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The talented monoid of a directed graph
with applications to graph algebras

Luiz Gustavo Cordeiro, Daniel Gonçalves and Roozbeh Hazrat

Abstract. It is a conjecture that for the class of Leavitt path algebras associated to
finite directed graphs, their graded Grothendieck groupsKgr

0 are a complete invariant.
For a Leavitt path algebra Lk.E/, with coefficients in a field k, the monoid of the
positive cone ofKgr

0 .Lk.E// can be described completely in terms of the graphE. In
this note we further investigate the structure of this “talented monoid”, showing how
it captures intrinsic properties of the graph and hence the structure of its associated
Leavitt path algebras. More precisely, we show that the standard graph moves that
give graded Morita equivalence of Leavitt path algebras also preserve the associated
talented monoids and, for the class of strongly connected graphs, we show that the
notion of the period of a graph can be completely described via the talented monoid.
As an application, we give a finer characterisation of the purely infinite simple Leavitt
path algebras in terms of properties of the associated graph. We show that graded
isomorphisms of algebras preserve the period of the graphs, and obtain results giving
more evidence to support the graded classification conjecture.

1. Introduction

Let E be a row-finite graph, with vertices denoted by E0, edges by E1, and range and
source maps denoted by r and s respectively. The talented monoid of the graph E is
defined as

TE D
D
v.i/; v 2 E0; i 2 Z

ˇ̌̌
v.i/ D

X
e2s�1.v/

r.e/.i C 1/
E
;

where the relations are over vertices v which are not sinks (cf. Definition 2.8). The mon-
oid TE is equipped with a Z-action: n 2 Z acts on the generators by nv.i/ WD v.nC i/,
and is extended to all elements of TE linearly.

The talented monoid TE can be considered as a “time evolution model” of the mon-
oidME introduced by Ara–Moreno–Pardo [5] in relation with theK0-group of the Leavitt
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path algebra associated to E. For a directed graph E,

ME D

D
v 2 E0

ˇ̌̌
v D

X
e2s�1.v/

r.e/
E
;

where the relations are over vertices v which are not sinks. It was proved in [5] thatME is
isomorphic to the commutative monoid V.Lk.E// of finitely generated projective Lk.E/-
modules, with direct sum as addition (i.e, non-stable K-theory of Lk.E/), where Lk.E/

is the Leavitt path algebra of E with coefficients in a field k.
The first place the talented monoid TE appeared was in Lemma 9 of [15], where it was

disguised as a positive cone of the graded Grothendieck group Kgr
0 .Lk.E//, and it was

further investigated in [4]. In the form presented here, it was first introduced and studied
in [17], where it was shown that, contrary to ME , one can describe certain geometric
properties of a graph E, such as cycles with or without exits and line points, in terms of
the structure of TE . For instance, it was shown that a graph has Condition (L), i.e., any
cycle has an exit, if and only if the group Z acts freely on TE .

In this note, we further investigate the structure of the talented monoid TE and provide
more instances where this monoid can capture interesting properties of the graph E. As
a consequence, we obtain more evidence to the claim that TE is a complete invariant
for graded Morita equivalence of Leavitt path algebras (Conjecture 3.7). More precisely,
we show that the standard graph moves that give graded Morita equivalence of Leavitt
path algebras also preserve the associated talented monoids and, furthermore, those moves
which fail to give graded Morita equivalent Leavitt path algebras do not preserve the
associated talented monoids. We also study the notion of the period of a vertex, and that
of a graph, in relation to the talented monoid and the structure of Leavitt path algebras.

The period of a vertex is the greatest common divisor of the lengths of all closed paths
based at that vertex. For a strongly connected graph, all vertices have the same period,
which is called the period of the graph. In particular, a graph is called aperiodic if its
period is 1. The notion of period of a graph appears in the theory of Markov chains,
symbolic dynamics and automata theory. As an example, a shift of finite type associated
to an aperiodic graph is a mixing shift space (see [22], §4.5). In the setting of graph C �-
algebras, Pask and Rho consider the period of the graph in [23]. Using this notion, they
characterise a graphE for which the fixed point algebra under the gauge action of S1, i.e.,
C �.E/ , is a simple ring. We show in Section 6 that the period of a graph can be described
completely via its associated talented monoid. More accurately, we show in Theorem 6.2
that a finite graph E with no sources is strongly connected of period d if, and only if,

TE D

d�1M
iD0

iI;

where I is a simple order ideal with dI D I (i.e, there exists a simple order ideal of
period d ).

Using our results we give a fine description of purely infinite simple unital Leavitt path
algebras. Namely, we show that ifLk.E/ is purely infinite simple, then the ring of the zero
component Lk.E/0 can be written as a direct sum of d minimal two sided ideals, where d
is the period of the graph E associated to this algebra (Theorem 6.11). As an example,
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the following two graphs produce isomorphic purely infinite simple Leavitt path algebras,
however the period of the graph E is 1 whereas the period of the graph F is 2.

E W �
��
�XX dd F W �

��
�

��
XX �XX

One can check that Lk.E/0 is a simple ring whereas Lk.F /0 Š I ˚ J , where I and J
are minimal two sided ideals. Using the talented monoid, we show that although isomorph-
isms between Leavitt path algebras do not necessarily preserve the periods of the graphs,
the graded isomorphisms do, which is another evidence that the talented monoid can be a
complete invariant for graded Morita equivalence of graph algebras.

The paper is organised as follows: after this introduction we include a section of pre-
liminaries, where we recall the relevant concepts that will be needed through the paper. In
Section 3 we show that the talented monoid of a graph can be obtained as the type semig-
roup of the skew product of the graph groupoid with Z, and therefore we connect the
graded classification conjecture with the program of classification of Steinberg algebras
associated to Deaconu–Renault groupoids (via their graded type semigroup). Since Morita
equivalence of Leavitt path algebras is preserved under graph moves (for a large class of
graphs), we study the effect of these moves on the talented monoid in Section 4. Proceed-
ing, in Section 5 we describe extreme cycles in a graph in terms of the talented monoid
and, in Section 6, we use the talented monoid to describe the period of a strongly con-
nected graph. Furthermore, in Section 6, we describe the ideal generated by the “primary
colours” of a graph, and give a finer description of the class of unital, purely infinite,
simple Leavitt path algebras.

2. Preliminaries

In this section we briefly recall concepts and establish the notation which will be used
throughout the paper. We refer the reader to [1], [24] for the theory of graph algebras, [29]
for monoids, and [25], [10] for topological groupoids. In this work we will consider that
N D ¹0; 1; 2; : : :º.

2.1. Graphs

A directed graph is a tuple E D .E0; E1; s; r/, where E0 is a set of vertices, E1 a set of
edges, and s; r WE1 ! E0 are functions, called the source and range maps. A graph E is
said to be row-finite if for each vertex u 2 E0, there are at most finitely many edges in
s�1.u/. A vertex u for which s�1.u/ is infinite is called an infinite emitter, whereas u is
called a sink if s�1.u/ is empty, and is said to be a source if r�1.u/ is empty. If u 2 E0 is
not a sink, nor an infinite emitter, then it is called a regular vertex. We confine ourselves
to row-finite graphs, as the original graded classification conjecture is for finite graphs,
although we expect that the results of the paper can be extended to arbitrary graphs, i.e.,
graphs with infinite emitters.
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A path � in E is a nonempty sequence � D e1e2 : : : (finite or infinite) of edges
such that s.eiC1/ D r.ei / for all i . The length of a path is the number of terms in the
sequence, and is denoted as j�j. The source map extends to paths as s.e1e2 : : : / D s.e1/,
and the range map also extends to finite paths as r.e1 : : : en/ D r.en/. Every vertex of E
is regarded as a path of length 0, with itself as both its source and range.

A path c D e1e2 : : : en is called a closed path based at v if v D s.c/ D r.c/. A cycle
in E is a closed path c D e1e2 : : : en such that s.ei / 6D s.ej / for all i 6D j . An exit of a
cycle c D e1 : : : en consists of an edge f such that s.f / D s.ei / for some i but f ¤ ei .
The vertices s.e1/; : : : ; s.en/ are called the vertices of c, and the set of these vertices is
denoted by c0, that is, c0 D ¹s.e1/; : : : ; s.en/º. If f is an exit of the cycle c, then a return
of f to c is a path � such that s.�/D r.f / and r.�/ 2 c0. We say that a vertex v connects
to a cycle c if there exists a path � with s.�/ D v and r.�/ 2 c0.

We say that the graph E is strongly connected if for any two vertices u and v of E,
there exist finite paths c and d in E such that s.c/ D r.d/ D u and r.c/ D s.d/ D v.

For a vertex v of a finite graph, the period of v is defined as the greatest common
divisor of the lengths of all closed paths based on v. If v is not contained in any cycle we
set the period of v to be zero. It is known that for a finite strongly connected graph E, all
vertices have the same period which is defined to be the period of the graph and denoted
by d.E/ (see [23] and [22], §4.5).

We say that a vertex v flows to the vertex w, or that w is flowed into from v, if v D w
or if there is a path from v to w. A vertex v in a graph E has a bifurcation if js�1.v/j � 2.
A vertex v is a line point if there are no bifurcations nor cycles at any vertex w which is
flowed into from v.

We will distinguish several types of cycles. The aim is to characterise them in terms
of the talented monoid TE associated to the graph E.

If a cycle c does/does not have an exit, then we say c is cycle with/without exit. An
extreme cycle is a cycle which admits an exit, and such that every finite path which exits
from it admits a return to it. We say that a cycle is a cycle with no return exit if the cycle
has an exit, however no exit returns to the cycle.

More formally, an extreme cycle in E is a cycle c D e1e2 : : : en on E such that:

(i) c has at least one exit;

(ii) for every finite path � with s.�/ 2 c0, there exists another path � such that
s.�/ D r.�/ and r.�/ 2 c0.

A cycle with no return exit in E is a cycle c D e1e2 : : : en on E such that:

(i) c has at least one exit;

(ii) for every path � with s.�/ 2 c0 and r.�/ … c0, there is no path � such that
s.�/ D r.�/ and r.�/ 2 c0.

The graph E satisfies Condition (L) if every cycle in E has an exit. This means that
every cycle c has a vertex v with js�1.v/j � 2.
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Example 2.1. Consider the following graphs:

E W �
zz

:: F W �
��
�

��
XX �XX

G W �:: �oo ��
�XX

// �
zz

The graphs E and F are strongly connected with periods (see Section 6) 1 and 2,
respectively. We will show that although their associated Leavitt path algebras are iso-
morphic, they are not graded isomorphic. Notice that the graph G has two cycles without
exits and a cycle with no return exit.

On the opposite spectrum, the vertex v in the following graph is a line point:

� // � //

!!C
CC

CC
�
zz

� � � � //

##H
HH

HH
H

v
� // � // � // � � � �

�

=={{{{{

For row-finite graphsE and F , a graph morphism f WE! F consists of maps f 0WE0

! F 0 and f 1WE1! F 1, such that s.f 1.e// D f 0.s.e// and r.f 1.e// D f 0.r.e//, for
any edge e 2 E1. Furthermore, a morphism is complete if f 0 is injective and js�1.v/j D
js�1.f 0.v//j if v 2 E is not a sink.

2.2. Leavitt path algebras

To a directed graph, one can associate an algebra generated by vertices and edges, subject
to relations that “locally” on each vertex resemble those that were considered by William
Leavitt in his seminal papers in the 1960’s (see [1] for a comprehensive history). Such
algebras, when associated to strongly connected graphs which are not a single cycle, are
purely infinite simple, that is, each one-sided ideal contains an infinite idempotent.

Definition 2.2. For a row-finite graph E and a unital ring R, we define the Leavitt path
algebra of E, denoted by LR.E/, to be the algebra generated by the sets ¹v j v 2 E0º,
¹˛ j ˛ 2 E1º and ¹˛� j ˛ 2 E1º with the coefficients in R, subject to the relations

(1) vivj D ıij vi for every vi ; vj 2 E0;

(2) s.˛/˛ D ˛r.˛/ D ˛ and r.˛/˛� D ˛�s.˛/ D ˛� for all ˛ 2 E1;

(3) ˛�˛0 D ı˛˛0 r.˛/, for all ˛; ˛0 2 E1;

(4)
P
¹˛2E1;s.˛/Dvº ˛˛

� D v for every v 2 E0 for which s�1.v/ is nonempty.

In this note we only work with Leavitt path algebras with coefficients in a field k.
The elements ˛� for ˛ 2 E1 are called ghost edges. One can show that Lk.E/ is a ring
with identity if and only if the graph E is finite (otherwise, Lk.E/ is a ring with local
identities).
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Setting deg.v/D 0, for v 2 E0, deg.˛/D 1 and deg.˛�/D �1 for ˛ 2 E1, we obtain
a natural Z-grading on the free k-ring generated by ¹v; ˛; ˛� j v 2 E0; ˛ 2 E1º. Since
the relations in Definition 2.2 are all homogeneous, the ideal generated by these relations
is homogeneous and thus we have a natural Z-grading on Lk.E/. The zero homogeneous
component Lk.E/0 is an ultramatricial algebra (see the proof of Theorem 5.3 in [5]) and
thus if Lk.E/0 is unital it is a unit-regular ring (i.e., every x 2 Lk.E/0 may be written as
x D xux for some unit u in Lk.E/0).

Among the attractions of the theory of Leavitt path algebras is that one can describe
certain ring properties of these algebras based purely on the combinatorial properties of
the associated graphs. We recall here one of these facts that we will later revisit [2], p. 205.

Theorem 2.3. Let E be a finite graph and k be a field. The following are equivalent :

(1) Lk.E/ is purely infinite and simple ;

(2) the graphE satisfies condition (L), has a cycle, and every vertex connects to every
cycle.

Using the talented monoids, we will add more details to this characterisation by taking
into account the period of the graph as well (Theorem 6.11).

2.3. Monoids

Given a group � , a �-monoid consists of a monoid M equipped with an action of �
on M (by monoid automorphisms). We denote the action of ˛ 2 � on m 2 M by ˛m.
A monoid homomorphism �WM1 ! M2 between two �-monoids is called �-monoid
homomorphism if � respects the actions of � , i.e., �.˛a/ D ˛�.a/ for all a 2 M1. In
this note we are concerned with commutative monoids. Every commutative monoid M
is equipped with a natural preordering: y � x if y C z D x for some z 2 M . If M is a
�-monoid, this ordering is respected by the action of � . We sayM is conical if xC y D 0
implies that x D y D 0, where x; y 2M . We say M is cancellative if x1 C y D x2 C y
implies x1 D x2.

For a �-monoid M we distinguish two types of submonoids. An order ideal of M is
a submonoid I which is also an ideal with respect to the natural order of M , i.e., if x 2 I
and y � x, then y 2 I . A �-order ideal is an order ideal of M which is closed under the
action of � . Every �-order ideal I ofM is a �-monoid on its own right, and the restriction
of the natural order of M to I is the natural order of I .

Given x 2M , we denote by Œx� the order ideal generated by x, and by hxi the �-order
ideal generated by x. We have

Œx� D ¹y 2M j y � nx; for some n 2 Nº;(2.1)

hxi D
°
y 2M j y �

X
˛2�

k˛
˛x; for some k˛ 2 N

±
:

It is easy to see that for ˛ 2 � , we have ˛Œx� D Œ˛x�.
We adapt the notion of essential ideal in algebra to the setting of (ordered) �-monoids.

Definition 2.4. Let � be a group andM a �-monoid. A �-order ideal I ofM is essential
if I has nonzero intersection with every other nonzero �-order ideal of M .
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2.4. Graph monoid and the talented monoid

In this section we define the graph monoids that are the main interests of this paper.
Given a row-finite graph E, we denote by FE the free commutative monoid generated

by E0.

Definition 2.5. Let E be a row-finite graph. The graph monoid of E, denoted by ME , is
the commutative monoid generated by ¹v j v 2 E0º, subject to

v D
X

e2s�1.v/

r.e/

for every v 2 E0 that is not a sink.

The relations defining ME can be described more concretely as follows. First, define
a relation!1 on FE as follows: for

Pn
iD1 vi 2 F , and a regular vertex vj 2 E0, where

1 � j � n,
nX
iD1

vi !1

nX
i 6Dj

vi C
X

e2s�1.vj /

r.e/:

Then ME is the quotient of FE by the congruence generated by!1.
Let! be the smallest reflexive, transitive and additive relation on FE which contains

(is coarser than)!1. Note that! is not symmetric, so it is not a congruence.
The relation!may be regarded as follows: if xD

P
i xi is an element of FE , we may

“let a vertex xi flow” to construct the element y1 D
�P

j¤i xj
�
C
P
e2s�1.xi /

r.e/ with
x ! y1. Repeating this procedure and “letting a vertex of y1 flow”, we construct another
element y2 2 FE such that y1! y2. In other words, we simply apply the definition of!1

to vertices in the representation of elements of FE . By the definition of!, every element
y 2 FE such that x ! y may in fact be constructed from x by “letting its vertices flow
successively” in this manner. The following proposition thus becomes clear.

Proposition 2.6. Suppose that x D
P
i xi and y D

P
j yj are elements of FE , where

xi ; yj 2 E
0. If x ! y, then

(1) for every i , there exists j and a path from xi to yj I

(2) for every j , there exists i and a path from xi to yj .

By the proposition above, a vertex v flows to the vertex u if, and only if, either v D u,
or there exists x 2 FE such that u belongs to the decomposition of x in vertices, and such
that v ! x.

The following lemma is essential to the remainder of this paper, as it allows us to
translate the relations in the definition of ME in terms of the simpler relation! in FE .

Lemma 2.7 ([5], Lemmas 4.2 and 4.3). Let E be a row-finite graph.

(a) .The confluence lemma/ If a; b 2 FE n ¹0º, then a D b inME if and only if there
exists c 2 FE such that a ! c and b ! c. .Note that, in this case, a D b D c
in ME /:

(b) If a D a1 C a2 and a ! b in FE , then there exist b1; b2 2 FE such that b D
b1 C b2, a1 ! b1 and a2 ! b2.
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Now we define the talented monoid TE of E, which encodes the graded structure of a
Leavitt path algebra Lk.E/ as well.

Definition 2.8. Let E be a row-finite directed graph. The talented monoid of E, denoted
by TE , is the commutative monoid generated by ¹v.i/ j v 2 E0; i 2 Zº, subject to

v.i/ D
X

e2s�1.v/

r.e/.i C 1/

for every i 2 Z and every v 2 E0 that is not a sink. The additive group Z of integers
acts on TE via monoid automorphisms by shifting indices: for each n; i 2 Z and v 2 E0,
define nv.i/ D v.i C n/, which extends to an action of Z on TE . Throughout we will
denote elements v.0/ in TE by v.

The crucial ingredient for us is the action of Z on the monoid TE . The general idea
is that the monoid structure of TE along with the action of Z resemble the graded ring
structure of a Leavitt path algebra Lk.E/.

The talented monoid of a graph can also be seen as a special case of a graph monoid,
which we now describe. The covering graph of E is the graph E with vertex set E0 D
E0 � Z, and edge set E1 D E1 � Z. The range and source maps are given as

s.e; i/ D .s.e/; i/; r.e; i/ D .r.e/; i C 1/:

Note that the graph monoid ME has a natural Z-action by n.v; i/ D .v; i C n/. The fol-
lowing theorem allows us to use the confluence Lemma 2.7 for the talented monoid TE
by identifying it with ME .

Theorem 2.9 ([17], Lemma 3.2). The correspondence

TE �!ME

v.i/ 7�! .v; i/

induces a Z-monoid isomorphism.

Note that ME is the quotient of TE obtained by identifying elements of TE which
belong to the same Z-orbit. The respective quotient map,

TE �!ME(2.2)
v.i/ 7�! v;

is also called the forgetful homomorphism. It follows that any Z-monoid homomorphism
between TE and TF , for row-finite graphs E and F , induces a monoid homomorphism
between ME and MF .

By Proposition 5.7 in [4], TE is Z-monoid isomorphic to the monoid Vgr.Lk.E// of
isomorphism classes of graded finitely generated projective Lk.E/-modules, where k is
an arbitrary field. It follows that TE is conical (the same is true forME ). By Corollary 5.8
in [4], TE is also cancellative. These two facts may also be proved directly using the
confluence Lemma 2.7.
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We note that if �WE ! F is a complete graph homomorphism, then � extends to a
natural Z-monoid homomorphism �W TE ! TF . In the case of Leavitt path algebras, the
map � induces an injective ring homomorphism �WLk.E/! Lk.F /. However injectivity
does not follow in the setting of talented monoids, as the following example shows. For
the graphs E and F ,

v v

qqE W u

11

--

F W u

11

--w w

mm

the Z-monoid homomorphism �WTE ! TF is not injective, as in TE we have u 6D u.2/C
u.2/, whereas their images under � coincide.

Next we describe the talented monoid for a couple of graphs which will play a role
later (see Example 6.5).

Example 2.10. Consider the following graphs:

E W �v
yy

77 F W �
��
�

��
XX �XX

Let NŒ1=2� WD ¹m=2j W m 2 N; j 2 Zº be a monoid equipped with the action of Z
as follows: i .m=2j / D m=2iCj , where i 2 Z. Notice that in TE we have that v.i/ D
2v.i C 1/ for all i 2 Z. Then TE and NŒ1=2� are Z-isomorphic via a map taking v.i/
to 1=2i . So

TE Š NŒ1=2�; with 1a D
1

2
a:

Similarly,

TF Š NŒ1=2�˚NŒ1=2�; with 1.a; b/ D
�1
2
b; a

�
;

where the isomorphism is given by identifying .1; 0/ with the middle vertex of F and
.0; 1/ with any lateral vertex.

2.5. Groupoids

We follow the language of groupoids described in Section 3.3 of [9] and only recall here
a few essential notations/concepts. We need this notions to interpret the talented monoids
as a type semigroup of graph groupoids.

If � is a group, then G is called a �-graded groupoid if there is a functor cWG ! � . For
 2 � we set G WD c

�1./. In the topological setting, we call a groupoid G a �-graded
groupoid if the function cWG ! � is continuous with respect to the discrete topology on �;
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such a function c is called a cocycle on G . A compact open bisection U � G is graded if
U � G for some  2 � . Let G be a �-graded ample Hausdorff groupoid. Set

G a D ¹U j U is a compact open bisection of G º;

G h D ¹U j U is a graded compact open bisection of G º:

Then G a and G h are inverse semigroups under the multiplication U � V D UV and
inner inverse U � D U�1. Furthermore, the map cW G hn¹¿º ! �; U 7!  , if U � G ,
makes G h a graded inverse semigroup with G h D c

�1./,  2 � , as the graded compon-
ents. If from the outset we consider G as a trivially graded groupoid (i.e., � D ¹1º), then
G h D G a.

Given a commutative ring R with identity, the Steinberg R-algebra associated to an
ample groupoid G , and denoted by AR.G /, is the contracted semigroup algebra RG h,
modulo the ideal generated by B CD � B [D, where B;D; B [D 2 G h ,  2 � and
B \D D ¿ (Theorem 3.10 in [8], Definition 3.2 in [9]). This is the algebraic counterpart
of the groupoid C �-algebras systematically studied by Renault [10].

Returning to the graph context, letE D .E0;E1; r; s/ be a row-finite graph. The graph
groupoid associated with E can be defined in terms of a partially defined shift map on a
space and the Deaconu–Renault construction (see [7], [11], [26]). We recall the space
below, so that we can recall the graph groupoid. We denote by E1 the set of infinite paths
in E and by E� the set of finite paths in E. Set

X WD E1 [ ¹� 2 E� j r.�/ is a sinkº:

For � 2 E� define

Z.�/ D ¹�x j x 2 X; r.�/ D s.x/º � X:

The sets Z.�/ constitute a basis of compact open sets for a locally compact Hausdorff
topology on X D G

.0/
E . The graph groupoid associated with E is the groupoid

GE WD ¹.˛x; j˛j � jˇj; ˇx/ j ˛; ˇ 2 E
�; x 2 X; r.˛/ D r.ˇ/ D s.x/º:

We view each .x; k; y/ 2 GE as a morphism with range x and source y. The formulas

.x; k; y/.y; l; z/ D .x; k C l; z/ and .x; k; y/�1 D .y;�k; x/

define composition and inverse maps on GE making it a groupoid with unit space G
.0/
E D

¹.x;0;x/ j x 2Xº, which we will identify with the setX . The map cWGE !ZI .x; l;y/ 7!
l makes this groupoid a Z-graded groupoid. The Steinberg algebra of this groupoid coin-
cides with the Leavitt path algebra associated to the graph [10], Example 3.2.

3. Talented monoid, type semigroup and the classification of graph
algebras

In this short section we recall the graded classification conjecture related to the talented
monoid. It is conjectured that, for a row-finite graph E, the talented monoid of E along
with its Z-action is a complete graded Morita equivalence invariant for Leavitt and graph
C �-algebras.
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We first prove that TE can be obtained as the type semigroup of the skew product of
the graph groupoid with Z. This allows us to put our classification conjecture in a larger
framework of classifying certain ample groupoid algebras via their type semigroups. For
this we need to recall the type semigroup (or type monoid) of an inverse semigroup.

Let S be an inverse semigroup with 0 and denote by E.S/ the semilattice of idem-
potents of S . We say that x; y 2 S are orthogonal, written x ? y, if x�y D yx� D 0. A
Boolean inverse semigroup is an inverse semigroup S such that E.S/ is a Boolean ring (a
ring with x2 D x for all x), and every orthogonal pair x; y 2 S has a supremum, denoted
x ˚ y 2 S (see Definition 3.1.6 in [29] for the notion of Boolean inverse semigroups).
(These semigroups are called weakly Boolean in [21].)

Definition 3.1. Let S be a Boolean inverse semigroup. The type semigroup of S is the
commutative monoid Typ.S/ generated by symbols typ.x/, where x 2 E.S/, subject to
the relations

(1) typ.0/ D 0,

(2) typ.x/ D typ.y/, whenever there is s 2 S such that x D ss� and y D s�s,

(3) typ.x ˚ y/ D typ.x/C typ.y/, whenever x ? y.

One of the main examples of type semigroups for us are those coming from the
compact open bisections of an ample groupoid, namely G a which is a Boolean inverse
semigroup (see §2.5). One then defines the type semigroup of G , by Typ.G / WD Typ.G a/.
If the groupoid G is �-graded, then one can show that Typ.G a/ Š Typ.G h/.

The majority of interesting groupoids come with a grading. Thus one can form the
skew product of the groupoid with the grade group. The object of interest for us is the type
semigroup coming from skew-product groupoids. We recall the notion of skew product
groupoid below (see Definition 1.6 in [25]).

Definition 3.2. Let G be an ample Hausdorff groupoid, � a discrete group and cWG ! �

a cocycle. The skew-product of G by � is the groupoid G �c � such that .x; ˛/ and .y; ˇ/
are composable if x and y are composable and ˇ D ˛c.x/. The composition is then given
by
�
x; ˛

��
y; ˛c.x/

�
D .xy; ˛/ with the inverse .x; ˛/�1 D .x�1; ˛c.x//.

For a �-graded ample groupoid G , the skew-product G �c � is also ample, where
the topology is induced from the product topology on G � � . The unit space of G �c �

is G .0/ � � . The idempotents of .G �c �/a are precisely the compact-open subsets of
G .0/ � � . Since it is Hausdorff, these are the disjoint unions of sets of the form U � ˛,
where U is a compact-open subset of G .0/ and ˛ 2 � .

We now define the graded type semigroup of the �-graded ample groupoid G .

Definition 3.3. Let G be a �-graded ample groupoid. The graded type semigroup of G is
defined as Typgr.G / WD Typ.G �c �/. Thus Typgr.G / is generated by symbols typ.U � ˛/,
where U is a compact open set of G 0 and ˛ 2 � . There is an action of � on Typgr.G /

defined on generators by

ˇ typ.U � ˛/ D typ.U � ˇ˛/

and extended linearly to all elements.
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It appears that this monoid along with the action of the group � could encompass a
substantial amount of information about the groupoid and its associated groupoid algebras.
One of the most natural (and interesting) classes of étale groupoids are Deaconu–Renault
groupoids, which are naturally Z-graded. For reader’s convenience, we recall the defini-
tion of a Deaconu–Renault groupoid below.

Definition 3.4. Let .X; �/ be a pair consisting of a locally compact Hausdorff space X ,
and a local homeomorphism � WDom.�/ �! Im.�/ from an open set Dom.�/ � X to an
open set Im.�/ � X . Inductively define Dn WD Dom.�n/ D ��1.�n�1/. The Deaconu–
Renault groupoid associated with .X; �/ is defined as

G.X; �/ D
[

n;m2N

®
.x; n �m; y/ 2 Dn � ¹n �mº �Dm j �

n.x/ D �m.y/
¯
;

equipped the topology with basic open sets

Z.U; n;m; V / WD
®
.x; n �m; y/ W x 2 U; y 2 V; and �n.x/ D �m.y/

¯
;

indexed by quadruples .U;n;m;V /, where n;m 2N, U �Dn and V �Dm are open and
�njU and �mjV are homeomorphism.

It is thus plausible to consider the following line of enquiry.

Problem 3.5. Describe the class of Deaconu–Renault groupoids G such that the graded
type semigroup Typgr.G /, as a Z-monoid, is a complete invariant for Steinberg and group-
oid C �-algebras.

Recall that for a directed graph E, its associated graph groupoid GE is a prototype of
a Deaconu–Renault groupoid. Their Steinberg and groupoid C �-algebras become Leavitt
and graph C �-algebras, respectively: Ak.GE / Š Lk.E/ (see Example 3.2 in [10]) and
C �.GE / Š C

�.E/ see Proposition 4.1 in [20]).
We will show that Problem 3.5 for the graph groupoid is in fact the graded isomorph-

ism conjecture posed in [16]. Define the natural map,

�WTE �! Typgr.GE /

v.i/ 7�! typ
�
Z.v/ � i

�
on the generators and extend it to elements of TE . Here we directly show how this map
gives a well-defined homomorphism. In Lemma 3.6, using the machinery developed in [3],
we show that this map is indeed an isomorphism.

We need to show that if

v.i/ D
X

e2s�1.v/

r.e/.i C 1/;

then

(3.1) typ
�
Z.v/ � i

�
D

X
e2s�1.v/

typ
�
Z.r.e// � .i C 1/

�
:
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Suppose p 2 E� is a finite path. By Definition 3.2 of the skew-product, we have�
Z
�
r.p/; p

�
� .i C jpj/

��
Z
�
p; r.p/

�
� i
�
D
�
Z
�
r.p/; r.p/

�
� .i C jpj/

�
;�

Z
�
p; r.p/

�
� i
��
Z
�
r.p/; p

�
� .i C jpj/

�
D
�
Z
�
p; p

�
� i
�
:

Relation (2) in the Definition 3.1 of type semigroup now gives

(3.2) typ
�
Z
�
p; p

�
� i
�
D typ

�
Z
�
r.p/; r.p/

�
� .i C jpj/

�
:

In particular, for e 2 E1 we get

(3.3) typ
�
Z
�
e; e

�
� i
�
D typ

�
Z
�
r.e/; r.e/

�
� .i C 1/

�
:

Since
Z.v/ � i D

G
e2s�1.v/

Z.e; e/ � i;

by relation (3) of Definition 3.1 we have

typ
�
Z.v/ � i

�
D

X
e2s�1.v/

typ
�
Z.e; e/ � i

�
:

Replacing the right-hand side by using equalities (3.3), we obtain equation (3.1). This
shows that � is well-defined (and surjective). We use a recent result of Ara, Bosa, Pardo
and Sims on the type semigroup of (separated) graphs [3] to give a direct proof that this
map is an isomorphism.

Lemma 3.6. Let E be a row-finite graph. Then there is a Z-monoid isomorphism

TE �! Typgr.GE /;

v.i/ 7�! typ
�
Z.v/ � i

�
:

Proof. Consider the maps

TE
�1
�!ME

�2
�! Typ.GE /

�3
�! Typgr.GE /

v.i/ 7�! .v; i/ 7�! typ
�
Z.v; i/

�
7�! typ

�
Z.v/ � i

�
:

The map �1 is the monoid isomorphism of Theorem 2.9. The isomorphism of �2 follows
from Theorem 7.5 in [3]. Since GE Š G � Z (see Theorem 2.4 in [19]), the isomorph-
ism �3 follows. We check that the composition of these maps, call it �, is a Z-monoid
isomorphism. For v 2 E0 and i; n 2 Z we have

�.nv.i// D �.v.i C n// D typ
�
Z.v/ � .i C n/

�
D
n typ

�
Z.v/ � i

�
D
n�.v.i//;

and thus, by linearity, � is a Z-monoid isomorphism.

Before we relate the graded type semigroups to the graded classification conjecture,
we recall the notion of graded Morita equivalence.
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Let A be a �-graded unital ring. Denote by Gr A the category of graded right A-
modules and graded homomorphisms. For ˛ 2 � , let T˛WGrA ! GrA be the ˛-shift
auto-equivalence functor, i.e., T˛.M/DM.˛/ for any A-moduleM and T˛ is the identity
on morphisms. We say the graded rings A and B are graded Morita equivalent if there is
an equivalence functor �WGrA! GrB such that �T˛ D T˛�, for any ˛ 2 � .

In the setting of graph C �-algebras, recall that if E is a graph then there is a gauge
action E WT ! Aut.C �.E//, given by Ez .pv/ D pv and Ez .se/ D zse , for all v 2 E0

and e 2 E1. An isomorphism of C �-algebras is graded if it preserves the gauge action.
In this case, for graphs E and F , we write .C �.E/; E / Š .C �.F /; F /. The graph
C �-algebras C �.E/ and C �.F / are stably graded Morita equivalent if�

C �.E/˝K; E ˝ id
�
Š
�
C �.F /˝K; F ˝ id

�
:

Combining Lemma 3.6 with the fact that the talented monoid TE is the positive cone
of the graded Grothendieck group Kgr

0 .Lk.E//, the Problem 3.5 on the level of graph
groupoids reduces to the graded classification conjecture ([1], [6], [16]).

Conjecture 3.7. Let E and F be finite graphs, TE and TF the associated talented mon-
oids and k a field. Then the following are equivalent.

(1) There is a Z-monoid isomorphism TE ! TF .

(2) The C �-algebras C �.E/ and C �.F / are stably graded isomorphic.

(3) The Leavitt path algebras Lk.E/ and Lk.F / are graded Morita equivalent.

Furthermore, if the Z-monoid isomorphism �WTE ! TF preserves the order-unit, i.e.,

�
� X
u2E0

u
�
D

X
u2F 0

u;

then the algebras should be (graded/gauge invariant) isomorphic (see [16] for the notion
of an order unit in the graded setting).

4. Graph moves

We start this section with a general question: if E and F are row-finite graphs such that
the Leavitt path algebras Lk.E/ and Lk.F / are equivalent in some sense (isomorphic,
diagonally preserving isomorphic, graded isomorphic, Morita equivalent, etc.), how do
the geometry of E and F relate?

It turns out that in some cases this question has a very precise answer. Namely, given
appropriate conditions on the graphs at hand, it can be shown that the Morita equivalence
of Leavitt path algebras Lk.E/ and Lk.F / implies that E can be transformed into F
by means of some basic “graph moves”. For example, for simple Leavitt path algebras
of finite graphs with no sinks, in [2] the authors show that K0.LK.E// Š K0.LK.E//

and sgn.det.I � AtE // D sgn.det.I � AtF // implies that LK.E/ is Morita equivalent to
LK.F /, and, moreover, in this case E may be transformed into F by a sequence of basic
moves. Similar results, for non finite graphs, can be found in Theorem 8.12 of [13] and
Theorem 7.4 of [27]. In the context of graph C �-algebras, related results hold for Morita
equivalence. See [12] and [28] for further references.
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In this section we will consider, among standard graph moves, those which yield
graded Morita equivalent Leavitt path algebras, and prove that these moves also yield
Z-isomorphic talented monoids. This serves as further evidence to the claim that talen-
ted monoids are complete graded Morita equivalence invariant for Leavitt path algebras.
In §4.1 we will discuss other standard moves that give Morita equivalent Leavitt path
algebras, however would not give graded Morita equivalence.

Move (S): Source removal

Definition 4.1. Let E be a row-finite graph and v 2 E0 a source which is also a regular
vertex (i.e., not a sink). We say thatEnv – the graph obtained by restrictingE toE0 n ¹vº –
is formed by performing Move (S) on E.

Proposition 4.2. Let E be a row-finite graph. Let v 2 E0 be a source which is not a sink.
Then TEnv is Z-monoid isomorphic to TE .

Proof. Since the natural mapEnv!EI u 7! u, is a complete graph morphism, it induces
a Z-monoid homomorphism �W TEnv ! TE . Writing v D

P
e2s�1.v/ r.e/.1/, since all

vertices r.e/ 2 TEnv , the map � is surjective. On the other hand, if �.x/ D �.y/, by the
confluence Lemma 2.7, we have x! c and y! c in the graphE. Since the vertex v does
not appear in any presentation of x and y, we thus have x! c and y ! c in Env as well.
This shows that � is injective.

Move (I): In-splitting

Definition 4.3 ([1], Definition 6.3.20). Let E be a directed graph. For each v 2 E0 with
r�1.v/¤ 0, take a partition ¹E v1 ; : : : ;E

v
m.v/
º of r�1.v/. We form a new graphF as follows:

F 0 D ¹vi j v 2 E
0; 1 � i � m.v/º [ ¹v j r�1.v/ D ¿º;

F 1 D ¹ej j e 2 E
1; 1 � j � m.s.e//º [ ¹e j r�1.s.e// D ¿º;

with source and range maps defined as follows: if r�1.s.e// ¤ ¿, choose i such that
e 2 E r.e/i , and set

s.ej / D s.e/j ; r.ej / D r.e/i ; where 1 � j � m.s.e//:

If r�1.s.e//D ¿, set s.e/ as the original source of e, and r.e/D r.e/i , where i is chosen
so that e 2 E r.e/i .

The graph F is called an in-split ofE, and converselyE is called an in-amalgam of F .
We say that F is formed by performing Move (I) on E.

If a graphE has no sources nor sinks, and F is a graph obtained from fromE by taking
a series of in-splits and in-amalgam, then the associated Leavitt path algebras are graded
Morita equivalent (Proposition 15 in [15]; see also Proposition 6.3.22 in [1]). As talented
monoids are conjectured to be complete invariants for the (graded) Morita equivalence,
we prove here that they are preserved by in-splits and in-amalgams. This also shows how
the talented monoid can capture the internal structures of the graphs, without going into
the algebraic structures associated to the graphs.
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Theorem 4.4. Let E be a row-finite graph. If the graph E does not have any sinks and F
is an in-split of E, then the map

�WTE ! TF ;
kv 7! kvi ;

where 1 � i � m.v/ is chosen arbitrarily, is a Z-monoid isomorphism.

Proof. We will use the same notation as in Definition 4.3. To prove that � is well-defined,
it is sufficient to concentrate on the case k D 0.

First we prove that if r�1.v/ ¤ ¿, then vi D vj in TF for any 1 � i; j � m.v/. Let i
and j be fixed. On one hand, vi is not a sink in F , so we have

vi D
X®

1r.ek/ j s.ek/ D vi
¯
:

Note that s.ek/ D vi if and only if k D i and s.e/ D v, that is,

vi D
X®

1r.ei / j s.e/ D v
¯
;

and similarly for j . Now note that r.ei / does not depend on the index i : it is simply r.e/k ,
where k is chosen so that e 2 E v

k
. So we obtain

(4.1) r.ei / D r.ej / for all e with s.e/ D v,

and thus vi D vj .
So the map � is well-defined at the level of the free monoid FE . We need to prove that

it factors through TE . Again, let us concentrate on the case k D 0. Let v 2 E0. We need
to prove that �.v/ and

P
e2s�1.v/

1�.r.e// coincide. On one hand, we have

�.v/ D v1;

and on the other, X
e2s�1.v/

1�.r.e// D
X

e2s�1.v/

1r.e/j.e/;

where j.e/ is chosen so that e 2 E r.e/
j.e/

. By (4.1) we haveX
e2s�1.v/

1�.r.e// D
X

e2s�1.v/

1r.e1/:

The edges in F which have source equal to v1 are precisely those of the form e1, with
s.e/ D v. So in TF we have X

e2s�1.v/

1�.r.e// D v1;

just as we wanted.
Therefore the map � is well-defined. It is surjective because it follows from the previ-

ous argument that kvi D kv1, for all v. In a similar manner one can define the Z-monoid
homomorphism WTF ! TE I vi 7! v. Since and � are inverse of each other, the map �
is also injective.
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Example 4.5. The theorem above is not valid for graphs with sinks. Consider the graphs

E W � // � �oo F W � // � � �oo

so that F is the in-split of E obtained by splitting the two arrows with the same range.
Then ME D N and MF D N ˚ N. In particular, TE and TF are not isomorphic as Z-
monoids.

Move (O): Out-splitting

The notions dual to those of in-split and in-amalgam are called out-split and out-amalgam.
Given a graph E D .E0; E1; s; r/, the transpose graph is defined as E� D .E0; E1; r; s/.

Definition 4.6 ([1], Definition 6.3.23). A graph F is an out-split (out-amalgam) of a
graph E if F � is an in-split (in-amalgam) of E�, and we say that F is formed by perform-
ing Move (O) on E.

More specifically, we consider, for every vertex v 2 E0 with s�1.v/ ¤ 0, a partition
¹E 1v ; : : : ;E

m.v/
v º of s�1.v/. The out-split F is formed as follows:

F 0 D ¹vi j v 2 E0; 1 � i � m.v/º [ ¹v j s�1.v/ D ¿º;
F 1 D ¹ej j e 2 E1; 1 � j � m.r.e//º [ ¹e j s�1.r.e// D ¿º;

with source and range maps defined as follows: if s�1.r.e// ¤ ¿, choose i such that
e 2 E i

s.e/
, and set

s.ej / D s.e/i ; r.ej / D r.e/j ; where 1 � j � m.r.e//:

If s�1.r.e// D ¿, set r.e/ as the original range of e, and s.e/ D s.e/i , where i is chosen
so that e 2 E i

s.e/
.

Let E be a row finite graph and F an out-split of E. It is known that the Leavitt
path algebra Lk.E/ is graded isomorphic to Lk.F / ([2] and [1], Proposition 6.3.25).
Similarly the algebra Lk.E/ is graded isomorphic to Lk.F /. The isomorphism induces
an isomorphism between the K0-groups of these algebras and consequently between the
positive cones ME and MF . One can directly show that ME and MF are Z-monoid iso-
morphic. Theorem 2.9 now gives that TE and TF are Z-monoid isomorphic.

In the theorem below, we establish this fact directly on the level of talented monoids,
giving yet another evidence that this monoid directly captures the geometry of the graph,
without needing to go into the structure of the Leavitt path algebras.

Theorem 4.7. Let E be a row-finite graph. If a graph F is an out-split of the graph E as
in Definition 4.6, then the map

�WTE ! TF ;
kv 7!

´ Pm.v/
iD1

kvi if v is not a sink,
kv if v is a sink,

is a Z-monoid isomorphism.
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Proof. First we need to prove that � is well-defined. As usual, let us concentrate in the
case kD 0 in the definition of �. We need to verify that for every v 2E0 with s�1.v/¤¿,
the elements

m.v/X
iD1

vi and
X

e2s�1.v/

m.r.e//X
jD1

1r.e/j

are equal in TF . But note that r.e/ D r.ej /, and the elements ej of F are precisely the
edges of F which have one of the vi ’s as its source. So these two elements agree in TF .

We can construct the inverse of � explicitly. Define  WTF ! TE on the generators vi

for which v is not a sink as
 .vi / D

X
e2E iv

1r.e/;

and  .v/D v if v is a sink. We omit the proof that  is well-defined, as it uses essentially
the same argument as in the second sequence of equalities below.

If v is not a sink of E, then in TF we have

�. .vi // D
X
e2E iv

1�.r.e// D
X
e2E iv

m.r.e//X
jD1

1r.e/j D
X®

1r.ej / W s.ej / D vi
¯
D vi ;

so  is a right inverse of �. Conversely, in TE we have

 .�.v// D

m.v/X
iD1

 .vi / D

m.v/X
iD1

X
e2E iv

1r.e/ D
X

e2s�1.v/

1r.e/ D v;

where the third equality follows from the sets E iv being a partition of s�1.v/. Thus  is a
left inverse of �, which is therefore an isomorphism.

We are in a position to use our results to relate the talented monoid to symbolic dynam-
ics. We refer the reader to Section 7 of [22] for the notion of (strongly) shift equivalent
of matrices and the Krieger’s dimension group of a matrix (also see [18]). Recall also
that a finite graph is called essential if it does not have any sinks and sources [1], Defini-
tion 6.3.11.

Proposition 4.8. We have the following statements.

(1) Let E be an essential graph and F be a graph obtained from an in-splitting or
out-splitting of the graph E. Then TE is Z-monoid isomorphic to TF .

(2) For essential graphs E and F , if the adjacency matrices AE and AF are strongly
shift equivalent then TE is Z-monoid isomorphic to TF .

(3) For finite graphs E and F with no sinks, if TE is Z-monoid isomorphic to TF ,
then the adjacency matrices AE and AF are shift equivalent.

Proof. (1) This follows from Theorems 4.4 and 4.7.
(2) If AE is strongly shift equivalent to AF , a combination of the Williams the-

orem (Theorem 7.2.7 in [22]) and the decomposition theorem (Theorem 7.1.2 and Corol-
lary 7.1.5 in [22]) implies that the graph F can be obtained from E by a sequence of
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out-splittings, in-splittings and the inverses of these, namely, out-amalgamations, and in-
amalgamation. All the graphs which appear in this sequence are essential. Now a repeated
application of part (1) gives that TE is Z-monoid isomorphic to TF .

(3) Since TE is Z-monoid isomorphic to TF , their group completions are also iso-
morphic. Thus, there is an order preserving ZŒx; x�1�-module isomorphism K

gr
0 .Lk.E//

Šgr K
gr
0 .Lk.F //. But this latter isomorphism gives an isomorphism of Krieger’s dimen-

sion groups �E Š �F (Corollary 12 in [15]). Thus AE and AF are shift equivalent [18].

4.1. Other graph moves

In this section, we discuss other standard moves that give Morita equivalent Leavitt path
algebras, but which are not invariants for talented monoids, and therefore do not give
graded Morita equivalent Leavitt path algebras.

Definition 4.9 ([1], Definition 6.3.17). Let E D .E0; E1; r; s/ be a directed graph, and
let v 2 E0. Let v� and f be symbols not in E0 [ E1. We form the expansion graph Ev
from E at v as follows:

E0v D E
0
[ ¹v�º; E1v D E

1
[ ¹f º

sEv .e/ D

8<: v if e D f ,
v� if sE .e/ D v,
sE .e/ otherwise,

rEv .e/ D

²
v� if e D f ,
rE .e/ otherwise.

Conversely, if E and G are graphs, and there exists a vertex v of E for which Ev D G,
then E is called a contraction of G.

In Proposition 6.3.19 of [22], it was shown that for a finite graph E such that Lk.E/

is simple, the expansion of the graph E produces a Leavitt path algebra Morita equivalent
to Lk.E/. The following example shows that, in general, the graph expansion changes
the structure of the talented monoid and the corresponding Leavitt path algebras are not
graded Morita equivalent (despite being Morita equivalent).

Let

E W �v
%% yy

Ev W �v
��
�v�]]YY

The Leavitt path algebra Lk.E/ is simple, and thus by Proposition 6.3.19 in [22],
Lk.Ev/ is Morita equivalent to Lk.E/. Note that the period of the graph E is 1 whereas
the period of Ev is 2. In Theorem 6.2 we show that the talented monoids can determine
the period of the graphs. Thus TE is not Z-isomorphism to TEv , and consequentlyLk.Ev/

and Lk.E/ are not graded Morita equivalent.
However, there are cases where the talented monoid is invariant under the expansion

move. Let us give one example here. Let

E W �v
// � Ev W �v

// �v� // �
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It is easy to see that the monoids TE and TEv are both free monoids generated by
symbols v.i/. Thus TE Š TEv . By Theorem 2 in [16], we have Lk.E/ ŠM2.K/.0; 1/

and Lk.Ev/ ŠM3.K/.0; 1; 2/. These two algebras are graded Morita equivalent, corrob-
orating Conjecture 3.7.

We give one more example of an expansion of a graph that does not preserve the
talented monoid. We then show directly the associated Leavitt path algebras are not graded
Morita equivalent. Let

E W �v77 Ev W �v
��
�v�[[

It is now easy to use the definition of the talented monoids and directly calculate that
TE Š N, whereas TEv Š N ˚ N (see also Theorem 6.2). Indeed, Lk.E/ Š kŒx; x�1�,
with L.E/0 Š k, whereas, Lk.Ev/ ŠM2.kŒx2; x�2�/.0; 1/, with L.Ev/0 Š k˚ k (see
Theorem 2 in [16]).

Contrary to the case of graph C �-algebras, the behaviour of Leavitt path algebras
under the Cuntz splice remains unknown. It is even said that this is the most compelling
unresolved question in the subject of Leavitt path algebras, as it is a test case to the clas-
sification of purely infinite simple Leavitt path algebras via the K0-group (see [1], §7).
Consider the graph E2 and the graph E�2 obtained by performing a Cuntz splice to E2:

E2 �
$$ zz

E�2 �
��
MM

))
�ii ))��

�ii dd

The Leavitt path algebra of E2 is the Leavitt algebra L2, and the Leavitt path algebra
of E�2 is often denoted L2�. It is currently an open question as to whether L2 and L2�

are Morita equivalent. The following argument shows that L2 and L2� are not graded
Morita equivalent and their talented monoids are different. We note that both E2 and E�2
are strongly connected of period 1. In Theorem 6.2 we show that the talented monoids can
determine the period of the graphs. However this example shows that there are still some
other properties of the graphs that can possibly be captured by the talented monoids.

Suppose that TE2 is Z-isomorphic to TE�2 . By Proposition 4.8 (3), the adjacency ma-
trices of E2 and E�2 are shift equivalent. Now Exercise 7.4.4 in [22], for p.t/ D 1 � t ,
gives that det.1 � E2/ D det.1 � E�2 /. However, we know that these two determinants
are not the same (as the Cuntz splice is conceived to change the sign of the determinant
of the adjacency matrix). Thus TE2 and TE�2 are not Z-isomorphic and consequently their
Leavitt path algebras are not graded Morita equivalent.

5. Cycle properties of a graph and the talented monoid

Recall from Section 2 that we can distinguish several kinds of cycles in graphs. In Propos-
ition 4.2 of [17], the cycles with and without exits were described in the talented monoid:
In a graphE, there is a cycle with no exit if and only if there is an x 2 TE such that kx D x
for some k ¤ 0. On the other hand, there is cycle with an exit if and only if there is x 2 TE
such that kx < x, for some k 2 N.
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In this section we describe extreme cycles in a graph in terms of its associated talented
monoid.

Proposition 5.1. Let E be a row-finite graph and TE its talented monoid. Then the fol-
lowing are equivalent :

(1) The graph E has an extreme cycle.

(2) There exists x 2 TE such that kx < x for some k 2 N, and if 0¤ y �
P
i
rix for

certain ri 2 Z, then x �
P
j
sj y for certain sj 2 Z.

(3) There exists x 2 TE such that kx < x for some k 2N and hxi is a simple Z-order
ideal.

Proof. Since the Z-order ideal generated by an element x 2 TE consists of the elements y
such that y �

P
i
rix for ri 2 Z, and similarly for y, it follows that (2) and (3) are equi-

valent.
(1) ) (2). First assume that the graph E has an extreme cycle c D e1e2 : : : ek . Let

xi D s.ei /, for 1 � i � k and xkC1 D x1 D r.ek/ D s.e1/.
Set x D x1 D x1.0/. In TE , we have

x D x1.0/ � x2.1/ � � � � � xk.k � 1/ � x1.k/;

because there is an edge from xi to xiC1. We obtain x � kx. Since c has an exit then one
of these inequalities is strict, so x > kx. It remains to prove that hxi is a simple Z-order
ideal.

Suppose that 0 ¤ y �
P
i
rix. We have y C z D

P
i
rix in TE Š ME for some z.

The confluence Lemma 2.7 implies that there exists c D
P
cj .nc;j / in FE such thatP

i
rix ! c and y C z ! c. Here, cj 2 E0 and nc;j 2 Z.
Let us expand y D

P
yi .ny;i /, where yi 2 E0 and ny;i 2 Z. The vertex y1.ny;1/ ofE

is in the representation of y C z, as an element of FE . By Proposition 2.6 (1), y1.ny;1/
flows to some cj .nc;j / in E, which implies that y1 flows to cj . Up to reordering, we may
assume that y1 flows to c1. But then, since

P
i
rix ! c, item (2) of that same proposition

also implies that the vertex x flows to c1.
By the paragraph after Proposition 2.6, we can find paths � and �, starting at y1 and

at x, respectively, such that r.�/ D r.�/ D c1.
Since c is an extreme cycle, then there exists a path ˇ from c1 to some vertex of c,

which we can assume to be x (extending ˇ along c if necessary).
We now construct a path from y1.ny;1/ to c1.ny;1 C j�j/. Namely, if �D �1 : : : �j�j,

where �j 2 E1, we have the path

y1.ny;1/
.�1;ny;1/
������! r.�1/.ny;1 C 1/

.�2;ny;1C1/
��������! � � �

� � �
.�j�j;ny;1Cj�j�1/

������������! r.�j�j/.ny;1 C j�j/ D c1.ny;1 C j�j/:

Similarly, there is a path from c1.ny;1 C j�j/ to x.ny;1 C j�j C jˇj/. So we obtain a path
from y1.ny;1/ to x.p/, for appropriate p. So inME Š TE we obtain y1.ny;1/ � x.p/, or
equivalently �py1.ny;1/ � x.0/. We conclude that x � �py:
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(2)) (1). Let x be as in statement (2).

Claim. No sink appears in any representation of x.

Suppose otherwise, that s is a sink and x D s.i/ C y for some y 2 TE and some
i 2 Z. Then s.i/ � x and by assumption we obtain x C t D

P
j s.pj / for some t 2 TE

and pj 2 Z. All the vertices s.pj / are sinks in E, so they “do not flow”. This is to say
that, by Proposition 2.6, if c 2 FE and

P
j s.pj /! c then c D

P
j s.pj / in FE .

By the confluence Lemma 2.7, we have x C t !
P
j s.pj /. This implies that one can

write x D
P
i s.qi / in TE for some subcollection ¹qiºi � ¹pj ºj . Since kx < x for some

k > 0, we can choose k large enough so that all the shifts in kx are larger than the shifts
in x. The inequality kx < x yields kxC Qt D x for some Qt , and the same argument implies
that kx C Qt ! x. However, let Q be the largest among all qi . Then s.Q C k/ appears
in the representation of kx C Qt , so Proposition 2.6 implies that s.Q C k/ flows to some
s.qi /, a contradiction.

Let us expand x D
P
i xi .nx;i /. By the claim above, none of the xi are sinks. Letting

these vertices flow, we can rewrite all of the terms xi .nx;i / “at the same level”, that is,
x D

P
xi .nx/ for a single number nx , so that kx D

P
xi .nx C k/.

By hypothesis, we have kx < x. By the confluence Lemma 2.7, we can find c; d 2 FE
such that x! cC d and kx! c. Again, cC d is simply another presentation of x in TE ,
so the vertices which appear in any presentation of c and d are not sinks, and we can let
them flow as much as necessary and assume all of them appear at the same level as well:
c D

P
ci .N / and d D

P
di .N /, where N > nx C 1. Note that, since we simply let the

vertices flow, the relations x ! c C d and kx ! c are still valid.
We have kx ! c. Let all of the vertices appearing in c flow to the level N C k, and

consider the element c of FE which we obtain in this manner.
From the relation x ! c C d , we obtain kx ! kc C kd , and all vertices of kc C kd

are at level N C k as well. This means that
kx ! kc C kd and kx ! c;

and all vertices of kc, kd and c are at the levelN C k. This is only possible if kcC kd D c,
that is, that kc C kd is what we obtain when we let c flow by k levels.

In TE we have x D c C d and kx D c < x. Thus d ¤ 0, so kd ¤ 0 as well. Thus the
number of vertices (of E) which appear in the presentations of kc C kd is strictly greater
than that of kc, which is the same as the one of c. Therefore, at least one of the vertices
c1.N / in the presentation of c will be the source of at least two distinct arrows (this is
called a bifurcation vertex).

Now, c flows to kc C kd , and c1.N C k/ is in the presentation of kc C kd . Proposi-
tion 2.6 implies that there is some c2.N / among the vertices of the representation c and a
path from c2.N / to c1.N C k/, and in particular there is a path from c2 to c1.

Repeat this procedure and construct a path

� � � c3 ! c2 ! c1

After some point, one of the cM will have already appeared as a previous cj , so in fact
we have constructed a cycle cW cM ! � � � ! cj . Take the smallest such M � 2 and asso-
ciated j < M . If cj D c1, then this cycle has an exit by our choice of c1. If not, then cj
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has paths pointing both to cM�1 and to cj�1, which are different by the minimality ofM .
In any case, this cycle has an exit.

As a matter of convenience, let us rewrite this cycle as cW v1 ! � � � ! vn D v1, where
the vi are vertices.

We just need to prove that c is extreme. Let ˛ be any path starting at v1. Then in TE
we have

0 ¤ r.˛/.N C j˛j/ � v1.N / � c � c C d D x

The hypotheses on x give us numbers kp such that

v1.N / � x �
X
p

r.˛/.N C j˛j C kp/

By the confluence Lemma 2.7, there are t; w 2 FE such that

v1.N /! t and
X
p

r.˛/.N C j˛j C kp/! t C w:

The presentation of t will necessarily have an element of the form vj .M/, because v1: : :vn
is a cycle and v1.N /! t . So this same term vj .M/ is also in the presentation of t C w.
Proposition 2.6 implies that there is p and a path from r.˛/.N C j˛j C kp/ to vj .M/. In
particular there is a path from r.˛/ back to the vertex vj .

This proves that c is extreme.

We can now use this description of extreme cycles to complement the results of [17].
First we recall how one can describe the cycles with no return exit.

Proposition 5.2. Let E be a row-finite graph and let TE be its talented monoid. Let k be
a field. Then the following are equivalent :

(1) The graph E has a cycle with no return exit.

(2) There exists an order ideal I of TE such that TE=I has a periodic element.

(3) The Leavitt path algebra Lk.E/ has a non-graded ideal.

Proof. This follows from Proposition 5.2 and its proof in [17].

We say that two extreme cycles of a graph are disjoint if there is no path connecting
a vertex from one cycle to a vertex of the other cycle. We say that two extreme cycles
are related if they are not disjoint. This defines an equivalence relation between extreme
cycles. By the “collection of disjoint extreme cycles” we mean the partition of the set of
extreme cycles under this relation. The collections of disjoint cycles with no exits and of
disjoint line points are regarded similarly. These will play a main role in Section 6. For
now, we determine these types of cycles in terms of the talented monoid.

Proposition 5.3. Let E be a row-finite graph.

(1) There is a one to one correspondence between disjoint extreme cycles and simple
Z-order ideals hxi of TE with kx < x, for some k > 0.
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(2) There is a one to one correspondence between disjoint cycles with no exits and
simple Z-order ideals hxi of TE with kx D x, for some k > 0.

(3) There is a one to one correspondence between disjoint line points and simple
Z-order ideals hxi of TE with x and ix not comparable for any i ¤ 0.

Proof. (1) Let c be an extreme cycle with v 2 c0. By the proof of .1/) .2/ in Propos-
ition 5.1, considering v 2 TE , we have kv < v and hvi is a simple Z-order ideal of TE .
Furthermore, if d represents a disjoint extreme cycle to c, choosing a vertexw on d, we get
a simple Z-order ideal hwi of TE . If hvi D hwi thenw �

P
ki
iv. Since v is on an extreme

cycle, a similar argument as in the proof of Proposition 5.1 shows thatw is connected to v,
which is not the case. On the other hand, if there is x 2 TE such that kx < x and hxi is a
simple Z-order ideal, then part (2) of Proposition 5.1 guarantees that there is an extreme
cycle in E. Putting these together, we have established a one-to one correspondence.

(2) Let C be the set of all cycles without exits in E and let A be the set of simple
Z-order ideals of the form hxi such that kx D x. For a cycle c 2 C , denote by cv a vertex
on the cycle (there is no need to fix this base vertex). Then hcvi is in the set A. One can
show that the map defined from C to A as above is bijective (see Lemma 5.6 in [17], in
particular the proof of Lemma 5.6 (iv)).

(3) is similar to the argument of (2) using Lemma 5.6 in [17].

Example 5.4. Consider the following two graphs:

� dd

E1 W �

@@��������

��>
>>

>>
>>

>

� dd

� dd

E2 W �

@@��������

��>
>>

>>
>>

>

�

Notice that ME1 Š ME2 , but E1 has two cycles with no exits, whereas E2 has only
one. This example indicates that in general one can not formulate a statement similar
to Proposition 5.3 for ME (in particular the example shows that the analogue Proposi-
tion 5.3 (2) and (3) do not hold for ME ).

In the next section we show that not only the collection of extreme cycles are preserved
by the talented monoid, but also the periods of the extreme cycles are also captured by this
invariant.

The proposition above, along with Corollary 5.1 in [17], makes it clear why the simple
row-finite Leavitt path algebras are either purely infinite simple or simple ultramatricial
algebras. For, suppose Lk.E/ is simple. Then we have TE D hxi and either kx < x, for
some k 2 Z, or they are not comparable (the case kx D x gives a non-simple but graded
simple algebra).
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6. Primary colours of Leavitt path algebras and the talented monoids

The theory of Leavitt path algebras includes well-known, but at the same time rather
distinct, classes of algebras. There are three “extreme cases” of graphs, which correspond
to the so-called “primary colours” of Leavitt path algebras as described in [1]. These are
line points, cycles without exits, and extreme cycles, which will be considered below.

Pask and Rho studied the notion of period of the graph in relation with the graph
C �-algebras in [23]. They showed that for a finite strongly connected graph E, the cov-
ering graph E admits a partition into d.E/ disjoint isomorphic connected subgraphs
E0; : : : ;Ed.E/�1. The notion of period also appears in both the theory of symbolic dynam-
ics and Markov chains, where it gives cyclic structures in the corresponding theories
(see [22]).

In this section we analyse how the period of a finite graph is encoded in its talented
monoid. Along the way, we also give a different proof that the period of all vertices of a
finite strongly connected graph are the same.

Given v 2 E0, recall from §2.3 the notion Œv� of the order ideal of TE generated by v.

Proposition 6.1. Let E be a strongly connected finite graph, v 2 E0 and let d be the
period of v. Then

(1) For all 0 < i < d , we have Œv� \ i Œv� D ¹0º.

(2) Œv� D d Œv�.

(3) Œv� is a simple order ideal.

(4) TE D Œv�˚ 1Œv�˚ � � � ˚ d�1Œv�.

Proof. Note that i Œv� D Œ iv� for all i 2 Z.
(1) Let i � 0. Suppose that jw 2 Œ iv�, where w 2 E0 and j 2 Z. Since E is strongly

connected, there is a path ˛ with v D s.˛/ and w D r.˛/. First, we prove that i � j C j˛j
is a multiple of d .

Take n 2 N such that jw � n. iv/. By the confluence Lemma 2.7, there exist a; b 2
FE such that jw ! a and n. iv/ ! a C b. Letting the vertices of a flow for as long
as necessary, and since E has no sources (as it is strongly connected), we can assume
that all vertices in the presentation of a are at the same “level”, i.e., that a D

P
k .
pak/

for some p sufficiently large, for certain vertices ak , and that v D ak for some k. Since
n. iv/! a C b, then by Proposition 2.6 (2) there is a path from iv to pv in E, which
corresponds to a cycle containing v of length p � i in E. Thus p � i is a multiple of d .

Similarly there is a path of length p � j from w to v, so concatenating with ˛ we
obtain a cycle of length p � j C j˛j containing v. So p � j C j˛j is also a multiple of d .
Therefore i � j C j˛j is a multiple of d .

Now we can prove that Œv� and i Œv� have trivial intersection for 0 < i < d . Suppose
that this was not the case, and let 0 ¤ x 2 Œv� \ Œiv�. Consider any term jw, with w a
vertex, which appears in a representation of x, and let ˛ be a path connecting v to w. As
we have seen above, 0 � j C j˛j and i � j C j˛j are both multiples of d , so i is also a
multiple of d , a contradiction. Therefore, Œv� \ i Œv� D ¹0º for 0 < i < d .

(2) To prove that Œv� D Œdv�, it suffices to show that v � k1.dv/ and dv � k2.v/ for
some k1; k2 > 0.
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Consider the power set P.E0/ ofE0, and let �WP.E0/! P.E0/ be given by �.A/D
r.s�1.A//.

Let ˛ be a cycle starting and ending at the vertex v. Consider the sequence

A0 D ¹vº; AnC1 D �
j˛j.An/; n � 0:

By our choice of ˛, we have A0 � A1, so recursively we obtain An � AnC1. Since P.E0/
is finite, the sequence ¹Anºn eventually stabilises. Consider k such that Ak D AkC1.

For every n, we may rewrite v in TE as

v D
X
w2An

!n.w/
�
j˛jnw

�
;

for certain strictly positive “ weights” !n > 0. This is to say that, up to shifts, the elements
of An are precisely the terms which appear in the representation of v at step j˛jn.

Using this at n D k and n D k C 1, we obtain

j˛jv D j˛j
� X
w2Ak

!k.w/
�
j˛jkw

��
D

X
w2Ak

!k.w/
�
j˛j.kC1/w

�
;

and
v D

X
w2AkC1

!kC1.w/
�
j˛j.kC1/w

�
:

Since Ak D AkC1 and all weights !k.w/ are strictly positive, we conclude that

v �
� X
w2Ak

!kC1.w/
� �
j˛jv

�
:

Since the period of v is d , by Bézout’s lemma, there exist cycles ˛1; : : : ; ˛n, all con-
taining v, and integers p1; : : : ; pn, such that

P
i pi j˛i j D d . For each i , the argument

above yields Ni such that v � Ni .j˛i jv/.
For pi > 0, we have v � Ni .j˛i jv/ � .N 2

i /.
2j˛i jv/ � � � � � .N

pi
i /.

pi j˛i jv/, so

(6.1) v �
� Y
pi>0

N
pi
i

��P
pi>0

pi j˛i j
�
v:

For pi < 0, we have �pi j˛i jv � v, so .�
P
pi<0

pi j˛i j/v � v, that is,

(6.2) v � .
P
pi<0

pi j˛i j/v:

Putting (6.1) and (6.2) together, we conclude that

v �
� Y
pi>0

N
pi
i

��
dv
�
:

This proves that Œv� � Œdv�. Similarly, we prove that dv � .
Q
pi<0

N
�pi
i /v, so Œdv� � Œv�.
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(3) Now we prove that Œv� is a simple order ideal. Let 0 ¤ x 2 Œv�. Since the graph E
is strongly connected, letting the vertices in a given representation of x flow as long as
necessary, we can find j large enough such that jv � x 2 Œv�, so that jv 2 Œv� \ Œjv�.
Items (1) and (2) imply that j is a multiple of d , so

Œv� D Œjv� � Œx� � Œv�:

(4) We can now prove that TE D
Ld�1
iD0

i Œv�: By items (1) and (3) and the fact that i Œv�
are simple order ideals, we have that Œv�; 1Œv�; : : : ; d�1Œv� constitute a direct summand,
and thus

Ld�1
iD0

i Œv� � TE .
On the other hand, given w 2 E0 and j 2 Z, consider a path ˛ from v to w, so that

j˛jw � v, i.e., jw � j�j˛jv. Then jw 2 i Œv�, where i is the remainder of the division of
j � j˛j by d , and hence

Ld�1
iD0

i Œv� D TE .

We are in a position to prove the main theorem of this section.

Theorem 6.2. Let E be a finite graph with no sources and d 2 N. The following are
equivalent :

(1) E is strongly connected and the period of all vertices of E is d .

(2) E is strongly connected and the period of at least one vertex of E is d .

(3) There exists a simple order ideal I of TE such that dI D I and

TE D I ˚
1I ˚ � � � ˚ d�1I:

Moreover, the decomposition of TE as in .3/ is unique up to permutation ; namely, for
every vertex v there is an i 2 N such that I D Œ iv�.

Proof. The implication (1) ) (2) is trivial, whereas (2) ) (3) follows from Proposi-
tion 6.1. We are left to prove the implication (3)) (1). Let I be as in (3). We start by
proving that E is strongly connected.

Claim 1. Up to a shift, I D Œw� for some vertex w.

Indeed, if x is a nonzero element of I then x D jwC Qx, for some vertexw and j 2 Z.
Since I is an order ideal, jw 2 I and since it is simple, I D Œjw�. Shifting I if necessary,
we obtain I D Œw�.

Claim 2. If I D Œw� and w is flowed into from the vertex u, then w also flows to u.

Since E is finite and has no sources, we can find a cycle u0 ! u1 ! � � � ! un D u0
such that u0 flows to u. It then suffices to prove that w flows to u0.

Since TE D
Ld�1
iD0

iI , let us rewrite u0 D
Pd�1
iD0 mi , where mi 2 Œiw�. Consider

numbers Ni such that mi � Ni
�
iw
�
. By the confluence Lemma 2.7 and Proposition 2.6,

we can find ci 2 FE such that mi ! ci in such a way that every vertex which appears
in the representation of ci can be flowed into from iw. In TE we have mi D ci , so u0 DP
i ci . Applying the confluence Lemma 2.7 again, we obtain b0; b1; : : : ; bd�1 such that

u0!
P
i bi and ci ! bi . Since u0 belongs to the cycle u0! � � � ! um�1! u0, then at

least one vertex of the form juj will appear in the representation of one of the bi .
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By construction, all the vertices which appear in the representation of ci can be flowed
into from iw. In particular, w flows to uj , just as we wanted.

Claim 3. If I D Œw� and w flows to u, then u also flows to w. Moreover, there exists i
such that I D Œ iu�.

Given u and w as in the hypothesis of Claim 3, the same argument as in the proof of
Claim 1 shows that, up to a shift, I D Œu�. Applying Claim 2, with the roles of w and u
exchanged, yields the desired claim.

We can now proceed to prove that E is strongly connected. Using Claim 1, assume
that I D Œw�. Let v be any vertex of E. Choose i such that Œv� \ iI ¤ ¿. This implies
that v and w flow to a common vertex u. By Claim 3, u also flows to w, so v flows to w
as well. By Claim 2, w also flows to v.

Now we need only to prove that any vertex of E has period d . Let v be any vertex
of E. Since E is strongly connected, we apply Claims 1 and 3 above to conclude that
I D Œv� (up to a shift).

By Proposition 6.1, we have TE D
Ld 0�1
iD0

iI , where d 0 is the period of v. But also
TE D

Ld�1
iD0

iI . This is only possible if d D d 0, the period of v.

Next we characterize strongly connected graphs that satisfy Condition (L) in terms
of the talented monoid. Note that a commutative semigroup S is a group if and only if
for every a; b 2 S , there exists x such that ax D b. If S D M n ¹0º for a (commutative)
monoid M , this is equivalent to say that x � y for all x; y 2 S . Graph monoids and
talented monoids have this property.

Theorem 6.3. Let E be a finite graph with no sources. The following are equivalent :

(1) E is strongly connected and has Condition (L).

(2) ME n ¹0º is a group.

(3) There exists an order ideal I of TE and d 2 N such that I n ¹0º is a group,
dI D I , and

TE D I ˚
1I ˚ � � � ˚ d�1I:

In this case, d is the period of E.

(4) Lk.E/ is purely infinite simple.

Remark 6.4. Condition (1) above can be seen to be equivalent to conditions (i)–(iii) of
Theorem 3.1.10 in [1] (using Lemma 2.9.6 of the same book), which along with Pro-
position 6.1.12 in [1] proves the equivalence between (1) and (2). The direct proof of
(1)” (2) that we give below uses only the geometry of the graph and the associated
monoids.

Proof of Theorem 6.3. (1) ) (2) Since the graph monoid ME is conical, ME n ¹0º is
a subsemigroup of it. We show that for any x; y 2 ME n ¹0º we have x � y, which in
turn implies that ME n ¹0º is a group. Let x D x1 C � � � C xn and y D y1 C � � � C ym in
ME n ¹0º, where xi and yj are vertices of E.
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Consider any cycle c D c1c2 : : : cp in E (where the ci are edges). Since E has condi-
tion (L), c has an exit edge, call it t . We can assume that s.c1/ D s.t/. Since E is strongly
connected then, in ME , any two vertices u; v satisfy u � v, so in particular

x1 � s.c1/ � r.c1/C r.t/ � x1 C x1:

Iterating the inequality above m times, we conclude, as desired, that

x � x1 � mx1 � y1 C � � � C ym D y:

(2)) (1) Assume thatME n ¹0º is a group. We first prove that the graphE is strongly
connected. Let u; v be vertices of E0. Since E has no sources and is finite, take a cycle
c D c1 : : : cn such that s.c1/ flows to v. Since ME n ¹0º is a group, all elements are
comparable and thus u � s.c1/. By the confluence Lemma 2.7, there exist x;y 2 FE such
that s.c1/! x and u! x C y. But the vertex s.c1/ belongs to the cycle c, so at least one
of the terms of x has to be a s.cj /, for some j 2 ¹1; : : : ; nº. Proposition 2.6 implies that u
flows to s.cj /, so it also flows to s.c1/ and to v.

Next we prove that E has condition (L). Suppose that this were not the case. Then, as
we already know thatE is strongly connected, all edges ofE lie on a single cycle c1 : : : cn,
where s.c1/ D r.cn/ and all the edges ci have distinct sources.

In ME , we have s.c1/ � 2s.c1/. By the confluence Lemma 2.7, there exist x; y 2 FE
such that 2s.c1/! x and s.c1/! xC y. However, s.c1/ only flows to s.c2/, which only
flows to s.c3/, etc., so xC y is actually a single vertex of E. But since 2s.c1/! x then x
has to a sum of at least two vertices in FE , a contradiction. Therefore,E has condition (L).

(2) ” (3) Note that if I is an order ideal of TE and I n ¹0º is a group then I
is simple. So the decomposition of item (3) – when it exists – is the same as the one in
Theorem 6.2 (3).

Since ME is the quotient of TE obtained by identifying elements and their shifts, the
forgetful homomorphism TE !ME (see (2.2)) restricts to an isomorphism I !ME . In
particular, I n ¹0º is a group if and only if ME n ¹0º is a group.

(4)” (2) follows from Proposition 6.1.12 in [1].

Example 6.5. Consider the following graphs from Example 2.10:

E W �
zz

:: F W �
��
�

��
XX �XX

Following the definition of graph monoids (Definition 2.5), it is easy to see thatME Š

MF . Since the group completion of these monoids are the Grothendieck groups, we obtain
K0.Lk.E// Š K0.Lk.F // Š 0. Since Lk.E/ and Lk.F / are purely infinite simple (The-
orem 2.3), the combination of Theorem 6.3.38 and Theorem 6.3.32 of [1] guarantees that
Lk.E/ Š Lk.F /. However the period of the graph E is 1 whereas the period of F is 2.

In contrast, graded isomorphism preserves the period of graphs: if �WLk.E/! Lk.F /

is a graded isomorphism, then

TE Š Vgr.Lk.E// Š Vgr.Lk.F // Š TF ;

and by Theorem 6.2 it follows that the period of E and F should be the same.
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As we mentioned in the beginning of the section, the “primary colours” of Leavitt path
algebras are those given by line points, by cycles without exit, and by extreme cycles of
graphs. These “colours” can be seen as the essential constituents of a Leavitt path algebra.
We will now consider these colours in the language of talented monoids.

Lemma 6.6. Suppose that the vertex v is a line point in a graph E. Then the Z-order
ideal hvi is isomorphic to

L
Z N as a Z-monoid, where Z acts on

L
Z N by right shifts

– i.e., as n.kj /j2Z D .kj�n/j2Z.

Proof. Let x 2 hvi, where hvi is the Z-order ideal of TE generated by v (see (2.1)). By
the confluence Lemma 2.7, x can be written as x D

P
j wj .nj /, where v flows to eachwj .

Since v is a line point, in TE we have

wj .nj / D wj�1.nj � 1/ D � � � D v.nj � d.nj //;

which shows that, in fact, x may be rewritten as x D
P
j kj v.j / for certain kj � 0.

Moreover, this representation of x is unique since v is a line point, as we will now prove.
Suppose that ˛ D

P
j kj v.j / and ˇ D

P
j k
0
j v.j / were two distinct representations

of x in FE . Since TE is cancellative, we can assume that kjk0j D 0 for all j . We prove
that all kj are equal to zero.

Suppose that this was not the case, and fix j such that kj ¤ 0. By the confluence
Lemma 2.7, there exists y 2 FE such that ˛; ˇ ! y. Write y D

P
i wi .ni /.

Since kj ¤ 0, then v.j / appears in the representation of ˛, so v.j / flows to some
wj .nj /. In particular, v flows towj , and since there is only one path from v towj it follows
that nj D j C d.wj ; v/. But then, wj .nj / must also be flowed into from some element in
the representation of ˇ, say v.j 0/. The same argument implies that nj D j 0 C d.wj ; v/.
Therefore j D j 0. Thus v.j / appears in the representation of ˇ, so k0j ¤ 0, a contradiction.

Therefore the representation x D
P
j kj v.j / is unique.

We may then unambiguously define �W hvi !
L

Z N as �.x/ D
�
kj .x/

�
j2Z

, where
the kj .x/ are chosen such that x D

P
j kj .x/v.j /, for each x 2 hvi. Clearly, � is an

isomorphism of modules, and it is readily checked to preserve the Z-actions.

The second “colour” of Leavitt path algebras is given by cycles without exits. The
following lemma is also easy to verify, with similar arguments as in the proof of the one
above (see also Example 2.4 in [17]).

Lemma 6.7. Suppose that the vertex v belongs to a cycle c D e1 : : : en without exit. Then
hvi is isomorphic to

Ln
iD1N as a Z-monoid, where Z acts on

L
Z N as 1.k1; : : : ; kn/ D

.kn; k1; : : : ; kn�1/ .i.e., cyclically by a right shift/.

Recall the notion of an essential ideal of a monoid (Definition 2.4).

Proposition 6.8. Let E be a row-finite graph and H � E0 a hereditary subset. Then the
Z-order ideal hH i generated by H in TE is essential if, and only if, H is cofinal in E, in
the sense that every vertex of E flows to some element of H .

Proof. First we assume that H is cofinal in E. In order to prove that hH i is essential, it
suffices to prove that for every v 2 E0 there exists x 2 hH i n ¹0º with x � v. Since H
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is cofinal, there exists a finite path ˛ with s.˛/ D v and r.˛/ 2 H . Then the element
x D j˛jr.˛/ belongs to hH i and x � v, as we wanted.

Conversely, suppose that hH i is essential. Given v 2 E0, consider any nonzero x 2
hvi \ hH i. Then x �

P
kj v.j / and x �

P
pjhj .nj / for certain kj ; pj � 0, hj 2H and

nj 2 Z. Repeated applications of the confluence Lemma 2.7 and Proposition 2.6 imply
that there exists some vertex u and some integer i such that x � u.i/ and such that both
v.j / and hj 0.nj 0/ flow to u.i/, for certain j; j 0 2 Z. In particular, v and hj 0 flow to u.
Since H is hereditary, u belongs to H . Thus v flows to some element of H . This proves
the cofinality of H .

Let E be a row-finite graph. We define Pl .E/ to be the set of line points of E; Pc.E/
the set of points which belong to cycles without exits; and Pec the set of points which
belong to extreme cycles of E. Let Plce.E/ be their union. The sets Pl .E/, Pc.E/ and
Pec.E/ are hereditary and pairwise disjoint, so the Z-order ideal hPlce.E/i of TE decom-
poses as a direct sum

hPlce.E/i D hPl .E/i ˚ hPc.E/i ˚ hPec.E/i:

We can decompose Pl .E/, Pc.E/ and Pec.E/ into “minimal” components. Define a
relation� onE0 as v � w if and only if v and w flow to a common vertex. The relation�
restricts to an equivalence relation on Plce.E/, and each of the sets Pl .E/, Pc.E/ and
Pec.E/ is �-invariant – i.e., if x � y in Plce.E/ then both x and y belong to the same of
the sets Pl .E/, Pc.E/ or Pec.E/. Equivalently on Plce.E/, we have x � y if and only if
hxi D hyi.

If A is a �-equivalence class of Plce.E/, we have hAi D hai for any a 2 A.

Lemma 6.9 ([1], Lemma 3.7.10). LetE be a row-finite graph for whichE0 is finite. Then
Plce.E/ is cofinal.

Applying Lemmas 6.9, 6.6, 6.7 and Proposition 6.8, we immediately conclude the
characterization of the talented monoid of the ideal generated by the “primary colours” of
a graph. This is an analogue of Theorem 3.7.9 in [1].

Theorem 6.10. Let E be a finite graph. Then the ideal Ilce WD hPlce.E/i is essential
in TE , and it decomposes as a Z-monoid as

Ilce D
�M
˛2�c

�M
Z

N
��
˚

�M
ˇ2�l

�M
#ˇ

N
��
˚

� M
2�ec

hc i
�
;

where

• �c is the set of �-equivalence classes contained in Pc.E/,

• �l is the set of �-equivalence classes contained in Pl .E/,

• �ec is the set of �-equivalence classes contained in Pec.E/, and for each  2 �ec ,
c is any representative of  .

Here Z acts on
L

Z N and on
L

#ˇ N by right shifts.
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We can now use our results to give a finer description of the class of unital purely
infinite simple Leavitt path algebras (compare with Theorem 2.3). These algebras are one
the most interesting classes of graph algebras, which include Cuntz and Leavitt algebras.
A characterisation of these algebras, in terms of the geometry of their associated graphs,
was one of the first to be obtained in the theory ([24], [1]). Roughly, purely infinite simple
algebras are associated to graphs which consists of a strongly connected component with
all other vertices connecting to this component. This motivates the study of strongly con-
nected graphs and algebraic objects attached to them.

The strongly connected component of a finite graph E without sinks is defined as the
graph obtained by repeatedly removing all regular sources of E until the graph has no
sources. A variant of one direction of the next theorem was obtained by Pask and Rho
(Theorem 6.11 in [23]) in the setting of graph C �-algebras.

Theorem 6.11. Let E be a finite graph without sinks, k a field and d 2 N. The following
are equivalent :

(1) Lk.E/ is purely infinite simple and Lk.E/0 is a direct sum of d minimal ideals.

(2) The graph E satisfies Condition (L), has a cycle, every vertex connects to every
cycle and the strongly connected component of E is of period d .

Proof. (1)) (2). Let Lk.E/ be purely infinite simple. Recall from Theorem 2.3 the geo-
metric properties of the graph E. Clearly E does not have isolated vertices. Let E 0 be the
strongly connected component ofE, obtained by repeatedly removing the sources fromE.
Clearly,E 0 satisfies the same properties asE, and so Lk.E

0/ is also purely infinite simple.
By repeated applications of Proposition 4.2, we have TE Š TE 0 as Z-monoids, so in

particular ME ŠME 0 . By Corollary 6.3, E 0 is strongly connected.
Since E has no sink, then by Theorem 4 in [16], Lk.E/ is strongly graded and thus by

Dade’s theorem ([16], §2.6) there is an equivalence of of categories

GrLk.E/ Š ModLk.E/0:

This implies a monoid isomorphism V.Lk.E/0/Š Vgr.Lk.E//. Putting these together we
have

TE 0 Š TE Š Vgr.Lk.E// Š V.Lk.E/0/:

Since Lk.E/0 is von Neumann unit-regular, there is a lattice isomorphism between the
ideals ofLk.E/0 and the order ideals of V.Lk.E/0/ ([14], Corollary 15.21). SinceLk.E/0
is the direct sum of d minimal ideals, this implies that V.Lk.E/0/ and thus TE 0 is also
the direct sum of d simple order ideals. By Theorem 6.2 this implies that the period of E 0

is d .
(2)) (1) Note that the strongly connected component E 0 of E contains all the cycles

of E and, since E is finite, every vertex in E 0 can be flowed into from some vertex in a
cycle. The conditions in (2) imply that E 0 is indeed strongly connected.

Similar to the first part, the periodicity of E 0 along with Theorem 6.2 implies that
V.Lk.E/0/ can be written as a sum of d simple order ideals and this implies that L.E/0
is a direct sum of d minimal ideals.
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Recall that a graph is called periodic if it is finite, strongly connected and has period 1.
Theorem 6.11 immediately gives the following corollary. A variant of this corollary was
obtained in the setting of graph C �-algebras by Pask and Rho (see [23], Theorem 6.2).

Corollary 6.12. Let E be a finite graph and k a field. Then the strongly connected com-
ponent of E is aperiodic if and only if Lk.E/ is purely infinite simple and Lk.E/0 is
simple.
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