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Classification of finite Morse index solutions to the elliptic
sine-Gordon equation in the plane

Yong Liu and Juncheng Wei

Abstract. The elliptic sine-Gordon equation is a semilinear elliptic equation with a
special double well potential. It has a family of explicit multiple-end solutions. We
show that all finite Morse index solutions belong to this family. It will also be proved
that these solutions are nondegenerate, in the sense that the corresponding linearized
operators have no nontrivial bounded kernel. Finally, we prove that the Morse index
of 2n-end solutions is equal to n(n — 1)/2.

1. Introduction and statement of the main results

This paper is concerned with the finite Morse index solutions to the elliptic sine-Gordon
equation in the plane. Before explicitly writing down the equation and stating our res-
ults, let us briefly mention the classical sine-Gordon equation, which originated from the
study of surfaces with constant negative curvature in the nineteenth century. We shall call
it hyperbolic sine-Gordon equation throughout the paper. The hyperbolic sine-Gordon
equation also appears in various physical contexts such as the Josephson junction. It has
been extensively studied partly due to the facts that it is integrable and that one can use the
technique of the inverse scattering transform to analyze its solutions. There exists a vast
literature on this subject. We refer to the book [10] and the references therein for more
information about the background and detailed discussion for the hyperbolic sine-Gordon
equation.
In the laboratory coordinates, the hyperbolic sine-Gordon equation takes the form

(1.1 9%u — 02u + sinu = 0.

In this paper, the elliptic version of this equation will be investigated. More precisely, we
shall consider the following elliptic sine-Gordon equation:

(1.2) —Au =sinu  inR?, |u| <,

where A = 9% + 5.
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The reason why we are interested in this equation stems from the fact that (1.2) is
actually a special case of the Allen—Cahn type equations

(1.3) Au=W'(u) inRY,

where W are double well potentials. This equation is the Euler—Lagrangian equation of

the energy functional
1 2
J.—/(E|Vu| —I—W(u)).

Choosing W = cos u, we obtain equation (1.2). On the other hand, if W(u) = %(u2 —1)?,
then (1.3) reduces to the classical Allen—Cahn equation:

(1.4) —Au=u—u® inRV,

This is an important model in the theory of phase transitions.

A crucial property of Allen—Cahn type equations (1.3) is that they possess one-dimen-
sional monotone increasing heteroclinic solutions, which connect two stable states in the
phase transition phenomenon. In the case of (1.2), the one-dimensional heteroclinic solu-
tion is given explicitly by

H(x) = 4arctane™ — 7.

The celebrated De Giorgi conjecture concerns the classification of monotone bounded
solutions of the Allen—Cahn type equation (1.3). Many works have been done towards a
complete resolution of this conjecture. In particular, it is known that in dimension two and
three, monotone bounded solutions must be one dimensional. We refer to [2, 13, 16-18,
23,35,42,52] and the references cited there for results in this direction. A natural general-
ization of the De Giorgi conjecture is to classify those solutions not necessary monotone.
This seems to be a difficult problem for general nonlinearities W. In this paper, we are
interested in those non-monotone solutions in the plane for the special case of the elliptic
sine-Gordon equation.

Without any assumption on the asymptotic behavior of the solutions at infinity, the
structure of the solution set could be extremely complicated. To bypass this difficulty, let
us recall the following.

Definition 1.1 (See [11, 12]). A solution u of (1.2) is called a multiple-end (2n-end)
solution if, outside a large ball, the nodal set of u is asymptotic to 2n half straight lines.

These asymptotic half straight lines are called ends of the solution. One can show that
actually along these lines, the multiple-end solution u# behaves like the one dimensional
solution H in the transverse direction. The set of 2n-end solution will be denoted by M»,,.
By the curvature decay estimates of Wang—Wei [55], a solution is multiple-end if and only
if it has finite Morse index.

In [12], the infinite dimensional Lyapunov—Schmidt reduction method has been used
to construct a family of 2n-end solutions for the Allen—Cahn equation (1.4). The method
there can also be applied to general double well potentials, including the elliptic sine-
Gordon equation (1.2). The nodal sets of these solutions consist of almost parallel curves.
In particular, the angles between consecutive ends are close to 0 or . Actually, the nodal
curves are given approximately by suitable rescaled solutions of the Toda system. It is also
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known that locally around each 27n-end solution, the moduli space of 2n-end solutions has
the structure of a real analytic variety. If the solution happens to be nondegenerate, then
locally around it, the moduli space is indeed a 2n-dimensional manifold [11]. For general
nonlinearities, little is known for the structure of the moduli space of 2n-end solutions,
except in the n = 2 case. In this case, a Hamiltonian identity has been used in [26, 27]
to study the symmetry properties of these solutions. It is now known [36-38] that the
space of four-end solutions is diffeomorphic to the open interval (0, 1), modulo translation
and rotation (they give 3 free parameters in the moduli space). Based on these four-end
solutions, an end-to-end construction for 2n-end solutions has been carried out in [39].
Roughly speaking, solutions arising from this construction are near the “boundary” of the
moduli space.

The classification of M, is still largely open for general double well nonlinearities.
Important open questions include: are solutions in M5, nondegenerate? Is M5, connec-
ted? What is the Morse index of the solutions in M5, ? In a recent paper, Mantoulidis [43]
proves a lower bound n — 1 on the Morse index of solutions in M5, for the Allen—Cahn
equation. Here we shall give a complete answer to the above questions in the case of the
elliptic sine-Gordon equation (1.2).

It is well known that the classical sine-Gordon equation (1.1) is an integrable system.
Methods from the theory of integrable systems can be used to find solutions of this system.
In particular, it has soliton solutions. Note that (1.2) is elliptic, while (1.1) is hyperbolic
in nature. We show in this paper that the Hirota direct method of integrable systems also
gives us real nonsingular solutions of (1.2). Let U, be the functions defined by (2.15).
Then U, are solutions to (1.2). They depend on 2n parameters, p;, n}), j=1,...,n.We
are interested in the spectral property of these solutions and shall prove the following.

Theorem 1.2. Each U, € My, is L°°-nondegenerate in the following sense: if ¢ is a
bounded solution of the linearized equation

—Ap —¢@cosU, =0,

then there exist constants ¢, j = 1,...,n, such that
0= Z(CJ 8 : U,).

We remark that the nonlinear stablhty of 2-soliton solutions of the classical hyperbolic
sine-Gordon equation (1.1) has been proved recently by Mufioz—Palacios [44], also using
the Bécklund transformation. We refer to the references therein for more discussion on
the dynamical properties of the hyperbolic sine-Gordon equation. For general background
and applications of the Bicklund transformation, we refer to [50,51].

The Morse index of U, is by definition the number of negative eigenvalues of the oper-
ator —A — cos Uy, in the space H!(IR?), counted with multiplicity. It can also be defined
as the maximal dimension of the space of compactly supported smooth functions where
the associated quadratic form of the energy functional J is negative. Our next result is:

Theorem 1.3. The set My, of 2n-end solutions of the elliptic sine-Gordon equation (1.2)
is a 2n-dimensional connected smooth manifold. The Morse index of U, is equal to
n(n — 1)/2. Moreover, all the finite Morse index solutions of (1.2) are of the form Uy,
with suitable choice of the parameters pj, q;, 77?, j=1,...,n.
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We emphasize that the parameters p; and g; are not independent. Actually they have
to satisfy pjz + qu = 1. The classification result stated in this theorem follows from a
direct application of the inverse scattering transform studied in [28]. Inverse scattering
of elliptic sine-Gordon equation has also been used in [3,4] to study solutions with peri-
odic asymptotic behavior or vortex type singularities. Note that certain classes of vortex
type solutions were analyzed through the Béicklund transformation or the direct method
in [34,41,45,53], and finite energy solutions with point-like singularities have been stud-
ied in [47]. It is also worth mentioning that more recently, some classes of quite involved
boundary value problems of the elliptic sine-Gordon equation have been investigated via
Fokas’ direct method in [19, 20,48, 49].

Theorem 1.3 implies that in the special case n = 2, the four-end solutions of the equa-
tion (1.2) have Morse index one. In the family of four-end solutions, there is a special one,
called saddle solution (see (2.16)), explicitly given by

cosh(y/~/2)
4 arctan (m) -7

The nodal set of this solution consists of two orthogonally intersected straight lines.
Saddle-shaped solutions of Allen—Cahn type equation Au = W'(u) in R?* with k > 2
have been studied by Cabré and Terra in a series of papers. In [5-7], it is proved that in R*
and R, the saddle-shaped solutions are unstable, while in R2* with k > 7, they are stable.
It is also conjectured in [5] that for k > 4, the saddle-shaped solution should be a global
minimizer of the energy functional. However, the generalized elliptic sine-Gordon equa-
tion (—Au = sinu) in even dimension higher than two is believed to be non-integrable,
hence no explicit formulas are available for these saddle-shaped solutions. We expect that
the nondegeneracy results in this paper will be useful in the construction of solutions of
the generalized elliptic sine-Gordon equation in higher dimensions.

It is worth pointing out that W(u) = 1 + cosu is essentially the only double well
potential such that the corresponding equation is integrable [14]. Note that the sine nonlin-
earity also appears in the Peierls—Nabarro equation, whose solutions have been classified
in [54]. A classification result like Theorem 1.3 for general double well potentials could
be very difficult.

Finally, we mention that recently there have been some interesting works on the con-
struction of minimal surfaces using Allen—Cahn type equations. See, for instance, [9, 21,
22,25,43]. Based on these links between minimal surfaces and Allen—Cahn type equa-
tions, it is expected that the classification results obtained in this paper could be used to
provide another proof of the existence of infinitely many closed geodesics on any given
Riemann surface. Actually this is one of our main motivations to study the elliptic sine-
Gordon equation.

The paper is organized as follows. In Section 2, we write down an explicit family of
2n-end solutions U,, for the elliptic sine-Gordon equation. We investigate the Backlund
transformation of these solutions in Section 3. The nondegeneracy of U,, and Theorem 1.2
will be proved in Section 4. In Section 5, we classify all the 2n-end solutions by their
asymptotic behavior at infinity. Finally, in Section 6, we compute the Morse index of
these solutions using a deformation argument and prove Theorem 1.3.
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2. A family of multiple-end solutions of the elliptic sine-Gordon
equation

In this section, for each n € N, we shall write down a family of explicit, real valued,
nonsingular solutions of the elliptic sine-Gordon equation:

2.1) —8)2(24 — 8§u =sinu in R2.

We will see that these solutions are indeed 2n-ended, hence of finite Morse index. It turns
out that this family of solutions has 2n free parameters. This also means that this set of
solutions is a 2n-dimensional manifold.

Equation (2.1) has been studied by Leibbrandt in [41] using the Bécklund transform-
ation, with an application to the Josephson effect. However, the solutions he found are
singular somewhere in the plane. Gutshabash—Lipovskif [28] studied the boundary value
problem of the elliptic sine-Gordon equation in the half plane using the inverse scattering
transform and obtained multi-soliton solutions in the determinant form, with certain para-
meters. The question that for which parameters will the solutions be real and nonsingular
was not considered there. The boundary problems of (2.1) in a half plane or a quarter have
also been studied by the Fokas direct method, see [19,20,48,49].

The construction of explicit multi-soliton solutions of the hyperbolic (classical) sine-
Gordon equation (1.1) was carried out in [29], using the Hirota direct method. It is worth
mentioning that there are also related results on certain soliton solutions in higher dimen-
sions, we refer to [24,30,31,53, 56] for further discussions in this direction. Note that the
solutions of the hyperbolic sine-Gordon equation obtained in [29] contain free paramet-
ers. At this point, let us emphasize that for many integrable systems, it is usually a delicate
issue to determine for which parameters the solutions are real and nonsingular. As we will
see, this issue is actually closely related with our analysis of the elliptic sine-Gordon equa-
tion (2.1) in this paper.

It turns out to be more convenient to replace ¥ by ¥ + 7 in (2.1). The equation then
transforms into

2.2) chu + Biu = sinu.

Our first observation is the following: in the hyperbolic sine-Gordon equation (1.1), if
we introduce the change of variable z = yi, where i represents the complex unit, then
we arrive at equation (2.2). Based on this, by choosing certain complex parameters for
the solutions of the hyperbolic sine-Gordon equation of [29], we then get multiple-end
solutions of the elliptic sine-Gordon equation. The case of 2-soliton has been studied
in [53].

To obtain solutions in closed form, we shall write the sine-Gordon equation in bilinear
form. Let D be the bilinear derivative operator (see [32], page 27). For any j,k € N, and
two functions ¢, ), we have

DIiD%¢ - :=[(0x — 0x)7 By — 9,)F] [ (x. y)n(x'.y)]

For instance,

x'=x,y'=y"’

DyDygp -1 =n0x0,¢ —0x$dyn—0,¢0xn + §0x0y1.
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Throughout the paper, we use F to denote the complex conjugate of F. Let us take the
bi-logarithmic transformation:

F
u=2iln—-
F

Note that the log function is multiple-valued. Here we simply take the principle branch.
One can also choose other branches, which amounts to add 4k, k € Z, to the function u.
We compute

eiu —iu 1

—e 1 F? F? 2y =i 2F-F D2F-F
2i _Z(ﬁ_ﬁ)’ =i N )
Then equation (2.2) can be written as

[(D}+ D})F - F + 3(F*— F})|F? - [(D2 + D))F - F + }(F* - F?)|F* =0.

sinu =

We also refer to [32], page 45, for the derivation of the bilinear form in the case of
the hyperbolic sine-Gordon equation. We then get the following bilinear form of equa-
tion (2.2):

1 -
2 2 2 2\ 2
2.3) (D} + DY)F - F + - (F* — F?) = AF?,

where A is a real parameter. This means that if F satisfies (2.3), then u will be a solution
to (2.2). On the other hand, if (2.2) is true, then we can consider the function

(D2 + D2)F - F + }(F?— F?)

F2 '
Writing p into real and imaginary parts, p1(x, y) + ip2(x, y), we see that p, = 0. Hence
necessary (at least when F # 0) there holds

p(x,y) =

1 -
(D2 + D)F-F + > (F? — F?) = p, F2.
Fix anintegern € N. Let p;,q;,j = 1,...,n, be real numbers satisfying p? +¢7 = 1.
Define
(pj = Pe)> + (g5 —qK)*
(pj + Pi)* + (47 + qx)?

We will always assume throughout the paper that (p;, q;) # =(pi, q1), for j # . This
assumption is consistent with our classification result in Section 4. Note that «(j, k) =
a(k, j) = 0. Moreover, since p? +¢; = 1, we have

1
pj +igq;

(2.4) a(j. k) =

(2.5) pj—iq; =
Therefore, we can rewrite « in the form
. . 1 1
Gy - PPt i~ i) (R — )
oa\J,K) = 3 3 '
(P + Pk +iq; + i) (45 + 5erac)

_ b= petigi—iqe)?
(pj + P +iqj +iqi)?

(2.6)
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We then define
a(ji,...,jm) =1, ifm=0,1,
@7 (... jm) =[] eGejn. ifm=2.
k<l<m
Let us introduce the notation n; = p;jx +¢q;y + n}), j =1,...,n, where at this moment,

the n}) are real parameters. Then we define

[n/2]
@8 fi= Y (X [a U dm e (i o+ 1) ),

k=0 {n,2k}
L(n—1)/2]
) a= Y (X (@G en (ot a,)]).

k=0 {n,2k+1}

Here the notation (n,k} Means summing over all possible k different integers j1,.... jk
from the set of integers {1, ..., n}. The floor function | x | represents the greatest integer
less than or equal to x.

In the special case n = 3, we have

1
f3= Z( Z a(ji,..., jan)exp(nj, + -+ '/fzk))

k=0 {3.2k}
= 1+a(l,2)exp(m + n2) + a(l,3)exp(n + n3) + a(2,3) exp(n2 + 13)
=1+ a(1,2)exp(n1 + n2) + a(l,3) exp(n1 + n3) + a(2,3) exp(n2 + 13),

1
83 = Z ( Z a(ji.. -, jak+1) exp(nj, + -+ + n./2k+1)>

k=0 {3,2k+1}
= exp(n1) + exp(n2) + exp(n3) + a(1,2,3) exp(n + 02 + n3)
= exp(n1) + exp(n2) + exp(n3) + a(1,2)a(1,3)a(2,3) exp(n1 + n2 + 13).

It is worth mentioning that these solutions can also be written in the determinant
form ([46]). Here we choose to use the form (2.8), (2.9) because it is more convenient
to check the positiveness of the function.

Theorem 2.1. For each n, let f, and g, be defined by (2.8) and (2.9). Then the function
4 arctan(gy / fn) is a solution to the elliptic sine-Gordon equation (2.2).

Proof. The proof is similar to that of [29]. We sketch it for completeness.
For fixed integer n, we would like to find explicit n-soliton solutions of the bilinear
equation (2.3), with the parameter A being zero. The equation to be solved becomes

1 -
2 2 2 2y
(2.10) (DY + DYF - F + 2 (F> = F?) =0,
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Note that the constant 1 is a solution to this equation. The key idea is to seek solutions
with formal expansion in powers of &:

2.11) F=14¢eF +&F+---

We will see that for the n-soliton solutions stated in Theorem 2.1, this power series trun-
cates into a polynomial of ¢ with degree n.
Inserting (2.11) into (2.10), we find that for the O(¢) terms there holds

(2.12) (DZ+ D)Fy -1+ % (Fi— Fi) =0.

For the O(s?) terms,

(213) 2D+ D))F>-1+ (D;+ D)) F- Fy = —% (Ff — FY +2F, —2F,).
The O(&3) terms are

(2.14)  (DZ+D}))F3-1+ (D +D})F>- F — % (FoFy — F2Fy + F3— F3).

The expansion can be further performed to any higher order.
Let us choose

n
Fi:=i Zexp(nj).
j=1

Since p]? + q]z = 1, we see that (2.12) is satisfied by this choice. Moreover, a direct com-
putation shows that

(DI + D) F-Fi==2 Y [((pjy — i) + (@, —4)) exp(jy + )]
J1<Jj2

We now define
Fp:= Y [a(j1. j2) exp(nj, + jp)]-
J1<j2
Here the index j, < n. Then we can compute
(D)% + D?)FZ 1= Z [a(jl» j2)((Pj1 + pj2)2 + (le + qu)z) eXP(’?jl + r]]z)]'
J1<j2
From this, using the definition (2.4) of a(j1, j2), we find that
2(D; + D})Fy -1+ (D7 + D;) Fy - Fi = 0.

Hence equation (2.13) also holds.
To proceed, we define

Fy:=i Y [a(1.j2. j3)exp(njy + mjp +155)] -

J1<J2<J3
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We would like to show that with this choice, the €3 order terms (2.14) sum up to zero.
Indeed, for fixed triple j; < j» < j3, a direct computation tells us that in (2.14), the
coefficient J before i exp(n;, + n;, + 1j5) is
a(j1. j2) ((pjy + pia = Pix)* + (@ + 4, —47)* = 1)
+ a2, j3) (P + Pjs = Pi)* + @, + 45 — 4;)* = 1)
+ain. j3) ((pj + pis = ) + @iy + 45— 432)* = 1)
+a(jis j2, J3) ((pjy + Pio + Pi)* + @iy + @jp + 4j5)> = 1).
Using (2.5) and (2.6), setting v; := p; + iq;, we find that J is equal to
(v;, —v;,)? 1 1 1
et (1 — (jy +vj, = vj5) (— +—- —))
(vj, +v5,) Vjy Vjp Vjs
(vj, — vj5)? 1 1
Sl (L L)
(v, +vj)? vz s~ %) Vo V3 Uj

)2 1 1 1
T VA I B X
(vjl + vj3) Vj, Vj3 Vj,

vi —v;,)2(V;, —vi,)? (v, —vj,)? 1 1 1
(vj, 12)2( J2 ]3)2( Jj1 ]3)2 (1 — (v, + v}, + ;) (_ + _))
(Ujl + vjz) (Uj2 + vjs) (Ujl + Uj3) Vj, Vj, Vj3

Multiplying it by (vj, + v;,)?(vj, + vj3)*(vj, + v;,)?vj,vj,Vj,, we obtain a homogeneous
polynomial in vj,, vj,, vj,, of degree 9. Let us denote this polynomial by L(vj,, vj,, v);).
Observe that (vjz1 - 1)]22)2 is a factor of L. Due to symmetry, this implies that L is a
polynomial of degree at least 12. Hence L has to be identically zero. Next we consider
the special case that the triple (j1, j2, j3) has repeated indices, for instance, j; = j> < j3.
Observe that L is continuous respect to vj,, vj,, Vj,. Hence sending vj, to vj,, we see that
in this special case, we also have L = 0. This proves that (2.14) is zero. Note that the case
of repeated indices can also be directly proved in the same way as the general case, by
regarding vj,, v;,, v, as abstract variables.
Now for 4 < j < n, let us define

Fimexp (=D T) X [ah o et + -+ m)].

I <~-~<lj <n

In particular, this implies that for odd j, F; is purely imaginary; while for even j, Fj is
real valued. We also set F; = 0if j > n.
We claim that the O(¢¥) terms sum up to zero in the power series expansion of & for
each k > 4. We only consider the case of k being odd. The proof is similar if k is even.
For fixed indices j; <--- < ji, the coefficient before i exp(n;, + nj, + -+ + n;,) is
equal to ) ; G;, where

Gr:= [aGmy--rm) @Cmpyy- - Jm) (= D).
m(l)

Here

= (v; i e — PR B ool S Vel P
h = (v/ml T Uy Uimy 41 U-/mk)(v.lml Tt T v]mk)’
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the notation Zm(l) means summation over indices my, . .., my satisfying m; < k, and

my <---<mp; mppp <o <M.

Multiplying G; by (TT/—; vi)(TTa<p<k (Ve + v3,)?), we get a homogeneous polyno-
mial L with degree k2. On the other hand, the function (v i v )2 is a factor of L.
Hence the degree of L is at least 2k(k — 1). It follows that L is 1dent1cally zero. This
finishes the proof of the claim.

Finally, we take ¢ = 1 and set f, = Re F, g, = Im F. Then we have

F
2i In — = 4 arctan &n,
F n

The proof of the theorem is thereby completed. |

Note that f,, and g, are both positive functions. By Theorem 2.1, the functions

(2.15) U, = 4arctan = -7
fn

are a family of smooth solution to the elliptic sine-Gordon equation (2.1), with p;, gq;, 77})
being parameters. Note that —7 < U, < 7.

Next, we would like to analyze the asymptotic behavior of U,, at infinity. We have the
following.

Lemma 2.2. Let ¢ € R be a fixed constant and let k be a fixed index. Suppose (x;, y;) is a
sequence of points such that ny(x;,y;) = c and sz + yJ? — +o0as j — +o00. Moreover,
relabeling (pm,qm), m = 1,...,n, if necessary, we can assume that as j — +0o0,

Mm(xj,yj) > 400, m=1,....k—1,
Mm(xj,y;) > —0o, m=k+1,....n
Then we have
. - | _ | 4arctan (exp Mk — Br)) — =, ifk is odd,
j—l}I-ir—loo Un(xj.3;) = { 4arctan (exp (—nx — Br)) — m.  ifk is even,
where i = j_1lﬂ (a (). k).

Proof. We first consider the case that k is odd. Then as j — 400, the main order term
of fy is
a(l,....k—1)exp(ny + -+ Nr—1).
At the same time, the main order of g, is
a(l,....k)yexp(n +---+ k).
Hence along this sequence, U,, converges to

a(al(l—k;)l) e“) — 7 = 4arctan(exp(n — Bx)) — 7.

If k is even, then as j — +o0, the main order term of f;, is

a(l,....k)yexp(n + -+ + nk);

4 arctan (
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while the main order term of g, will be
a(l,....k—Dexp(ny + -+ + ng—1).

Hence in this case,

a(l,....k—=1) _,
— ‘e

U, — 4arctan( a 3]
a(l,...,

) — 1 = 4arctan(exp(—nx — Px)) — 7. (]

By Lemma 2.2, away from the origin, the nodal set of the solutions U, is asymptotic

to 2n half straight lines, each line is parallel to one of the lines n; = 0, j = 1,...,n, with
the phase shift determined by the constants B appearing in Lemma 2.2. Hence U, is a 2n-
end solution. Note that U, contains 2n free real parameters: p;, 77;), j =1,...,n. Hence

this solution set is a 2n dimensional manifold. Note that the dimension 27 is consistent
with the prediction given by the moduli space theory [11] of the Allen—Cahn type equation.

In the special case n = 2, if we choose p; = p» = pandgq; = —¢» = ¢, r](l’ = r]g =
In g, then we get the solution

pcosh (qy)) B
_— b4

,y) = 4arct. (
@pa(¥.) arctan q cosh (px)

This corresponds to a 4-end solution of the elliptic sine-Gordon equation (1.2). Note that
on the lines px = £qy, ¢, 4 = 4arctan(p/q) — 7. In the special case p = g = V2/2,
the solution is

cosh(y/ ﬁ))
—— ) -7

(2.16) 4 arctan (Cosh(x/ 7

This is the classical saddle solution.

We remark that this family of 4-end solutions ¢, 4 has analogous in the theory of min-
imal surfaces. It is the so called Scherk second surface family, which contains embedded
singly periodic minimal surfaces in R3. Explicitly, these surfaces can be described by

cos? 6 cosh — sin? 6 sinh

~— = COs Z.
Here 0 is a parameter. Each of these surfaces has four wings, called ends of the surfaces.
Geometrically, they are obtained by desingularizing two intersected planes with intersec-
tion angle 6.

3. Bécklund transformation of the multiple-end solutions

Lamb [40] has established a superposition formula for the Biacklund transformation of
the hyperbolic sine-Gordon equation. In particular, the formula enables us to get multi-
soliton solutions in an algebraic way. However, in this formulation, for n-soliton solutions
with n large, it will be quite tedious to write down the explicit expressions for the solutions.
Nevertheless, it turns out that the soliton solutions in Theorem 2.1 can be obtained through
the Bécklund transformation. This will be discussed in detail in this section.
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In the light-cone coordinates, the hyperbolic sine-Gordon equation has the form
(3.D 0s0;u = sinu, (s,f) € R2.

Let k be a real parameter. The Bécklund transformation between two solutions #1 and u,
of (3.1) is given by (see for instance [51])

3.2) it

Bsul = asuz — 2k sin TMT'HQ’
3,141 = —81142 — Zk_l sin s

An interesting property of this transformation is the following: if two functions u; and u,
solve the system (3.2), then they satisty (3.1) simultaneously.

Next we recall the bilinear form of the hyperbolic sine-Gordon equation ([32]). Let
F = f +ig. We still write u in bi-logrithmic form:

F
u=2ln— = 4arctan§-

f

Here the log and arctan function are also taken to be the principle branch. Then (3.1) has
the bilinear form

1 _
DsDtF-17=:§(F2——F2)
The following result can be found in [32].

Lemma 3.1. Suppose u; = 2i In(F/F), u, = 2i In(G/G) satisfy
(3.3)

Assume k is real. Then uy and u, satisfy (3.2).

Proof. We sketch the proof for completeness. We have

asul_asuz=2i(as_ﬁ‘_BSF)_ZI-(asG_G_ 8SG>

F G
Gd,F —Fd,G . G F — Fd;G
(3.4) =2 — -2 .
F FG
On the other hand,

3.5) sin

2i

ui+uy . FG 1 /FG FG
:sm(l ln—)— (T——)
2 FG FG FG
From (3.4) and (3.5), using (3.3) and the assumption that k is real, we deduce

FG FG
Osu1 — dsup = —ki C + ki F_G — _2ksin u + Uz
Similarly, we have
duy + d;upy = —2k 1 sin Hp— Uz .

2
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Fixn e N.Letk;,8;,j = 1,...,n, be real parameters. We now set
Bi=kjs+ki't+8. j=1...n

At this moment, they are regarded as functions of the real variables s and . We define

G, :=;(exp[i<%<ﬂj+%)> nm] 1_[ (k; —8;81kl))

Jj=1 j<Il<n
Here the summation ), is taken over all possible n-tuples (e1, ..., &,) withe; = £1, j =
1,...,n. Note that the G, are complex-valued functions. By this definition, we have

G, = exp(— %) + iexp (%),
2=tk — k) exp (5B + B2) + (k1 — k) exp (5 (-1 — )

. 1 . 1
+ilky + ko) exp (5(B1 = B2)) +ilks + ko) exp (51 + B2)).
When n = 0, G,, is understood to be 1.

Lemma 3.2. Assume that k;,8;, j = 1,...,n, are real numbers, k; # 0. Then G,_;
and G, are connected through the following Bdcklund transformation

DsGy - Guy = %G, Gy,
D;:G, - G_n—l = _ﬁGnGn—l-

Results of this type for the KdV equation and certain superposition formulas can be
found in [33]. Since we are not able to locate the precise references for a direct proof of
this lemma, here we sketch the proof for the first identity. The second one follows from
same arguments.

Proof. Fix the integer n and let us introduce the notation

e=(e1,....6n), & =(&),....6,_1).

To simplify notations, we also set

hy :=exp [Xn: (%(,3, + %)) nm] 1_[ (kj —ejerkp),

Jj=1 j<l<n
hy := exp [”Z‘:l (8, (,31 + ﬂ)) + l)m} 1_[ (k;j 8 &rkp).

j<l<n—1

Using d;8; = k;, we can compute

n n—1
2Dshy - hy = (Z(S_/ kj) — Z(s} kj))hlhz
(3.6) =<Z(sjk)—2(8 k)) [Ttk — & enkn) W.

j<n
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Here,

Wi [T [ = emerko) (k= epein)]exo (2 (B + 5

m<l<n—1

xexp(nf((s? ;ej)(ﬂj £10) +%)

Jj=1

With all these notations, we have

n n—1
BT 2DsGn-Gur =Y. ([Z(sj ki) = D (e k)] TTki =5 en kn)W).
j=1 j=1

g,e j<n

It turns out that this expression can be further simplified, due to cancellations between
some terms. Observe that if for some index jo <n —1, ¢j, = 8}0, then the corresponding
term does not contribute to the coefficient

n n—1
D (gikj) =Y (€ k).
j=1 j=1

To compute the right-hand side of (3.7), we first consider two simple cases for the
summation indices.

Case 1: In the summation, &1 = —¢j andfor2 < j <n—1,¢; = 8}.

Fix the indices ¢; = s} with j > 2. Then in this case, for different ¢; = —8/1, each
term in the right-hand side of (3.7) has the common factor

[T &=k [] Gm—emak® [] G —eenkn)

1<l<n—1 1<m<l<n-—1 2<j<n—-2

() Do )+ 20

Taking out this common factor and freezing the indices ¢, . . ., &,, we are led to compute
I =" [(enkn + 2e1k1) (k1 — 180 kn)].
€1

Here the summation is over the index ¢; = %1, since we impose the restriction that &y =
—s’l. Using the fact that 812~ = 1, we deduce

1= 3 (enkaky = o1 k2 + 261K = 26k )

€1

The summation over the second term is zero, since the terms with ¢y = 1 and ; = —1
cancel each other. The same occurs for the third term. Hence we obtain I1 = —2¢,k1k,,.
On the other hand, we compute

Z lenkn (k1 —e18nkn)] = 28 kn k1.

€1
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It then follows that

I = —Z[Snkn (k1 —er1enkn)].

€1

Using this identity, we find that, when the indices ¢; = e , J = 2, are fixed,

n n—1
3 ([Z(sjkj) - Z(e;.k,-)] [Tk —¢sen k,,)W)
e1=—¢) j=1 j=1 j<n
=- > [gnk,, [ Gi—ereakn) [ [Gm—emerks) (km — e, 1k1)]
e1=—¢} I<n—1 m<l<n-—1

xexp(%”(lgn_,_%i)_l_;((&-i-s)(ﬁj ))_{_w)}

Denote the right-_hand side by Fi. On the other hand, for the same fixed indices ¢; =
e},j > 2,1in G,,G,—1, we have the term

Fre= > []‘[ (ki —erenkn) ] [Ckm—emerks) (km — epei ki)]

e1=—¢) ~l=<n—1 m<l<n—1
n—1 / . .
i (¢j +¢)) i 2n — Dmi
XexP( (ﬂ”__)Jr;( 2 (ﬁf_T))_ 4 )
Since g; = —¢) and ¢; = 8} for j > 2, we always have
! i
& EXP [(8,, + Z(Ej + &) +2n — 1)7] =1.
j=1
Hence
(3.8) Fy = —knF}.
Case 2: The indices satisfy e; = —¢), e, = —¢),andfor3 < j <n—1,¢; = 8}.

In this case, for fixed indices ¢; = 8} with j > 3, terms in (3.7) have the common
factor

[ [&3-kp&3—kp] [  Gm—emek)® J] (ki —&ieakn)

2<l<n—1 2<m<l<n—1 2<j<n-—-2
. n—1 . .
&n i i 2n — )mi
con(3(0es 3) B ol s )+ 250
Jj=3
Taking out this common factor and freezing the indices ¢3, . . ., &, in view of the assump-
tion &; = —¢} and &, = —¢, we are led to compute

I := Z [(Snkn +2e1ky + 2e2ka) (k1 — e18nkn) (ko — e28nkn) (k1 _8182k2)2]'

£1,82
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To simplify /5, let us first of all compute

L= Y [(erky + e2ka) (ki — e18nkn) (k2 — e28nkn) (k1 — £1£2k2)" .

£1,€2

We can expand the bracket into individual terms. Observe that if a term has odd power
of &1 or &5, then taking the summation over this term will yield zero, due to cancellation
between +1 and —1. Hence we obtain

Ly = Z [(51 ki1)ki (—e2enkn) (—2e182k1ka) + (e1k1) (—e18nkn) k2 (k% + k%)]

£1,€2

+ ) [(e2k2) ki (—e28nkn) (kT + k3) + (e2Kk2) (—18nkn) k2 (=2k18182k2) ]

£1,€2

= Y [2enkikakn — enkikokn (k3 + k3) — enkikakn (k7 + k3) + 2en k1 k3 k|

£1,€2

=0.
Therefore,

I = Z [enkn (k1 — e18nkn) (ka — e28nkn) (k1 — e182k2) |

£1,€2

It follows from this identity that when the indices ¢; = 8}, j = 2, are fixed, we have

2. ([Z(’%k )~ Dek)]l_[(k e,-snkn)W)

g1=—¢|,60=—¢) j<n
= Z |:8nkn 1_[ (k1 — erenkn) l_[ [(km —emerky) (km - 8;,,8;](1)]
e1=—¢,60=—¢) I<n—1 m<Il<n—1

con( (e D)+ B (320 5) - 5]

Denote the right-_hand side by F>. On the other hand, for the same fixed indices ¢; =
8} ,j > 3,in G, G,—1, we have the term

ES := Z [ H (ki — &1 enkn) 1_[ [(km — emerky) (km — €, €7k1) ]

e1=—¢,e0=—¢), ~l<n—1 m<l<n—1
. n—1 / . .
o) 5 (DD ) - L)
Xe"p<2 =3 +;  Wim3 4 :
Since &1 = —¢/, 62 = —¢), and ¢j = e} for j > 3, we always have
n—1

&n XP [<8n + Z(Ej + &) +2n — 1)%[] =—1.

J=1
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It follows that
3.9) F, = —k,F;.

Having understood Case 1 and Case 2, we proceed to consider the general case.
Assume without loss of generality that the indices satisfy, for some integer m,

_ / . R / . _
8j——£j,]—1,...,m0, and 8]—8j,]—m0+1,...,n 1.

Then we can compute (3.7) by separating these indices into pairs (1, €2), (€3, €4), . ..
Applying formula (3.9) for each pair and using (3.8) in case m, is odd, we finally deduce

2DGy - Gnot = —knGn Gy
The proof is thus completed. u
In view of the definition of G,,, we now define w,, to be
n . .
o (eo[XG e T Tt sam),
&l Tn=1 em=(=1)" j= j<l<n
where ¢; = X1. Similarly, we define p, by
n . .
Z (exp[Z(%(ﬂ,—i—%))—}—@] 1—[ (kj—gjslkl)).
&[Tm=1 em=(—1Dn+1 Jj=1 j<l<n
Note that if k;, §; are real numbers, and s, ¢ are real variables, then
wn =Re Gy, pn =ImGy,.
In particular, we have

a)0=15 p0:0»

-
w2 =~k — k) exp (5 (b1 + B2) ) + k1 — ko) exp (5 (-1 — )

(k1 + ko) exp (% (B1 —ﬂz)) + (k1 + kz) exp (% (=B1 + ,32))~

w1

P2

Applying Lemmas 3.1 and 3.2, we see that the real valued function %, := 4 arctan(p, /w,)
satisfies

(3.10)

dgiin_1 = dyily — 2ky sin Le=Ltn
atﬁn—l = _atﬁn — 2k;1 sin un—lz_un .

For later applications, we would like to generalize this system to complex valued functions

(the function arctan is understood to be the principle branch). This is the content of the

following.
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Lemma 3.3. Assume k; and §; are complex numbers, and s and t are complex variables.
Then (3.10) is still true.

Proof. We already know that (3.10) is true for real parameters. The assertion of the lemma
then follows from the fact that the functions involved are analytic with respect to those
parameters and variables. ]

We now come back to the solutions U, of the elliptic sine-Gordon equation appeared
in Theorem 2.1. We would like to show that they are indeed the Béacklund transformation
of certain (n — 1)-soliton type solutions. This will be achieved by applying Lemma 3.3.
To do this, first of all, we need to write the functions f, and g, in a form adapted to
Lemma 3.2.

Recall that p;, g; are parameters in U,. For j =1,...,n, let k; = p; +iq; and
choose a complex number ¢; such that

, ki+ ki k; + ki
Y = i J .
¢ Hkl—kjgkj—kl

I<j

For instance, one can simply choose ¢; to be the principle value of the log function evalu-
ated at the right-hand side.

Since p? + g7 = 1, we know that k;' = p; —iq; = k;. Recall that ; = p;x +
q;y + 77;.). We emphasize that here x, y are regarded as real variables. Let us now define

(3.11) nj=mnj — 4.

‘We then set

(3.12) fy:= Z (exp[Z(%(ﬁj + %l)) + %] l_[ (kj —¢gj& kl)),

o 12[ em=(—1) j=1 j<l<n
m=1
where ¢; = £1. We also define
(3.13)
. * i i (n—2)mi
8gn = Z (eXp[Z(é(TU-’-?))‘FT] 1_[ (kj—[;‘jé‘lk])).
j=1 j<l<n

Lemma 3.4. Let f, and g, be defined by (2.8) and (2.9). There holds

8n _ &n,
f" fn
Proof. Since nj = 1j; + (j, f, can be written in the form

[n/2]
S X @l iam) exp () e+ i) XD G+ + i, )] ).

m=0 {n,2m}
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For fixed indices (i, ..., i), using the definition (2.7) of a, we have

a(iy,...,lam)exp (L, + -+ tiy,)

ki —ki\2

_ (_l)m(2m—1) 1_[ (kl] kll) exp (L, + -+ + tiy,,)

j<l<2m + u
k — & 81k1
_ 1 mQ2m—1) J ,
= (-1 [ o
j<l<n
where ¢; = 1if j =iy,...,i2,; otherwise &; = —1. Note that in this case,

n
E gj =4m—n.
j=1

Hence the sign satisfies

(— 1)m(2m 1)) —exp( (ng +n>)

j=1

It follows that

frexp (= 50+ 4 i)

i X (S G T wm)]

j<l<n & ln‘[ em=(—1)" j=1 j<l<n
m=1
1 ~
=+ f,.
l_[j<l§n(kj — ki) ?
Similarly, we have
1(~ et ) 1 -
gexp(__nl n ):—g
" 2 " [Tj<i<nkj —kp)°"
As a consequence, _
g _ &n
fn fn
This finishes the proof.

Let#;,j =1,...,n—1, be defined by (3.11). We define y = y,—; to be

£ (enl5 0 D) 1 o)

Tz em=(=1)"""1 J=1 J<l=n—1
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Moreover, we define T = t,—; by

n—1

& (. i —3)mi
Y ([ EG@+5)+ 5] T t-gan)
eIz em=(=1)n =1 j<l<n—1
We emphasize that 7j;, j = 1,...,n — 1, actually also depends on k,,.

Lemma 3.5. The function t/y is purely imaginary.

Proof. For each fixed j, we choose r)} such that

k +k k +k
exp(n;) —eXP(n,)]_[ l I1 l

I<j ]<l<n 1

Note that there are infinitely many choices for such 77;-. We may just choose one of them,
for instance, the one arising from the principle branch of the log function. Consider the
functions y’ and ¢’ defined by

v X (oSG0 T ) T )
e o=y T =
m=1
= T (oSG0 TT o)
Jj=1 j<l<n—1

n—1
& [l em=(=1)"
m=1

By the proof of Lemma 3.4, we have

for=e (5644 i0)y [ oor

j<l<n—1 J_kl
[ ~ /
8n—1 = €xp (E(W1+"'+ﬂn—1)) l_[ k; —kl
j<l<n—-1

Since 7j; = n; — (;, using the definition of 7, we find that

- ki +k ,
exp(fly) = exp(ny) 72— = exp(nj +1").
Then y is equal to
n—1
(n—1)mi
> (exp[Z(;’(n, +1+ 5 )) + | TT & —eekn):
j=1 j<l<n—1

n—1
e [ em=(=1)""1
m=1
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Therefore, still using the proof of Lemma 3.4 (with the phase constant r;}) replaced by
n? + 17?), we can also write 7/y as

L(n—2)/2] ) . 2m41 g g
> ( > [a(lls--~712m+1) I1 kl:,,TkneXp(nil +"'+’h'zm+1)])
m=0 {n—1,2m+1} j=1
(3.14)
[(n—1)/2] ) ) 2m k. +ky,
(X [ati i) TT e explni + -+ i) |
m=0 {n—1,2m} j=1 "

On the other hand, from the fact that

k,' —kn)2

a(],l’l) = —(k] n kn

we infer that ]lz t:: is imaginary. This together with (3.14) tell us that t/y is imaginary. =

Let us set u = 4 arctan(g,/f,) = 4 arctan(gf,,/f,,) and v = 4 arctan(z/y). Here the
arctan function is still understood to be the principle value. Let us define

X =541,

(3.15) { i),

A direct consequence of Lemma 3.3 is the following.

Lemma 3.6. The functions u and v are connected through the following Bdcklund trans-
formation:

2

. _ s vtu L o VU
i0yv = 0xu — ky sin *5* + ky, sin =5+

(3.16)

_ i vtu i V=U
{ 0xv = idyu —ky, sin — kp sin 5,
2

Proof. Applying Lemma 3.3, using the fact that k! = ky, we see that the functions u, v
satisfy

2 9
v—u,

{ 90 = dgu — 2k, sin L1
2

8tv = —B,M — 21;71 sin

Note that dg = 0x + idy,d; = dx —id,. Hence,

2

0xV —i0yv = —0xu +i0yu — 2k, sin 5% -

{ Dxv +10yv = dxu + idyu — 2k, sin L%
The system (3.16) follows immediately. ]

We point out that since the function z/y is purely imaginary, sin(v/2) and cos(v/2)
should be understood as

2yt
]/2 + ‘L'2

y? — 72

(3.17) sin (2 arctan ;) = 2

T
, COS (2 arctan —)
14
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utv

. Hence, sin(*5 utv

yOxT—tdxy ) and cos(%

V2+T2
tions, with possible singularities at those points where y2 + 2 = 0. The analysis of these
singularities will be carried out in the next section.

Let n be fixed and let 7); be defined as before. For § = 1,...,n — 2, we now define ys
to be

Moreover, d,v = 4 ) are complex valued func-

2 (‘”‘p[i( G+ )+ 2 T eje,kl)).

elTmay em=(=1)8 i= J<ls

Moreover, we define t5 by

£ ([5G0 )+ 2 [T o).

el Tmar em=(=1)5"1 =t J<is

Moreover, we define y9 = 1 and 79 = 0. Let vg = arctan(zs/ys). Arguing similarly as in

Lemma 3.5, we know that for § = 1, .. ., the function ;” _i“ is real valued, while ﬁ‘;:i

is purely imaginary (except 7o/ Vo, Wthh is always equal to 0).
A direct generalization of Lemma 3.6 is the following.

Lemma 3.7. For§ = 1,...,n — 1, the functions vg and vs_; are connected through the
following Bdcklund transformation:

{ Oxvs—1 = i10yvs — kg sin w — kg sin e a

i0yv5_1 = dxvs — kg sin B=LEY 4 fg sin V=105

(3.18)

4. Linearized Bicklund transformation and nondegeneracy of the
2 n-end solutions

This section will be devoted to prove the nondegeneracy of the multiple-end solutions. To
state our result in a more precise way, let us recall that U, is the 2n-end solution defined
in (2.15), and n;? are “phase” parameters in U,. Let u = U, + &= = 4 arctan(g,/fy) =

4 arctan(g, / f:,). In this section, the differentiation of u with respect to these parameters
will be denoted by ¢;. That s, ; := anqu, j =1,...,n. Since for any n;), U, is a solution
J

to the elliptic sine-Gordon equation, {; automatically solves the linearized equation:
Al; = Cjcosu.
For convenience, let us restate Theorem 1.2, which is already claimed in the first section.
Theorem 4.1. Suppose 1 is bounded in R? and satisfies the linearized equation
An = ncosu.

Then there exist constants cq, . .., cy such that

n
= ¢{
j=1
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Roughly speaking, this result tells us that the solution U, is L° nondegenerate. The
main idea of the proof is as follows. Using the linearized Bécklund transformation, we
transform 7 into a kernel y of the linearized operator at the trivial solution 0. Hence Ay —
x = 0. The solutions to this equation can be classified. By analyzing the reversed Béacklund
transformation from the trivial solution O to u, we then conclude that 7 has to be of the
form stated in Theorem 4.1.

Linearizing the Bécklund transformation (3.16) at (v, u) (with perturbation of the form
(e¢p, en) and ¢ tends to 0), we get the linearized system

—U
2
i0y¢ = 0xn — ky cos #("’%) + ky cos u(vﬁ%)

{ B = 10,1~ o3 52 (£52) F, cos 152 (£52),
2

Intuitively, given function 7, we would like to solve this system and find a solution ¢. For
this purpose, we write it in the form

[

where

Lo :=0x¢ + (k,,cosu;v —l—lg,,cosu_U)g

To:=idy¢ + (kncosu—;v —Igncosu 5 v)%,
. u-+v — u—v
Mn:=idyn— (k,,cos > — ky, cos 5 )g

u-+v — U—v
Nn:=8xr]—(kncos 5 + ky, cos 5 )g

To simplify the notation, we write f;, as f, and g, as g. Using (3.17), we see that
explicitly, L¢ is equal to

2(fy —gv)? - 2(fy+gv)? ¢
wt+ (bl g re ) (G g )
= e+ Re(T' — k) 6.

where the function I" is defined to be

(fy—g1)?

“-2) o o)

Similarly, we have
Tep =idy¢ +iIm(I' —ky)¢.

Note that by Lemma 3.5, t/y is purely imaginary. As a consequence, the function y2 + 72
could be equal to zero somewhere in R?. We define this singular set to be

§=8w):={(x,y) eR*:y> + > =0}.
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To analyze §, we also define

So:={(x,y)es: y=0} and S«:={(x,y)e8: y #0}.

The closure of S, will be denoted by S_*. These sets depend on the function v, which is
determined by the parameters p;, g;, r];?. Observe that S, is also a subset of §. Rotating
the axis if necessary, we can assume p; # 0, for all j. By the classification results to be
proved in the next section, we actually can assume that p; < O for all j. Using the identity

cos By +isinfy — (cos by +isinby) . 01 — 92
— — =itan ——
cos 0y +isinfy + (cos b, + i sinby)

we may further assume (by relabeling the indices if necessary) that

ki —ki .
k +k1

i<0, ifj <l

This property together with an induction argument based on formula (3.14) ensure that in
the Bécklund transformation sequence {vy, ..., v,—1}, the functions v,_,s are real and
nonsingular for § = 1,2, ...

Lemma 4.2. Let Ry be a large constant and let Br,, be the ball of radius Ry centered at
the origin. The set $\ B, consists of 2n — 2 curves. Each curve is asymptotic to a line
which is parallel to one of the lines of the form pjx +q;y =0, j =1,...,n—1.

Proof. We first recall that y is the sum of all those terms of the form:

on (S (20r+ )+ 52 Tt

j=1 j<l<n—1
where []7Z] &; = (—1)"~!. At the same time, 7 is the sum of terms

n—1

e i (n —3)mi
o (L (3(0+ 7))+ =) T =gk,
j=1 j<l<n—1
where [/} &5 = (=)™
Let {(x;, y,)} | be a sequence of points in § such that x] + y] — +o00. Using the
fact that |y| = |r| m S, we infer that, up to a subsequence, there exist an index jy and a
universal constant C such that
|7)]0(Xj,y])| = C’ .] = 1’ cee
Otherwise, |t/y| will be tending to +o0 or 0, depending on the parity of n. Then without
loss of generality, we can assume that as j — 400,
Nm — —oo, form=1,...,jo—1,

Nm — +oo, form=jo+1,...,n
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Suppose n — jo = 2k + 1 is odd; then the main order term in 7 is

1 . - - - -
Aexp (5(—771 — = Njo—1 + Njo + Njo+1 + -+ + 77n—1)> l_[ (k - 8 glkl)
j<l<n—1
where ¢ = --- = 8}071 = -1, 8}0 =-..=¢,_,=1and

—exp< (Zs +n—3))=exp(km').

On the other hand, the main order term in y is
1 . . - - -
Bexp (5(—771 = = o1 = Njo + Njo+1 + -+ + ﬂn—l)) [ &i—eek.
j<l<n—1
where gy = --- =¢j, = —1,¢gjp41 =+ - =¢&,1 = 1, and

—exp( (Ze, +n— )) = exp(kni).

It follows that as j — +oo0,
T 0k + k,o nl

kj, — k;j
— — ex .
o . p(itjo) 1‘[

kjo +kj

4.3)

o j=jo+1

Note that if n — jo is even, then (4.3) still holds. We know that T = Xyi. Let u;, be the
complex number defined by

1 -
exp(ijo) = i exp(—tj,) ]i)_[ K+ :"’ m %

kj = kij J=jot1 o THK)
Note that 1, is real. Then using the fact that 7j;, = nj, — tj, and (4.3), we find that

exp(jo + Mjo)lej.pp = 1.
This implies that (x;, y;) is on the curve in § which is asymptotic to the line
PjoX + djoy + 115 + pjo = 0.

This finishes the proof. ]

Lemma 4.3. Asmin;j—1,..,|pjx + qjy| = 400, we have

[(x,y) =0, if pnX + qny — +00,
I'(x,y) = 2k,, if ppx + gny — —00.
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Proof. Suppose min;—1,... |pjx + ¢q;y| = +00 and pyx + g,y — +o0c. Without loss
of generality, we assume that 7;(x, y) — —oo for j = 1,...,myp, and n;(x, y) = 400
forj =mog+1,...,n.

If n — my is even, then the main order term (up to a coefficient) in f is

1
exp (5(—771 = g Mgt )

This implies that g/f — 0. On the other hand, the main order term (up to a coefficient)
intis .
eXp (5(—771 T me + Mm+1 000 F 77n—1))~

Hence y/t — 0. It follows that for each fixed y,

(v/t—g/f)?
= 2k, —
= e hma om0

If n — my is odd, then the main order term (up to a coefficient) in g is

1
€xp (5(_771 — = NMmy + NMme+1 + -+ Un))'

Hence f/g — 0. Similarly, the main order term in y is

1
€xp (5(_771 — T mp + NMme+1 T F 77n71)>7

and 7/y — 0. Therefore, we still have

(v/t—g/f)?
= 2k, —
= e hma om0

Next, we suppose min;—p,._, |pjx + q;y| = +oo and p,x + g,y — —oo. We may
assume that, for some index myg, there holds n;(x, y) — +oo for j =1,...,mg, and
nj(x,y) = —ooforj =mo+1,...,n.

If my is even, then the main order term (up to a coefficient) in f is

1
exp (5(”1 Tt Mg — Mmg+1 _"'_nn))-

As a consequence, g/f — 0. The main order term (up to a coefficient) in y is

1
exp (5(771 o mg = Nmg+1 — 2+ — nn—l))’
which implies that t/y — 0. We then deduce that

(1—g7/(fy)?

I' =2k, — 2ky.
o T @0+
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If my is odd, then the main order term (up to a coefficient) in g is

1
exp (5(’11 to Tt Mg = Mmo+1 — -+ — 77n)>-
Hence f/g — 0. Similarly, y/t — 0. We then deduce that

(f7/(g7) — 12
— 2k,
P = T o T o)

This finishes the proof. ]

— 2ky.

For each fixed y, let us consider the homogeneous first order ODE L& = 0, that is,
“4.4) 0xE +Re(T' —ky)E =0.
If T is a smooth function, then Lemma 4.3 tells us that the integral f_xoo I'(l, y)dl is well

defined and (4.4) has a solution of the form

X

E(x,y) :=exp (pnx +qny —f

—0o0

Re(T(l, y)) dz).

However, since in reality I has singularities, we need to define £ in a rigorous way. To do
this, it will be important to understand the function

o Uy—gm?
. " (f? + g2)(ydsy + 1ds7)

Let us first consider the simple case n = 2. We then have y = exp (—171) .7 = exp (371).

1 . - | -
J =—exp (5 (m + Uz))(kl —ka) + exp (5 (=11 — ﬁz))(kl — k),
1 . - | -
g =exp (5 (i —7i2) ) (k1 +ka) +exp (5 (=1 +712) ) (k1 + ko).
By definition, y? 4+ t2 = 0 on S, which implies that 1 + exp(27;) = 0. If exp(7i;) = i,
then

g _ exp (3 (1 = 72)) (k1 + k2) + exp (3 (=71 + 712)) (k1 + k2) kit ka

f o —exp (3 (i1 + 72)) (k1 — k2) + exp (3 (=711 — 712)) (k1 — k2) ki —k ;

Moreover, recalling the relation (3.15) between (x, y) and (s, 1), we get

dsy + 1057 .
14
If follows that
ko (14 552)° U ons
=% —1_(%)2 = on S.
One can show that if exp(77;) = —i, we still have % = 1 on Sx. We would like to prove

that this identity is true for all n. For this purpose, we first show the following.
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Lemma 4.4. Let (xj, y;) be a sequence of points in S such that x}g + yj? — 400, as

j — +oo. Then
4.5) V(xj,y;) =1 asj— +oo.
Proof. As in the proof of Lemma 4.2, we still assume that as j — +o0,

Nm — —o0, form=1,...,jo—1,

Mm — +oo, form=jo+1,...,n.

It follows that as j — +oo0,

T
(4.6) —
14

kit ki, T k=K
io K=o Ko kg

= exp (7o)

(xj3/)

Similarly, we have

Jo—1 n
ki —k;j ki, + k;
(47) 5 — _exp (_ﬁJO) u g .
f j=1 k/ + k/O j=Jjo+1 k]O - k]
Since y = +it at (x;, yj), from (4.6) and (4.7), we get
2 k: k,\2
(4.8) g _<M) ]
f2 kj _kn
We also have
gt ko tkn
Hence as j — 400, at (x;, y;),
2 kj0+k,, 2
o Umgv? 0o F) o Ureme)
2 2 g2 kjo +kn\2 o
(e ") T
Then, (4.5) follows from the fact that
yosy + 10T
—— = —kj,.

V2
Lemma4.5. 9 = 1on Sk.

We point out that a simplified proof of this result will be sketched in the proof of

Lemma 4.9. However, the proof given below may be also of independent interest.

Proof. On Sy, T = £iy. We may assume without loss of generality that t = yi. The case

of t = —yi is similar. We then would like to prove that

4.9 kn)/(f_gi)z_(f2+g2)(as7/+iasf) =0 on S..
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Let us consider the case of n = 3. The idea for the general case is same, but the
notations would be heavy. We denote

. o . oy ki — ks
a*(iy,...,im) = a(ll,...,zm)jl:[l K +k3.
Recall that (see (3.14))
y=1+a*(1,2)exp(m +n2) and t=a"(1)exp(m) +a*(2)exp(n2).
On S, from t = yi, we get

i —a*(exp(n)
a*(2) —ia*(1,2)exp(n1)

(4.10) exp(n2) =

It follows that
[i —a*(1)exp(n1)]

y =1 a2 exp0n) oy e (1,2) exp()
") —ia* (1.2 exp(n) + a* (1.2 exp(n)li —a*(1) exp(ny)]
= a*(2) —ia*(1.2) exp(m)
._ J1 X
= () —ia (1.2 exp(my)
Similarly,

S =1+a(1,3)exp(m + n3) + [a(1,2) exp(m1) + a(2, 3) exp(n3)] exp(n2)
[ +a(1,3)exp(n + n3)lla*(2) —ia™(1,2) exp(n1)]
B a*(2) —ia*(1,2)exp(m)

n la(1,2) exp(n1) + a(2,3) exp(n3)][i —a™ (1) exp(n1)]
a*(2) —ia*(1,2)exp(m)

J— J2 .
~a*(2) —ia*(1,2) exp(m)

g = exp(n1) + exp(n2) + exp(n3) +a(1,2,3)exp(n1 + 12 + n3)
_[exp(n1) + exp(n3)][a*(2) —ia*(1,2) exp(n1)]
B a*(2) —ia*(1,2) exp(m)

(14 a(1,2,3)exp(n + n3)][i —a*(1)exp(n1)]
a*(2) —ia*(1,2)exp(m)
— J3 .
a*(2)—ia*(1,2) exp(m)
We also have

[i —a™(1)exp(n)]
a*(2) —ia*(1,2) exp(n1)
[a*(2) —ia*(1,2)exp(n1)]

a*(2) —ia*(1,2)exp(m)

Osy +i0s7 = [(k1 + k2)a™(1,2) exp(n1) + ia™ (2)k,]

+ ikya*(1) exp(n)

p— J4 .
T a*(2) —ia*(1,2) exp(n;)




Y. Liu and J. Wei 384

We then get

kndi(Jo = J3i)2 = (J3 + ID) s
[a*(2) —ia*(1,2)exp(n)]?

kny(f —gi)* = (f* + &%) (@sy +ids7) =
Let us write

knJ1(J2 = J3i)* = (J3 + J3) 4 = ZAj,k exp(jn + kns).
ik

We would like to show that A; ; = 0. To see this, we assume without loss of generality that
along a sequence (x;, y;) with |n,| bounded, both 7; and 73 tend to +o0, and 1; > 73.
Observe that the main order term is Ag» exp(6n1 + 213). By Lemma 4.4, along this
sequence, @ — 1. This implies that A » has to be zero, otherwise the limit of ¢ will not be
equal to 1. Once we know A » is zero, the main order term becomes Ag, 1 exp(67;1 + 13).
Using again the fact that ¢ — 1 along (x;, y;), we deduce that A¢,; is 0. Repeating this
argument, we see that A; ; = 0 for all j, k. The identity (4.9) is then proved.

We remark that, in the case of n = 3, one can also explicitly compute A; ;. For
instance, Ag,o is

kza*(2)(a*(2) —i()))* — (@*(2)* + i%)ia* (k2

_ a*(z)[k3 (2k2)* _ M)] —0.

Ty e -y

The coefficient A¢ o of exp(61) is equal to

—ksa*(1,2)a* (D[ — a(1,2)a*(1) — i(—ia*(1,2)]’
— ((=a(1.2)a*(1)* + (—ia*(1,2))*)[ (k1 + k2)a*(1,2)(—a* (1)) + kia*(1)a*(1,2)]
=a*(1,2a*(1)(a(1,2)a*(D))*[ — ka(1 + a*(2))* — k2(1 — (a*(2))*)] = 0.

For general n, this computation would be tedious. ]

At this stage, we emphasize that the function ¥ is not well defined on the set So(v).
For a given function v with parameters p;,q;, 17;’, it is not clear whether the corresponding
set So(v) is empty or only consists of finitely many points. In principle, it is even possible
that So contains a smooth curve. The following result deals with some special cases of
parameters, but it will not be relevant to our later proof in this section.

Lemma 4.6. There exist parameters p;,q;, r]?, j =1,...,n—1, such that for the cor-
responding solution v, the set Sg is empty.

Proof. Let 6 be a small positive number to be determined later on. Let us denote the

lines n; =0by /;. For j = 1,...,n, we choose p; = j/(2n),q; = ,/1 —pf and r);-’ =
j2 In§. Note that for this choice, when § is small, no three lines /; intersect at same point.
Moreover, as § — 0, the distance between the intersection points tends to infinity. We also
remark that there are many other different choices.
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Let M > 0 be a constant independent of §, also to be determined later on. Consider
the region 2 which consists of those points (x, y) satisfying: there exists at most one 7;
such that |; (x, )| < M.

In view of (3.14), t/y = H;/H,, where

2m+1 k:

L(n—2)/2] i +kn
H, = Z ( Z [Cl(h,u Ji2m+1) 1_[ k] “x, exp(ni, + '+’7izm+1)])v

m=0 {n—1,2m+1}

L(n—1)/2]
H2 = Z ( Z I:a(ilv .. lZm) 1_[ k eXp(’?n + e+ Tth)D

m=0 {n—1,2m}
Let
. . kj, + kn ) }
moi= e fotiei [R5
= ma 9oy
" (7. Jz));<n 1{‘41(]1 ]l)l_[( kj, — kn )‘}

We claim that if exp(M/4) > Z—é 2", then 2 N So = @. Indeed, suppose (xo, yo) is a point
in Q2. Assume without loss of generality that |77 (xo, yo)| < M. We can also assume that
for some kg,

nj>M, forj=2,....,kg, and n; <—-M, forj=ko+1,....n
We consider two different cases.
Case 1. kg is even.
If n1(x0, yo) > M/2, then the main order term in H is
exp(n1 + «++ + Nky)-

This term dominates the sum of other terms in H;. More precisely, since exp(M/4) >
SL2", we have

1
|H1(x0, yo)| = eXP(Tll + -+ nko) (1 — E) > 0.

Hence t(x¢, y9) # 0. On the other hand, if 71 (xo, yo) < M/2, then the main order term
in Hy is
exp(n2 + -+ + 1ko)-
This term dominates the sum of other terms in H,. Hence y(xg, yo) # 0.
Case 2. kg is odd.

If n1(x0, yo) > M/2, then the main order term in H is
exp(n1 + -+ + Mky)-

This term dominates the sum of other terms in H», hence y(xg, yo) 7# 0. If n1(x0, yo) <
M /2, then the main order term in H; is

exp(nz + -+ 4 Nky)-
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This term dominates the sum of other terms in H;. Hence t (x¢, yo) does not vanish. The
claim is thus proved.
Now fix an M satisfying exp(M/4) > m—(l) 2", Consider (xg, yo) € R2\Q. If § is suf-

m
ficiently small, then by the choice of p;, g;, r);.), there exist precisely two n; such that
their absolute value at (xg, yg) is not larger than M. Assume they are 1y and 7,. The
function H; has the form

€X
ky —ky DA

The function H», has the form

n

2
ko —ky

exp (n2) + C1(8),

_(kl_k2)2 ki+kn ko 4+ kp

Ca(6).
k) kK, koK, SR m)+ GO

Here C1(8), C2(8) tend to zero as § — 0. Note that 2 t,’z: is purely imaginary. Hence for §
sufficiently small, either the equation H; = 0 has no solution, or the equation H, = 0
has no solution. Hence the set Sy is empty. Actually, in this case, by our choice of k;,
necessarily the equation H; = 0 has no solution. The proof is completed. ]

Throughout the section, we shall use B¢(xp, yo) to denote the open ball of radius €
centered at (xg, Vo) . Roughly speaking, the following lemma states that the set S, cannot
contain several curves intersect at one point.

Lemma 4.7. Suppose (xo, yo) € Sk, and So N Be(xo, o) = {(x0, yo)} for some € > 0.
Then locally around (xg, yo), S« is a smooth curve. More precisely, there exists § > 0 such
that either

S N{(x,y) +Jx = xo| <8,y = yol <8} ={(F(3), ).y € (o =8 yo + )},
where F is a smooth function, or

S N{(x,y) t x = xo| <8,y = yol <8} = {(x. Fu(x)) . x € (yo — &, y0 +8)},
where Fy is a smooth function.

Proof. Without loss of generality, we can assume that y is real valued and 7 is purely
imaginary. Hence t = it™*, where t* is real valued.
If (x0, yo) € S, then |y| = || # 0 and by (4.9), we have

kn(fy —80)%
2(/? + g%

This implies that as a complex valued function, at (xo, yo),

yOsy + T0sT =

k 2
10,02 + 7)) = L
2
This also means that
2 2 |an2|
VG2 )| = #0.

2
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Note that the function y? — 7*2 can be regarded as a map from R? to R. Therefore, by the

implicit function theorem, the result of the lemma is true in the case that (xg, yg) € S«. In

the rest of the proof we may assume that (xo, yo) € S«\Sx. In particular, (xo, yo) € So.
Since y and t* are real analytic functions, for § small, the set

S« N{(x, y) ¢ |x = xo| < 8. |y —yol <6}
consists of finitely many disjoint smooth curves, ¢y, ..., ¢,;. Each curve c; is determined
by a smooth map I;: (0, 1) — R2, where lim,_.o M (r) = (xo, o). The direction of
these curves at (xo, yo) will be denoted by e; := fm; (0). We also write e; = (ej,1,¢;2).

To prove the lemma, it will be suffice to show that m ‘=2 and e; = —ce,, for some ¢ > 0.
We define « and S by

fP-gr . 28

f2 + gZ f2 + g2

The function « is indeed a function of x, y. Since f, g > 0, we can choose « to be taking
values in (—7,0) . On Sy, if y = t*, we have

exp(if) = pn +ign, exp(ia) =

2

If y = —1*, then
p2
= mexp(i(ﬁ—@)-

To avoid confusion, we call o; := «fc; the restriction of & to the curve c;.

The key observation of the proof is the following: the fact that u, v are connected
through the Bicklund transformation does not depend on the choice of the coordinate
system. Hence if we rotate the coordinate system by an angle 6, then the corresponding

function )
¥ = exp ((0 + B)i) —3({?)/;5?2)

in the new coordinate system is still equal to 1. That is, if we denote the new coordinate
system by (x’, y’), then on Sy, if y = %,

2

’ . Y
4.11 = — =1
(.11) ¥ =exp (6 ++ @) gt = 1.
and if y = —t*, then

y?

4.12 f = 0 —o)i) ————— =1
(4.12) 9 =exp (6 + ~ o)) s

We split the proof into two different cases.

Case 1. f(xo, y0) # g(x0, Yo)-
Since we have the freedom of choosing different coordinate systems, we may choose
0; = —B. We set

eiytiei, = (ej1+iej)exp(if), j=1,....m.
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We claim that there exists at most one j such that ¢’; 2 > 0. Assume to the contrary that
0< ej a << ej > Where [ > 2. Since f(xo, yo) # g(Xo, yo), we find that if (x, y)
is close to (xo, Y0), then cos a(x, y) # 0. On the other hand, since So N Be(xg, yo) =
{(x0, y0)}, the function dy(y? — t*2) will have different signs on the curves cj, and c;,.
This contradicts with the identity (4.11) and (4.12). This proves the claim. Similarly, there
is at most one direction with ¢’; 2 < 0. We can then assume, by relabeling the indices if
necessary,thatelz>0622<0 andejz—O] =3,...,m.

Next we choose 6, = 8; + o, with |o| being small We denote the new coordinate
system by (x", y"). Assume y = t* on ¢; and y = —7* on c3. Then

(4.13) exp(i(c+a1))=1, oncy,

Iy (2 =)

(4.14) exp(i (0 —a3)) =1, oncs.

asA ()/2 - 7*2)
Observe that «; and 3 tend to a(xg, yo) # —7/2, as (x, y) — (xo, vo). Hence cos(o+o1)
and cos(o — «3) have the same sign when |o| is small. On the other hand, since the dir-
ection of ¢ is parallel to the x” coordinate axis, the function d,~(y? — 72) has different
sign on c3, for the two different choices of 0 = £09, where oy is a fixed small positive
constant. This contradicts with (4.13) and (4.14). Hence m has to be equal to 2. Note that
this argument also tells us that there at most two indices of j such that e , = 0. Now we
deduce that the function yt* has same sign on c¢; and c; (otherwise, m > 3). We only
consider the case y = t*. Then

2
14 .
V= —F———exp(i «)), oncg and cs.
7= OB+, oncandes
If e; # —e,, we can always rotate the coordinate system (x, y) into a new one (x*, y*),
such that d,+(y? — t*2) has different sign on ¢; and c3. This is a contradiction.

Case 2. f(xo, y0) = g(x0, yo)-
In this case, the proof is similar to Case 1, with minor modifications. More precisely,

in Case 1, we have taken #; = —f. Now we take 8; = —f + &9, where g9 > 0 is a small
constant. Observe that for (x, y) close to (xg, yo), cos(eg + @1) and cos(gg — 1) have
the same sign. The rest of the proof is same as that of Case 1. ]

We remark that without the assumption that So N B¢ (xg, yo) = {(x0, yo)}, Lemma 4.7
is still true. This generalization will be proved in Lemma 4.9.

Lemma 4.8. Suppose (xg, yo) € So and |y| = |t| in Bs(xo, o), for some § > 0. Then
(x0, Yo) is a removable singularity of T. That is, the limit

C(x,y)

lim
(x,y)—>(x0,y0),(x, )¢S

exists.
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Proof. Lemma 3.6 tells us that

— i vtu iy VU
0xv =idyu —kp >+ —kn >
i0yv = xu — ky sin 2% + ky, sin 252,

The first equation in this system can be written as

L) el

1+ (z/y)? 1+(g/f)?
N 2rt fP-gr A7 2f¢
_(p”_"q”l)( 2 2 2 27 2 2 2 2)
v:2+2fr+gr v+ fP4g
N( vt fP-gr  yP-T 2fg
_(p"_q"l)( 2 22 2t 3 2 2 2)
y:24+fP+er v+t fr+g
Still setting T = it*, we get
(4.15)

- dy(g/f) : - ’ nf
1(5) = - () n s + (0 () e
Similarly, the second equation of the system has the form
(4.16)
¥ 9x(g/f) * J: -
—ay(%) 1+ (iw/f)Z(l - (Ty )2) o1+ (T )2)f2 —fg o Ty 2 +§

Differentiating equation (4.15) with respect to x and equation (4.16) with respect to y, we

get
5= e

+ (1 +(T;)2

*

* *

() =) (5))

L o () rane(5)

Inserting (4.15) and (4.16) into this equation, we find that t*/y satisfies an equation of
the form

@.17) A(Ty—*) - i(aj(x,y)(fy_*)j)’
j=0

where a; are smooth functions determined by f, g. Since y and t* are both real ana-
lytic and |7*/y| < 1, the function t*/y can be smoothly extended to the punctured ball
Bs (x0, y0)\{(x0, y0)}. Since |t*/y| < 1, elliptic regularity and the removable singular-
ity theorem of harmonic functions tell us that actually 7*/y can be regarded as a smooth
function in Bg(xo, yo)-
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Now we distinguish two cases.

Case 1. lim(x’y)%(x()’yo) % = A € (—1, 1).

In this case, we have

m Ty = lm e U7 —ig)

(x,9)—(x0,0) x.0)—=(x0.v0) (f2 4+ g2) (y2 —1t*2)
__ka(f —igAo)’?

(f2 4 g2) (1 — A2) le=(x0,v0)

Case 2. lim(x, ;)= (xo,70) % = =+1.

We first consider the case where the limit is equal 1. From (4.15), (4.16), we deduce
that at the point (xo, yo),

T* f2—g*  2qufg
4.18 0. () = —»p, + — .
(4.18) (S)=rmaragtmra=¢
T fg fr-g*
(4.19) 3, (7) =2y g

Observe that ¢2 + d? = 1. Hence

t*

" =1+c(x—x0) +d(y —yo) + O((x —x0)> + (y — y0)?), as (x,y) — (xo,Y0)-

But this contradicts with the assumption that |y| > |t| in Bg(xo, yo). Hence the limit
cannot be 1. Similarly, it cannot be —1. Therefore Case 2 will not happen. ]

In view of the proof this lemma, we now define

S = {(xo,yo) es: lim L (x,yo)) — 1}.
~xo |y

By this definition, automatically we have S. C S.

Lemma 4.9. Suppose (xg, yo) € S. Then locally around (xq, yo), S is a smooth curve.
Moreover, there exist real numbers ¢, d, with ¢ + d? = 1, such that as (x, y) — (X9, o),

c+di + O(]x —xo| + |y — yol)

Ty = c(x —x0) + d(y — yo) + O((x — x0)% + (¥ — ¥0)?)

Proof. If (x¢, yo) € S«, then the result follows from the implicit function theorem and the
fact that 9 = 1 on Sk.

If (X0, ¥0) € Sx\Sx, then for § small, the set Sx N Bs (xo, yo) separates Bs(xo, yo)
into several disjoint connected open components £2;, j = 1,... Since

*

8S(T ) _ YosT* — 05y

% y?

9
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we find that s
(%) = SRR ity = #0,
' LT ity = ot £0.

Hence using equations (4.15) and (4.16), we deduce that for any (x1, y1) € S, there holds
(4.20) ?(x,y1) > 1, asx — xi.

We observe that the proof of Lemma 4.8 yields that any point (x, y1) € S is not isol-
ated in S (t*/y satisfies equation (4.17) and is smooth around (x;, y1)). We also observe
that if (x5, y2) € 1 N (Sp\S), then in a small neighborhood of (x5, y,), either y2 > 7*2,
or )/2 < t*2. Now with (4.20) at hand, we can deal with the arcs contained in 2; N S in
a similar way as that of S*. Hence we can apply arguments of Lemma 4.7 to infer that
Q1 NS = 0. At this point, we emphasize that in principle, 2; N Sy could be nonempty.
Note that this argument also tells us that the set S, N Bs(xo, vo) separates Bs(xo, Vo)
precisely into two disjoint connected open components €21, 2,, each component being
diffeomorphic to a half ball.

Now we can assume without loss of generality that at some points in €21, there holds
|[t*/v| < 1. Since 21 N S = @, we must have |[t*| < |y| in ;. Note that the function
©* [y still satisfies equation (4.17). That is,

* 3 .
J
(5) = Sforten(5)) na
14 —o 14
j_
Elliptic regularity and |t*/y| < 1 imply that t*/y is smooth and that the limit 49 =
imqx, ) (xo,y0) ’7 exists. Since Bg(xo, yo) N S« is not empty, there holds | 49| = 1. Hence
it follows from same arguments as that of the previous lemma that as (x, y) — (xo, Vo),
if Ag = 1, then
*

17 = Ao + c(x — x0) + d(y — yo) + O((x — x0)* + (¥ — ¥0)?),

where ¢ and d are defined in (4.18) and (4.19). As a consequence, in a small neighborhood
of (xo, ¥o),
c+di+ O(lx —xo| + |y — yol) .
¢(x —x0) +d(y — yo) + O((x —x0)> + (¥ — y0)?)
A similar formula holds in the case_of Ag = —1.
Finally, suppose (x¢, yo) € $\S«. By Lemma 4.8, if

C(x,y)=

“4.21) ly| = |z|, or|y| < |z|, in Bs(xg, yo), forsome§ > 0,

then the limit lim(y_yy— (xo,y, I (X, ¥) 7# %1 and (X9, yo) ¢ S. On the other hand, if (4.21)
does not hold, then by the previous arguments, one can show that (xo, y9) € S, and the
set Bs(xg, o) N S is a smooth curve. Moreover, one still has

¢ +di+ O(|x —xo| + |y — yol)
c(x —x0) +d(y — yo) + O((x —x0)%2 + (y — y0)?)’

for some constants ¢, d with ¢2 + d? = 1. n

C(x,y) =
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Recall that we have defined

X

Re(T'(, )) dl).

E(x,y) =exp (pnx +dqny —/

Let (x9, yo) € S. By Lemma 4.9, we may assume that around this point, S is the graph
of a smooth function x = F(y) (the case that S is the graph of a function y = F,(x) can
be handled in a similar way). Then we can define the integral in £ in the principle value
sense. Applying Lemma 4.9 and using the fact that 72/y? is real valued, we find that in a
small neighborhood 2 of (x¢, o),

G(x,y)

(4.22) E(x,y) = Y_FO)

where G is a function smooth in 2.

At this moment, £ only satisfies the first equation of (4.1). However, it “asymptotic-
ally" satisfies the second equation of (4.1), which means that £1T§ — 0 as x — —o0.
Later on we shall prove that indeed & satisfies the second equation of (4.1), in certain
sense. On the other hand, with the help of the function &, for given 7, we can solve the first
equation in (4.1) using the variation of parameters formula. However, to simultaneously
solve the system (4.1), we need the following.

Lemma 4.10. Let u and v be the functions defined in Lemma 3.6. Suppose that two func-
tions ¢ and n satisfy L¢p = Mn and

An—ncosu = 0.
Let ® := T¢ — Nn. Then @ satisfies the following ODE:

k 3 _
(4.23) axCD:—(?"cosv_;u +7ncosv2u)d>.

Proof. Lemma 3.6 tells us that u, v satisfy

—0xv + i0yu — ky sin 2% — ky sin B =0,
—idyv + dxu — kj sin ”'5” + ky sin =+ =0.

We denote the left-hand side of the first equation by A, and that of the second equation
by A,. Then we compute

kni keni -
i0yA; —0x Az = —Au — %l (dyv + dyu) cos vru %l (9yv — dyu) cos —
k k
+ 2 (B0 + Dy cos - tu_ 2 (30 = By)sin
In view of the identities:
—0xV +idyu = A3 +knsinv+u +l€nsinv_u

v+u — v—u
—i0yv + 0xu = Ay + ky sin — ky, sin 5
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we find that /9, A; — dxA> is equal to

+u

, - v—u\(k —u k +
—Au+<A1+k,,s1nv +k,,smv u)(;"co Uzu—gcosv2u>
_ —uy k — k
+(A2+k,,sinv u—knsinv u)(%cosvzu—kgcosv;u).

Using the fact that |k, | = 1, we obtain

k
i0y Ay —0xAr = —Au +sinu + A1<7" cos

0s
2 2 2
v—u k v+u>

kn n
4.24 + A (_ n
( ) 2\ o8 2 2 o8 2

Note that the linearization of —Au + sinu = 0 is

An—ncosu = 0.

Moreover, the linearization of Ay = 01is L¢ = M n; while that of the equation A, = 0 is
T¢ = Nn. Hence differentiating equation (4.24) in u, v, we get the desired identity (4.23).
|

With Lemma 4.10 at hand, we proceed to prove the following.

Lemma 4.11. T¢ = 0in R?\S.

Proof. For each fixed yy € R, we consider the set
Ey, i={x:(x,y0) € S}.

Observe that the functions y and 7 are explicitly given by suitable combination of expo-
nential functions. Hence S is the zero set of a real analytic function. This together with
Lemma 4.2 tell us that for fixed yy, the set E,,, has no accumulation points (the existence
of an accumulation point would imply that £,,, contains a whole straight line). Hence E,
has finitely many elements, denoted by &, (yo). j = 1, ..., in increasing order.

We claim that T¢€ = 0, if x € (—o00, £1(y0)).

To see this, let ¢ > 0 be a small constant. We choose xg € (—o0, £1(y0)) and let p(y)
be a function to be determined, with the initial condition p(y¢) = 1 and

(4.25) T(p&)(xo,y) =0, fory € (yo,yo + &).
This equation can be written as
(4.26) P+ 10y — Im(T — ky))p = 0.

This is an ODE for p and can be locally solved, yielding a solution for (4.25).
Since p only depends on y, the function p§ satisfies the first equation of (4.1). Hence
by Lemma 4.10, the function T'(p§) satisfies the ODE

v+u+l€n v—Uu
— COS
2 2 2

ki
0:(T(p)) = —( - cos )T (8.
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for x € (—o00, x9), ¥ € (yo, Yo + ¢€). It then follows from (4.25) and the uniqueness of
solutions to ODE:s that

4.27) T(pE) =0, forx e (—00,x9),y € (Yo, Vo + €).

In this equation, let us send x to —oo. Then from (4.26) and the asymptotic behavior of &
and I', we get that

o' (y) =0, fory e (yo,yo+é).

This together with the initial condition p(yg) = 1 tell us that indeed p = 1. In view
of (4.27),
T(S) :07 for x € (_OO,XO)»)’ € (YO»YO+8)~

The claim is then proved.
Next let us choose x1 € (§1(y0), £2(y0))- Let p1 () be the function with initial condi-
tion p1(yo) = 1 and

T(p16)(x1,y) =0, fory € (y1.y1 +¢).

Then same arguments as before tell us that

(4.28) T(p1£) =0, forx € (§1(yo).x1),y € (y1,y1 + o).

We would like to show that p} = 0. To do this, we will send x to &; (o) in equation (4.28).
We have, for y € (yo, yo + ),

(4.29) P+ (E710yE —Im(T —kn))p1 =0, forx > £1(yo).
On the other hand, we already know that 7'(¢§) = 0 for x < &;(yg). This means
g—layg: —Im(I" —k,) =0, forx < &(yo).

Denote
M:=£19,6 —Im(T — ky).

The asymptotic behavior (4.22) of & near (£1(yo), yo) implies that

(4.30) lim  TI(x.ye) = lim  TI(x.vo).
x> (E1 o))+ Coyoy = lm o Hexy0)

Combining this with (4.29), we find that p| = 0. Hence p; is a constant and

T(¢) =0, forx e (§1(y0),82(»0)),y = yo.

Repeating these arguments in the interval (§; (o). §;+1(30)),j = 2...., we see that

T(§) =0, forx #&i(yo).y = yo.

Since yy is arbitrary chosen, the lemma is then proved. ]
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Let 1 be a bounded kernel of the linearized elliptic sine-Gordon equation. That is,
4.31) —An+ncosu = 0.

For each fixed y, the variation of parameters formula tells us that the first equation in (4.1)
has a solution of the form

4.32) (x.y) = E(x.y) /_ £ My dl.,

where the function £~! M n is evaluated at (/, y). Note that £~1 M is smooth in R2. This
together with the assumption that p, < 0 imply that the integral is well defined. However,
since £ has singularities on S, ¢ is also singular along S, but the singular behavior is well
controlled. The following result can be regarded as a generalization of Lemma 4.11.

Lemma 4.12. Let n be a bounded solution of (4.31). The function ¢ defined by (4.32)
satisfies system (4.1) in R2\S. As a consequence, ¢ is a kernel of the linearized elliptic
sine-Gordon equation at v in the following sense:

(4.33) —A¢p +¢pcosv =0 in R?\S.
Proof. We follow the same idea as in the proof of Lemma 4.11. We wish to show that
(4.34) Té¢ = Nn in R%\S.

Choose xg € (—00, £1(y0)) and let p(y) be the function satisfying the initial condition
p(yo) = 0 and

(4.35) T(p§ + ¢)(x0,y) = N1, fory € (yo,yo +¢).
Then the function § := T'(pé + ¢) — N1 satisfies

k k —
8x§=—<7"cosv—;u+7ncosv u)ﬁ,
for x € (—o00, x0), ¥ € (Yo, Yo + €). The initial condition (4.35) then implies that § = 0

and hence

T(pE +¢) = Nn, forx € (—00,x0),y € (¥o, Yo + €).

Sending x to —oo, using the fact that Nn — 0 as x — —oo, we find that o’ = 0. Thus
p = 0. We deduce that

T = Nn, forx e (—o0,x9),y € (Yo, Yo + ).

Next we choose x1 € (£1(y0), £2(0)). Let p1 () be the function with initial condition
p1(yo) =0 and

T(p1& +¢)(x1,y) = Nn, fory € (y1,y1 +¢).

Then same arguments as before tell us that

T(p1§ +¢) = Nn, forx e (§1(yo).x1),y € (y1.y1 +¢€).
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Sending x to &1 (y¢), we have, for y € (yo, yo + €),
436) o)+ E0E—Im(T —kn))p1 +E 'Top =E'Nn, forx > & (yo).

Denote I1; := £~ 1(Nn — T¢). The asymptotic behavior (4.22) of £ near (£1(y0), Vo)
again implies that

lim I (x, yo) = li

m I1;(x, .
x> (1 o)+ ol - i yo)

This combined with (4.30) and (4.36) yields p] = 0. Hence p; = 0 and

T¢ = Nn, forx € (§1(»0).£2(y0)). ¥ = Yo.

Once (4.34) is proved, it then follows from the linearization of the Bicklund trans-
formation that ¢ satisfies (4.33). The proof is completed. ]

Now we are ready to prove Theorem 4.1 (Theorem 1.2). That is, the nondegeneracy of
2n-end solution (it can be regarded as an n-soliton).

Proof of Theorem 4.1. Letus fix a solution u = U,, + 7. Suppose 1 is a nontrivial bounded
kernel of the corresponding linearized operator:

An = ncosu.

By the linear decomposition lemma of [11] and the asymptotic behavior of {;, there exist
C1,...,cy such that the function

n
"i=n—Y ¢
j=1

decays exponentially fast to 0 as x — —o0o, uniformly in y. That is, there exist constants
C, 8 > 0 such that
[n*(x,y)| < Cexp(=8]x]), x <O.

We point out that for each fixed y, n always decays to zero as |x| — co. Note that at
this moment, we do not know whether n* decays to zero as x — +00, uniformly in y.
Nevertheless, we would like to prove that n* = 0.

Applying Lemma 4.12 to the function n*, we get a corresponding kernel ¢ of the
linearized operator at the function v = 4 arctan(z/y). That is,

A¢p = ¢ cosv.
Explicitly,
X
@37) sty =ty [ e Ml
—00
Here the function £~1 M n* in the integral is evaluated at (/, y). Since n* decays expo-

nentially fast to 0 as x tends to —oo, ¢ also decays to zero as x — —oo. Note that ¢ is
singular at . However, the singular behavior of ¢ is well controlled.
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Let us write 7 as 7,1, and y as y,—;. By Lemma 3.7, the function v,_; (= v =
4 arctan ;"—*‘ is the Bécklund transformation of v, _5. That is, v,—, and v,_ satisfy

n—1

A Vn—2—VUn—-1

Un—2+Un—1 :
% — kn—l sin sa=2onel

axvn_z = iayvn_l — kn—l sin

(4.38) {

10yUp—2 = OxUn—1 — kp—1 sin "”*Zzﬁ + kp—1 sin 2=25tn=L

Recall that 7,,_5/y,—> is a real valued function.
Let us write the function ¢ by ¢, ;. Linearizing system (4.38) and denoting

(J/n—lyn—Z - 7—'n—l":n—l)z
Vot + G ) s + Tos)

I = 2kn—l

we get the following equation to be solved for the unknown function ¢, _;:

8x(i)an + Re(rnfl - kn71)¢n72 = iayﬁbnfl —iPp_1 Im(rnfl - knfl),

(4.39) ) )
i0ypn— +iIm(ITy—1 —ky_1)pp—2 = 0xPu—1 — Ppu—1 Re(T'n_1 —kp_1).

Since 1,,—2/yn—2 is real valued, the function I',_; has the same singular set S as I7,.
Indeed, if P is a point outside S such that t,—>(P) = y,—2(P) = 0, then by dividing the
numerator and denominator of I',_; by t,_2(P) or y,—>(P), we see that P is actually
a removable singularity. The explicit formula (4.37) of ¢,—; tells us that near a singular

point (xg, yo) € S, there exist smooth functions F, G such that ¢,,_1 — XG_(;’(yy)) is smooth.

As a consequence, near (xg, yg), for some function G,

G(x.y) |

(4.40) Mn—1¢n—1 = i[ay¢n—1 - ¢n—1 Im(rn—l - kn—l)] ~ x——F(y)

Define

X

§n2(x,y) :=exp (pn_lx +qny + / Tl y) dl).
o

By Lemma 4.12, the system (4.39) has a solution

Mn—1¢n—l
En—2
Note that &,_5(x, y) = O(x — F(y)) around the singular set S. Here one need to be

careful about the definition of ¢,,—,. More precisely, suppose (xg, yo) € S, then for x > xg,
with x — x¢ small, the right-hand side of (4.41) is defined to be

g fon( [+ [ )F50a]

Using (4.40), we find that ¢, is continuous in R?. We would like to show that ¢,_»
is actually smooth. To see this, we use the fact that ¢,_» satisfies the linearized equation
away from the singular set S. That is,

4.41) bna(x. ) = Ens(x.7) /_ dl.

(4.42) Apy—2 = ¢p—2COS Uy—3.
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Let (xg, o) € S. From (4.41), we see that there exists a smooth function g, such that near
(x0, o), the function

Pn—2 —g(V)(x = F(y))In|x — F(y)|

is smooth. Inserting it into (4.42), we find that the function g = 0. As a consequence, ¢,,—»
is smooth.
With the function ¢,—, at hand, now let us consider the linearized Bicklund trans-

formation between v,_3 = 4 arctan % and v,_» = 4arctan %:
n—. n—.

{ ax‘lsn—3 +Re(l'—2 — kn—2)¢n—3 = iay¢n—2 —i¢y 2 Im(Iy 2 — kn—2)7
iay¢n—3 +i Im(rn—z - kn—2)¢n—3 = axﬁbn—2 - ¢n—2 Re(Fn—Z - kn—Z)-
Here,

(Yn—2¥Yn—3 — Tn—zfn—3)2 .
Yoz + Ta—2) Vs + Ta_3)
Note that the function 7,_3/y,—3 is purely imaginary. Hence it is now singular at the set

Fp = 2kn—

Sn—z i ={(x.y) eR*:y7 3+ 17 5 =0}

We can also define the set So,—3, Sx,n—3, Sp—3. Following the same proof as that of
Lemma 4.5, one can show that on S ,—3, there still holds

(Vn—2Vn—3 — Tn—27:n—3)2

Y, -3 .= k -2 =
" " (Vy%—z + 73_2)(Vn—3as Yn—3 + Th—305Tn—3)

1.

Hence the same arguments as above tell us that the corresponding function &,_3 has sim-
ilar asymptotic behavior near the singular set S,,_3 as the function &,_; near S. Using this
information, we can further analyze the linearized Béacklund transformation between v, _4
and v,—3 and get a smooth solution ¢,_4 of the equation

A¢p—4 = Pp—4COSVp_4.

Repeating the above procedure, we may consider the Biacklund transformation between
vj = 4arctan ;—’ and vj_; = 4arctan ;’_‘i ,j =n—4,..., 1. Linearizing these Biacklund
J J—

transformations and solving them similarly as in Lemma 4.12 (one also need to be careful

about the point singularities in these systems), we finally get a solution ¢ of the equation

Ao — cos(vo)po = 0.

Observe that whether or not 7;/y; is real valued, the function vg = 4 arctan 7o/ )y is
always equal to 0. Hence from the previous argument, one can actually show that ¢ is
smooth.

We claim that ¢ is bounded in R?. To see this, let us first estimate ¢,_;, which is
defined by (4.37). In view of this definition, we need to analyze the function £. Observe
that by Lemma 4.3, the function T" tends to the limit O or 2k, away from the ends.
Moreover, since we have assumed that p, < 0, this limit is O in the region E_ := {(x, y) :
PnX + gny > 0}; whilein E4 1= {(x,y) : ppx 4+ gny < 0}, the limit is 2k,.
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Let us define
O_ = {(x,y) € E_ :dist((x,y),S) > 1}.

Recall that by Lemma 4.2, outside a large ball, the set S consists of finitely many curves
asymptotic to rays, with each ray being parallel to one of the ends. In ®_, using the
exponential decay of I" away from the ends, we have

X

4.43) xp(—pux — gay)é = exp (- / Re(I'(l.y))dl) < C.

Therefore, in ®_, we can estimate

X
n1 = sf g 'Mn*dl < C.
—00

This estimate can be refined. Indeed, since n* — 0 as x — —oo, uniformly in y, we have,
in &_,
(4.44) ¢n—1 — 0, asx — —oo, uniformly in y.
Similarly, we define

Of = {(x,y) € E4 :dist((x,y),S) > 1}.

In ©4, since I" converges to 2k, away from the ends, we have

pe qn
Re(T'(, y)) dl = 2p, (x n —y) + o).
—00 Pn
Therefore, in ® 4, there holds

X

445 exp(pux +u0) € = exp (2pnx + 240y - / Re (I (L.y)dl) < C.
o0

To estimate ¢,,—; in @, we define

+o0
B(y) :=[ e My* dl.

o

Note that this is well defined, because & is exponential growing as x — Foco0. We have
Pn—1 — E(x,y)B(y), as x — 4o0. Inserting this into the equation

Oypn—1 +Im(I" — kp)pp—1 = —iNn*,
and using the fact that & also solves the equation
8y + Im(T —ky)§ = 0,

we infer that j—yi)’ = 0 and hence B is a constant. Using the estimates (4.43) and (4.45)
of £, and the fact that n* converges to 0 as |y| — 4oo for all x < 0, we find that, if
qn > 0, then B(y) > 0as y - —oo, and if ¢, < 0, then B(y) > 0as y - +00. Asa
consequence, B = 0. Then in @, we can write

X X
ot = £ / eMyrdi=¢ [ €Myl
—00 +o0
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This together with the estimate (4.45) of £ imply that ¢p,,_; < C. Note that in the region
{(x,y) : dist((x, y), S) < 1}, the asymptotic behavior of ¢,_; is determined by that of &,
and we can estimate

gna < | F@)

provided that S is locally determined by x = F(y); and |¢p,—1| < |% |,if S is locally
determined by y = F.(y). With this information at hand, we can proceed to estimate ¢, —»
using similar arguments as for ¢,—;. Recall that ¢,_, is smooth. One then can show that
actually |¢,_»| < C in R?. Repeating this arguments, we finally deduce that ¢ is also
bounded.

Having proved that ¢ is bounded, we can use the Liouville theorem to conclude that
¢o = 0.

Up to now, we have defined ¢p;, j = 1,...,n — 1, and proved that ¢¢ is zero. We
would like to show that ¢; = 0. To see this, we analyze the reverse linearized Béacklund
transformation from vg to vy:

0x¢po + Re(I'y —k1)po = i0yp1 — iy Im(I'y — ky),
i0ygo +1Im(I'y —k1)do = dxp1 — ¢1 Re(I'y — ky).

Since ¢¢9 = 0, we see that necessarily, ¢y = c£*, for some constant ¢, where

X

¢ mexp(—px—q+ [ Tilyar),
—0o0

Note that £* = &1, By the asymptotic behavior of Ty, £* does not decay to zero along
the line py1x + g1y = 0. But on the other hand, an estimate of the form (4.44) also holds
for the function ¢; in the region

1(x,y): p1x +q1y > 0},

Hence necessarily there holds ¢ = 0 and ¢; = 0. We remark that the function £* arises
from differentiating the function v; with the phase parameter 9. That is, £* = cg an?vl ,

where ¢ is a constant. Repeating the above arguments, we see that ¢,—; = 0, and n* = 0.
Hence by the definition of n*, we obtain n = Z;-’zl ¢;¢;. This finishes the proof. ]

5. Inverse scattering transform and the classification of multiple-end
solutions

We consider the elliptic sine-Gordon equation in the form
6D Au =sinu, 0<u <2m.

Under the correspondence ¢ + m <> u, multiple-end solutions of the equation —A¢ =
sin ¢ correspond to those solutions of (5.1) whose 7 level sets are asymptotic to finitely
many half straight lines at infinity. Along these rays, the solutions u resemble the one
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dimensional heteroclinic solution 4 arctan e* in the transverse direction. In this section,
we would like to classify these solutions using the inverse scattering transform of the
elliptic sine-Gordon equation, developed in [28]. For inverse scattering of the classical
hyperbolic sine-Gordon equation, we refer to [1, 8, 15].

The main result of this section is the following.

Proposition 5.1. Suppose ¢ is a 2n-end solution of the equation —A¢ = sin¢. Then there
exist parameters pj,q;, 77;.), j=1,...,n, such that ¢ = U,, where U, is defined in (2.15).

Let us denote ¢ 4+ 7 by u and let use I to denote the 2 x 2 identity matrix. Let A be a
complex spectral parameter, and let o; be the Pauli spin matrices:

0 1 0 —i 1 0
=L o0 2T oo |0 BT o0 -1 |
Note that 01.2 = 1,0301 =i0, = —0103, 030, = —i0] = —0,03, and 0,01 = —i03 =
—0107. Equation (5.1) has a Lax pair
5.2) D, = AP,

(5.3) ®, = B®.

Here @ is vector valued or 2 x 2 matrix valued, depending on the contexts. Moreover, the
matrices A and B are defined by

A= z_l [(A — Coju)cn — (Ux —iuy)or — sizu 01],
B = th [— (/\ + co;u)% + (ux —iuy)or — sizu 01].

Indeed, the compatibility of (5.2) and (5.3) yields
Ay + AB = B, + BA.

A direct computation shows that this is equivalent to equation (5.1).
Define K(A) := A — 1/A. For each fixed y € R, as x — $00, due to the exponential
decay of u to 0 or 27, we see that

A — — o3.
1 73
We would like to investigate the existence of matrix valued solutions @4 of (5.2) such that
dy(x,y) > exp (%0'3)6), as x — $00, using Picard iteration under certain assumptions
on A. It turns out that different columns of ®4 have different analytic properties (with
respect to A). This is the content of the following result.

Lemma 5.2. Assume ImA > 0 and A # 0. There exists a solution @ 1 to the equation
0x Dy = ADy 4, satisfying @ 1 exp(—Kix/4) — (1,007 — 0, as x — +oo. There also
exists a solution ®_ , to the equation 0y P_ , = ADP_ ,, satisfying _, exp(Kix/4) —
0,17 — 0, as x — —oco. Moreover, @, 1 and ®_ 5 are analytic with respect to ) in the
region {A :ImA > 0, A # 0}.
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Proof. Let us define

(5.4) A ) = A ) — B3,

AT, AT
A* = ( 11 12 )
A5 A%

Note that each entry of A* tends to 0 as |x| — +o0. Let us introduce the column vector

We write

Kix
041 =Dy exp(— T) = (411, P+.21) 7.

For each fixed (y, A), we consider the integral equation

5.5) { P+ 11(x, ¥, 4) =1+ ffoo [AT1<P+,11 + A72<P+,21] (s,y,A)ds,
P+21(x, 9, 4) = [T exp (BL(s —x)) [A3,0+4.11 + A%y0421](s, ¥, A) ds.

If o4 1 satisfies (5.5), then 0, P 1 = AD4 ;.

Now suppose Im A > 0 and impose the boundary condition ¢4 1 (x, y,A) — (1, 0)7, as
X — +o00. Under this boundary condition, the system (5.5) has a unique solution. This can
be proved by Picard iteration, starting from the constant vector (1,0)”. More precisely,
we define the sequence (</>$1,)11’ (pff’)zl) in the following way. Let (‘PS:),)H’ (pff,)n) = (1,0)
and

001Gy ) = 1 [ (470800 + A0 505,y ) ds,
0y 0) = [{gexp (5 (=) [450117 + 43,0057 ]6.y. 1) ds.
IfImA > 0 and A # 0, then
Ki 1 1
5.6 Re(S-) =—5 (1+57) mr=o.
(5.6 e(5 ) 5 ( + i mA <
This condition ensures that the integral
* Ki _ -
f exp <_(S - X))[Aﬁlwf,ul) + Aiz‘ﬂgf,zll)](s’ y.A)ds
+o00 2

is well defined. Note that the integrand depending analytically on A.
To simplify the notation, let us suppress the y and A dependences of these functions.
We have the following estimates:

o) o . ) too
60 <1+ / AL ©)ds. [ (0] < / 1A%, ds.
X

X

Let us define

+o0
5D 0() = / (143, ()] + A5 ()] + 145 ()] + | 435(5)]) ds.
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Then |
1
DL <14+ 0(x) and i, (x)] < ().

Inserting these estimates into the integral equation defining qpf)jl and integrating by parts,
we obtain

1 1
PPN =14+ 0() + 5000 and (¢, ()] < 000 + 5 0°(x).

Using an induction argument, we get

n J n J
(5.8) |‘/’$,)11(x)| = Z Qj(|X) and |‘/’5:,)21(x)| = Z Qj(|X) ’
j=0 j=1 7

It follows that ((,0_(:,)1 15 (pgfl,)m) converges to a solution (¢4,11, ¢+ ,21), which is analytic in A

in the region {A : ImA > 0, A # 0}. By (5.8), we also have
(5.9 lo+11(X)] = exp(Q@(x)) and  [p412(x)] < exp(Q(x)) — 1.

Observe that since the integral in goi[',)l is from +o00 to x, we have (¢4,11,9+21) = (1,0),
as x — +00. We also have 0, P4 1 = AP, ;. We emphasize that if the lower limit +oc0
in the integrand defining ¢ »; is replaced by other numbers, then ¢ >; will not have the
desired asymptotic behavior.

Same arguments as above yield a solution (¢_ 12, ¢ 22) satisfying ¢_»(x, y,A) —
(0, l)T, as x — —o0, and the integral equation

o-12(x, 3, 4) = [Z exp (=5 (s =) [AF19-12 + A3,0-22] (5.3, 1) ds,
@-22(x6, y,0) = 1+ [7[A3,0-12 + A5,0-22] (5, ¥, 1) ds.
This solution is also analytic in {A : ImA > 0, A # 0}. This finishes the proof. |

For each fixed y € R, &, and ®_ are solutions of the same ODE system. Hence they
are related by

b*(A.y) a*(A.y)

for some functions a, b, a*, b*, which are independent of x. We emphasize that the func-
tion a defined here is not the same as that defined in Section 2.

Lemma 5.3. For each A € C\{0} withIm A > 0, there holds

(5.10) q>+(x,y,x)=q>_(x,y,x)[ a(r.y)  b(A.y) }

q)+,1 (X, y, A) = iUz CI)+,2 (X, y, —A.) .
Similarly, for each A € C\{0} with Im A < 0, there holds

D_1(x,y,A) =ioa P (x,y,—A).
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Proof. Let us write ®4 into columns: &4 = [®4 1, P4 »], where

For j = 1,2, we define
(NP .
O, = [ B +’21_ ] =ioy Py ;.
By the symmetry of A, we know that ® ; satisfies

0xO4 1(x,¥,4) = A(u,—1) O4 1(x,y,4).

It follows from the asymptotic behavior of ®4 ; at infinity and the uniqueness of solutions
to the ODE that

(5.11) O41(x,y,4) = =Dy 5(x, y,—A).
Similarly, ®_ ;(x, y,A) = —P_1(x, y,—A). |
Lemma 5.4. Suppose A € R\{0}. We have that a*(A,y) = a(—A, y) and b*(A,y) =

—b(—A, y). As a consequence,

@.,.(x,y,/\):q)_(x,y’k)[ a(d,y)  b(A,y) ]

_b(_kvy) Cl(—/‘\,y)

Proof. By definition, @ and ®_ are related by

(512) CI)+52 = b(D_’l + a* @_72,

{ Qi1 =ad_ 1 +b*P_»,
From the second equation of (5.12), we get
Otr=bO_;+a"0O_,.
Using this and Lemma 5.3, we obtain
(5.13) D4 a(x,y.—A) =—bA, y)P_p(x,y.—A) +a" (A, y) D1 (x, y.—A).
On the other hand, by the first equation of (5.12),
G.14)  Dpa(x,y.—A) =a(=A,y) @1 (x, y,—A) + b7 (=4, y) P_n(x, y, ).
Comparing (5.13) with (5.14), we finally deduce
a*(d,y) =a(=A,y).b*(A,y) = =b(=A. y). =

The functions a(A, y) and b(A, y) are a priori depending on y and the spectral para-
meter A. Nevertheless, we have the following.
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Lemma 5.5. Suppose u is a solution to (5.1). Assume A € R\{0}. Then a(A,y) = a(X,0),
and

(5.15) b(A, y) =b()t,0)exp(—%(/\+k_l)y).

Proof. Recall that ® satisfies (5.2), but it does not satisfy (5.3). However, the function
P* = Dy exp(—}—l()t + %)o3y) satisfies the equation
dyd* = BP™.

Inserting (5.10) into this equation, we get

wo[ 2 G e (=5 (h+ 3)ow)

vo [ Pt G e (<5 (1 1))

o 500wl 1alew (- 56+ 7)ew)]

Sso [ 00, M o= o).

Sending x to —oo and using the fact that ®_ tends exponentially fast to exp(%@x), we
obtain

[ 5y aatciom 1L ACD aam 130+ 7))

= (e[ 0 AT

It follows that { {
dya=0, Ob=->(1+7)b.
ya y 5 + 1
The assertion of the lemma follows immediately from these two equations. ]

Without loss of generality, we may assume that ¢ is rotated so that no end is parallel to
the x-axis. Since ¢ is a multiple-end solution of (1.2), there exists a choice of parameters
Dj 4js n;-’, with p; > 0, j = 1,...,n, such that the zero level set of the corresponding
solution U,, has the same asymptotic lines as that of ¢, as y — +o00. We denote the a part
of the scattering data of U, + 7 by a(4, y).

Lemma 5.6. Assume A € R\{0}. We have a(A,y) = a(A,y) and b(A,y) = 0.
Proof. By (5.12),

(5.16) Pra(x.y.4) =a@d,y) P 1(x,y.4) =b(=A,y) P_s(x.y.A).
We rewrite & = exp (% x) ®* . Then ®% satisfies

Kiosx

(5.17) 0P = exp(— w)A* exp( ) Q7.
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. 1/2 . .
Consider the norm ||M || := (Zj,k |mjk|2) / , where m i are entries of a matrix M. We
have, by (5.17), for some constant Cy,

(5.18) I RLIN = Co AT DLl

Applying the refined asymptotics theorem (Theorem 2.1 of [11]), we deduce that 4*
decays exponentially fast to 0 away from each end. It then follows from (5.18) and the
Gronwall inequality that || ®% || < C in R2, for a universal constant C. Hence ||® | < C.
Similarly, |®_|| < C. Then in view of the relation (5.16), by sending x to —oo, we see
that for each fixed A, |b(A, y)| is uniformly bounded with respect to y. This together
with (5.15) implies b(4, y) = 0.

We use A to denote the matrix obtained from replacing u by Uy, in A. Let d be the
matrix valued solutions of the equation dy @i =4 CI>i, with the same asymptotic behavior
as that of ®. To compare <I>i with &4, we write

0Py = ADy + (A— A) 0.

By the variation of parameters formula, we have

X
(5.19) o, = b, (1 +/ (&) 14— A) oy ds).
+o00
By the choice of U,, there exists § > 0 such that

(5.20) |p — Un| < Cexp(—38v/x2+y2), fory>0.

Similar estimates hold for the derivatives of ¢ — U,. Hence from (5.19), we deduce

[®y — Dy < Cexp(—68vx2+y?), fory>0.

Arguing in the same manner,

|o- — d_| < Cexp(—8y/x2+y2), fory>0.
Now, in view of the relations
Oyi(x.y. M) =a( ) P_1(x.y.A), Dpi(x.y.A) =a(,y)d_i(x, y. ),

we conclude that for fixed A,
lim (a(A,y)—a(A,y)) =0.
y—>+00

This together with Lemma 5.5 implies that for any y € R, a(A,y) = a(A, y). L]

Observe that

ImK = (1 i #) ImA.

By Lemma 5.2, we now know that the functions & ; and ®_, are analytic in the
upper half A-plane R?*; while ® , and ®_; are analytic in the lower half A-plane.
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We use W(P4 1, P_ ) to denote the Wronskian determinant of ® ; and ®_ ,. That is,
WPy, P_2) = D41, D_2|. Note that for A € R\{0}, we have &4 ; = a(A)P_; —
b(—A)®_ », hence we obtain

W(@4,1, D) = W(@(A)P—1,P-2) — W(D(=1) P, D) = aW(P_ 1, D).

Using the asymptotic behavior of ®_ 1, ®_ 5 as x — —oo, we have W(P_ 1, P_,) = 1.
This then implies that for A € R\{0},

(5.21) a(d,y) = W(®y1, Pp).

Hence a can be analytically extended into R?* using (5.21). By the asymptotic behavior
of &, 1, d_ 5 as A — 0, a will be continuous up to the boundary of R2:*. We also remark
that if A is in the lower half plane, then the behavior of ®, ; is much more delicate,
because in general, solutions with the desired asymptotic behavior at 400 may not be
unique.

We have the following generalization of Lemma 5.6.

Lemma 5.7. Assume ImA > 0 and A # 0. Let a be defined by (5.21). Then a(A,y) =
a(,y).

Proof. Recall that by Lemma 5.2, the function ¢4 1 = ®4 ; exp(—%) satisfies the integ-
ral equations

{ or11(x,y,A) =1+ fj:oo [Af 10411 + A% 9421 (5. y. M) ds,
Pr21(x.y. ) = [T exp (L (s —x)) [A3104.11 + A%yp421] (5.9, A) ds.

This solution is analytic in the upper half A-plane. Similarly, for the corresponding func-
tions ¢4 1 associated with the potential U,,, we have

{ P10 1) = 1+ [{ [A ot + A50421] (5.3, A) ds.
Pr01(x, 3, 4) = [{ o exp (B (s — ) [A3 0111 + A304.01] (5.3, 1) ds.
If we set pj 1= @4 j1(x,y,A) — @4 j1(x,y,A), j = 1,2, then
522 { P = [{e [/f’flpl}r A3, 0] 5.y, 1) ds.
o2 = [T oD (52 (5 = ) [A3p1 + Asppz + 2]ds.

where

fi = (A} — A7) g1 + (AT — AD) 9421,

fr 1= (45, - 1431) P+11 + (A5, — 1432) O+,21-

Due to the estimate (5.9), ¢+ 1, ¢+,1 are uniformly bounded for (x, y) in the whole plane.
Similarly, using the decay estimate (5.20), we infer from (5.22) and the Picard iteration of

(o1, p2) that

+o00
;)] < [ (I61)] + [£a(5)]) ds exp(Q(x)).

+o00
lp2(X)| = / (If1 ()] + [f2(5)]) ds exp(Q (x)).
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Here Q(x) is defined by (5.7). It follows that
lim [(p-hl (O’ Vs A) - ¢+,1 (07 Vs )L)] =0.
y—>+00
Kix
1

lim [p_5(0,y,4) —@-2(0,y,A)] = 0.

y—>+o00

Similarly, letting ¢_ » = ®_, exp (%), we have

Using the definition of a, we then deduce
lim [a(A,y)—a(A,y)] =0.
y—>+00

On the other hand, we can still prove that d,a(y,A) = 0. Hence a(A, y) = a(A, y). This
finishes the proof. L]

Let )Lj, j =1,...,m,be the zeros of a in R2:t, At these points, by the definition of a,
there holds W(®. 1, ®_,) = 0. Hence the vectors ®_ ; and ®_ , are co-linear to each
other. Let us define ¢; by the formula

D4 1(x,y,45) = c;(y) P_n(x,y,4)).

Then cj’. = —%(Aj + 1/A;)c; and therefore ¢;(y) = ¢;(0) exp(—%(kj + 1/A;)y). Itis
worth pointing out that unlike b, the function c; is in general not uniformly bounded
with respect to y. Let us use ¢;(y) to denote the corresponding function of U,. It is a
natural question that whether one can prove ¢;j(y) = ¢;(y), following a similar idea as
that of Lemma 5.6. It turns out that, to do this, one need to directly analyze the precise
asymptotic behavior of & ; as y — oo. While in principle this can be done, we choose
to bypass this difficulty and verify it a posteriori, after we prove that ¢ = Uj,.
Now we have all the necessary scattering data at hand, which are a, b, A}, c;.

Lemma 5.8. Suppose all the zeros of a in the upper half A-plane are simple. Then u =
U, + m.

Before proceeding to the proof, we emphasize that the result of this lemma is proved
under the additional assumption that all the zeros of a in the upper half A-plane are simple.
However, we will show in Lemma 5.9 that for the standard solution U,, + m, the corres-
ponding scattering data @ only has simple zeros, which in turn implies that a only has
simple zeros. The proof of Lemma 5.9 does not depend on the result of Lemma 5.8;
however, the construction of explicit Jost functions in Lemma 5.9 is inspired by the for-
mula (5.25) of the proof of Lemma 5.8.

Proof of Lemma 5.8. We would like to carry out a simplified version of the inverse scat-
tering procedure to construct the potential u from the scattering data, following [28]. Part
of the arguments here are more or less standard. Since it is not easy to locate the precise
references, we sketch the proof below for completeness.

For fixed y € R, by (5.16), we have, for A € R,

Pya(x,y.4)

(5.23) D_y(x,y. 1) = )
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Consider the operator

+o00
R (VP

o
EHEO =5 | 7%
Let us rewrite equation (5.23) as
(5.24)
K)i P LV A K(A)i
d_ 1(x,y,)k)exp<— DL x) — (1,007 = Mex (— Wi x) — (1,07,
’ 4 a(i,y) 4
The left-hand side is analytic in the lower half A plane, while the right-hand side is mero-
morphic in the upper half plane with simple poles A;, j = 1,...,m. Here ImA; > 0.

%’l)ix) has two essential singularities: A = oo and A = 0.

Note that the function exp ( —
However, one can show that

K(A)i
dD_’l(x,y,A)exp<— (4)1

x) —(1,00T >0 asA— oo.

Moreover, _ ; (x, y, A) exp ( — @ x) can be continued to the origin. We refer to [15],
page 396, for related discussion on this issue for the hyperbolic sine-Gordon equation. For
each fixed £ € C with Im& < 0, applying the operator & to both sides of equation (5.24),
using the residue theorem and the fact that @4 ;(A;) = ¢;P_ >(4;), we obtain

K (S)i )
— X

(5.25) -,y B exp ( — — (1,07

_Z[S % exp( (A )i )Q_’z(x,y,kj)],

where
¢ (y)
0a (/\j y )

On the other hand, by Lemma 5.3, ®_5(x, y, —§) = —iop ®_ 1 (x, y, &). Hence taking
& = —A; in (5.25), we get

(5.26) ¢(y) =

K(h)i
; x) — 1,07

= —i [)u ikj exp(_ @x) CD_’Z(x’y’Aj)]'
j=1

This is a system of m equations for the functions ®_ »(x, y,A;), j =1,...,m.Let M be
the matrix with entries

io2 ®_5(x,y, A1) exp (

GO kK@) .
m;; = Ty exp( 5 zx).

Let:= (1,....702m)" , where

eXP(W) D_2(x,y, A1), ifl=1,....m
eXP(M) S 12(x, ¥, i), ifl=m+1,...2m.
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Then we get
1 M
(5.27) ( w T )n—el,
where [ is the m x m identity matrix and ¢; = (1,...,1,0,..., O)T. Observe that

(—5\4 AI/[)Z(ZII ?)(IJroiM J—MiM)<—€1 ?)

Defining
ﬂ*=(1 O)77 e*:(l 0)e1 Z=(1+iM M )
+ —il 1 )" TF i1 1) o 0 I—iM )
we can transform equation (5.27) into Z % = e . It follows that for j = 1,...,m,
det Hy ;
5.28 = —,
(5.28) V= ez,

where the matrix H ; is obtained from replacing the j-th column of Z by the vector e .

Similarly, we have

detH_,j . 1
= ——, =1,....m,
L det Z_ J

where
. (1 0 _(I—-iM M
e__(il 1)"1’ Z‘_( 0 I+iM )

and H_ ; is obtained from replacing the j-th column of Z_ by e*.
Inserting (5.25) into the vector equation dxP_ ; = AP_ ;, expanding both sides in
terms of & (for £ large), and comparing the O(1) term in the second component, we get

Uy — iUy = 2ig; [Ej(y) exp(— @x) q)—,zz(x’y»kj)}

Hence by (5.28),

m .
~ iK(A;) \detHy ;
Ciu =i [ ‘ (_ J ) J ]
Ux — iUy 1; ¢j(y)exp > X et Zs
We would like to simplify this expression. To do this, let us set
iK(2)) )
x).
2

vj 1= Cj(y)exp ( -

Note that in terms of v;, the entries of M are of the form v; /(A; + ;). We use Z, to
represent the matrix obtained from Z by multiplying the / and [ 4+ m-th rows of Z
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by v, I =1,...,m. For each fixed j = 1,...,m, applying the same operation to the
matrix H ;, we get the corresponding matrix H 4 ;. Then

vj det Hy, J
(5.29) —iuy =2i y L —=1
Y /Zl det Z+
Similarly, we also have
v; det H_
(5.30) —iuy =2i / J
7 Z det Z_

j=1

Observe that (dx —id,)(v;vj) = —i(A; + A;)v;v;. We define the matrix M whose entries
are (A; + A;)"'vv;. Let I be the diagonal matrix whose entries on the diagonal is v;, j =
1,...,m. For fixed j, observe that in det I:I+, j + det I:I_, j» terms involving the last m
components of the j-th column of det A ; and det H__; cancel. Hence we have

m
(vjdet Hy j 4+ vjdet H_ ;) = 2det (I +iM) (0x —idy)det (I —iM)
j=1
—2det (7 —iM) (dx —idy)det(I +iM).
In view of the fact that det Z+ = det(I + i M) det(I — i M), we infer

I—iM il + M
det(I —iM) 2 (9. —id,)n det(il + ).

Uy — iUy =21 (0y —i0,)In
o (0= 19)) det(I +iM) det(—il + M)

Next we show that u can be written in the Hirota form appeared in Section 2. Indeed,
if we define v )L v;, then the entries of M become (A; + A;)714; v]*.‘ and there holds

m

630 deGl M) =Y (3 [ g op]),

j=1 ll<~~~<lj

where

kla—ll 2
b(ll,...,lj)= l_[ <ﬁ) .

I<a<B<j

This precisely means that u has the Hirota form given in Section 2. The identity (5.31)
can be proved by considering the coefficients of the polynomial

g(r):=det|irl + M|.
For instance, since the determinant of the matrix ( Azi ¥ ) . is equal to

Ay — A
I (ﬁ){

1<a<B<m
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then g(0) can be explicitly computed and is equal to
detM =b(1,...,m)vy---vy;

m>’
while the coefficient of i r is the sum of all the (2 — 1)-th order principle minors M :
> (b ) v o)
ll <~~~<lm71

Now we would like to compare u with Uy, + 7. Recall that in the expression of U, +
m = 4arctan(g,/ f»), there are parameters p;,q;, n?,j =1,...,m,and p; are chosen to

be positive. On the other hand, in v;-", the coefficient before x is — K(z’\ 1)

i, which is equal to

ImA; ( n 1 ) .Re}; (1 1 )
—1 — .
2 (Re ;)2 4+ (ImAj)? 2 (Re ;)2 4+ (ImA;)?

The coefficient before y is —%(/\ i+ ){/?1)’ which is equal to

_Red; (1+ 1 )_,Im)tj (1_ 1 )
2 ReA)? + (ImA)2) ' 2 (ReA;)2 + (ImA;)2 /"

Since u is real valued and has the same asymptotic behavior as U, + w as y — 400, it
then follows, from the Hirota form of u, that (Re A j)2 4+ (ImA j)z =1, m = n. Moreover,

(5.32) Im)tj = Pj, Re)tj = —qj, fOI'j = 1,...,m,
andu = U, + 7, ¢j(0) = ¢;(0).

We would like to point out that for A € C with Im A > 0,
- A—2A;

(5.33) a(A)=a(r) =
=1 A+ A

Indeed, for A € R\{0}, from (5.23) and det 4 = 1, and b = 0, we get a(A)a(—A) = 1.
Let us define ”
A+ A
By =aW [
=17

The function B is analytic in the upper half A-plane R?*. By (5.23) and (5.25), using the
asymptotic behavior of ¢ ;(as x — 400), we find that for some constants d;,

1 " d;
—M=1+Z J if A € R.
j=1

al A=

Now in view of a(A)a(—A) = 1, we deduce that

ZoA=A .
“(MZHT)&;’ if A € R.
j=1

That is, B(A) = 1 for A € R. Hence by the Liouville theorem, S(1) = 1 in R?F. We then
get (5.33). The proof is completed. ]
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Next, we proceed to compute the scattering data of the “standard” solution U, + =.
We first point out that the scattering data a, b, A;, ¢; of U, + m is well defined through
functions 4, which are solutions of ODEs in the Lax pair. We have the following.

Lemma 5.9. Let p;, q; be the parameters appearing in the solution U, + 7 and let A
be defined through (5.32). Then the scattering data a of U, + 7 is given by

. ToA—A;
a(d) = l_[ /\+)ij’ for A e R®T.
ji=1

Proof. Before proceeding to the details, which requires tedious computation, let us sketch
the main idea of the proof. The proof has two main steps. In the first step, we compute the
scattering data of the simplest two-end solution U; + & by finding the explicit form of the
corresponding @ (the so called Jost function). In the second step, for n > 1, we analyze
the behavior of & for y — 00, using the asymptotic behavior of U, + . The reason
we can do this is that 4 is independent of y. Now our key observation is that as y tends
to oo, U, + 7 asymptotically splits into n heteroclinic solutions (U; 4 m with suitable
parameters), passing each one of these heteroclinic solutions along the x direction, we

. A=Dj . o~ . e 2 %
gain a factor ﬁ ina (for A € R\{0}), because 4 is the “ratio” between @ ; and d_ ;.

Step 1. Compute g for Uy + 7.

We shall define ﬁ)_,l directly. The definition given below is inspired by (5.25). More
precisely, define

Cﬁ_,l(x,y,k) = exp (K(:)i x)(l,O)T
(5.34) + exp (K(j)i x) Z [f]_();) exp ( - @ x) d_,(x,y, )tj)].
j=1 J

Here,

N . TA-2 -1

500 = 5m[oa([15 + Ai)‘z:»]

I1=1 J
_ GOexp(=3(A +1/2))9) 114 + A

(5.35) = "’Mj 11;[ xj- 5

the ¢;(0) are parameters, and Cﬁ_,z(x, Y, Aj) = (&3—,12()6, Y, A, &D_,zz(x, y, AT s
given by

’

K()LJ)ZJC) detHy j +idetHy ji,
4 det Z
K()Lj)ix) (det H+,j>

4 detZ

b 1a(x, y,2)) = exp (-

b_a(x, . 2) = exp (-
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With the definition of ¢; given by (5.35), my; is defined by

my; = 2 e ( _ K(/\j)l.x)
I A+ A 2 ’
We emphasize that in this lemma, ¢; (y) is not defined through (5.26), but through (5.35).
Hence the definition of ¢; (y) here does not require any assumption of simpleness of the
zeros of a. .
Intuitively, the function ®_ ; should satisfy

(5.36) 3, D =Ad_.

However, a direct proof of this fact for general n seems to be quite tedious. Nevertheless,
in what follows, we will see that in the case of n = 1, we can verify (5.36) by direct
computation. Indeed, in this case, we have

| +m
Uy + 7 = 2i In -1
—1 +my
We also have
. Lroi+mgg \2 /=i +myp)\2
537 Uy = —[ —( ]
( ) S 2i (—i+m11) 1 +mq )
1 i+mp; \2 —1 +mj1\2
5.38 Uy = ——[ ) ( ]
( ) cos 2 (—l +myqq + i+m11 )
Moreover,
N KQ)i
b1 (x,y, 1) = exp ((T)’ x) (1,07

K(A)i x)[ ¢1(y) ox (_K(M)i
4 20— A)A, P 4

where &D_,z(x, Y, A1) = (&3_,12(36, ¥, A1), ‘i>—,22(X7 y,ll))T,

+exp( X) &L,z(x,y,)tl)],

o K(A)ix m
<I>_,12(x,y,)tl)=exp(— (A1) ) 11

4 1+m?,’
A K(Ay)ix 1
o VA = - .
iy e (- K20) L
Recall that
A A i cos U . sin U A
Aq)_’l = Z[()t-l— 1 )03—[(8x—13y) U1]02+ 1 01] <1>—,1.

The first component J; of the vector A Ci>_,1 is

£(A+C°SU1)exp(K(A)i x)[l+ ¢1(y) exp(_ K(M)ix) my; ]

Z X 7 2 — ) Ay 2 ) Tme,
1 . K(L)i c1(y) K(A1)i 1
+Z[(3x—18y)U1]exp( 1 x)[Z(A—AI)AIeXp(_ 5 x)1+m%1]
i sinUy ox (K(A)ix>[ ¢1(y) ox (_K(Al)iX) 1 ]
2 a PUTy 2= A A P 2 Ji+m L
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Recall that the function my; is defined by

_aw o K@i
mp; = 412 p( —2 X).

Using this, we find that J; exp ( — %A)i

i(k+cosU1)(1+ 211 m—%l)

x) is equal to

4 ) A=A 1+ms,
1 . 2)&1 my i SiIlUl 2/11 myp
+ZK%_”%NH<A_M1+mﬁ)+Z A (A—M1+mﬁ>

On the other hand, the first component J;* of 0, Cil'_,l has the form

K)i eXp(K()L)i x)(l . 241 m?, )

4 4 )&—)&ﬂ—i—m%l
K\)i 201 —K(A)im?,
+exp( n x)k—)kl (1—+—m%1)2 .

Now we can compute

K()L)ix>_,l+cosU1< 201 mi, )
4 A A=A 1+ m?
csinUp 241 myp 8i m?,
A A=A l4+m}  A—2 (1+m?)?

4(J; — Jl*)exp(—

Inserting (5.37), (5.38) 1nto the nght hand side, we see that it is identically zero. Therefore,
the first component of 9, d_ 1 Ad_ .1 vanishes. Slmllarly, its second component is 0.
We then obtain 9 <I>_,1 =4 <I>_,1. We also observe that ®_; has the required asymptotic
behavior:

d_, exp(—Kix/4) — (1,0), asx — —oo.

With the explicit form of the function ®_ ; at hand, using the relation ® ; = a®_;
for A € R\{0}, we directly compute that

(5.39) am' =1+

1 .
fAeR\{0
o AR\

for some constant d; (actually one can calculate directly that d; = 2A1). In view of
a(r)a(=A) = 1 for A € R\{0}, we deduce from (5.39) that

A=A

(5.40) mm:k+kf

if A € R\{0}.

We should point out that at this moment we still do not know whether A is a zero of a.
Hence we cannot use the argument of the last paragraph in the proof of Lemma 5.8 to
conclude that a(1) = A in R, To bypass this difficulty, we would like to show that &
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cannot have repeated zeros in R Indeed, suppose to the contrary that /\;‘ is a zero of @
in the upper half A plane with multiplicity ¥ > 1. Then using the residue theorem as that
of (5.25), we find that in ®_ 1 (x, y, §), there are terms like

. KO
Dy 1(x,y, A7) exp (——3—x)
E— A
This together with the relation <i>+,1 = aCiD_,l implies that @~ will not have the form

ﬁf—i: on R, which is a contradiction. Hence all the zeros of @ has to be simple and then

by Lemma 5.8, the scattering data of U; + m is given by

A=A
A2y

Step 2. Compute a for U, + m,n > 1.

a(A)y =a(A) = for A € R*T.

Let us first compute the scattering data @ of the four-end solution U, + 7. To carry
out the analysis in full detail, we need to introduce some additional notation. U, + 7 has
two ends in the upper half x-y plane, which are two half straight lines denoted by L1, L».
Along each end, as y — +o00, it converges to the one dimensional solution U; 4 & with
suitable parameters, p;,q;,n; 0. Let us denote the one dimensional solution around L by
Ui,« + 7, and the one around L, by U; g + 7. We also assume without loss of generality
that L is at the left of L, in the upper half plane.

For Uy, + 7 and U; g + 7, we have corresponding Jost functions é—,m and <i>_’1,,3,
defined in the first step. Hence

aqu)—,l,a = Aa &)—,l,a, aqu)—,l,ﬁ = /iﬂ ci)—,l,ﬁ-

Moreover, &’—,l,a exp(—Kix/4) — (1,0)T, and &_,1,5 exp(—Kix/4) — (1,007, as x —
—o00. We emphasize that CiJ_l,a and CiJ_l, g also depend on the y variable.

The Jost function of U, + 7 will still be denoted by CiD_,l, but at this moment we do
not have explicit formula for it (although it is expected to be of the form (5.34), we did
not prove that, because the computation is tedious). We also have

b.b_, = Ad_,

and Ci>_,1 exp(—Kix/4) — (1,0)T, as x = —o0. Recall that for A € R\{0}, a(1) is defined
by the relation

(5.41) by =ad_,,

where Ci>+,1 is the Jost function with <i>+,1 exp(—Kix/4) — (1,0)T, as x — +o0. Hence
computing @ amounts to analyzing the asymptotic behavior of &_,1 as x — +o00.

In the following, we consider the relevant functions in the upper half plane. The half
straight lines L; and L, form an angle. Let us denote its angular bisector as L*. Since
U, + 7 tends to U; o + 7 along the end L; exponentially fast, the proof of Lemma 5.6
tells us that for some positive constant 87,

(5.42)

|b_ 1 —D_ 14| < Cexp (—81vx2+y?), ify>0and(x,y)isatthe left of L*.



Elliptic sine-Gordon equation 417

We remark that although Lemma 5.6 deals with matrix valued solutions, the argument
also can be applied to vector valued solutions with straightforward changes. On the other
hand, by the explicit formula of &)—1,01 (or using the fact that the scattering data & of Uy 4
is (A — A1)/(A + A1)), we have, if (x, y) lies in the right of L, then

+/\1

(643 |drale ) exp(~Kin/) = 3750 (L0 | = Cexp(bad(x.y)).
where §, > 0 is a small positive constant and d(x, y) is the distance of (x, y) to L;.
Combining (5.42) and (5.43), we find that on the line L*,

+)Ll

(5.44) ’CD_l(x y)exp (—Kix/4) = =210, O)T‘ < Cexp(=8d(x,y)),

for some small positive constant §.
Next let us consider the function ®* | FD defined by

A )L + A1 4
t l,ﬂ )& A D LB
Note that ®* 1.8 still satisfies the equation 9, ®* g = /f,g o WAL have
+ )&1

Ci’:l,/; exp (—Kix/4) —

(1 0) ‘<Cexp(—§c§(x,y)), on L*,

for some positive constant 8, where d (x, y) denotes the distance of (x, y) to L,. Hence
by (5.44), reducing § if necessary, we get, for (x, y) € L™ in the upper half plane,

(b 1(r.y) = %, 4] < Cexp(-5p).

Again by the proof of Lemma 5.6, we find that for (x, y) at the left of L*,

(5.45) |d_1(x,y) — ﬁ)i’lyﬁ| < Cexp(=8y) + Cexp (—8v/x2 + y2).

Here we emphasize that in the right-hand side of the above inequality we have the term
C exp(—8y). The reason is that, on the line L*, ®_ ;(x, y) and ®* | p are not identical.

Nevertheless we also know that a solution 7 of the equation d,7n = /in with initial con-
dition n = ®_ 1 (x, y) — ®* | 5 at L* is bounded by C exp(—4y) at the right of L*. This
fact again follows from the proof of Lemma 5.6, which uses the assumption A € R in an
essential way.

Now by the asymptotic behavior of dAD_,l, g as x — +o0, (5.45) implies that

A+AA+ A
lim D_(x,y)exp(—Kix/4) — + + 2(1 0)7| < C exp(—=8y).
x—>+00 ’ A=A A—
Sending y to 400 and using (5.41), we deduce

A—A1 A=A,
A4+Ar A+A,0

a) = for & € R\{0}.
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For general U,, + m,n > 2, we can repeat the above arguments as we pass across each
end along the x direction, and conclude that

R L
amy =1T] AHC, for A € R\{0}.
Jj=1 k

Then we can use the arguments in the last paragraph of Step 1 to conclude that all the
zeros of a are simple and

. A=A
ar) = 1_[ ﬁ for A e R>T.
j=1

This finishes the proof. ]
With these preparations, we are now ready to prove the main result of this section.

Proof of Proposition 5.1. Recall that a is the scattering data of our original solution u.
Lemma 5.7 tells us that u and U,, + & have the same a part of the scattering data. Hence

LA —A;
a(l) = l_[ TAJ,-’ for A e R>T.
ji=1

In particular, all the zeros of a in the upper half A-plane are simple. We then apply
Lemma 5.8 to conclude that u = U,, + . The proof is completed. ]

6. Morse index of the multiple-end solutions

In this section, we shall compute the Morse index of the multiple-end solutions U,, of the
elliptic sine-Gordon equation —Au = sin u through a deformation argument. By defini-
tion, the Morse index of U, is the total number of negative eigenvalues of the operator
n — —An — ncos Uy defined on L2(IR?). The main result of this section is the following.

Proposition 6.1. The Morse index of the 2n-end solutions to the elliptic sine-Gordon
equation is equal ton(n — 1)/2.

We shall split the proof of this result into several lemmas. Before proceeding, let us
first of all briefly recall the so called end-to-end construction of multiple-end solutions of
the Allen—Cahn type equation, developed in [39]. Roughly speaking, for each n > 2, we
can glue n(n — 1)/2 number of four-end solutions together by matching their ends and
obtain a solution with 2n ends.

To explain the construction more precisely, we choose n straight lines Lq,..., L, such
that these lines intersect at n(n — 1)/2 distinct points. The intersection point of L; with L;
will be denoted by w; ;. We assume the minimal distance between those points w; ; is
equal to 2.

For each k large, the end-to-end construction in [39] tells us that we can “desingular-
ize” the configuration of n rescaled lines kL, ..., kL,. Actually, we can put four-end
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solutions g; ; near each rescaled intersection point kw; ; at a distance of O(1) order in a
suitable way and match their ends to form an approximate solution . The center of g; ;
will be denoted by z; ; = z; ; (ux). Around each z; j, uig is equal to g; ;. By slightly
adjusting their ends, we can perturb the approximate solution 1y into a true solution uy of
the Allen—Cahn type equation.

Throughout this section, we shall use B, (p) to denote be the ball of radius r centered
at the point p. Let ¢ be a fixed large constant. The following estimate is a direct byproduct
of the end-to-end construction: there exists § > 0 such that

(6.1) lug — k| < Cexp(—=8k), in By (0).
This essentially follows from the fact that the error Atig + sin iy of the approximate
solution 7 is of the order O (e~%%).

Lemma 6.2. Let uy be a solution obtained from the end-to-end construction discussed
above. The Morse index of uy. is at least n(n — 1)/2 for k large.

Proof. For each pair of indices (i, j),i,j =1,...,n,i < j,weusen; ; with ||; j||Le =1
to denote a choice of the negative eigenfunction of the operator —A — cos g;, j, correspond-
ing to the (unique) negative eigenvalue o; ;. That is,

—Ani,j = Ni,j €OS gi,j = Oi,jMi,j-

The total number of such functions is n(n — 1) /2.
Let p;,; be a cutoff function localized near z; ;, such that

1, in Bﬁ(zi,j),
Pij = .
0, in R? \Bzﬁ(zi,j).
We can also assume that p; ; and its first derivatives are uniformly bounded with respect
to k. Let 77;" j = il Since the mutual distance between those point z; ; are of the

order O(k), we see that the n} ; have disjoint supports. Using the fact that 7; ; decays
exponentially fast to zero away from z; ;, we can show that for k large,

L0932 = 077 cos )

B fRZ ((IVni 1 = n7 j cosug) o} j + 21,1, Vij Vij + 71V pijI*) < 0.

Hence the Morse index of uy is at least n(n — 1)/2. ]

Before proceeding, we need to introduce some notations. Let N (1) be the nodal set
of uy and let d(p, N (uy)) be the distance of a point p to the set N (ug). Let ro be a large
constant. We set

Q=Qp:= | B
i,j,i<j

We use H to denote the one dimensional heteroclinic solution. Explicitly,

H(s) = 4arctan(e®) — 7.
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Throughout the section, we use C to denote a universal constant. One of the main ingredi-
ents in the proof of Proposition 6.1 is the following.

Lemma 6.3. Let —Alzc (with Ax > 0) be a negative eigenvalue of the operator —A —
cos uy. Then there exists a constant < 0 independent of k, such that —)&i <O forallk.

Proof. Let ¢ be the corresponding eigenfunction of the eigenvalue —)&i, normalized such
that [ [z = 1.

First of all, we would like to prove that if r¢ is a fixed constant chosen to be large
enough, then

Pkl oo (2, ) = @
where « is some positive constant independent of k.
By definition, ¢y satisfies
(6.2) —A¢y — P cosu = —A7 .

As d(p, N (ur)) — +oo, there holds |uy| — 7 and cosur — —1. It follows that when
d(p, N (ug)) is sufficiently large, — cos uy + Ai > 1/2. Hence by constructing suitable
barrier functions of exponential type, we find that for some positive constant § > 0,

(6.3) |6 ()] < Cexp (—=8d(p, N (ug))). for p € R%.

Let us estimate ¢ in the region R?\ Q. To be more specific, we focus on the region
around the nodal line /*, which connects two, say g1, and g3, adjacent four-end solu-
tions. Without loss of generality, using (6.1), we may assume that this nodal line is given
by the graph of the function y = w(x), and reducing § if necessary,

lw)| = Cexp(=dmin{|x — 1|, [x —12[}). x € [n.12].

with (1, w(t1)) € 0By, (21,2(uk)), (f2, w(t2)) € 0By, (z1,3(u)). Note the |t — £>] is of the
order O(k), and t1, t, actually also depend on k.
Let us define the function

+00
hx) = /_ b (v H'(v) dy.

o0

Since ¢y, satisfies (6.2), for x € [t1, t2], h satisfies
—h"(x) = —)Lih(x) + O (exp (=8 min {|x — x1]|, |x — x2|})).

(x)

The variation of parameters formula then tells us that for some constants a, b,
l X
h(x) = aexp (Agx) + bexp (—Arx) + " exp (Agx) / exp (—Ags) u(s)ds
k 151

(6.4) — L exp (—Agx) /x exp (Ags) u(s) ds.
2Ak "

Let us define

£s) = /( () ds.

t1+12)/2
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By the estimate of jt, we have
/()] = Cexp(=dmin{|x — ], |x —£2[}) .

Integrating by parts leads to

1 * 1 *
I == —exp ()&kx)/ exp (—Ags) u(s) ds — — exp (—)ka)/ exp (Axs) u(s)ds
2/‘\,]( 1 zkk t

= %exp (Arx) /tl f(s)exp (—Ags) ds + éexp (—Arx) /tl f(s)exp (Ags) ds.

Then I can be estimated by
[1] = Cexp(=dmin{|x — 1], |x —12[}).
Let Io(x) := aexp(Arx) 4+ b exp(—Arx). By the maximum principle, we have
[To(x)| < max {[lo(t1)l, |Lo(22)[}, forx € [11,12].
Therefore,
|h(x)] < C (|h(t1)| + [h(12)| + exp (=S min{|x — 1], |x — 12]}) ).
In particular, this implies that
(6.5)  |h(x)| = CllgllLe@) + Cexp (=dmin{|x —t1],|x —t2|}), x € [t1.12].
On the other hand, we define
vt = g (x,y) — h(x) H' ().

Let op > 0 be a fixed small constant and let yo(x) := oo min{|x — #1]|, |x — t2|} + 10.
Consider the region

E:={(x.y):x € (t1.12). y € (=yo(x), yo(x))} .
Let p be a cutoff function such that p = 0in R\ E, and p = 1 in
{(v,y):xe@+1L.n—-1).ye(=yolx) + L yo(x) = D)}.

Define v = pu™*. Observe that although v is not necessary orthogonal to H', we still have

L vt ey = [ue ) =0 pdy
= O(exp(—=8 min{|x — t1], |x — 12[})).
By the decay estimate (6.3) of ¢y, we have
—Av —vcos H(y) = O(exp(=8min{|x — 1], |x — 12[})).
Applying the estimates established in Lemma 3.5 of [12], reducing § if necessary, we get

(6.6) [v| < Cexp(=dmin{|x — 1], [x —12]}).
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Estimates (6.3), (6.5) and (6.6) tell us that (enlarging the constant ry if necessary)

Pk llLoo) = o,

where « is some positive constant independent of k.
To prove the lemma, we assume to the contrary that for a sequence k,, — +00, the
eigenvalues A, (1, ) were tending to 0. We still denote k, by k and Ag, (ug,) by Ak (ug).
Suppose for some constant & > 0, a pair of indices (7, j) satisfies

”¢k”L°°(Bro(Z;,;)) >o >0 forallk.

Then the function ¢ (z — Z;j) converges to a nontrivial bounded kernel ,Bi, ; of the oper-
ator —A — cos &; 7, where g; 7 is the four-end solution centered at the origin obtained
from suitable translation of g; -. We would like to analyze the asymptotic behavior of ¢
around z; > in a more precise way.

To simplify the notation, we assume z; ; = 0. After a possible rotation, the four-end
solution g; 7 has the form

pcosh(gy)
q cosh(px)
where p, g are positive constants with p? + g2 = 1. Then by the L*°-nondegeneracy

of four—elzd solutions, B; ; = 11 3x§’;, it 720y g,., i for some constants 71, 7o. The nodal
curve of &; = in the first quadrant is asymptotic to the line

4 arctan

)

ll:qy—pleng-
p

The ends in the second, third and fourth quadrants are asymptotic to I, /3 and /4 respect-
ively, where

lz:qy+pX=ln2, l3:—qy—px=lng and l4:—qy+px=ln2-
p p p

Without loss of generality, we assume p < ¢. The case of p > ¢ is similar. The line /;
intersects with the y-axis at the point (0, % In %). This point will be denoted by P4. The

intersection point of the line /5 with the y axis will be denoted by P_ := (0, —é In %).
We also introduce the coordinate system (x1, y1) adapted to the end in the first quadrant,
where the x; axis is on /1, and the y; axis is orthogonal to /1. Hence the angle between
the x and x; axes is equal to arctan g, which is also equal to the angle between the y
and y; axes. The origin of the (x1, y1) coordinate system will be the point P . Similarly,
for j = 2,3, 4, we have the coordinate system (x;, y;) corresponding to the end in the
J -th quadrant, where the x; axis is on /;. The origin of (x5, y»)-system is P, while the
origin of the (x3, y3) and (x4, y4) systems is P_.

By the linear decomposition lemma (Lemma 4.2 of [11]), or using the explicit formula
of the four-end solutions, there exists constant § > 0, such that

10x8; 7 +qH (yO)| +10y&; 7 — pH'(y1)| < C exp(=8x1),  in the first quadrant.
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Hence in this region,

(6.7) Bij = (—m1q + 12p) H'(y1) + O(exp(—6x1)).

Similar asymptotic behaviors hold in other quadrants. Let us list them below for later
purpose:

Bi; = (tiqg + ©2p) H’ (y2) + O (exp(—8x2)), in the second quadrant,
Bi; = (tig — ©2p) H’ (y3) + O (exp (—d8x3)), in the third quadrant,
Bi; = (=t1¢ — ©2p) H' (ya) + O (exp (—6x4)), in the fourth quadrant.

We alsoseta; := —11¢ + 1ap,as := 114 + 12p,asz ;=114 — 2P, dq := —T14 — T2 P.
By the end-to-end construction (see the construction of the kernel & at the end of the
proof of this lemma), there exists a solution y solving

(6.8) —Ayr — yrcosuy =0,

such that for some constant § > 0, |yx — B; ;| < C exp(—dk) in By (z; ;). The bound
exp(—dk) essentially follows from the estimate (6.1). Recall that

(6.9) —A¢y — P cosu = —A7 .

If we denote the outward normal derivative with respect to the boundary of the ball By :=
By (Zi,j) by d,,, then from (6.8) and (6.9), we deduce

_ fBBk (yk 0vPr — P v Yk) )
- I3, @rve)

For j =1,...,4,in the j-th quadrant, by (6.4) and (6.6),

(6.10) Az

(6.11) dr = [bk,j exp(—Arx;) + mp,j exp(Arx;)| H'(vj) + & (x. y),
where by ;, my ; are constants depending on k and
|¢;| < Cexp(—6xj), inthe j-th quadrant.

We emphasize that in the decomposition of the form (6.11), the constants by ;, my ; may
not be uniquely determined and may not be uniformly bounded with respect to k. How-
ever, we know that as k — +o0, around z; 7, ¢ — f; ; and Ax — 0. This implies that
ask — 400,

br,j +myj —a;, forj=1,...,4.

Recall that the minimal distance between points kwj_; is equal to 2k. Using the asymptotic
behavior of ,81—, 7 and (6.11), we have

(Vi 0vPk — Pr v i)
3By

4
(6.12) =Y (@) A [~br.j exp(—Ak) + my j exp(Ack)]) + O(exp(—8k)).
j=1
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On the other hand, still by (6.7) and (6.11), we have

(6.13) \
ka (Pkvi) = /\,ZI;(CI; [~bk,j (exp (=Akk) — 1) + my j (exp(Axk) — 1)]) + O(1).
To simplify the notation, let us set
4
M = Z(aj [—bk,j exp (—Akk) + my ; exp(Akk)]), and

le
(6.14) N = (aj(br; —m))-

j=1

Using these notations and (6.12), (6.13), we see from the identity (6.10) that
12— MM+ 0 exp(=5k)
UMM + AN +0()

This implies that
(6.15) N = 2;10 (exp(—=8k)) + 0 (1).
Claim: Ak — 0as k — +oo.

To prove this claim, we assume to the contrary that the claim is not true. Then we
can find a subsequence, still denoted by A, such that A5 > c1k ™1 for some fixed positive
constant ¢;. Then by (6.15),

(6.16) N -0, ask — +oo.

Note that for each pair of indices (ig, jo), we can associate to it the corresponding quant-
ity N, which satisfies (6.16). To make things more rigorous, let us introduce some nota-
tion.

For any pair of indices (i, j), we have the rescaled lines kL;, kL; introduced at the
beginning of this section. They intersect at the point kw; ;. We also designate a direction
for each of these lines. We know that around the point z; ;, we have put the four-end
solution g; ; as a building block for the approximate solution for ux. As k — +o0,
¢r(z — z; ;) tends to a kernel B; ; of the operator —A — cos g;, ;. Previous analysis tell us
that along the four ends of g; j, we can associate the data a;, b ;, my, ;. To distinguish
between different intersection points, we write those “a” part of the data as a, ; and

a;-k - More precisely, a;, ; will be the “a” along the end of g;,; correspondilng {0 the
posmve direction of kL,, while a; _,; Will be the “a” along the end of g; ; correspond-
ing to the negative direction of kL Similarly, we have b ml iy and bl —j m;" _j
which actually depend on k. We also point out that some of al’ ny ‘could be zero.

For each fixed j = 1,...,n, we associate the following quantities to the line kL ;:
Pj = Z[aj*'&,i(bj*,-i-,i - J+l) +a]—l( Jy—si _m;:—,i)]’
i#j

Qj = lafy ;O ;—miy ) +ai;(bf_;—mi_ )]
vy
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Summing up the identities (6.16) for all pairs of indices (i, j), we find that as k — 400,

n
ZQ] —> O
=1

There are two possible cases.

Case 1. There exist a constant 0 > 0, and an index jg, both independent of k, such
that Q;, > o for all k large.

In this case, summing up the identities (6.16) for all pairs of indices of the form (i, jg),
we find that

0 —

(6.17) P; <—%, for k large.

We can relabel the indices such that jo = n, and the intersection points @1y, - .., Wp—1,n
are in the order consistent with the positive k L, direction. Fix an index i and write the
line segment connecting kw; , with kw; 41, as L*. For the four-end solution g; ,, the
coordinate system adapted to its end corresponding to L* will be written as (x;,y;). For
the four-end solution g; t1 ., the coordinate system adapted to its end corresponding to L*
will be written as (X;+1,Yi+1).- As we have analyzed above, around L*, the main order
(the part parallel to H”) of ¢ in the (x;, y;)-coordinate has the form

(b 4. exp (=Axxi) +myy o exp (Aexi)| H'(y:);
while the main order of ¢ in (X;+1,Y;i+1)-coordinate has the form
(b —ip1 €XP (=AxXi1) +my oy exp (Axit)] H' (yig1) -

Choose any point on L* and let d; be the sum of its x; and x; 41 coordinates. Note that
d; = O(k). Then we have the following relation:

(6.18) by +i=my _ iy exp(didp).

Similarly,
by _iv1=mp 4 exp(didy).

It follows that
(6.19) by2 ; —my2 by —m = (my2 me ) (exp(Rdidg) — 1).
In view of the fact that b,  ; +m, | ; =a, , ; + o(1), we obtain
ap i by 4 i — mZ,+,i) = b22+i —my +z +o(by i —my 4D,
b;zkz-f—l _mn+z +0(1)(1 + |mn +l|)

and
a;’;,—,i (b;:,—,i - m:l(,—,i) = b;lkz—l n —i T o(1) (1 + |mn, Ji ).

Here we remark that under the assumption that A, > c1k~1, we can actually show that the
m} ; are uniformly bounded with respect to k. But the proof below does not need this.
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Now by (6.19), for the line k L,,, we have

P = Z [an i Oni—myu g i) +an i (bn i —my )]
i#n
n—2
= Z [(m52, i +m? i 11) (exp 2diAg) — 1)]
i=1
(bn*z— 1 m:,z—,l) + (b::,z+,n—1 - mZ,z+,n_1)
n—1
(6.20) +o(M) Y (1 |my 4| + [my_i]) -
i=1
Due to the fact that ¢ decays to zero at infinity, there holds my, _; =m, ., = 0.1t
follows that

baZ g =y o —m2 = ayt  ay oy + (D).
Therefore using the assumption that A > c;k~1, we get
exp(2d; Ax) — 1 > expQerdi k™) —1>¢,>0

for some fixed constant ¢, and thus liminfy_, 4 o, P, > 0. This contradicts with (6.17) and
hence Case 1 cannot happen.

Case 2. For any index [/, Q; — 0 as k — +o0.

In this case, we should have
(6.21) lim P; =0, forany fixed index /.

k——+o00

On the other hand, we still have identities similar to the form (6.20), for any line kL j-In
view of the assumption that ||¢x| L = 1, we know that for at least one pair of indices
(i0. jo), the constant aj, 4 ;, is nonzero. Without loss of generality, we assume jo = n.

If a _, is nonzero, by (6.20), we have lim infx— oo Pn > 0, which contradicts
with (6. 21) If a 1= = 0, then we consider mn, 41 There are two possible subcases.

Subcase 1. Up to a subsequence, |m;’ +.11 = @0 > 0, where oy is a constant independ-
ent of k.

In this subcase, still by (6.20), we have liminfx_, 4 oo P, > 0, which again contradicts
with (6.21).

Subcase 2. m,, , | — 0ask — +oo.

In this subcase, usmg the fact that ay , | =a, _, =0, we have b, , | — 0 as
k — +oo. Hence m,, _ , also tends to 0, by (6.18). Now instead of a, _ 1, wecan consider
a, —o2- If ay; _als nonzero, then we again get a contradiction by usmg (6 20).

This procedure can be repeated until we arrive at a,, ;, and get a contradiction. Hence
Case 2 cannot happen. The Claim is then proved.

Let ¢ be a fixed large constant. With the information on A; at hand, next we would
like to prove: there exists a function & satisfying ||&x ||L~ < 400,

1§k — Prll o B,y = 0(1),
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and
(6.22) —A§ — & cosup = 0.

The proof of this fact will be based on the end-to-end construction. Let us explain it in the
sequel. More details about the end-to-end construction can be found in Section 3 of [39].

We recall that around each z; ;, the sequence of functions ¢y (z — z; ;) converges
to B, ;, where B; ; is bounded and

—ABi,j — Bi,jcosgij = 0.

Up to a rotation of the coordinate system, we can choose positive direction e; = (ej,1,¢;,2)
for each line kL; such that e; ; > 0. We also assume |ej| = 1 and ej» < ej41,2 forall j.
For each fixed index j, the line kL; intersects with other n — 1 lines. The one with the
rightmost intersection point with k L; will be denoted by k L,; . The ends of u in the right
half plane are asymptotic to the lines kL;, j = 1,...,n. For the functions §,; ;, recall
that we have introduced the constants a;, 4, .

Let £ > 0 be a small parameter. Let kL ; . be the line obtained by parallel translation
of kL; in the direction orthogonal to e; with a distance equal to elaj 4, |. If aj,+,; is
positive, then kL ¢ is above kL, and if a; + ,; is negative, then k L; . will be below kL.
By the end-to-end construction, there exists a solution ug . to the equation —Auy , =
sinu ., whose ends in the right half plane are asymptotic to the lines kL; ., j =1,...,n.
This construction relies on the fact that we can consecutively adjust the centers of the
four-end solutions according to the new set of lines kL; ., from right to left. Let us define

£ = lim e 1k,
£—>0 &
Then & is the desired function. To see this, we first observe that by the construction,
€y satisfies (6.22) and has the same asymptotic behavior as 8, ; along the end kKL; in
the positive kL; direction. Note that for any bounded kernel of the four-end solution, its
asymptotic behavior (the part parallel to H’) at infinity is determined by its asymptotic
behavior along two of its ends. The estimate Ay = o(k™!) tells us that away from the
centers of g; ;, the projection of ¢ onto H ’is not too far from a constant, indeed, its error
is of order o(1). We then deduce that ||¢x — &k ||z (B,,) = 0(1). It remains to prove that £
is bounded. To show this, let us recall that u is equal to U, with suitable parameters
Dj-4q;, r]_?. We then consider the solutions Uy, , with the same p;, g; as Uy, and with 77_?’5

being close to 17}’, chosen in such a way that the ends of U, . in the right half plane is
asymptotic to kL ; .. Then we define the function

U,.—U,
* — 1 n,e n.
Sk sgr(l) &
Since the ends of U, ; in the left half plane are also parallel to kL;, j = 1,...,n, we see

that || ||Le~ < +00. Now we consider the function @ := & — &;. Then ®(x, y) — 0,
along the ends of uy in the right half plane. Then by the proof of nondegeneracy in Sec-
tion 4, & = 0. The fact that & = 0 can also be proved in the following way. We know
that the dimension of the kernel of the operator —A — cos u in the space of functions
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with at most linearly growing rate along each end is equal to 2n, which follows from the
nondegeneracy of U,. On the other hand, differentiating U, with respect to ¢; yields a
kernel linearly growing along kL;, both in the positive and negative directions. These
provides us with n-linearly independent unbounded kernels. We also observe that differ-
entiating U, with respect to r];.’ yields a bounded kernel which does not decay to zero
along kL, both in the positive and negative directions. Hence ® has to be zero. We then
conclude that & is bounded and hence is the desired function. Note that there is a delicate
issue here. Namely we are not choosing & to be & directly, because at the beginning
we do not have very precise asymptotic behavior of £; and we cannot immediately infer
that || — ¢xllLee = o(1). This is why we use the end-to-end construction to get better
asymptotic behavior of &.

Along each end, ¢ decays to zero. Let (x,y) be the coordinates adapted to this end.
Then ¢y has the form

dr = brexp (—Axx) H' (y) + O (d(z, Uz 5)) .

Along this same end,
& = arH' (y) + O (d(z, Uz ;))

Moreover, using the properties of &, we have by — ax — 0. We also know that there exists
at least one end such that the corresponding |ag | is bounded away from O uniformly with
respect to k. We then compute that [p, (§x¢x) > 0, which implies A = 0. We remark
that one can also use similar arguments as that of the proof of the claim above to con-
clude directly that A5 = 0 (here one uses the fact that along each end, the m™ part of the
function ¢y vanishes). In any case, this contradicts with —A,ZC < 0. Hence the lemma is
proved. ]

Lemma 6.4. The Morse index of uy is at most n(n — 1)/2 for k large.

Proof. Suppose to the contrary that there were n(n — 1) /241 negative eigenvalues (coun-
ted with multiplicity), with corresponding eigenfunctions ¢ ;, j =1,...,n(n —1)/2+ 1,
normalized such that ||¢x ;|| 2r2) = 1, and [g2(dr,idr,;) = 0 fori # j.

For each index [ and for each pair of indices (ig, jo), as k — +o0, the sequence
0r (1) = ¢r.1 (- — ziy, j,) converges, up to a subsequence, to a function ¢, satisfying

—APoo — Yoo €OS Zig, jo = iy, jo Poos

where o0j,,j, is the unique negative eigenvalue of the operator —A — cos gj,,j,. Note
that poo could be the trivial zero function. However, for at least one pair of indices, it
will be nontrivial.

Let r);.k’ j be the function introduced in Lemma 6.2. Let d(p, Uz; ;) be the distance of
a point p to the set of all points z; ;,i,j = 1,...,n,i # j. For each fixed index /, up
to a subsequence, we can assume that for some constants «; j;,i, j = 1,...,n,i # 7,
independent of k, and some § > 0,

Gei(2) = > (cijunt;)+ wi(z)exp (=8d(z. Uz ).
Lji#]

where || || Lo (r2) — 0 as k — +oo.
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Observe that there exist constants ¢g, s = 1,...,n(n — 1)/2 + 1, at least one of them
being nonzero, such that for each fixed pair of indices (i, j),

n(n—1)/2+1
Z Qj jsCs = 0.
s=1
Hence
n(n—1)/2+1 n(n—1)/2+1
Z Cs Qs = Z (cs ws(z) exp(—8d(z, Uzi,j))) .
s=1 s=1

Since ¢ ; and ¢y ; are L?-orthogonal to each other for i # j, the L? norm of the left-
hand side is equal to (Z"(nl_l)/ZH csz) vz 0; while the L? norm of the right-hand side

5=
tends to 0 as k — 4o00. This is a contradiction. Hence the Morse index of uj cannot be
greater than n(n — 1)/2 for k large.

We remark that from technical point of view, there is an alternative way to prove this
lemma: first, one can perturb the function n;" j into a true eigenfunction 7#j; ; using the
implicit function theorem; then one can show that any eigenfunction corresponding to a

negative eigenvalue cannot be orthogonal to all these eigenfunctions 7); ;. ]

Proof of Proposition 6.1. We have proved that the Morse index of uy equals n(n — 1)/2
if k is large. Now observe that any 2n-end solution U, can be deformed to a solution of
the above form, through a family of 2n-end solutions. As we proved in Section 4, all the
solutions in this family are L°°-nondegenerate. Due to the continuous dependence of the
eigenfunction upon this deformation, the Morse indices of all these solutions have to be
same. This implies that the Morse index of any 2n-end solutions is equal to n(n — 1)/2.

|

Proof of Theorem 1.3. Proposition 5.1 tells us that any 2n-end solution belongs to the
family U,. All solutions in this family are L°°-nondegenerate and this family has 2n free
parameters. Hence the set M5, of the 2n-end solutions is a 2n dimensional manifold.
Proposition 6.1 tells us that their Morse index is equal to n(n — 1)/2. This finishes the
proof of Theorem 1.3. ]
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