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Nash blowups in prime characteristic

Daniel Duarte and Luis Núñez-Betancourt

Abstract. We initiate the study of Nash blowups in prime characteristic. First, we
show that a normal variety is non-singular if and only if its Nash blowup is an iso-
morphism, extending a theorem by A. Nobile. We also study higher Nash blowups,
as defined by T. Yasuda. Specifically, we give a characteristic-free proof of a higher
version of Nobile’s theorem for quotient varieties and hypersurfaces. We also prove
a weaker version for F -pure varieties.

1. Introduction

The Nash blowup is a natural modification of an algebraic variety that replaces singu-
lar points by limits of tangent spaces at non-singular points. The main open problem in
this topic is whether the iteration of the Nash blowup solves the singularities of the vari-
ety. This question is usually attributed to J. Nash [20] but it also appears in the work of
J. G. Semple [24]. If true, it would give a canonical way to resolve singularities. This
problem has been an object of intense study [2, 10, 12–15, 18, 20, 22, 26].

In order to be able to achieve a resolution of singularities using Nash blowups, it is
needed that this process always modifies a singular variety. One of the first results that
appeared in the theory of Nash blowups is Nobile’s theorem [20]. It states that, for equidi-
mensional varieties over C, the Nash blowup is an isomorphism if and only if the variety
is non-singular. In additon to being of central interest for the theory of Nash blowups,
Nobile’s theorem has other applications. For instance, it appears in the study of link the-
oretic characterization of smoothness [8].

Unfortunately, Nobile’s theorem fails over fields of prime characteristic. There are
examples of singular curves over fields of prime characteristic whose Nash blowup is
an isomorphism [20]. Since the main goal of this theory is to resolve singularities, these
examples discouraged a further study of Nash blowups in prime characteristic. One of the
main purposes of this paper is to provide evidence that the classical Nash blowup in prime
characteristic behaves as expected after adding mild hypotheses. In our first main result
we provide a version of Nobile’s theorem in prime characteristic for normal varieties.

Main Theorem (see Theorem 3.10). Let X be a normal irreducible variety. If Nash1.X/
Š X , then X is a non-singular variety.
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We stress that the hypothesis of X being normal is frequently assumed for many res-
ults in characteristic zero. For instance, M. Spivakovsky [26] showed that a sequence of
normalized Nash blowups eventually gives a resolution of singularities for surfaces. Our
main theorem implies that the original question regarding the Nash blowup and resolu-
tion of singularities can be reconsidered regardless of the characteristic by iterating the
normalized Nash blowup.

More recently, T. Yasuda [30] introduced a higher-order version of the Nash blowup
replacing tangent spaces by infinitesimal neighborhoods of order n. This is denoted by
Nashn.X/. The main goal for this generalization was to investigate whether Nashn.X/
would give a one-step resolution of singularities for n� 0. This question has been settled
recently for varieties over C: it has an affirmative answer for curves [30], but it is false in
general [29]. Higher versions of Nobile’s theorem have been proved for some families of
varieties [5, 9, 11].

Furthering the ideas in the proof of Main Theorem, we obtain a weaker version of
Nobile’s theorem for F -pure varieties and the higher Nash blowup. Specifically, we show
that if X is F -pure and Nashn.X/ Š X for some n � 1, then X is a strongly F -regular
variety (see Theorem 3.14). As a consequence, we obtain that, if Nash1.X/ŠX , thenX is
a non-singular variety (see Corollary 3.15). It is worth mentioning that strongly F -regular
varieties have mild singularities, for instance, they are normal and Cohen–Macaulay.

We also provide examples of higher-order versions of Nobile’s theorem that work in
prime characteristic. We show this property for quotient varieties (see Theorem 4.1), and
for normal hypersurfaces (see Theorem 4.2). We point out that the proofs of these two
results are characteristic-free.

We end this introduction with a few comments about the techniques used in this manu-
script. B. Teissier [27] pioneered the use of derivations to study the Nash blowup in
characteristic zero. We further this line of research by using rings of differential oper-
ators and modules of principal parts in any characteristic. These techniques played a key
role in the results presented in this paper. In particular, we use new developments in this
line focused on singularities [4] and homological methods [3, 7]. Furthermore, we com-
bine this approach with the use of Frobenius map to detect regularity [19] and certain type
of singularities [25] to prove our main theorem.

Convention: Throughout this paper, K denotes an algebraically closed field and all vari-
eties are assumed to be irreducible. In particular, X always denotes an irreducible variety
over K. We denote as N the set of non-negative integers and ZC the set of positive
integers. By a local K-algebra .R;m;K/, we mean a local ring R with maximal ideal m
such that K � R and the map K ,! R↠ R=m is an isomorphism.

2. Nash blowups and Nobile’s theorem

In this section we recall the definition of Nash blowups of algebraic varieties. Then we dis-
cuss a classical theorem of A. Nobile [20] in the theory of Nash blowups that characterizes
smoothness in terms of these blowups.

Let X be an irreducible algebraic variety of dimension d over an algebraically closed
field K of arbitrary characteristic. Let IX be the sheaf of ideals defining the diagonal� ,!
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X � X . Let P n
X WD OX�X=I

nC1
X be the sheaf of principal parts of order n of X . Denote

as Grass.nCdd /
.P n
X / the Grassmannian of locally free quotients of P n

X of rank
�
nCd
d

�
, and

let GnWGrass.nCdd /
.P n
X /! X be the structural morphism.

The Grassmannian satisfies the following universal property [17]. Let hW Y ! X be
a morphism. There is a bijective correspondence between locally free quotients of rank�
nCd
d

�
of h�P n

X and morphisms h0WY ! Grass.nCdd /
.P n
X / such that the following diagram

commutes:
Y //

h
%%

Grass� nCd
d

�.P n
X /

Gn

��
X:

Let U � X be the set of non-singular points of X , and let i W U ,! X the inclusion
morphism. Since i�P n

X D P n
X jU is locally free of rank

�
nCd
d

�
, we have that there exists a

morphism � WU ! Grass.nCdd /
.P n
X / by the universal property of Grassmannians.

Definition 2.1 ([20, 21, 30]). Let Nashn.X/ denote the closure of the image �.U / in
Grass.nCdd /

.P n
X / with its reduced scheme structure, and let �nWNashn.X/ ! X be the

restriction of Gn. We call .Nashn.X/; �n/ the Nash blowup of order n of X .

Remark 2.2. T. Yasuda defines the Nash blowup of order n of X using a different para-
meter space: the Hilbert scheme of points. Both definitions are equivalent [30], Proposi-
tion 1.8.

The following theorem is a classical result in the theory of the usual Nash blowup.

Theorem 2.3 (Nobile’s theorem [20]). If char.K/ D 0, then Nash1.X/ Š X if and only
if X is non-singular.

There are generalizations of this result for n � 1 in some cases [5,9,11]. On the other
hand, it is well known that this result is not true if char.K/ > 0. The classical counter-
example is given by the cusp. If X D V.x3 � y2/ and char.K/ D 2, then Nashn.X/ Š X
for all n� 1 (for nD 1 this was proved by A. Nobile [20], and for n� 1 by T. Yasuda [30]).

We are interested in studying analogs of Theorem 2.3 for n � 1 in arbitrary charac-
teristic. Because of the previous example, it is necessary to add extra conditions on the
variety if char.K/ > 0. We prove that Nobile’s theorem, or weaker versions of it, hold for
some families of varieties.

B. Teissier gave a different proof of Nobile’s theorem [27] using the module of differ-
entials and derivations in characteristic zero. A key part of his proof is that Nash1.X/ŠX
implies that the module of differentials have a free summand of maximal rank. We give an
extension to this fact to the module of principal parts following the same ideas. We give a
proof of this result to stress that it is characteristic-free.

Lemma 2.4 ([27]). Let X be a variety of dimension d . Assume that Nashn.X/ Š X is an
isomorphism. Then,

P n
OX;x jK

Š O

�
nCd
d

�
X;x ˚ Tx
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for each x 2 X , where P n
OX;x jK

is the module of principal parts of OX;x and Tx is its
torsion module.

Proof. Since Nashn.X/ Š X , we have the following commutative diagram:

X

Id
##

��1n // Nashn.X/
� � //

�n

��

Grass� nCd
d

�.P n
X /

Gn
ww

X:

By the universal property of the Grassmannian, Id�P n
X D P n

X has a locally free quotient
of rank

�
nCd
d

�
. Then, there exists a surjective morphism

P n
X

// L // 0 ;

where L is a locally free OX -module of rank
�
nCd
d

�
. Therefore, for each x 2 X the previ-

ous exact sequence induces

(2.1) P n
OX;x jK

// O

�
nCd
d

�
X;x

// 0 :

Since O
.nCdd /
X;x is free and rank.P n

OX;x jK
/ D

�
nCd
d

�
, we conclude that P n

OX;x jK
Š O

.nCdd /
X;x ˚

Tx ; where Tx is the torsion submodule of P n
OX;x jK

.

Remark 2.5. For n D 1 and char.K/ D 0, the existence of the surjective morphism (2.1)
is used by B. Teissier to prove that OX;x is a regular local ring, implying Nobile’s theorem.
The proof uses a result by O. Zariski regarding derivations which allows to apply induction
on the dimension of the ring. Unfortunately, it is not clear how to extend Zariski’s result
for higher-order differential operators.

3. Analogues of Nobile’s theorem for normal and F -pure varieties

We start by recalling definitions and properties regarding differential operators that are
used to prove our main result (Theorem 3.10).

Definition 3.1 ([16]). Let R be a K-algebra. The K-linear differential operators of R of
order n, Dn

RjK � HomK.R;R/, are defined inductively as follows:

(i) D0
RjK D HomK.R;R/:

(ii) Dn
RjK D ¹ı 2 HomK.R;R/ j ır � rı 2 D

n�1
RjK 8 r 2 Rº:

The ring of K-linear differential operators is defined by DRjK D
S
n2N D

n
RjK.

Definition 3.2. Let .R;m;K/ be a local K-algebra with K as a coefficient field. We define
the nth differential powers [6] of m by

mhni D
®
f 2 R j ı.f / 2 m for all ı 2 Dn�1

RjK

¯
for n 2 ZC. The differential core of R [4] is defined by pdiff.R/ D

T
n2ZC mhni.
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Proposition 3.3 ([4], Proposition 4.15). Let .R;m;K/ be a local K-algebra with K as a
coefficient field. Then,

dimK.R=m
hnC1i/ D free: rank.P n

RjK/;

where free: rank.M/ denotes the maximal rank of a free module that splits from M .that
is, free: rank.M/ D max¹t j 9� WM ! Rt surjectiveº/.

We now present a perfect pairing between differential operators and differential pow-
ers. This was implicitly introduced in previous work regarding convergence of differential
signature, see [4], Section 8.

Lemma 3.4. Let .R;m;K/ be a local K-algebra with K as a coefficient field, and let
JRjK D ¹ı 2 DRjK j ı.R/ � mº. There exists a nondegenerate K-bilinear function

. ; / W
�
Dn�1
RjK=

�
JRjK \D

n�1
RjK

��
�R=mhni ! R=m

defined by .ı; r/ 7! ı.r/.

Proof. By definition, Dn�1
RjKmhni � m and JRjKR � m. Then, . ; / is a well defined

function. Since K-linearity in each entry is given by the definition of . ; /, we focus on
non-degeneracy.

Let ı 2 Dn�1
RjK=

�
JRjK \D

n�1
RjK

�
be such that .ı; r/ D ı.r/ D 0 in R=m for every r 2

R=mhni: Then, ı.r/ 2m for every r 2 R, and so, ı 2 JRjK. We conclude that ı D 0. Sim-
ilarly, let r 2 R=mhni be such that.ı; r/D ı.r/D 0 inR=m for every ı 2Dn�1

RjK=
�
JRjK \

Dn�1
RjK

�
. Then, ı.r/ 2 m for every ı 2 Dn�1

RjK , and so, r 2 mhni: We conclude that . ; / is
nondegenerate.

We now introduce concepts in prime characteristic that play a role in the proof of our
main result (Theorem 3.10).

Definition 3.5. Let .R;m;K/ be a local K-algebra with K as a coefficient field. Suppose
that K has prime characteristic p. Suppose that R is a domain.
• The ring of pe-roots of R is defined by

R1=p
e

D ¹f 1=p
e

j f 2 Rº � frac.R/:

• We say that R is F -finite if R1=p
e

is finitely generated as an R-module.
• We say that R is F -pure if the inclusion R ,! R1=p

e
splits.

• We say that R is strongly F -regular if for every c 2 R n ¹0º there exists e 2 ZC such
that the inclusion Rc1=p

e
,! R1=p

e
splits.

We say that a variety X satisfies one of these properties if it is satisfied for every local
ring OX;x for every closed point x 2 X .

Definition 3.6. Let .R;m;K/ be a local K-algebra with K as a coefficient field. Suppose
that K has prime characteristic p, and that R is a domain.
• We say that an additive map �WR! R is p�e-linear if �.rp

e
f / D r�.f /:

• The set of all p�e-linear maps is denoted by CeR.
• The set of Cartier operators is defined by CR D

S
e2N CeR.
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Remark 3.7. There is a bijective correspondence between

‰ W CeR ! HomR.R
1=pe ; R/

given by ‰.�/.r1=p
e
/ D �.r/ for � 2 CeR.

The following characterization of differential operators in prime characteristic plays a
crucial role to relate them with Cartier operators. We stress that the following results holds
because we are assuming that K is an algebraically closed field, and so, a perfect field.

Theorem 3.8 ([31]). Let .R;m;K/ be a local K-domain with K as a coefficient field.
Then,

DRjK D
[
e2N

HomRp
e .R;R/:

Remark 3.9. There is a bijective correspondence between

‰ W HomRp
e .R;R/! HomR.R

1=pe ; R1=p
e

/

given by ‰.�/.r1=p
e
/ D .�.r//1=p

e
for � 2 HomRp

e .R;R/.

Now we are ready to prove that the Nash blow-up does properly modify normal vari-
eties.

Theorem 3.10. Let X be a normal variety over K of dimension d . Suppose that K has
prime characteristic p. If Nash1.X/ Š X , then X is a non-singular variety.

Proof. Let x be a point in X . Let R D OX;x and m be its maximal ideal. By Lemma 2.4,
we have that the module of principal parts P 1

RjK has a free summand of rank d C 1. As a
consequence, dimK.m=m

h2i/ D d . There exist elements x1; : : : ; xd 2 m and derivations
@1; : : : ; @d such that @i .xj / is a unit if and only if i D j by Lemma 3.4. Let AD .ai;j / be
the d � d -matrix whose .i; j /-entry is @i .xj /. We note that A is an invertible matrix, as it
is invertible modulo m. Let C D .ci;j / be the inverse of A. Let ıt D

Pd
iD1 ct;i@i . Then,

ıt .xj /D
Pd
iD1 ct;i@i .xj /D

Pd
iD1 ct;iai;j . Then, ıt .xj /D 1 if t D j and zero otherwise.

Let A D ¹˛ D .˛1; : : : ; ˛d / 2 Nd j ˛i < p 8iº: Let 1
˛Š
ı˛ D 1

˛1Š���˛d Š
ı
˛1
1 � � � ı

˛d
d

for
˛ 2 A . We point out that 1

˛i Š
in K is well defined, because ˛i < p for every i . Since ıt

is a derivation for every t , we have that 1
˛Š
ı˛.x˛/ D 1. In addition, 1

˛Š
ı˛.xˇ / 2 m for for

every ˛; ˇ 2 A such that ˛ ¤ ˇ.
Let QA D . Qa˛;ˇ / be the pd � pd -matrix indexed by A � A , whose .˛; ˇ/-entry is

1
˛Š
ı˛.xˇ /. For this, we need to order A ; but the choice of order does not play a role in

the rest of the proof. We note that QA is an invertible matrix. Let QC D . Qc˛;ˇ / be the inverse
of QA. Let �
 D

P
˛ Qc
;˛

1
˛Š
ı˛ . Then, �
 .xˇ / D

P
˛ Qc
;˛

1
˛Š
ı˛.xˇ / D

P
˛ Qc
;˛ea˛;ˇ . Then,

�
 .x
ˇ / D 1 if 
 D ˇ and zero otherwise.

Since K has prime characteristic, we have DerRjK �HomRp .R;R/. Moreover, 1
˛Š
ı˛ 2

HomRp .R;R/ for every ˛ 2A . As a consequence, �˛ 2 HomRp .R;R/ for every ˛ 2A .
Let '˛ 2 HomR.R

1=p; R1=p/ defined by '˛.f 1=p/ D .�˛.f //1=p : Then, '˛.xˇ=p/ D 1
if ˛ D ˇ and zero otherwise.
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We set W˚˛2ARe˛!R1=p defined by e˛ 7! x˛=p . LetQ�R be a prime ideal ofR
of height 1. Let  Q be the map induced by  by the localization atQ. Since R is normal,
we have that RQ is a regular ring. Then, R1=pQ is a free RQ-module. Let �QWR

1=p
Q !

RQ be a splitting of the inclusion RQ ,! R
1=p
Q . We consider the map �QW R

1=p
Q !L

˛2A RQe˛ defined by

�Q

�f 1=p
s

�
D

M
˛2A

�Q

�'˛.f 1=p/
s

�
e˛:

Then, we have that �Q is surjective because �Q.x˛=p/D e˛ . SinceR1=pQ is a freeRQ-mod-
ule of rank pd , we conclude that �Q is an isomorphism. Furthermore, �Q ı  Q is the
identity on ˚˛2ARQe˛ . As a consequence,  Q is an isomorphism. Since R is normal,
both ˚˛2ARe˛ and R1=p are torsion-free and .S2/. Then  is an isomorphism [28],
Tag 0AV9. Hence, R1=p is a free R-module, and so, R is regular by Kunz’s theorem [19].

We now focus on F -pure varieties, that is, varieties whose local ring OX;x is F -pure
for every closed point x 2 X . For this, we need to recall two criterions. One for D-sim-
plicity, and another for strong F -regularity.

Proposition 3.11 ([4], Corollary 3.16). Let .R;m;K/ be a local K-algebra with K as a
coefficient field. Then, R is simple as a DRjK-module if and only if its differential core is
zero.

Lemma 3.12. Let .R;m;K/ be a local K-algebra with K as a coefficient field. Then, the
differential core of R is a prime ideal.

Proof. Let mJpeKD¹f 2R j�.f /2m;8� 2HomRp
e .R;R/º and let IeD¹f 2R j�.f /

2 m; 8� 2 CeRº. Let q D
T
e2ZC Ie . We recall that q is the splitting prime of R ([1],

Theorem 1.1), and so, a prime ideal. We recall that Ie is sometimes defined using the
injective hull of R=m. This definition is equivalent to the one presented in this proof ([1],
Theorem 3.3) because 1 7! f 1=p

e
does not split over R if and only if f 2 Ie (see also

Remark 4.4 in [23]). Since K is perfect, DRjK D
S
e2N HomRp

e .R;R/ by Theorem 3.8.
Then,

mh�.p
e�1/i

� mJpeK
� mhp

e�1i;

where �D dimK m=m2 (see Proposition 5.14 in [4]). Since R is F -pure, we have that
mJpeKDIe (see Proposition 5.10 in [4]). As a consequence,

q D
\
e2ZC

Ie D
\
e2ZC

mJpeK
D

\
n2ZC

mhni D pdiff.R/:

Hence, the differential core of R is a prime ideal.

Theorem 3.13 ([25], Theorem 2.2). Let .R;m;K/ be a local K-algebra with K as a
coefficient field. Let R be an F -pure F -finite ring. Then, R is DRjK-simple if and only
if R is strongly F -regular.
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We now present another of our main results. Even though we are not able to show
that Nashn.X/ Š X implies smoothness, this condition implies strong F -regularity. In
particular, in this case X is Cohen–Macaulay and normal.

Theorem 3.14. Let X be an F -pure variety. If Nashn.X/ Š X for some n � 1, then X
is a strongly F -regular variety.

Proof. Let x be a closed point inX , and d D dim.X/. LetRDOX;x and m be its maximal
ideal. By Lemma 2.4, we have that the module of principal parts P n

RjK has a free sum-

mand of rank
�
nCd
d

�
. Then, by Proposition 3.3, dimK.R=m

hni/ D
�
nCd
d

�
. Let p denote

the differential core of R. Since R is an F -pure ring, p is a prime ideal by Lemma 3.12.
Hence, R=p is a domain.

LetRDR=p and mDmR. We note that p is aDRjK-ideal ([4], Proposition 3.15), so
it is stable under the action of any differential operator in DRjK. Then, we have a natural
map of filtered rings DRjK ! DRjK. Then, mhni � mhniR. Since p D

T
t2N mhti, we

have that�nC d
d

�
D dimK.R=m

hni/ D dimK.R=m
hni
C p/ � dimK.R=m

hni/ �
�nC c

c

�
;

where c D dimR=p � d by Proposition 3.3. Then, c D d . We note that p contains every
minimal prime. We conclude that p D 0; otherwise, p contains a parameter and c < d .
Hence, R is strongly F -regular by Proposition 3.11 and Theorem 3.13.

We now present an analogous to Nobile’s theorem for F -pure rings. It is worth men-
tioning that F -pure rings might not be normal.

Corollary 3.15. LetX be an F -pure variety. If Nash1.X/ŠX , thenX is a non-singular
variety.

Proof. By Theorem 3.14. X is a strongly F -regular variety. Then, X is a normal variety.
Hence, X is nonsingular by Theorem 3.10.

4. Higher-order versions of Nobile’s theorem

In this section we study a higher version of Nobile’s theorem for quotient varieties. We
also revisit a known result for hypersurfaces ([11], Theorem 4.13) concerning the analog
of Nobile’s theorem for higher Nash blow-ups in prime characteristic.

4.1. Quotient varieties

Let G be a linearly reductive algebraic group acting algebraically on Spec.R/, where R
is a polynomial rings over K. The algebraic quotient X�G is defined by identifying two
points of X whenever their orbit closures have non-empty intersection. This is an affine
algebraic variety whose coordinate ring is RG . If all the orbits are closed, then X�G is
the usual orbit space and it is called a quotient variety. If jGj has a multiplicative inverse
in K, this situation happens. In this subsection, we present a higher version of Nobile’s
theorem in this case.
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Theorem 4.1. Let G be a finite non-trivial group such that jGj has a multiplicative
inverse in K. Let G act linearly on a polynomial ring R D KŒx1; : : : ; xd �. Suppose that
G n ¹eº contains no elements that fix a hyperplane in the space of one-forms ŒR�1. Let
X D Spec.RG/. Then, Nashn.X/ 6Š X .

Proof. The ramification locus of a finite group action corresponds to the union of fixed
spaces of elements of G. Consequently, the assumption that no element fixes a hyper-
plane ensures that the extension is unramified in codimension one. The inclusion is order-
differentially extensible ([4], Proposition 6.4). Let m be the maximal homogeneous ideal
of R, and � D m \ RG . We note that dimRGm D dimRG D d . Under these conditions,
we have that �hni D mn \RG ([4], Proposition 6.14). Then,

dimK.�
hj�1i
� =�hj i� / � dimK.m

j�1
m =mj

m/:

By our assumptions on G, we have that R ¤ RG . Then,

dimK.�
h1i
� =�h2i� / < dimK.mm=m

2
m/ D d:

We conclude that

dimK.R=�
hni
� / D

nX
jD1

dimK.�
hj�1i
� =�hj i� / <

nX
jD1

dimK.m
j�1
m =mj

m/ D
�nC d

d

�
:

Then, the free rank of PRG� jK is strictly smaller than
�
nCd
d

�
by Proposition 3.3. As a con-

sequence, Nashn.X/ 6Š X by Lemma 2.4.

4.2. Hypersurfaces

Now we study the case of hypersurfaces. We note that the proof we present is characteristic
free.

Theorem 4.2. Let X be a normal hypersurface. If Nashn.X/ Š X , then X is a non-
singular variety.

Proof. Let x 2 X and R D OX;x . By Lemma 2.4, P n
R Š R.

nCd
d / ˚ T , where T is the

torsion submodule. On the other hand, R normal implies that P n
R is torsion-free [3], The-

orem 4.3. Therefore P n
R Š R

.nCdd /. Then R is a regular ring (Theorem 3.1 in [3]; see also
Theorem 10.2 in [4] for a more general statement). We conclude thatX is non-singular.
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