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Perturbation theory and higher order $?-differentiability
of operator functions

Clément Coine

Abstract. We establish, for I < p < 0o, higher order $?-differentiability results of
the function ¢:t € R > f(A4 4+ tK) — f(A) for selfadjoint operators A and K on
a separable Hilbert space J# with K element of the Schatten class $P (#) and f n-
times differentiable on R. We prove that if either A and f ) are bounded, or f ®,
1 <i <n,are bounded, ¢ is n-times differentiable on R in the §7-norm with bounded
nth derivative. If ' € C™(R) with bounded f ™) we prove that ¢ is n-times con-
tinuously differentiable on R. We give explicit formulas for the derivatives of ¢, in
terms of multiple operator integrals. As for application, we establish a formula and
8P -estimates for operator Taylor remainders for a more extensive class of functions.
These results are the nth order analogue of results by Kissin—Potapov—Shulman—
Sukochev. They also extend the results of Le Merdy—Skripka from n-times continu-
ously differentiable functions to n-times differentiable functions f.

1. Introduction

Let J be a separable Hilbert space and let, for any 1 < p < co, §P(#) be the Schatten
class of order p on #. Let A be a (possibly unbounded) selfadjoint operator on # and
let K = K* € §P(#). Let f: R — C be a Lipschitz function. We let ¢ be the function
defined on R by
p:t R f(A+1tK)— f(A) € SP(H).

In this paper, we prove higher order $”-differentiability results for ¢ in the case of n-times
differentiable functions f* with bounded (possibly discontinuous) nth derivative.

The study of the differentiability of ¢ was initiated in [8], where it was shown that

if A and K are bounded selfadjoint operators and f € C2(R), ¢ is differentiable in the
operator norm with

(p/([) — [FA-i-tK,A-i-tK(f[l])](K)’ t eR,

where T ATtK.A+K ( £[11) 5 4 double operator integral associated with f[U the divided
difference of first order of f. See Section 2 for more details. This result was extended
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in [4] and later in [16], where it is proved that this result holds true for any f in the Besov
space B;o,l (R) and any selfadjoint operator A. Note that the conditions f € C!(R) and A
bounded are not sufficient to ensure the differentiability of ¢ in the operator norm, see [11].
However, in the case K € §P(H#), 1 < p < 0o, itis shown in [12] thatif f is differentiable
on R with bounded derivative, then ¢ is §7-differentiable on R.

The question of higher order differentiability of ¢ was studied in [21]. Under certain
assumptions on f, ¢ is n-times differentiable for the operator norm and the derivatives
of ¢ are represented as multiple operator integrals. This result was extended in [17] to
any f in the intersection B;o,l (R) N BZ, ;1 (R) of Besov classes. In [1], higher order dif-
ferentiability of ¢ is established in the symmetric operator ideal norm when f is in the
Wiener space W, 11(R). In the special case p = 2, it is proved that if f € C"(R) has
bounded derivatives f O 1<i<n, @ is n-times continuously § 2_differentiable on R,
see [5]. For other values of 1 < p < oo, it is shown in [14] that if /' € C"(R) has bounded
derivatives, then ¢ is n-times $?-differentiable. Moreover, for 1 < p < co, Theorem 4.1
in [14] shows that for functions in B;O,I(R) N B, 1(R), ¢ is n-times $”-continuously
differentiable.

Our main result is the following. Let 1 < p < 0o, n € N, and let K = K* € §P(H).
We prove that if f is n-times differentiable on R with bounded (possibly discontinuous)
nth derivative £, then for any bounded selfadjoint operator A, ¢ is n-times differenti-
able on R and forany 1 <k <n,

1
(11) E gD(k)(l) — [FA+tK,A+tK,...,A+tK(f[k])](K, o K), t e R.

This representation of ¢®) has been obtained for smaller classes of functions, see for
instance [1], [5], [17], [21]. In the case when A is unbounded, we prove that if f is n-
times differentiable on R and has bounded derivatives f (i), 1 <i < n, then so does ¢.
Namely, we show that ¢ is n-times $?-differentiable on R with bounded derivatives ¢/,
1 < j < n, and that formula (1.1) holds. This is nth order analogue of Theorem 7.13
in [12]. It significantly improves the previous results on higher order differentiability of
operator functions in Schatten norms.
With formula (1.1), we deduce a representation of Taylor remainders

n—1 1
SA+E) = f() =) 500
k=1~

as a multiple operator integral and deduce an §7-estimate, which generalizes the estimate
obtained in [14].

To obtain these results, we will establish important properties of multiple operator
integrals. We choose the construction of operator integrals developed in [6]. For any sel-
fadjoint operators Ay, ..., A, and any bounded Borel function ¢ on R”, the multiple
operator integral T'41-4n($) is a continuous (n — 1)-linear mapping defined on the
product of n — 1 copies of $2(H#) and valued in $2(H#). We obtain a continuous oper-
ator TAvA2wdn - LTI Ay,) — Buo1(S2(H) x S2(H) x -+ x $2(H), $2(H)) for
some positive and finite measures A4,, 1 <i < n. The advantage of this construction is the
property of w*-continuity of I'41:42--4x Tt allows to reduce some computations to func-
tions with separated variables, for which certain equations are straightforward to establish.



Higher order §7-differentiability of operator functions 191

In Section 2.2, we extend a result on the $”-boundedness of multiple operator integrals
associated to divided differences. Our main result will be proved by induction on n. To
do so, we will first establish an important higher order perturbation formula allowing to
express a difference of operator integrals associated to £~ as a multiple operator integ-
ral associated to "), This formula will be fundamental to prove the existence of the nth
derivative of @™ if 91 is known, as well as the representation of the derivatives of ¢
as a multiple operator integral. Then, by the use of the lemmas proved in Section 3.2, our
proof will rest on the approximation of the operator K, allowing to simplify the expression
of the multiple operator integrals involved.

We use the following notations. We let (§? (H))s, (respectively (B (H)g,) be the sub-
space of 87 (H) (respectively B(H)) consisting of selfadjoint operators. We let Bor(R)
be the space of bounded Borel functions from R into C. For any m € N, we let C,(R™)
be the space of continuous and bounded functions on R, and Cy(R™) to be the subspace
of Cp(R™) of continuous functions on R™ vanishing at infinity. For any n > 1, we let
C"™(R) be the space of n-times continuously differentiable functions from R to C. Finally,
we let D"(R, $7(H)) (respectively C*(R, §7(#))) be the space of n-times differenti-
able (respectively continuously differentiable) functions ¢: R — $?(#) with derivatives
denoted by <]§(j):]R — S§P(H),j=1,...,n.

2. Multiple operator integration

In this section, we recall the definition of multiple operator integrals that we will use
throughout the paper and give important properties that will be key to prove our main
results.

2.1. Multiple operator integrals associated to selfadjoint operators

The following definition of multiple operator integration was developed in [6]. It is based
on the construction of [15]. Several other constructions exist, see e.g. [1,3,8,17, 18]. We
also refer to [20] for a comprehensive treatment of multiple operator integration, including
applications to perturbation theory. The first advantage of this approach is that it allows us
to integrate any bounded Borel function, in particular certain discontinuous ones, as it will
be the case in this paper. The second advantage is the property of w*-continuity, which
allows to simplify many computations.

Letn € N,n > 1,and let Ey, ..., E,, E be Banach spaces. We denote by 8B, (E; x
-+ x E,, E) the space of n-linear continuous mappings from E; X --- x E, into E, that
is, the space of n-linear mappings 7: Ey x --- x E, — E such that

”T”.,’B,,(EleXEn,E) = sup ||T(€1, . ,e,,)|| < Q.
leil<1,1<i<n
In the case when E; = --- = E, = E, we will simply denote 8, (E; x --- x E,, E) by
Bn(E).

Let A be a (possibly unbounded) selfadjoint operator in a separable Hilbert space # .
Denote its spectrum by o (A) and its spectral measure by E4. Let A4 be a scalar-valued
spectral measure for A4, that is, a positive finite measure on the Borel subsets of o (A4) such
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that A4 and E 4 have the same sets of measure zero. We refer to Section 15 in [7] and
Section 2.1 in [6] for more details. For any bounded Borel function f:R — C, we define

F(4) € B(J) by
£(4) = / £() dEA(D),
a(A)

and this operator only depends on the class of f in L°°(14). Moreover, according to
Theorem 15.10 in [7], we obtain a w*-continuous *-representation

f € L®(g) > f(A) € B(H).

Letn € N,n > 2,and let Ay, A, ..., A, be selfadjoint operators in J with scalar-valued
spectral measures A4, ..., Aq,. We let

rAvAzdn 120G ) ® - ® L®(Ay,) — Buoi1(S2(H))

be the unique linear map such that for any f; € L°°(A4;), i =1, ..., n, and for any
Xi,...,Xn_1 € $2(H),
@.1) [PAvA2A(fi @@ )] (X1, Xno1)

= f1(AD) X1 f2(A2) -+ fu—1(An—1) Xn—1 fn(An).

Note that B,_1(S2(#)) is a dual space, see Section 3.1 in [6] for details. According
to Theorem 5 and Proposition 6 in [6], [41-42:-4n extends to a unique w*-continuous
contraction still denoted by

A Lm(ﬁ ha) — Bur (S2()).
i=1

Definition 2.1. For ¢ € L*® (]_[?:1 A4;), the transformation [ AvAzudn () s called a
multiple operator integral associated to A, A, ..., A, and ¢.

The w*-continuity of ['41-42:+4n means that if a net (¢;);c; in L™ (]_[:Ll /XAi) con-
verges to ¢ € L™ ([Ti—; A4;) in the w*-topology, then for any X1, ..., Xp—1 € $%(H),
the net

(A (@)X, Xn-1)) ¢

converges to [T 41424 (¢)] (X4, ..., X,—1) weakly in S2(H).
Letay,...,an—1,@ € [1,00) and ¢ € L*® ([T, A4, ). We will write

FA],Az,...,A,,(d)) c O(Bn_l(sal X oo X Sa”*I,Sa)

where $2(J) N §% (J) is equipped with the ||. ||, -norm. By density of $2(J#) N §% (H)
into $% (), this mapping has an (necessarily unique) extension

DAL Az An () 0 SU(J0) x -+ x SU1(H) — SUH),

which justifies the notation.
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In the case when o) = -+ = a1 = o, we will simply write ['41-42:4n () €
Bn-1(8%(H)).
Remark 2.2. Let aq,...,0,—1,a € [1,00), let n > 1, let Ay, ..., A, be selfadjoint

operators on K, ¢ € L®(Aa, X ---Aa,) and assume that T41-4n () € B,_1 (S x
ceex 81 8% Tlet0<e < 1, let Xy,...,Xy—1,Y1,...,Y,—1, where for any 1 <
i<n-—1X;,Y € §%(H) with | X; — Yi|« =< €. By multilinearity of multiple oper-
ator integrals, it is easy to see that there exists a constant C > 0 depending only on 7,
|| D A1 4n (D) |8, (591 x--xS-1, 50y and || X1|la;s ..., | Xn—1lla,_, (or similarly, on n,
||FA1"“’A" (®) ||$n_1(3a1 XX §%n—1,8) and ||Y; ||ai yeeos [ Yn—1 ||0tn—1) such that

A=A (@)](Xy, ..., Xney) = [TA A (@) (Y1, Your) |, < Ce.

The following result will be used to prove the $”-boundedness of certain multiple
operator integrals as well as to establish identities.

Lemma 2.3. Let oy, ...,0y—1,a € (1,00), let n > 1, and let Ay, ..., A, be selfad-
Jjoint operators in H and (¢x)k>1,¢ € L(Aa, X -+ Ay,). Assume that (¢x)i is w*-

weakly in $%(H).

Proof. Let X; € $2(#) N 8% (H), 1 <i <n—1, and let Y be a finite-rank operator
on J such that |Y || < 1. Let

Y= liI1f}€inf||1”1"“"A" (@) | Bp_1 (51 x-x§n-1,§).

By w*-continuity of multiple operator integrals and the assumptions of the lemma we
have

This inequality holds true for any finite-rank operator Y on 4 with ||Y |l < 1, hence
(2.2) I ArA2 A @] (X1 XD lla < VI X oy = 1 X ey -
This implies that T41+47 (p) € B,_1(§% x -+ x §¥-1 §%) with

ArA
[T 2% (@) || 8,_y (81 - x§@n—1,82) < V.
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LetO<e <1 . Forany 1 <i <n—1,let X; € §%(H), X; e S$2(H) N 8% (H) such
that || X; — Xil|loq; <€.Let Z € SY(H#) and Y be a finite-rank operator on # such that
|Z — Y| < e. Write, for any k > 1,

Ty x = [[A0A24n ()] (X1, ..., Xuo1)
and 5 B B
Ty x = [DAvA2An (o)](X1, ..., Xyei).

Similarly, write
Ty = [[At42 A (@))(X1. ... Xye)

and _ B B
Ty = [[AvA2An () (X7,..., Xuor).

Since (T 44 (@ ))k=1 C Bp—1(S% x -+- x §%-1 §%) is bounded, we can set C :=
sup; [|[ T AL An (@) 8,_, (591 x--xSe—1,52). By Remark 2.2, there exists a constant C > 0
depending only onn, C’, || X1 ey - - - » | Xn—1la,_, such that, for any k > 1,

(2.3) ITk.x — Tk xll, < Ce and [Ty — x|, < Ce.

By the first part of the proof, there exists kg € N such that for any k > kq,
(2.4) ITr (Tx — Tex)Y)| <e.

Hence, by (2.2), (2.3) and (2.4) we have, for any k > ko,

Tt (Tx Z) — Tr (T x Z)|
<|Tr(Tx(Z = Y))| + |Tr (Tx — Tx)Y)| + |Tr (Tx — T x)Y)|
+ T (T x — Tex) V)| + | Tr (Te,x (Y — 2))]

n—1 n—1

< (y [T Xl + CUY llar + 1+ €Y o + € T Xl ) €.

i=1 i=1

Since ||Y ||l < || Z]|o + €, we proved that

weakly in $%(H). |

The next three lemmas give various algebraic properties of multiple operator integrals
which will be used in Section 2.2 and Section 3.3. The proofs of the following results
are quite similar: we first prove them in the case p = 2 for which the w*-continuity of
multiple operator integrals allows to reduce the computations to elementary tensors of
functions, and then deduce the general case 1 < p < oo by approximating the operators
in $7(H) by operators in $2(#) N P (H).
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Lemma24. Let1 < p <oo.Letn >2and1 < j <n—1.Let Ay,..., Ay be selfadjoint
operators on J. Let 1 € L=(Aa, X +-- X Aa,) and ¢ € L°(Aa; X A4, ,,) be such that

rAGAn () € B,_1(SP(H)) and TA4+1(p,) € B(SP(H)).
We define 52 € L®(Agy X -+ X Ag,) by

2.5) G2(x1. ... Xn) = P2 (Xj. Xj41)
a.e.ono(Ay) x---x0(Ay). Then

DAL (g1 o) € By1(SP(IH))
and forall Ky, ..., K,—1 € 8P (H#) we have

[T A4 (p142)|(K1. ..., Kn—1)
(2.6) =[P4 (@)] (Kis .oy Koy, [T (9)[(K), Ko Kot -
Proof. Assume that p = 2. We first prove the result when ¢; = f1 ® --- ® f, and ¢, =

gj ® gj+1, whereforany 1 <i <n, fi € L(A4,),g; € L(A4;), gj+1 € L=(A4;,,)-
In this case,

$1h2=[1® - ® [i-1® [18; ® fi+18/+1® fj4+28 - ® fa
so we have, by (2.1),

[TA0An (p1d2)|(K1. ... Kno1)

= fi(A) Ky - Kj—1 fi(A))gi (Aj) K gj+1(Aj+1) fi+1(Aj+1) Kjt1 -+ Kn—1 fu(An)

= fiADK: - Kj—1 fi(Ap) [T4 441 (g5 © gj40)] (K)) fi+1(Aj1) -+ fa(An)

= [[Av=An (@) (K. ... Kj—1. [TV A+ (9))(K)). Kjti. ... Kno1) .
which proves the result for such ¢; and ¢,. Note that this formula is bilinear in (¢1, ¢>),
hence the result holds true whenever ¢1 € L™ (A4,) ® --- ® L>(A4,) and ¢ € L= (A4;)
®L®(Aa, ).

In the general case, we let (¢1,5)ses C L®(Aa,) ® --- ® L®(Ay,) and (¢2¢)seT C
L>®(A4;) ® L*®(A4;,,) be two nets converging to ¢; and ¢y, respectively for the w*-
topology of L>°(A4, X -+ x A4,) and for the w*-topology of L>°(A4; x A4,,,). Fixs € S
and assume first that ¢; s = f1 ® - -+ ® f,. By the previous computation, we have, for any
teT,

[TAvAn (1 3o )]|(Kis- .. Kne1)
Q27 = filADK1 -+ Kj—y f[i(ADITY A4 (2, )(K)) fi+1(Aj 1) - Knet fo(An).

where &52,, is defined as in (2.5). By the w*-continuity of ['4/*4/+1 we get that the right-
hand side of (2.7) converges, in the w*-topology of §2(H), to

FilADK -+ Kj—1 f; (A7) [T A4 ()[(K)) fr+1(Aj+1) Kj1 -+ Kneit fu(An)
= [[AAn (g )] (K1.....Kj-1, (D441 ()] (K;), Kjt1s- -+ Kn1) -
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For the left-hand side of (2.7), we simply note that the product on L is separately w*-
continuous so that (¢, S¢2 )teT W*-converges to ¢;, Sgbz By w -cont1nu1ty of multiple
operator integrals, we have, taking the limit in the weak topology of $2(J) in (2.7),

[FAl,-n,An (¢1,S$2)](K1 yeeay Kn—l)
2.8) = [P @)l (Kio Ko [P @)K, Ky K.

Note that, by lmearlty, this equality holds true whenever ¢; s € L®(A4,)® - ® L*°(A4,).

Since (¢1,¢ ¢2) ses w*-converges to ¢1¢2 we have, by taking the limit in the weak topo-
logy of 82(5‘6) in (2.8),

[DA4r4n (1 62)]| (K1, ..., Kno1)
_ [FAI ..... Ap (¢1)] (Kl» e Kj—l, [rAj’Aj-%—‘ (¢2)](KJ)» Kj+1, ey Kn—l) .

Assume now that 1 < p < coandlet Ky,..., K,— € $2(#) N SP(H). By assump-
tion, there exist A,, B, > 0 such that

2.9) (T4 A (@) (Ku, ooy Kjmr [T (92))(K)). Kt . Knei) I,
< Al Killp - 1K1 llp [T A @DIEK N p 1 K llp -+ [ Kntllp

n—1

=A4pBp l_[ 1 Killp-
i=1

Since forall 1 <i <n — 1, K; € §2(#), equality (2.6) holds and we deduce the inequality

n—1

(2.10) [[TAA ($162)] (K1, ... Kn-1)], < 4p By [ IKil-
i=1

By density of $2(H) N §7(H) in S (H), we get that [TAL-4n (¢, dy) € B_1(SP(H))
and that inequalities (2.9) and (2.10) hold true for any Ky, ..., K,—1 € $P(H).

Finally, to prove equality (2.6) in the case K1, ..., K,—1 € §7(J), we approximate
K;,1<i <n—1,byelements of S2(H) N 8P (H), using inequalities (2.9) and (2.10). =

Lemma2.5. Letl < p <oo.Letn >3and2 < j <n—1.Let Ay,..., Ay be selfadjoint
operators on J. Let g1 € L°(Agy X --- X ;) and ¢ € L(hg; X -++ X Aa,) be such
that

P44 (gr) € Bja(SP(H) and T4 () € By (87 (H)),
We define ¢ € L°(Aq, X -+ %X Ag,) by
O(x1, ..., xn) = d1(X1, ..., X)) Pa(xj, ..., xp)
a.e.ono(Ay) x---xa(Ay). Then
DAt () € By (87 (H))
and for all K, ..., K,—1 € 8P (H#) we have
@11 [TAeAn(@)](Ki. ... Kn—1)
= M40 Y (G)I(Ky, .., Kjmy) [T 4 (@2))(K; - Kna).
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Proof. Assume first that p = 2. In the case when ¢; and ¢, are elementary tensors, it
is straightforward to check the identity (2.11). In the general case, we let (¢1,5)ses C
L>®(Aa,) ® - ® L¥(Ayg;) and ($2,¢)rer C L>(Ag;) ® --- ® L>(A4,) be two nets con-
verging to ¢ and ¢, respectively for the w*-topology of L*°(A4, X -+ x A4;) and for
the w*-topology of L>°(A4; X -+ X A4,). Forany s € S and any t € T, we have

2.12) [P (@ so I(K, - K1)

= T4 () (K1, ..., Kj—1) [T (o DK, . .. Kn1).

For a fixed s € S, (¢1,5¢2,1)reT converges to ¢ sP and (¢1 s¢2)ses converges to ¢ =
¢1¢, for the w*-topology of L°(A4, X --- X Ay4,). Hence by taking the limiton t € T
and thenon s € S in (2.12), we get (2.11).

Nowletl < p <ooand Ky,...,K,—1 € $2(H#) N SP(J). Then equality (2.11) holds
and by assumption, there exist A,, B, > 0 such that

[[rAv A @K, Kn-1)],
Al A ) AjyeAn i
< A4 @ONK - KD |, [T 4 @)I(K . Kn1)
< Apl|Killp -+ 1 Kj-1llp Bpll Kjllp -+~ | Kn+1llp.

which shows that T 4147 (¢) € B,,_;(S”(J)). Finally, we deduce (2.11) by approxim-
ation like in the proof of Lemma 2.4. ]

The proof of the following is similar to the previous ones and left to the reader.

Lemma 2.6. Let 1 < p <oco. Letn >2and 1 < j <n. Let Ay, ..., A, be selfadjoint
operatorsin J. Let € L% (Aa, X -+- X da; | X Aa;,, X -+ X Aa,) and assume, if n > 3,
that

PAvdimrdretendn () € By (87 (H)).

We define ¢ € L®(Ag, X -+~ X Aa,) by
(2.13) ¢~3(x1, e Xn) = (X1, X1 X, X))
a.e.ono(Ay) x---xa(Ay). Then

Pt i(@) € By (7 (H))

and for any K1, ..., K,—1 € §P(H), we have
O If2<j=n-1

[TAT4n ()] (Ky,. .., Kno1)
— [FAl,...,Aj_l,Aj+1,...,An (¢)](K1, R Kj—25 Kj_lKj, Kj+1, ey Kn—l).

() Ifj =1,
[TAL=An(E)] (K1, ..., Knot) = Ky [T424(@)](Ka, . .., Kno).

[DAGAn(@)|(Ky,. .., Kn—1) = [[A A1 ($)](Ky, ..., Kn—2) Ku-1.
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2.2. Higher order perturbation formula

In this section, we first extend an important result on boundedness of multiple operator
integrals associated to divided differences £ in the case when f is n-times differenti-
able with bounded nth derivative f . This will justify that all the operators appearing in
the sequel are well-defined. Secondly, we will prove a higher order perturbation formula
for differences of multiple operator integrals.

Let us recall the definition of the divided differences. Let f: R — C be differentiable.
The divided difference of the first order f[1: R? — C is defined by

Fxo)=fx)  f ¥
f[l](XOa xl) = /inxl . 0 7é b Xo, X1 € R.
f'(x0) if xo = x1,

If f is bounded then f[ is a bounded Borel function on R2, and if in addition f’ is
continuous, then [l e Cy,(R?).

If n > 2 and f is n-times differentiable on R, the divided difference of the nth order
fI:R7+1 s C is defined recursively by

[n] f[n_l](xo,xz,...,xn)_—f[n_ll(x1,xZ...,xn) if xo % x1,
fM(xe,x1,...,xp,) 1= (1] Xo—x1 !
o f (x1,x2,...,x,) if xo = x1,
for all xq,...,x, € R, where 9; stands for the partial derivative with respect to the ith

variable. If £ is bounded, then f["! is a bounded Borel function on R”*!, and if in
addition f® is continuous, then " e Cj(R"*1).
It is well known that ] is symmetric under permutation of its arguments. Therefore,

forall 1 <i <n and forall xg,...,x, € R,
f["](xo,xl,...,x,,)
g, i Xigt ) — ST (gL X2 X Xt X))
Xi—1 — X
if x;—1 # x;, and

f["](xo,xl,...,xn) = Bif[”_l](xl,...,x,,)

if Xi—1 = Xj.
Letn € N, n > 1. For a bounded Borel function g on R, and for any xo, ..., x, € R,
we define
n
(Pn,g(xo,...,xn)zf g(Zijj') d)t,,(sl,...,s,,),
Ry i

j=0

where

n
R, = {(sl,...,sn)eR”: Zsj <l,s5>0,1<j En},
j=1

so=1-— Z;’Zl s;,and A, is the Lebesgue measure on R”.
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Let f be n-times differentiable on R with £ bounded. Then f®~1) is absolutely
continuous, so by formula (7.12) in Chapter 4 of [9] we have

(2.14) M=, rm.

In the sequel, we will work with selfadjoint operators A, A»,..., Ay, n € N, n > 2.
If ¥:R" — C is a bounded Borel function, we let 1; be the class of the restriction
Vo (41)xo (Ag)x-xa(4y) i L¥([TF—; Aa;). Then, we will denote by ['t:42:4n (yr) the
multiple operator integral T'41:-42:-4n (47)

Theorem 2.7. Let1 < p <oco,n € N,n> 1, let f be n-times differentiable on R with f(")
bounded. Let Ay, ..., Any1 be selfadjoint operators in J. Then TAvA2Ani1(fln]) g
By (SP" x --- x §P" §P) and there exists cp, > 0 depending only on p and n such that
forany Xq,...,X, € $"P(H),

2.15)  [[rAvAzedni (fEH] X0 X |, < ol S P llool X llnp - [ Xnllnp-

(2.16) [T AvAzednir (D)) o cp) < cpull £l oo

Proof. Define, for any k > 1, gx(t) = k(f®* V(@ + 1/k) — f*V(r)),t € R. Then
(gx)k>1 C C(R) is pointwise convergent to f ™) and we have the inequality |gg| <
| £ ™]|00. By Theorem 5.3 in [18], there exists a constant ¢p,n > 0 depending only on p
and n such that, for any & > 1,

(2.17) [T AAzeAnti (g, 0 V||, (spnxexsons) < Cpnllgrllos < Cpnll f ™ oo

The proof is given in the case when A; = - -+ = A, but the arguments from the proof of
Theorem 2.2 in [14] allow to extend the result in the case when Aq,..., A, are distinct.

By Lebesgue’s dominated convergence theorem, ¢, g, is pointwise convergent to
@p, fm) ON R"*+1 Moreover, we have

lgklloo I/ ™lloo
|@n,g | = n = n :

Hence, using Lebesgue’s dominated convergence theorem again, we get that the sequence
(¢n,g; Jk>1 w*-converges to qon,f@):f[”] for the w*-topology of L> (A4, X -+ X A4, ).
By Lemma 2.3 and (2.17) we deduce that

[AnAz,.., An+1(f[n]) € Bp(SP" x -+ x §P" §P)

equality (2.15). Inequality (2.16) follows from the fact that ||.||,, < ||.||,- |

Let1 < p < c0. Let A, K be selfadjoint operators in # with K € $7(#). A Lipschitz
function f:R — C is operator-Lipschitz on §7 () according to Theorem 1 in [19] and
hence f(A + K) — f(A) € §7(J). Moreover, we have the formula

f(A+K)— f(4) = [TATEA I (K),

see for instance Theorem 7.4 in [10].
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We will prove a higher order counterpart of this result, which will allow us to express
differences of multiple operator integrals of the form

[rAl ..... Aj-1,B,Aj,..., Ap—1 (f[n—l]) _FAI ,,,,, Aj-1,4,4;j,..., Anfl(f[n_l])](Kl’”_’Kn_l)

as a multiple operator integral associated to f["l, provided that @~V and £ are
bounded and B — A € §P(H).

In order to prove Proposition 2.8 below, we will need the following fact. Let B be
a (possibly unbounded) selfadjoint operator in #. By a well-known result of Weyl-Von
Neumann (see Theorem 38.1 in [7]), there exist an operator X € $P(H#), (b,), C R and
a Hilbertian basis (ey,), of # such that

oo

B = an (en,-)en + X.

n=1

For any i > 1, we let P; be the orthogonal projection onto Span{e;,1 <[/ <i}. P;isa
finite rank projection and (P;); converges strongly to the identity on J. Moreover, we
have

BP; — P;B = XP; — P; X

which converges to 0 in $7 () because X € SP(H).
A similar statement holds for unitary operators, and even for normal operators, see [2].

Note that the following result was proved in Lemma 3.10 in [14] in the case when f )
is continuous, whose proof consists in approximating f! in the particular case p = 2,
and then deducing the result for 1 < p < oo from this case. The formula in the general case
below is new. Its proof rests on algebraic properties of divided differences and multiple
operator integrals.

Proposition 2.8. Let 1 < p <oo,n € N,n > 2. Let Ay,...,Ap—1, A, B be selfadjoint
operators in ¥ such that B — A € §P(J). Let f be n-times differentiable on R such that
OV and £ are bounded. Then, for any K1, ..., K,_y € 8?(¥) andany1 < j <n
we have

[rA],...,Aj_l,B,Aj,...,A,,_l (f[n—l]) _ FA],...,Aj_l,A,Aj,...,An_1 (f[n—l])](Kl o Kn—l)
= [pAv At B Ay o (K K B = ALK K).

Proof. Let 1 < j < n. First note that the following holds: for any (xo, ..., Xx,) € R*T1,

FP(xo, .o x0) . (xj—1 — x;)

(2.18) (1] (1]
=f (X0s - s Xj—1, Xjg 1, o s Xp)— (X0s -+ s Xj2, Xj, X1y oy Xn).
Let k > 1. Define ¢y = £, and for any (xo, ..., x,) € R**1,

h2(xj—1, %) = (Xj—1 — X)) X[~k k] (X —1) X[k, k] (X))

Y1 (xos - xn) = P 0, X X X)X k] (1) Xk k] (X))
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and

Ya(xo. - xn) = fI 00, X2 X X X)) X)) X [kek] (7).
Then ¢1, Y1, Y2 € L¥(Aay X o= X Ag; y X AB X Aa X Aq; X --- X A4,), P2 € L=(Ap X
A4) and after multiplying equality (2.18) by x[—x x](Xj—1) X[~ k] (Xj) We obtain
(2.19) $162 = Y1 — Vo,

where 52 was defined in (2.5).
Assume firstthat2 < j <n —1.Let X, Ky,..., K,—1 € $7(J). Note that

[T24 (k] ® Xk~ ] (X) = pic(B)Xpi(A)
and
[T%4(¢2)] (X) = Bp(B)Xpi(A) — pi(B)Xpi(A)A,
where pr = x[—k k). Denote

and

Applying the operator [['g 4(-)] (K1, ..., K;j—1, X, Kj, ..., Ky,—1) to (2.19) gives, by
Lemma 2.4 and Lemma 2.6,
(220) [Tpa(f"™)](K1,.... Kj-1, Bpe(B)Xpi(A) — pr(B)Xpi(A)A, K, ..., Kn1)
= [Ta(f" DKy, ... Kjm1, pr(B)Xpe (DK}, Kyt Knoi)
— [Ta(S DK, Ko, pe(B)Xpi(A) K1, Ko ... Kny).

We let (P;); be an increasing sequence of finite rank projections converging strongly
to the identity and such that

2.21) BP;,— P;B —> 0 in 8”(J).
1—>00

As explained before the statement of the proposition, such sequence exists. We apply
equality (2.20) to X = P; and we obtain, for any i > 1,
(2.22) [Tpa(f"D](K..... Kjm1. Bp(B) Pi pi(A) = pi(B) Pi pr () A, K., K1)
= [Ta(/""D](K1. ... Kjo1, p(B)Pi pr( DK Kjr, - Knor)
—[Ca(ST DK Kz, pi(B) Py pr(A) K1, K Kn).
Note that for any K € §?(H#), KP; — K and P; K — K in §P(H), as i goes to co. This
implies that
Pk(B) Pipi(A)Kj — pi(B) pr(A)K;
and that
Pk(B)Pi pr (A)Kj—1 — pr(B)pr(A)K;—1
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as i goes to +o00. By the continuity of multiple operator integrals stated in Theorem 2.7,
this implies that the right-hand side of (2.22) converges in 7 () to

[Ta(f""H)(Kr..... Kj1. p(B) pr (A K; . Kjgr..... Kno1)
- [FA(f[n_I])](Kl, s Kjo, pr(B) pr (A Kj—1, K, ..., Ky—1).

Using the identity

Bpr(B) P; pr(A) — pr(B) Pi pxr(A) A
= px(B)(BP; — P; B) pi(A) + px(B) Pi(B — A) pr.(A),

we have, by (2.21), that

Bpi(B) Pi pr(A) — pi(B) Pi pi(A)A — pi(B)(B — A) pi(A)
in 8P (H), as i goes to +o00. Hence, the left-hand side of (2.22) converges in $? (#) to

[Tea(f"™)](K1,.... Kj—1, pe(B)(B — A)pi(A). K. ... Kn_1)
and we proved that

223)  [Taa(/"D](K1. ... Kjm1, pr(BY(B — A)pi(A). K. ... Kn1)

= [Ta (ST D](Kroo o Kjor pe(B) P (DK Kjgr o Kn)

—[LaC D] (Ko Ko pk(B) pre( K1 Ko K.
Finally, note that (px (B))k>1 and (pk(A))x>1 converge strongly to the identity as k goes
to 0o so px(B)pr(A)K; — K; and pr(B)pr(A)K;—1 — Kj_1 in §P(J), as k goes
to co. By assumption, B — A € §P(J), so we have pi(B)(B — A)px(A) > B — Aask
goes to co. Hence, taking the limit on k in (2.23) concludes the proof in the case when
2<j<n-—1.
In the case when j = 1, the right-hand side of (2.20) is replaced by
[T (/"] (e (B)Xpr (A K1 Ko ... Kn)
— (B X (D[Ta (ST D](Kr. .. Knr)

and when j = n, the right-hand side is replaced by
[Ta(f"D](Kr..... Ku1) pe(B)Xpi(4)
—[LaC D] (K. Kz, pi(B)Xpic(A) K1),
We then apply the same reasoning as before to obtain the result. ]

Remark 2.9. In the last proof, we used the projections py to approximate the (possibly)
unbounded operators A and B by bounded operators. In the case when A and B are
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bounded selfadjoint operators (without any assumption on the difference B — A), the same
proof shows that we have, forany 2 < j <n — 1 and any X € §?(H),

[pAv A B Ady Aoy (I (K Ky, BX — XA K, ... K1)
= [pAv A By oy (N (R Ky XK K s Kaet)
— [pAv A A Ay Aoy (I (KK XK, K Knet).

[pAv At B A A Ay (I (BX — XA, Ky, ..., Kne1)
= [P b By (FT (XKL K Kne)
_ X[FAI ..... A_i*l,A,Aj ..... Ap—q (h}(‘[}’[—l]):l(l(H,'“7 Kn—l)

and when j = n, we have

[FAl,...,Aj_l,B,A,Aj,...,Anfl (f[n])](Kla o Kn—l , BX — XA)
— [rA] ..... Aj-1,B,Aj,..., Anil(f[nil])](Klmu,Kn—l)X
= [pAve A Ayt (FET (KL Ko, XK ).

3. Differentiability of 1 — f(A +tK) — f(A) in $?(H)

3.1. Statements of the main results

In this section, we state our main results on $”-differentiability of functions of operators.

The following generalizes the analogous result of Theorem 3.7 (ii) in [ 14] from n-times
continuously differentiable f to n-times differentiable functions f, with a proof of a com-
pletely different nature. It is also the nth order analogue of Theorem 7.13 in [12].

Theorem 3.1. Let 1 < p < 00, let A and K be bounded selfadjoint operators in H with
K € 8P(H). Letn € N, n > 1, and let f be n-times differentiable on R such that £ is
bounded. Consider the function

gt eR> f(A+1tK)— f(A) € SP(H).

Then the function ¢ belongs to D™ (R, §? (#)) and for every integer 1 < k < n,

1
(31) F go(k)(l) — [FA+tK,A+tK,..‘,A+tK(f'[k])](K’ o, K), t eR.

In particular, for any 1 <k <n — 1, (p(k) is bounded on any bounded interval of R
and ™ is bounded on R.

We have the same result for unbounded operators, provided that the derivatives of f
are bounded, to ensure the boundedness of multiple operator integrals.
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Theorem 3.2. Let 1 < p < 00, and let A and K be selfadjoint operators in H with
K € 8P(H). Letn € N, n > 1, and let f be n-times differentiable on R such that f(’) is
bounded for all 1 < i < n. Consider the function

(3.2) it eR > f(A+1K)— f(A) € S2(J).

Then ¢ belongs to D™ (R, 8P (#)) and for every integer 1 < k < n, 9 is bounded on R
and given by

1
(33) E go(k)(l) — [FA+tK,A+tK,..‘,A+tK(f[k])](K’ o, K), t € R.

The following allows to express operator Taylor remainders as multiple operator integ-
rals and deduce an §”-estimate in the case when f has a bounded nth derivative. It
generalizes Theorem 3.8 in [14], where such representation and estimate were obtained
for n-times continuously differentiable functions f.

Proposition 3.3. Let1 < p <oo,n € N,n > 2, and let A and K be selfadjoint operators
in # with K € 8"P(JH). Let f be n-times differentiable on R such that f ) is bounded.
Assume that either A is bounded or f(’) is bounded for all 1 <i < n. Denote

n—1 dk
Rupas = A+ K) = fA) = Y 2 5o (F(A+iK)|
k=1 "

Then,
(34) Rupax.s =[[HHEAAGFINK, ... K),
and we have the inequality

(3.5) 1R poa k1 llp < ol f oo 1Ky

Finally, the result stated below is the $7-analogue of Theorem 4.1 in [5]. Note that
Theorem 3.7 (ii) in [14] establishes the existence of the nth derivative of ¢ under the
assumptions of Proposition 3.4. We prove here that ¢ is actually n-times continuously
differentiable.

Proposition 3.4. Let 1 < p < 00, and let A and K be selfadjoint operators in # with
K € 82(#). Let n € N and f € C"(R). Assume that either A is bounded or f@ is
bounded for all 1 <i < n. Consider the function

gt eR > f(A+1K)— f(A) € SP(J).

Then ¢ belongs to C"(R, §P (#)) and for every integer | <k <nandt € R,

1
F (p(k)([) — [I*A-HK,A-HK ..... A—HK(f[k])](Kv o K)
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3.2. Auxiliary lemmas
In this section, we will prove important technical lemmas that will be used in Section 3.3.

Lemma3.5. Let 1 < p <oo,n € N,n > 1. Let A € B(H) be a selfadjoint operator and
let Zy,...,2Z, € SP(H) be such that A and Z; commute, for every 1 <i < n. Let f be
n-times differentiable on R such that "™ is bounded. Then

[LAAG ... Z) =~ [P NZy - 2y,
n:

Proof. In this proof, we will use the notation introduced before the statement of The-
orem 2.7. For any k > 1, we let Y := ¢, 4, be the function defined as in the proof of
Theorem 2.7. For any bounded Borel function g, we let g be the function defined on R by
g(x) = g(x,...,x),x € R. Let us prove first that for any k > 1,

(DA AYONZ1s ... Zn) = Ui (A)Zy - Zy.

Fix k > 1. A is bounded so 6(A4) C R is bounded. g is continuous on the compact
I = conv(c(A)) so there exists a sequence (ij )j>1 of polynomial functions converging
uniformly to gx on /. For any j > 1, define Q;‘ = Pu,pk- It is easy to see that (Q}‘)jzl
converges uniformly to ¥ on o(4)"*!. According to (2.14), Q;.‘ = (R;.‘)["], where R}‘
is a polynomial function on R such that (R;.‘)(”) = ij. Hence Q}‘ is a (n + 1)-variable

polynomial function, and in particular, Q}‘ € Bor(R) ® --- ® Bor(R). Note that for an
elementary tensor g = g1 ® -+ ® gn+1 € Bor(R) ® --- ® Bor(R), we have

[C4AZ1,.... Zn) = g1(A)Z182(A) -+ gn(A) Zngns1(A)
= 81(A) -+ gn1(A)Zy - Zn = Z(A) Zy -~ Zy.

By linearity, this implies that for any j > 1,
(3:6) [T44(05|(Zy..... Zy) = OX(A)Z1 -+ Za.

For any j > 1, we let vJ’.c € Bor(R) be such that v]].C = ij on [ and v]’.‘ — gk uniformly
on R. Then

k
= el = klleoll Zullp I Znllpy > 0.

Note that (ijC )j>1 converges uniformly to $k ono(A). Hence, Q ;‘ (A) converges to &k (A)
in B(H) so that the right-hand side of (3.6) converges in $7 (H#) to V(A Z1 -+ Zy. By
taking the limit on j in (3.6) we get

3.7) [T AW)NZy. ... Zn) = V(A Z1 -+ Z,.
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Recall that, from the proof of Theorem 2.7, the sequence (Vg )x>1 w*-converges to f [n]
for the w*-topology of L®(q X -+ x A4) and that (T4 A (Y ))x=1 C By (SP(H)) is
bounded. Hence, by Lemma 2.3,

L8 AWN 2. Zn) o [T AN Z0)

weakly in $§7(J¢). On the other hand, (Jk)kzl is bounded and is pointwise convergent
to f["] = %f(") o) (1/7k (A))k>1 converges strongly to %f(”)(A) (see e.g. the proof of
Proposition 3.11in [5]). This implies that the right-hand side of (3.7) converges in 87 (H)
to %f(”)(A)Zl --+ Z,. We conclude the proof by taking the limit on k in (3.7), in the
weak topology of §7 (H). |

From now on, we will adopt the following notation: if X is an operator on #, then for
any integer k, we denote by (X)X the tuple consisting of k copies of X.

Lemma 3.6. Let1 < p <oo,n € N, n > 2. Let A, K be selfadjoint operators in H with
KeS8P(H)andlet X1,...,Xn—1 € SP(H). Let | be n-times differentiable on R such that
£ ™ is bounded. Assume that either A is bounded or f @V is bounded. Let 1 < j < n.
Define y:t € R — SP(HK) by

Y(1) = [PAHRL@ (pl=1h(x, . X,_1), teR.
Then we have, for any t € R,
V(1) —v(0)

J
j—k+1 n—j+k
(38) =1y [PATERYTELATIE GO0 Xk K Xt Xnt)
k=1

In particular,  is continuous in 0.

Proof. The assumption that either A is bounded or £~V is bounded ensures that f7~1]
is bounded on 6 (A + tK)’ x 6(A 4 tK)"~/ and hence, the function v is well-defined.
We have the following decomposition:

Jj

j—k+1 ( gyn—j+k—1 _ j—k ( gyn—j+k _ ~

() — v (0) = Z [F(A+t1<)1 (A7 (f[n 1]) _ T A+K) R () (f[n 1])]X,
k=1
where X = (X1,...,Xy—1). Forany 1 < k < j, we have, by Proposition 2.8,
[F(A+tK)f_k+1,(A)”_f+k_1 (fln=1y A+ K) 7k (4T tk (f[n—l])])'("
j—k+1 n—j+k
= ([PAHOTELATE Ih (X X e K X gegt o Xnn),

from which we deduce (3.8).
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For the continuity of v in 0, note that by Theorem 2.7 there exists a constant ¢, , > 0
such that

I (@) = v (Ol

J - o
<t Z “ [F(A-HK)J K+ ()i Tk (.f[”])](Xl» o X KX g Xn—l)“p
k=1

n—1

< 1tlj com 1f Plloo 1K N [T 1X: 1,

i=1
which converges to 0 as ¢ goes to 0. ]

Lemma 3.7. Let 1 < p < oo, n € N, n > 2. Let A be a selfadjoint operator in X and
let f be a n-times differentiable function on R such that £ is bounded. Assume that
either A is bounded or f "~V is bounded. Let Xo C (8P (H#))sa be a dense subset. Assume
that for any Ky € Xy, the map ¥o:t € R — 8P (JH) defined by

WO(I) — [FA-HKO ..... A+tKy (f[n_l])](KO, o KO), t e R,
is differentiable in 0 with
¥o(0) = n[T 44| (Ko, ... Ko).

Let K € §P(J) selfadjoint and define .t € R — SP(H) by

Proof. Let K € §7(J¢) be selfadjoint, and let us show that v is differentiable in 0 with

¥'(0) = n[TA-A(fIM)](K, ..., K).

Let € > 0 and choose K¢y € X such that || K — K|, < €. By assumption, v is differen-
tiable in 0 and

¥5(0) = n[T4A(fI")](Ko, ..., Ko).

Hence, there exists > 0 such that for any |¢| < u,
(3.9) [¥0(0) = 0 (0) — nt [T 44 (f M ](Ko..... Ko)lp < lt]e.
Define ¥: R — 87 (H) by

,(Z.(t) — [FA+ZK0 ..... A+tKy (f[n_l])](K, s K), t e R.
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By Lemma 3.6 we have

IZ([) _ J(O) =1 Z [I‘(A+tK0)n_k+l,(A)k (f[n])]((K)n_k, Ko, (K)k—l)

k=1
n
n—k+1 k
=1 Z [F(A+tKo) +1.(4) (f["])](Ko,...,Ko) ()
k=1

= Yo(t) — Yo(0) + te (1),

where

n

Ye(t) = Y (Ta ko ks (K)" 7, Ko, (K" = Ta ko k4 (Ko, ..., Ko)).
k=1

with T g, 4 = TATEKD" ™ TLAE (rln]y By Remark 2.2 and Theorem 2.7, there exists
a constant o > 0 depending only on p, 1, || f ™| s and | K|, such that forany 1 <k <n
and any ¢ € R,

T4, Kok (K)"™%, Ko, (K)E™1) = T kgt (Kos - - - Ko) | < e

so that we have the estimate ||/ (¢)|| < nae. By the estimate (3.9) and the triangle inequal-
ity, we deduce that for any |¢| < u,

(3.10) (@) = Y0 —ne[TH-A(f I ](Ko, ... Ko)|,
< [wo(@&) = ¥o(0) = ne[TAA(fIH](Ko, ... Ko)|, + Il Ve @)l
< |t|e(na + 1).

By Lemma 3.6 we have

V() = F(e) =1 Y [PAHELARKD" (el (g)nF K — Ko, (K)FTY).
k=1

Hence, by Remark 2.2 and Theorem 2.7, there exists a constant § > 0 depending only
on p,n, | f™]ls and | K|, such that, for any € R

(3.11) 9@ =T ©)lp < nBlele.
Let also y > 0 be a constant depending only on p, 7, || f ™| e and | K|, such that
(312) “[FA”A(f[n])](K,,K)— [FA ..... A(f[n])](K(LvKO)”p 5 yE.

Finally, by the triangle inequality and noting that ¥ (0) = ¥ (0) we have, by (3.11),
(3.10) and (3.12),

[v@ =¥ (© —nt[TA-A(FIH (K, ... K)|
p

<|tle(np +na +ny + 1),

for any |¢| < w. This concludes the proof. |
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Lemma 3.8. Let 1 < p < 00, let A € B(H) be a selfadjoint operator on H and let
K = K* € 82(H). Let n > 2 and let f be n-times differentiable on R such that ™ is
bounded. Let v:R — (B(H))sq be such that v(0) = A and v is differentiable in O for the
SP-norm with v'(0) = K. Define ¥, y: R — SP(¥) by

1//(t) — [FA'HK"“’A'HK(f[”_1])](1(, o K), t eR,

and 5

Y (1) = [PYO-rOfh (K, K), 1 eR.
If ¥ is differentiable in 0, then  is also differentiable in 0 and ¥’ (0) = ¥ (0).
Proof. Let e > 0. By assumption, there exists pt; > 0 such that for any |¢| < u1,

(3.13) 19 (t) — ¥ (0) =ty (), < |t]e.

Moreover, v(0) = A and v'(0) = K in $7(H#), so there exists » > 0 such that for any

1] < poa,
H (A +1K)—p()

e R

K” <e.
b4

We have, by Proposition 2.8,

Y (1) — ()
t

n
:lz [1-~(A+tK)”_"+1,(V(l‘))k_1 (f[n—ll) _ F(A+tK)"_k,(V(t))k (f[n—ll)](K’ . K)
t
k=1

N ALK ) ] nk (A+1K)—p() k—1
=3I (P ((kyr* e (),

Hence, by Remark 2.2 and Theorem 2.7, there exists a constant o > 0 depending only
on p,n, | f™] s and | K|, such that, for any ¢ € R,

(3.14) @) =T Ol < lt|nae.

Finally, by (3.13), (3.14) and the triangle inequality we have, noting that v (0) = v/(0),
1Y (@) = ©) =19 O)llp < 1Y (1) =FDlp + 19 (0) =¥ (0) = 13 (0) |, < (nex + D]t e,
for any |¢| < min(uq, K2), which proves the claim. |

The following lemma will allow us to reduce the question of differentiability of ¢
defined in (3.2) for an unbounded operator A to the question of differentiability for a
bounded operator.

Lemma 3.9. Let 1 < p < o0, and let A, K, Y be selfadjoint operators in K with K
bounded and Y € SP(H). Let n € N, n > 1, and let f be n-times differentiable on R
with f® bounded. Let m > 1 be an integer. We let E,, = Xi—mm(A), Am = AEn,
Kw = EnKEy, andY,, = E, YE,,. Then

(3.15) [[ATKmwsdtKin (£ (y,,, . V) = [[AmH K Amt Ko (DY (7, L Yy).



C. Coine 210

Proof. We first assume that Y € $2(#). Note that the projection E,, commutes with
A + Ky, so that for any g € Cp(R) we have, by equality (7.25) in [12],

Eng(A+ Kp) = g(Am + Ki) = g(A+ Kin) Ey.
From this equality, we easily deduce that for any ¢ € C,(R) ® --- ® Cp(R),
(3.16)  [[ATKme At K (9)] (Y, ..., V) = [[An T Koot K (53] (VL Vo).

By approximation, this implies that (3.16) holds true whenever ¢ belongs to the uniform
closure of C3(R) ® --- ® Cp(R), which contains in particular Co(R”*1).

Assume now that ¢ € Cp(R"*1). Let (gx)x>1 be a sequence of functions in Co(R)
satisfying the following two properties:

k
VkeN, 0<gr<1, and¥reR, g(r) — I.
Forany k > 1, ¢pgr € Co(R" 1), so it satisfies (3.16) and we have
(317) [FA+Km ..... A+Km(¢gk)](YMs e Ym):[FAm+Km ,,,,, Am+Km(¢gk)](Ym’ ’Ym)

By the Lebesgue dominated convergence theorem, the properties satisfied by the sequence
(gk)k>1 imply that (¢gx)x>1 converges to ¢ for the w*-topologies of L>([]7_; Aa+x,,)
and L>°([T_; A4,,+k,,)- Hence, by the w*-continuity of multiple operator integrals, we
obtain, by taking the limit on k in (3.17),

(3.18) [FA-I—Km ,,,,, A+Kp, (¢)] (Yms o Ym) — [FAm+Km ,,,,, Am+Knm (¢)] (Ym, o Ym)

For any k > 1, let ¢y = @n,q, be as defined in the proof of Theorem 2.7. Then
(@n,g.) k=1 C Cp(R"*1) and the sequence w*-converges to f (] for the w*-topologies
of L®([T/2, Aa+k,,) and L®°([T/_; A4,,+k,,)- Hence, ¢y satisfies (3.18) for any k > 1
and by the w*-continuity of multiple operator integrals, we get that ¢ satisfies (3.15).

In the case 1 < p < 0o, we approximate ¥ € §” (J¢) by a sequence (¥;);>1 of elements
of $2(J) N §7(H) and then pass to the limit in the equality

as j — oo, using the estimate in Theorem 2.7 and the fact that (¥;),, — Y as j — oo
in 87 (H). |

3.3. Proofs of the main results

We now turn to the proofs of the main results of this paper, stated in Subsection 3.1.

Proof of Theorem 3.1. The assumptions on f ensure, by Theorem 7.13 in [12], that ¢ is
differentiable on R and that for any ¢ € R,

¢/(t) — [FA+IK’A+tK(f[l])](K).
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Assume now that ¢ is (n — 1)-times differentiable on R with

(n—1)
(/En _1 1()t') — [FA-‘:-tK,...,A-i-tK(f[n—l])] (K, e, K)

‘We have to show that the function
Vite R — [FA+tK,...,A+tK(f[n—l])](K, o K)

is differentiable and that for any ¢ € R,

It is clear that we only have to prove the differentiability in 0, from which we can deduce
the differentiability on R. In this case, by Lemma 3.7, it is sufficient to prove the differen-
tiability for K belonging to a dense subset of ($7(#))s,. By Proposition 6.2 in [12], the
subspace X, defined by

Xo ={i[A, Y]+ Z with Y, Z € (87 (J))s and Z commutes with A} C ($7(H))sa

is dense in (87 (H))sa. Let K = i[A, Y] + Z € X and let us show that

is differentiable in 0 with

Yo(0) = n[DA-A(fIH](K, ..., K).

Let v(t) = e Y (A4 + t Z)e''Y . We have v(0) = A and v is $P-differentiable in 0 with
v'(0) = K. Hence, by Lemma 3.8, to prove the last formula, it is equivalent to prove that
Y:R — S§P(H) defined by

y(t) = [DYO-rO =k, K), teR,

We have, by Proposition 2.8,
n

VO=v©O _ 1 7 [DOO @R platl) | peOr @t K

t t
k=1

= k+1 ( g)k v(t)—A
n—k+ _ - _
= Z []"(V(t)) 2(4) (f["])]<(K)" k, t ,(K)k 1).
k=1
For1 <k <nandanyt # 0, let

() =[O gty (eyok MO A ey
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Since (v(t) — A)/t goes to K in §P(H) as t goes to 0, by the uniform boundedness of

Oy Lk (f"y € 8,(87), t € R, we deduce that if one of those limits exists, so
does the second one and we have

. . n—k k
lim Iy (1) = lim [OOLA ] (K. .. K).

Note that
[F(v(t))”’k“,(A)k (f["])](K, . K)
_ e—itY[F(A+tZ)"—k+1,(A)k (f[”])]((eitYKe_itY)”_k, eitYK, (K)k_l).

In fact, more generally, for any ¢ € R, any g € Bor(R"*!) such that TC®)" " *1.(¢ gy ¢
B, (8?) and any X € $P(H), we have

n—k+1 k
[F(V(t)) (4) (g)] (X,....X)
_ efnY[F(AJrzZ)n—kH,(A)k (g)]((enYXefnY)nfk’ etr x, (X)kfl)‘

Indeed, when g is an element of Bor(R) ® - - - ® Bor(R), this equality is a consequence of
the fact that for any 4 € Bor(R), h(e ™'Y (A + t Z)e''Y) = e7"*Y h(A + t Z)e''Y . Hence,
if p = 2, the general case follows from the w*-continuity of multiple operator integrals.
If 1 < p < oo, we approximate X € SP(J#) by elements of $2(JH) N SP (). Details are
left to the reader.

Now, when ¢ goes to 0, e Y — | in B(H) so that e!’Y Ke 1Y 'YK — K in
$P(J). Hence, by uniform boundedness of T4+ 2" 1. (rnly ¢ 8 (8P),1 € R,
we have that if one of those limits exists, so does the second one and then
lim e—izY[F(A+tZ)”*k“,(A)k (f[n])]((eitYKe—itY)n—k’eitYK’ (K)k—l)

t—0

= lim [T+ LW (K, K.

t—>0

Define

n
n—k+1 k
£(r) = Y [PUHD W (fh (kLK) reR.
k=1
We have shown that if £ has a limit in 0, then so does (J(t) — 1;(0)) /t, with the same

limit. Hence, in order to prove formula (3.1), we have to show that £ has a limit in 0 and
that

Forany 1 <k <n and any ¢ € R, let T (f) = DAHZ" LA (£l Since K =
i[A,Y]+ Z, we have, forany 1 <k <n,

Te(K,....K)=[Tr®](Z,....Z2)

+Y Y MOl Ky Ko [AY]L K Kay)

J=1 Ky=i[A)Y]
or Ky=2Z,
1<m=<n—1
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Hence,

n

£0) =) [k@)(Z,....2)

k=1

+3 Y i ONKi e Ko [AY L K K.

k=1j=1 K, =i[A,Y]
or Kjy=2,
1<m<n—1

By Lemma 3.6 and Lemma 3.5 we have

k=1

L e VUA+1z)- V@,
= Z .
(n—1)! t

By Lemma 3.4 (ii) in [13], this quantity converges as ¢ goes to 0 in $? () to

1
(n—1)

Since n! " (x,...,x) = f®™(x), the last expression is in turn, by Lemma 3.5, equal to

™Az

We will now show that for any 1 < j, k <n and for any Ky, ..., K,—y with K, = Z
ori[A,Z],1 <m<n-—1,

[Tk @] (K1, ..., Kj—1,[A, Y], K, ..., Kn—1)

goes to [[AA(fID](Ky, ..., Ki_1,[AY]Kj,...,Kn—1)in 8P (J) ast goes to 0.
Assume first that n —k 4+ 2 < j < n. Since A and Z are bounded operators, we have,
by Remark 2.9,

e (K1,.... Kj—1, [A, Y], K;, ..., Ky—1)
n—k+1 k—1 _
= [pAHD" O (T (K K1 YK K K)
n—k k— —
_ [F(A+tZ) 1,(4) l(f[n 1])](1(1,-~-,Kj—l,YKj—l,Kj,u.,Kn—l),

with a simple modification in the case j = n. By Lemma 3.6, this quantity converges, as ¢
goes to 0, to

[FA """ A(f["_l])](Kl,---,Kj—1,YKj,Kj+1,---,Kn—1)
— [ A AN (Ky e Ko, YK 1, K Kae),

which is in turn equal to [[4>A(fID(Ky, ..., K;—1,[A, Y], K}, ..., Kp—1).
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Assume now that j = n — k + 1. In this case, by Remark 2.9,
[PAH DL UKy, Koy, (A+12)Y — YA K. .., Kyet)
= [PUH DO eI (K K YK Kt Knet)
— [P (K K YK K K.
Since (A+tZ)Y —YA=[A,Y]|+tZY, we get
Tk (K1s .o, Kj—1, [A, Y], K)o, Kp1)
= [P O (K Ky YK Kt Knet)
— [PAH DL eI (Ky L K YK 21, K Ke)
—[TAHDTELDE DKy K, ZY K K).
The inequality
”t[l"(A+tZ)n—k+1,(A)k (f[”])](Kl, K1, ZY, K, Kn—l)”p
< Itlepanll £ P loollKillp - | Kn-tllp |1 ZY 1l
and the same reasoning as for the case n — k + 2 < j < n show that
[Ce@] (K1,..., Kj—1,[A, Y], K}, ..., Kn—1)
converges to [[4--A( fIPh] (K4, ..., Ki1.[AY]LK;,...,Kn1).
Finally, assume that 1 < j <n — k. By Remark 2.9,
[LAT 2 LA (K, Koy, [A+ 12, Y] K Knet)
= [P O (K K YK K Knet)
— [PAH DL I K YK 1, K Ke),s

with a simple modification in the case j = 1 as in Remark 2.9. Note that [A +(Z,Y] =
[A,Y] 4 ¢[Z, Y] and then reason as in the previous case to show that

[Cx] (K1, ..., Kj—1,[A, Y], K, ..., Kn—1)

goes to [[4--A( fIrh|(Ky, ..., K;_1,[AY],K;,...,K,—1) in $P(H) as t goes to 0.
Hence, we proved that
lim £(1) = n[0A-A(fh](z, ..., 2)

+33 > A A (KL Ko ALY ] K K )

k=1j=1 K, =i[A,Y]
or Kpy=2,
1<m=<n-—1

= n[[ Ak, ... K).

This proves that ¢ € D™ (R, $(#)) and that for any 1 < k < n, ¢® is given by (3.1).
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Finally, let / C R be a bounded interval and let 1 <i <n — 1. We let J C R be
a bounded interval such that, for any ¢ € I, 0(A 4+ tK) C J. There exists f; € C*'(R)
compactly supported such that f; = f on J. Then for any ¢ € I,

1 )
F (p(t)(t) — [FA+[K’A+tK’“"A+tK((f[l])ljnJrl)](K, L K)
_ [FA+IK,A+tK,...,A+tK(f.[i])](K K)
; ,..., K).
Hence, since fi(i) is bounded on R, go(i) is bounded on / by Theorem 2.7. Similarly,
since f™ is bounded on R, ¢ is bounded on R. |
We now turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. By Theorem 7.18 in [12], ¢ is differentiable on R and for any
t € R, ¢'(t) = [[AHEKAHK(f[I](K). Assume now that ¢ is (n — 1)-times differenti-
able on R with

M = [PAFKATK (=g K,

(n—1)!

We will prove that the function

(3.19) ¥'(0) = n[T4-A(fIM](K, ..., K).

For any m > 1, let E;, = x[—m,m)(A). Then A, := AE,, is bounded. Note that
(Em)m>1 converges strongly to the identity so for any K € $?(H), Ky := EmKEn,
converges to K in 87 (H) as m goes to oco. This implies that the set

Xo = {Km | K € (§7(H))sa,m = 1} C (8" (H))sa

is dense in ($? (#))s,- Hence, by Lemma 3.7, we only have to prove (3.19) for K element
of Xy. Let K = K, € X for some m > 1. By Lemma 3.9, we have, for any ¢ € R,

which is, by Theorem 3.1, differentiable in 0 with
¥'(0) = n[DAmAm (I (Kyp, .. Kon).
Using Lemma 3.9 again, we see that
¥/ (0) = n[TA=A( )] (K, ..., Km).

This proves that ¢ € D"(R, $7(#)) and that the derivatives of ¢ are given by (3.3).
Finally, the boundedness of the derivatives follows from Theorem 2.7. |
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Proof of Proposition 3.3. The existence of the derivatives % ( f(A+1tK )) | rmgs fOT k =
1,...,n — 1, are ensured by Theorem 3.1 and Theorem 3.2. The representation (3.4) can
be obtained by induction on n, using Theorem 2.7. See the proof of Theorem 4.1 (ii)
in [5] for more details. From this representation, we obtain the estimate (3.5) by applying
inequality (2.15). ]

Proof of Proposition 3.4. By Theorem 3.1, we know that ¢ is n-times differentiable and
that for any ¢ € R,

1
mgl,(n)(t) — [FA-H‘K,A-HK ..... A+tK(f[n])](K’ LK)

Hence, to prove the result, we have to show that the mapping
teR [FA+tK,A+tK,...,A+tK(f[n])](K’ L K) c SP(J()

is continuous. More generally, we will prove that for any X = (X1,..., Xp) € $P(H)",
the mapping

is continuous. Note that it is sufficient to prove that ¢y is continuous in 0. By Theorem 3.4
in [14], this holds true if £ e Cy(R). The rest of the proof consists in reducing to this
particular case.

Let (gx)k>1 be a sequence of C°(R) satisfying the following two properties:
k
VkeN, 0<gr<1, andVreR, g(r) —> I.

Let k > 1. Define
G =
=8k ®1® - ®1®gk
n—1 times
and write
Gr(x1.....xp) = hi(x1,x2)h2(Xp—1, Xn)

where i; = g ® 1 and i, = 1 ® gx. We have
[FA+tK,A+tK(h1)](X1) — g (A +1K)X,, [FA+ZK,A+tK(h2)](Xn) = X,gr(A+1K).
Hence, by Lemma 2.4, the function

ol y 1 €R [FA+IK,A+tK,.A.,A+tK(f[n]Gliz)](Xl, L Xy) € 8P(3)
satisfies, for any ¢t € R,
o x (1) = [DATRATE o ATK ()] (01 (A + 1K) X1, Xo. . X1, Xn 81 (A + 1K),

The sequence (gx)k>1 is bounded and pointwise convergent to 1, so (gx(A4))x>1 con-
verges strongly to the identity of # and hence gx(A)X; — X; and X, gx(4) — X»
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in 8P (H) as k — oo. Moreover, it follows from the arguments of the proof of Lemma 3.4
in [5] that A + tK — A resolvent strongly as ¢ — 0. This means that for any u € C(R),

u(A + tK) " u(A) strongly.

For any k > 1, g € Cp(R) so gr(A + tK) — gi(A) strongly as ¢ — 0, which implies
that gx (A + tK)X; — gx(A)X; and X, gx (A + tK) — X, gx(A) in P (H) ast — 0.
Let € > 0. By the above, there exists ko € N such that, for any k > ko,
[ X1 — gko(DK|p <€ and || Xy — Xugro(A)llp <€

and there exists 7o > 0 such that for any |¢| < £y,

8ko (A) X1 — gio (A + 1K) X1llp =€ and || Xpgr,(A) — Xngko(A + tK)|p < €.
Hence, for any |t| < t9,
X1 — gko (A+ 1K) X1llp < X1 — &ko (D) X1 llp + 1|84 (A) X1 — gito (A+1K) X1 | < 2,

and similarly,
[ Xn — Xngko(A + 1K) ||p < 2e.
By Remark 2.2 and Theorem 2.7, there exists a constant C > 0 depending only on p, n,
| £ ]lo0 and | K|, such that, for any |¢| < fo,
llox (1) — €01r¢l0,x(t)||p <Ce.

By the triangle inequality we get that for any |¢| < to,

lpx (1) — ex (Ol
< llgx (1) — ﬁazo,x(t)”p + ||‘P]?0,X(t) - 901?0,)((0)”17 + ||§01’¢lo,x(0) —ex(0)]p
<2Ce + ||§01’¢lo,x(t) - Wzo,x(o)”p

Hence, to prove the result, it suffices to prove that for any k > 1 and any X € $P(J)",
@y x 1s continuous in 0.

Fix k > 1 and let g = g. We will prove the continuity of ¢} , in 0 by induction on 7.
For n = 1, we have, for any (xg, x1) € R? with x¢ # x1,

(3:20) 700, 1) xo)glan) = EENENO TG

gxr1)(Ef)(xo) = g fHx) | (8H)x)gx1) = (8/)(x1)g(xo)

X0 — X1 X0 — X1
g(x1)(gH M (xo, x1) — (g (x1)gM (x0, x1).

By continuity, this equality holds true for any x¢, x; € R. Hence, by Lemma 2.4, we have,
forany ¢ € R and any X € $P(H),

1
@r.x (1)
_ [FA+tK,A+tK((gf)[l])](Xg(A 1 (K)) — [I-A+tK,A+zK(g[1])](X(gf)(A + tK)).
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As explained in the first part of the proof, the mappings
teR> Xg(A+1tK) e S8P(H) and t€R > X(gf)(A+tK) e §P(J)

are continuous in 0. Note that g/, (gf)’ € Co(R) so that, by Theorem 3.4 in [14] and
the uniform boundedness of the mappings ['ATK-A+K (g £)[1]) anq P A+HKA+IK ([1])
t € R, we get that

lim g (1) = [T44((g/)!)](Xg(4) = [T (gM)](X(2/)(4) = ¢ x (0).

so that <p,i x 18 continuous in 0.

Now, lqtn > 2 and assume that forany 1 <i <n —1landany X = (Xq,...,X;) €
SP(H)', ¢ x is continuous in 0. First, we show by induction the following formula: for

every (xg,...,x,) € R*T1,

G2 fI(xe, . xn)g(x0) = (€)M (X0, Xn) — fn)g™ (0, .-, Xn)

n—1
— Zg[l](xo, cox) gL x).
=1

For n = 2, first note that the computations made in (3.20) give

FM(xo, x1)g(x0) = (g/)M (x0, x1) — f(x1) gM(x0, x1)
so that

FP (xo, x1, x2)g(x0)

FM(xo, x2)g(x0) — fI(x1, x2)g(x1) N FM e, x2)g(x1) — £ (x1, x2)g(x0)
X0 — X1 X0 — X1

_ (&)W (x0, x2) — f(x2)gM(x0, x2) — (gF)MN(x1,x2) + f(x2)gM (x1, x2)
X0 — X1

— gM(xg, x1) M (x1, x2)
= (g/)P (x0, x1, x2) — f(x2)gP (xo, x1, x2) — g™ (xg, x1) F (31, x2),

which shows (3.21) forn = 2.
Assume now that we have (3.21) at the order n and show that it still holds true at the
order n + 1. We have

(3.22) S (g, Xnr1)g (x0)
_ FM(xo, x20 .o xng1)g(x0) — F(xrL LX) g (x1)
X0 — X1
+ FI G, ) g () — P xn1) g (x0)
X0 — X1
_ FM(xo, x20 o xng1)g(x0) — FI(x1L . xag1) g (x1)
X0 — X1

— g (xg, x1) I (x1, o Xngr).
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By assumption, we have

f["](xoyxz, o Xpp1)g(X0) — f[n](xl» e Xnp1)g(x1)

(3.23)
X0 — X1
_ (g (x0. x2,. ..o xng1) — (€)M (x1. o Xng1)
X0 — X1
g["](xO,Xz,-..,xn+1)—g["](xl,...,xn+1)
= f(xn+1)
Xo — X1
n—1 T(xo, x X _ ol
VX2, ey X] Xlyeoos XI21) arn
g 0o Xy o M) 28 e X)) ey, )
I=1 Yo~ X1
= (g H" M (xo, ... Xn41) — fnr) g™ (xo, .o, Xng1)
n—1
— > & M o, xS g )
I=1
We have
n—1

> e o, xp ) S ) + @M o xn) ST (e xag)
=1

n
=Y g xo. ) g xgn) + ¢ o x) fP (e )
j=2

n
= Zg[j](XOv cee ,xj)f[n+1_j](Xj, e ,Xn+1).
Jj=1

Hence, by (3.22) and (3.23), formula (3.21) is proved at the order n + 1. Note that the
previous computations make sense when x¢ # x; and by continuity, the formula also
holds true for xo = x;. Let (xo, ..., X;) € R*T1. We multiply formula (3.21) by g(x,)
and we get

FPGE(xo, .. xn) = i) (€)M (%0, -+, Xn) — (2 (xn) g™ (X0, - . . Xn)

n—1
—g(xn) Zg[l](xo, cax) PG ).
=1

Let X1,..., X, € $7(#). Applying the operator

to the previous equality gives, by Lemma 2.4 and Lemma 2.5,

n—1
PR x (@) = 1(1) — 2(1) = Y 3.(t)

=1
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where

1 (1) = [DATEATK (@ (I (X 1, L X1, Xng (A + 1K),
@2 (t) = [DATEATK (Il (X, Xpo, Xu(g)(A + 1K),

and forany 1 </ <n—1,
93.1() = ¢3,(1) 93, (1)
with
90;,10) — [TA'HK""’A'HK(g[l])](Xl, o Xl)

and
03, (t) = [DATE o ATK (I L Xy, Xag (A + 1K),

The functions g and g f belong to Cp(R) so the mappings
teR—> X,g(A+1tK)e SP(H) and t€R > X,(gf)(A+tK) e §P(H)

are continuous in 0. We have (g /)™, g™ e Co(R), so by Theorem 3.4 in [14], we get
that ¢ and ¢, are continuous in 0.

Now let 1 </ <n — 1. Since g(l) € Co(R), ‘/’é,l is continuous in 0. We have 1 <
n —1 <n—1, and by assumption, (p,’c’_yl is continuous in 0 for any ¥ € §? (J(’)l. Hence,
by composition with the continuous map t € R — X, g(A4 + 1K) € $7 (), we get that goi /
is continuous in 0, so that ¢3 ; also is. We hence proved that ¢ x is continuous in 0, which
concludes the proof of the proposition. ]

Funding. The author is supported by NSFC (11801573).

References

[1] Azamov, N.A., Carey, A.L., Dodds, P.G. and Sukochev, F. A: Operator integrals, spectral
shift, and spectral flow. Canad. J. Math. 61 (2009), no. 2, 241-261.

[2] Berg, I. D.: An extension of the Weyl-von Neumann theorem to normal operators. Trans. Amer.
Math. Soc. 160 (1971), 365-371.

[3] Birman, M. and Solomyak, M.: Double Stieltjes operator integrals. In Prob. Math. Phys.,
no. 1, Spectral theory and wave processes, 33—67 (Russian). Izdat. Leningrad Univ., Lenin-
grad, 1966.

[4] Birman, M. and Solomyak, M.: Double Stieltjes operator integrals III. In Prob. Math. Phys.,
no. 6, 27-53 (Russian). Izdat. Leningrad Univ., Leningrad, 1973.

[5] Coine, C., Le Merdy, C., Skripka, A. and Sukochev, F.: Higher order Sz-differentiability and
application to Koplienko trace formula. J. Funct. Anal. 276 (2019), no. 10, 3170-3204.

[6] Coine, C., Le Merdy, A. and Sukochev, F.: When do triple operator integrals take value in the
trace class? To appear in Ann. Inst. Fourier (Grenoble).

[7] Conway, J.: A course in operator theory Graduate Studies in Mathematics 21, American Math-
ematical Society, Providence, RI, 2000.



Higher order §7-differentiability of operator functions 221

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

[17]

(18]

(19]

(20]

(21]

Daletskii, Yu.L. and Krein, S.G.: Integration and differentiation of functions of Hermitian
operators and application to the theory of perturbations (Russian). Voronez. Gos. Univ. Trudy
Sem. Funkcional. Anal. 1956 (1956), no. 1, 81-105.

DeVore, R. A. and Lorentz, G. G.: Constructive approximation. Grundlehren der Mathemat-
ischen Wissenschaften 303. Springer, Berlin, 1993.

De Pagter, D., Sukochev, F. and Witvliet, H.: Double operator integrals. J. Funct. Anal. 192
(2002), no. 1, 52-111.

Farforovskaya, Yu. B.: An estimate of the norm of | f(B) — f(A)| for selfadjoint operators A
and B (Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56 (1976),
143-162.

Kissin, E., Potapov, D., Shulman, V. and Sukocheyv, F.: Operator smoothness in Schatten norms
for functions of several variables: Lipschitz conditions, differentiability and unbounded deriv-
ations. Proc. London Math. Soc. (3) 105 (2012), no. 4, 661-702.

Kissin, E. and Shulman, V.: Classes of operator-smooth functions. II. Operator-differentiable
functions. Integral Equations Operator Theory 49 (2004), no. 2, 165-210.

Le Merdy, C. and Skripka, A.: Higher order differentiability of operator functions in Schatten
norms. J. Inst. Math. Jussieu 19 (2020), no. 6, 1993-2016.

Pavlov, B.: Multidimensional operator integrals. In Problems of Math. Anal., No. 2: Linear
Operators and Operator Equations, 99-122 (Russian). Izdat. Leningrad. Univ., Leningrad,
1969.

Peller, V. V.: Hankel operators in the perturbation theory of unbounded selfadjoint operat-
ors. In Analysis and partial differential equations, 529-544. Lecture Notes in Pure and Appl.
Math. 122, Dekker, New York, 1990.

Peller, V. V.: Multiple operator integrals and higher operator derivatives. J. Funct. Anal. 233
(2006), no. 2, 515-544.

Potapov, D., Skripka, A. and Sukochev, F.: Spectral shift function of higher order. Invent.
Math. 193 (2013), no. 3, 501-538.

Potapov, D. and Sukocheyv, F.: Operator-Lipschitz functions in Schatten—von Neumann classes.
Acta Math. 207 (2011), no. 2, 375-389.

Skripka, A. and Tomskova, A.: Multilinear operator integrals. Theory and applications. Lec-
ture Notes in Mathematics 2250, Springer, Cham, 2019.

Stenkin, V. V.: Multiple operator integrals. (Russian). Izv. Vysh. Uchebn. Zaved. Matematika
(1977), no. 4, 102-115. English transl.: Soviet Math. (Iz. VUZ) 21 (1977), no. 4, 88-99.

Received March 10, 2020. Published online June 22, 2021.

Clément Coine

School of Mathematics and Statistics, Central South University, Changsha 410085,
People’s Republic of China;

clement.coinel @ gmail.com


mailto:clement.coine1@gmail.com

	1. Introduction
	2. Multiple operator integration
	2.1. Multiple operator integrals associated to selfadjoint operators
	2.2. Higher order perturbation formula

	3. Differentiability of t ↦f(A+tK) - f(A) in S^p(H)
	3.1. Statements of the main results
	3.2. Auxiliary lemmas
	3.3. Proofs of the main results

	References

