicative regret; analogous ideas apply to the
other agnostic control problems mentioned above.

Suppose that a particular prior belief � gives rise to an optimal Bayesian strategy B

whose multiplicative regret MRB.a/ is constant (independent of a). Then the strategy B

minimizes worst-case regret MR�. To see this, we argue as follows.
Suppose that instead of B, we use another strategy C . The strategy C cannot perform

better than B for all values of a; otherwise B would not be optimal for the prior belief �.
Thus, there is a value of a for which MRC .a/ � MRB.a/. But since the strategy B has
constant regret, the right-hand side is independent of a. In other words, for some a, we
have

MRC .a/ � MR�B :

Consequently, the worst-case regret of C is at least that of B.
These ideas are clearly more general than the particular problems studied in this paper.

However, note that we do not assert, for more general problems, that an optimal strategy
necessarily has constant regret.

We have been told that the optimality of constant-regret strategies may be known in
the context of bandit problems, although we have been unable to find a reference for this.

4. Optimal control for a known parameter

In this section, we review the classical control problem of minimizing the expected cost (2.2)
given known a, via the Hamilton–Jacobi–Bellman equation [4].

Suppose we find ourselves at position q at time t . Let J.q; t I a/ be the expected “cost
to go”:

J.q; t I a/ D E
h Z T

t

�
q.�/2 C u.�/2

�
d�
i
;

assuming an optimal u. Then, considering a small time step�t and neglecting errors small
compared with �t , we have

J.q; t I a/ D min
u

�
.q2 C u2/�t CE.J.q C�q; t C�t I a/

��
:
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Recall that �q D .aC u/�t C�W , so (again neglecting errors o.�t/)

E.�q/ D .aC u/�t; E
�
.�q/2

�
D �t:

In particular, �q has the order of magnitude .�t/1=2. Consequently, Taylor expanding J
to first order in t and to second order in q, we find that

(4.1a) 0 D @tJ C .q
2
C u2/C .aC u/@qJ C

1
2
@2qJ:

The optimal control u minimizes the right-hand side of (4.1a), so

(4.1b) u D �
1

2
@qJ;

and by definition,

(4.1c) J.q; T I a/ D 0:

We can guess a solution to (4.1), of the form

(4.2) J.q; t I a/ D E2.t/q
2
CE1.t/qaCE0.t/a

2
CE].t/;

and obtain the following ordinary differential equations:

� PE2 D 1 �E
2
2 ; E2.T / D 0;(4.3a)

� PE1 D 2E2 �E1E2; E1.T / D 0;(4.3b)

� PE0 D E1 �E
2
1=4; E0.T / D 0;(4.3c)

� PE] D E2; E].T / D 0:(4.3d)

These may be solved exactly:

E2 D tanh.T � t /;(4.4a)
E1 D 2Œ1 � sech.T � t /�;(4.4b)
E0 D .T � t / � tanh.T � t /;(4.4c)
E] D log cosh.T � t /:(4.4d)

From (4.1b) and (4.2), the optimal control is then

(4.5) u D �E2.t/q �
E1.t/

2
a:

For future reference, we write down the formulas analogous to (4.2) and (4.4) without
the assumption that � D 1 in equation (2.2). In place of formula (4.2), we obtain

(4.6) J �.q; t I a/ D E�2 .t/q
2
CE�1 .t/qaCE

�
0 .t/a

2
CE�] .t/:

If we define s D .T � t /��1=2, then in place of (4.4), we obtain

E�2 D �
1=2 tanh s;(4.7a)

E�1 D 2�.1 � sech s/;(4.7b)

E�0 D �
3=2.s � tanh s/;(4.7c)

E�] D � log cosh s:(4.7d)

This completes our review of the classical case, for known a.
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5. A Bayesian strategy for an unknown parameter

In this section, we solve the Bayesian control problem discussed in Section 3.2. Now, the
parameter a is unknown, but we have a prior belief given by the probability measure �.
Our problem exhibits an interesting feature not seen in general Bayesian control problems.
In particular, at each time t , a single real number �.t/ captures all the relevant information
from past history up to time t . To see this we argue as follows.

For ease of notation, we assume for the moment that� is given by a probability density

d�.a/ D �.a/ da:

We first compute the posterior probability distribution for a, given history up to time t ,
and then use that information to find the optimal control. To this end, we compute the
joint probability for the unknown a and history up to time t , by dividing the time inter-
val from 0 to t into small steps of duration �t . Thus we consider discrete times � D
0;�t; 2�t; : : : ; t . The joint probability density of obtaining a particular a and observing
the history q.0/; q.�t/; : : : ; q.t/ up to time t is given by

�.a/ �

t��tY
�D0

1
p
2��t

exp
�
�Œ�q.�/ � .aC u.�//�t�2

2�t

�
;

because �W D �q � .a C u/�t is a normal random variable (see equation (2.1)). This
joint probability density has the form

�.a/ � exp
� h t��tX

�D0

.�q.�/ � u.�/�t/
i
a � 1

2
a2

t��tX
�D0

�t
�
� .factor independent of a/:

Taking the limit as �t tends to zero, we obtain the joint probability density

(5.1) �.a/ � exp
�
�a �

t

2
a2
�
� .factor independent of a/;

where

(5.2) �.t/ D q.t/ � q.0/ �

Z t

0

u.�/ d�:

Consequently, the posterior probability density for a, given history through time t , also
has the form (5.1). Passing from probability densities � to general probabilities �, we see
easily that the posterior probability measure for the unknown parameter a, given history
up to time t , has the form

(5.3) d�posterior.a/ D d�.a/ � exp
�
�a �

t

2
a2
�
�Z.�; t/;

where Z.�; t/ may be computed by noting that probability measures integrate to 1.
Thus, as claimed at the beginning of this section, the posterior probability measure

depends on the history q.�/ only through the single number �.t/. Furthermore, at a given
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time t , �.t/ can be computed from q.t/ and the history of the control u up to time t .
(Recall that we take q.0/ D 0.) In particular, we do not need to remember the whole
history of q.�/.

We can now proceed as in Section 4. Suppose we find ourselves at given values of q
and � at time t . Let J.q; �; t I�/ be the expected cost to go, assuming optimal u. That is,

(5.4) J.q; �; t I�/ D E
h Z T

t

�
q.�/2 C u.�/2

�
d�
i
;

with u picked to minimize the right hand side. Proceeding as in Section 4, we may derive
the following partial differential equation for J :

(5.5) 0 D @tJ C .q
2
C u2/C . NaC u/@qJ C Na@�J C

1
2
@2qJ C @�@qJ C

1
2
@2�J;

where Na.�; t/ denotes the expected value of a with respect to d�posterior, and the optimal u
is given by

(5.6) u D �1
2
@qJ:

Again we impose the boundary condition J D 0 at t D T .
Let us specialize to the case in which our prior belief � is a normal distribution with

mean zero and standard deviation � . Then from formula (5.3), we see that our posterior
belief is given by the probability density

�.a/ D exp
�
�a �

a2

2
.t C ��2/

�
�Z.�; t/;

and consequently the posterior expected value of a is

(5.7) Na.�; t/ D
�

t C ��2
�

As in Section 4, we guess a solution of the form

(5.8) J.q; �; t/ D E2.t/q
2
CE1.t/ Na.�; t/q C J0.�; t/;

and obtain the following ordinary differential equations:

� PE2 D 1 �E
2
2 ; E2.T / D 0;(5.9a)

� PE1 D 2E2 �E1E2; E1.T / D 0;(5.9b)

together with a partial differential equation for J0:

0 D @tJ0 CE1 Na
2
�
1

4
E21 Na

2
C Na@�J0 CE2 C

E1

t C ��2
C

1
2
@2�J0:

(It turns out that we will never need to know J0, so we do not need to solve this partial
differential equation.) Note that the ordinary differential equations for E2 and E1 are the
same as those in (4.3), and thus E2 and E1 are again given by formulas (4.4a) and (4.4b).
Thanks to formulas (5.6) and (5.8), the optimal control is now given by

(5.10) u D �E2.t/q �
E1.t/

2
Na.�; t/;

where Na is given by (5.7). Note that this is the same as formula (4.5) for the optimal control
for known a, but with a (which is now unknown) replaced by Na.�; t/.

This concludes our derivation of the Bayesian strategy.
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6. Performance of the Bayesian strategy

Now we wish to determine how well the Bayesian strategy (for unknown a) performs
for a particular value of a. More precisely, we now assume that q evolves according to
equation (2.1), for a particular a, where u is given by equations (5.5), (5.6) for a particular
prior belief �. Let J.q; �; t Ia;�/ be the expected cost to go under the above assumptions.
As in Sections 4 and 5, we can derive the following partial differential equation for J:

(6.1) 0 D @tJ C .aC u/@qJ C a@�J C
1
2
@2qJ C @�@qJ C

1
2
@2�J C q

2
C u2;

with u given by (5.5),(5.6). Again, J D 0 when t D T . Let us now specialize to the case
of Gaussian prior belief, as in Section 5, so that the optimal u is given by (5.10).

We can guess a solution of the form

(6.2) J.q; �; t I a; �/ D E2.t/q
2
CE1.t/qaCE0.t/a

2
C F0.t/. Na.�; t/ � a/

2
C F].t/:

Then, thanks to (5.7), we find this solution does indeed satisfy (6.1), provided the follow-
ing ODEs are satisfied:

� PE2 D 1 �E
2
2 ; E2.T / D 0;(6.3a)

� PE1 D 2E2 �E1E2; E1.T / D 0;(6.3b)

� PE0 D E1 �
E21
4
; E0.T / D 0;(6.3c)

� PF0 D �
2F0

t C ��2
C
E21
4
; F0.T / D 0;(6.3d)

� PF] D E2 C
F0

.t C ��2/2
; F].T / D 0:(6.3e)

Once again, E2, E1, and E0 are as in (4.3), and hence are given by (4.4). One readily
verifies that the following satisfy equations (6.3d) and (6.3e):

F0.t/ D .t C �
�2/2

Z T

t

E1.�/
2

4.� C ��2/2
d�;(6.4a)

F].t/ D

Z T

t

h
E2.�/C

F0.�/

.� C ��2/2

i
d�:(6.4b)

This concludes our discussion of the performance of the Bayesian strategy for given a.

7. Results for agnostic control problems

In this section we determine strategies that optimize each of the three variants of agnostic
control considered in Section 3.3: additive regret, multiplicative regret, and the fuel tax
variant. It turns out that in each case, the optimal strategy is a Bayesian strategy in which
the prior belief about a is a normal distribution with mean zero and standard deviation � .
The optimal choice of � depends on which type of agnostic control one is consider-
ing. (Strictly speaking, for additive regret, the optimal strategy corresponds to the limit
� !1.)
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7.1. Minimizing additive regret

In this case, as we will see in a moment, we will need to consider a non-zero starting
time T0. The cost for the optimal control with known a, starting at time T0, is given
by (4.2):

J.q; T0I a/ D E2.T0/q
2
CE1.T0/qaCE0.T0/a

2
CE].T0/:

The cost for our Bayesian strategy, for a particular a, also starting at time T0, is given
by (6.2):

J.q;�;T0Ia;�/DE2.T0/q
2
CE1.T0/qaCE0.T0/a

2
CF0.T0/. Na.�;T0/� a/

2
CF].T0/:

The difference between J and J is therefore

(7.1) F0.T0/. Na.�; T0/ � a/
2
C F].T0/ �E].T0/:

Now suppose we start at time t D 0 and position qD 0. Until time T0 we are required to set
our control u D 0, after which we are free to pick the optimal u. Then q.T0/ is normally
distributed with mean aT0 and standard deviation T 1=20 . Moreover, �.T0/ D q.T0/ (see
equation (5.2) and recall that q.0/ D 0). Consequently, . Na.�; t/ � a/2 has expected value

T0 C a
2��4

.T0 C ��2/2

(see formula (5.7)), so from (7.1) we see that the additive regret is given by

(7.2) AR.a/ D F0.T0/ �
T0 C a

2��4

.T0 C ��2/2
C F].T0/ �E].T0/:

As � tends to infinity, the control strategy becomes

(7.3) u D �E2.t/q �
1

2
E1.t/

�

t
;

thanks to (5.7) and (5.10), and the additive regret is given by

(7.4) F0.T0/T
�1
0 C F].T0/ �E].T0/;

which is independent of a. Thus we have found a strategy that optimizes worst-case addit-
ive regret. In particular, the reasoning in Section 3.4 applies here even though our strategy
is not a Bayesian strategy for a particular prior, but is instead a limit of such strategies.

One can check that, as T0 tends to zero, the additive regret (7.4) tends to infinity (in
particular, F] diverges logarithmically), which is why we introduced the parameter T0. In
our discussions of multiplicative regret and the fuel tax variant, we will take T0 D 0.

7.2. Minimizing multiplicative regret

Thanks to equations (4.2) and (6.2), the multiplicative regret of the optimal Bayesian
strategy for normal prior belief with standard deviation � is given by

(7.5) MR.a/ D
.E0.0/C F0.0//a

2 C F].0/

E0.0/a2 CE].0/
�
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Here, F0 and F] depend on � ; see equations (6.4a) and (6.4b). We wish to find a value
of � for which the expression (7.5) is independent of a. This occurs precisely when

(7.6)
E0.0/C F0.0/

E0.0/
D
F].0/

E].0/
�

For each T , (7.6) is a single equation for the one unknown � . As a function of T , the
solution may be computed numerically (e.g., using Newton’s method). To carry out the
numerics, we need to evaluate the integrals (6.4) using quadrature, or solve the ODEs
for F0 and F] backwards, from t D T to t D 0. The optimal � is shown as a function of T
in Figure 1. One can show that the optimal � tends to zero as T !1.

Figure 1. Optimum standard deviation of prior belief about a, to minimize multiplicative regret.

Figure 2. Worst-case multiplicative regret for the optimum strategy (solid); and a Bayesian strategy
with a particular � independent of T (dashed).

Figure 2 shows the worst-case regret as a function of T , for two different strategies.
The solid curve arises from the optimum strategy: the Bayesian strategy with � chosen,
for each T , to minimize worst-case multiplicative regret. The dashed curve arises from a
Bayesian strategy, for a particular value of � chosen independently of T . More precisely,
we pick � optimally for the value of T for which the solid curve reaches its maximum.
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Perhaps surprisingly, both strategies perform very well. The optimum strategy is never
more than 17% worse than the optimum strategy for known a. Even the “simple” Bayesian
strategy with fixed � is not much worse. And regardless of the choice of � , the worst-case
multiplicative regret for the Bayesian strategy goes to 1 as T ! 0 or T !1.

7.3. Minimizing fuel tax regret

Recall from equation (2.2) the parameter �, which represents the “cost of fuel.” Our goal
here is to compare the expected cost Junknown a of a strategy with unknown a and � D 1
with the cost Jknown a.�/ of an optimal strategy with known a and � > 1 (see Section 3.3).
As in our discussion of multiplicative regret, we look for a Bayesian strategy with normal
prior having mean zero and standard deviation � . For fixed T and �, we pick � so that
the ratio Junknown a=Jknown a.�/ is independent of a. This ratio is thus a function of �, and
we wish to find � to make the ratio equal to 1. Thanks to the discussion in Section 3.4,
this value of � is then the fuel tax regret defined in Section 3.3. Formulas (4.6) and (4.7),
together with (6.2), (4.4), and (6.4), make this a routine numerical computation.

Figure 3 shows the results of these computations. As in the case of multiplicative
regret, the optimal value of � is a decreasing function of T , and we pay only a modest
price for our lack of knowledge of a. The most challenging case arises for T � 2, with a
corresponding fuel tax regret � � 1:3.

Figure 3. Optimal Bayesian strategies for the fuel-tax variant, and resulting fuel tax regret �.

8. Conclusions and problems for further study

We have posed several optimal control problems for a toy model

�q D .aC u.t//�t C�W

of dynamics with noise, involving a single parameter a. These include the classical prob-
lem in which a is known, and the Bayesian problem in which we assume a prior belief
regarding a. We posed also three “agnostic” control problems, in which nothing is assumed
about a, and we hope to minimize some notion of regret. Here we have considered three
different notions of regret: additive regret (often called simply “regret”); multiplicative
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regret (often called “competitive ratio”); and fuel-tax regret, which we have not seen in
the literature.

Each of these optimal control problems involves minimizing a cost of the form

J D

Z T

T0

.q2 C �u2/ dt;

for a particular terminal time T . Previous studies such as [8] have produced strategies that
behave well as the terminal time T tends to infinity. We work in a different regime. We
are concerned with a fixed value of T , but assume nothing about the parameter a.

For each of our agnostic control problems, minimum regret is achieved by a Bayesian
strategy (or a limit of Bayesian strategies) with the unknown a assumed to be normally
distributed, with mean zero and standard deviation depending on the terminal time and the
notion of regret. The optimal strategy for each of our agnostic control problems has regret
independent of the actual value of a.

We have only begun by solving the simplest toy problem of agnostic control. Already,
substantial challenges arise when we consider further toy problems, with dynamics given
by

(8.1) �q D .aq C u/�t C�W

or

(8.2) �q D au�t C�W

in place of equation (2.1). These toy problems are the subject of ongoing work, and we
hope to return to them in a future paper. Note that, if we regard the unknown a as part of the
state, then the dynamics are linear for our first toy problem (2.1), but not for (8.1) or (8.2).
This observation may explain why toy problems (8.1) and (8.2) are more challenging than
the toy problem solved here [12].
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