
Rev. Mat. Iberoam. 38 (2022), no. 2, 355–432
DOI 10.4171/RMI/1296

© 2021 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

Classification of finite Morse index solutions to the elliptic
sine-Gordon equation in the plane

Yong Liu and Juncheng Wei

Abstract. The elliptic sine-Gordon equation is a semilinear elliptic equation with a
special double well potential. It has a family of explicit multiple-end solutions. We
show that all finite Morse index solutions belong to this family. It will also be proved
that these solutions are nondegenerate, in the sense that the corresponding linearized
operators have no nontrivial bounded kernel. Finally, we prove that the Morse index
of 2n-end solutions is equal to n.n � 1/=2:

1. Introduction and statement of the main results

This paper is concerned with the finite Morse index solutions to the elliptic sine-Gordon
equation in the plane. Before explicitly writing down the equation and stating our res-
ults, let us briefly mention the classical sine-Gordon equation, which originated from the
study of surfaces with constant negative curvature in the nineteenth century. We shall call
it hyperbolic sine-Gordon equation throughout the paper. The hyperbolic sine-Gordon
equation also appears in various physical contexts such as the Josephson junction. It has
been extensively studied partly due to the facts that it is integrable and that one can use the
technique of the inverse scattering transform to analyze its solutions. There exists a vast
literature on this subject. We refer to the book [10] and the references therein for more
information about the background and detailed discussion for the hyperbolic sine-Gordon
equation.

In the laboratory coordinates, the hyperbolic sine-Gordon equation takes the form

(1.1) @2zu � @
2
xuC sinu D 0:

In this paper, the elliptic version of this equation will be investigated. More precisely, we
shall consider the following elliptic sine-Gordon equation:

(1.2) ��u D sinu in R2; juj < �;

where � D @2x C @
2
y .
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The reason why we are interested in this equation stems from the fact that (1.2) is
actually a special case of the Allen–Cahn type equations

(1.3) �u D W 0.u/ in RN ;

where W are double well potentials. This equation is the Euler–Lagrangian equation of
the energy functional

J WD

Z �1
2
jruj2 CW.u/

�
:

ChoosingW D cosu, we obtain equation (1.2). On the other hand, ifW.u/D 1
4
.u2 � 1/2,

then (1.3) reduces to the classical Allen–Cahn equation:

(1.4) ��u D u � u3 in RN :

This is an important model in the theory of phase transitions.
A crucial property of Allen–Cahn type equations (1.3) is that they possess one-dimen-

sional monotone increasing heteroclinic solutions, which connect two stable states in the
phase transition phenomenon. In the case of (1.2), the one-dimensional heteroclinic solu-
tion is given explicitly by

H.x/ D 4 arctan ex � �:

The celebrated De Giorgi conjecture concerns the classification of monotone bounded
solutions of the Allen–Cahn type equation (1.3). Many works have been done towards a
complete resolution of this conjecture. In particular, it is known that in dimension two and
three, monotone bounded solutions must be one dimensional. We refer to [2, 13, 16–18,
23,35,42,52] and the references cited there for results in this direction. A natural general-
ization of the De Giorgi conjecture is to classify those solutions not necessary monotone.
This seems to be a difficult problem for general nonlinearities W: In this paper, we are
interested in those non-monotone solutions in the plane for the special case of the elliptic
sine-Gordon equation.

Without any assumption on the asymptotic behavior of the solutions at infinity, the
structure of the solution set could be extremely complicated. To bypass this difficulty, let
us recall the following.

Definition 1.1 (See [11, 12]). A solution u of (1.2) is called a multiple-end (2n-end)
solution if, outside a large ball, the nodal set of u is asymptotic to 2n half straight lines.

These asymptotic half straight lines are called ends of the solution. One can show that
actually along these lines, the multiple-end solution u behaves like the one dimensional
solutionH in the transverse direction. The set of 2n-end solution will be denoted by M2n.
By the curvature decay estimates of Wang–Wei [55], a solution is multiple-end if and only
if it has finite Morse index.

In [12], the infinite dimensional Lyapunov–Schmidt reduction method has been used
to construct a family of 2n-end solutions for the Allen–Cahn equation (1.4). The method
there can also be applied to general double well potentials, including the elliptic sine-
Gordon equation (1.2). The nodal sets of these solutions consist of almost parallel curves.
In particular, the angles between consecutive ends are close to 0 or �: Actually, the nodal
curves are given approximately by suitable rescaled solutions of the Toda system. It is also
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known that locally around each 2n-end solution, the moduli space of 2n-end solutions has
the structure of a real analytic variety. If the solution happens to be nondegenerate, then
locally around it, the moduli space is indeed a 2n-dimensional manifold [11]. For general
nonlinearities, little is known for the structure of the moduli space of 2n-end solutions,
except in the n D 2 case. In this case, a Hamiltonian identity has been used in [26, 27]
to study the symmetry properties of these solutions. It is now known [36–38] that the
space of four-end solutions is diffeomorphic to the open interval .0; 1/, modulo translation
and rotation (they give 3 free parameters in the moduli space). Based on these four-end
solutions, an end-to-end construction for 2n-end solutions has been carried out in [39].
Roughly speaking, solutions arising from this construction are near the “boundary” of the
moduli space.

The classification of M2n is still largely open for general double well nonlinearities.
Important open questions include: are solutions in M2n nondegenerate? Is M2n connec-
ted? What is the Morse index of the solutions in M2n? In a recent paper, Mantoulidis [43]
proves a lower bound n � 1 on the Morse index of solutions in M2n for the Allen–Cahn
equation. Here we shall give a complete answer to the above questions in the case of the
elliptic sine-Gordon equation (1.2).

It is well known that the classical sine-Gordon equation (1.1) is an integrable system.
Methods from the theory of integrable systems can be used to find solutions of this system.
In particular, it has soliton solutions. Note that (1.2) is elliptic, while (1.1) is hyperbolic
in nature. We show in this paper that the Hirota direct method of integrable systems also
gives us real nonsingular solutions of (1.2): Let Un be the functions defined by (2.15).
Then Un are solutions to (1.2): They depend on 2n parameters, pj ; �0j ; j D 1; : : : ; n: We
are interested in the spectral property of these solutions and shall prove the following.

Theorem 1.2. Each Un 2 M2n is L1-nondegenerate in the following sense: if ' is a
bounded solution of the linearized equation

��' � ' cosUn D 0;

then there exist constants cj ; j D 1; : : : ; n, such that

' D

nX
jD1

.cj @�0j
Un/:

We remark that the nonlinear stability of 2-soliton solutions of the classical hyperbolic
sine-Gordon equation (1.1) has been proved recently by Muñoz–Palacios [44], also using
the Bäcklund transformation. We refer to the references therein for more discussion on
the dynamical properties of the hyperbolic sine-Gordon equation. For general background
and applications of the Bäcklund transformation, we refer to [50, 51].

The Morse index ofUn is by definition the number of negative eigenvalues of the oper-
ator �� � cosUn, in the space H 1.R2/, counted with multiplicity. It can also be defined
as the maximal dimension of the space of compactly supported smooth functions where
the associated quadratic form of the energy functional J is negative. Our next result is:

Theorem 1.3. The set M2n of 2n-end solutions of the elliptic sine-Gordon equation (1.2)
is a 2n-dimensional connected smooth manifold. The Morse index of Un is equal to
n.n � 1/=2: Moreover, all the finite Morse index solutions of (1.2) are of the form Un,
with suitable choice of the parameters pj ; qj ; �0j ; j D 1; : : : ; n:



Y. Liu and J. Wei 358

We emphasize that the parameters pj and qj are not independent. Actually they have
to satisfy p2j C q

2
j D 1: The classification result stated in this theorem follows from a

direct application of the inverse scattering transform studied in [28]. Inverse scattering
of elliptic sine-Gordon equation has also been used in [3, 4] to study solutions with peri-
odic asymptotic behavior or vortex type singularities. Note that certain classes of vortex
type solutions were analyzed through the Bäcklund transformation or the direct method
in [34, 41, 45, 53], and finite energy solutions with point-like singularities have been stud-
ied in [47]. It is also worth mentioning that more recently, some classes of quite involved
boundary value problems of the elliptic sine-Gordon equation have been investigated via
Fokas’ direct method in [19, 20, 48, 49].

Theorem 1.3 implies that in the special case nD 2, the four-end solutions of the equa-
tion (1.2) have Morse index one. In the family of four-end solutions, there is a special one,
called saddle solution (see (2.16)), explicitly given by

4 arctan
�cosh.y=

p
2/

cosh.x=
p
2/

�
� �:

The nodal set of this solution consists of two orthogonally intersected straight lines.
Saddle-shaped solutions of Allen–Cahn type equation �u D W 0.u/ in R2k with k � 2
have been studied by Cabré and Terra in a series of papers. In [5–7], it is proved that in R4

and R6, the saddle-shaped solutions are unstable, while in R2k with k � 7, they are stable.
It is also conjectured in [5] that for k � 4, the saddle-shaped solution should be a global
minimizer of the energy functional. However, the generalized elliptic sine-Gordon equa-
tion (��u D sin u) in even dimension higher than two is believed to be non-integrable,
hence no explicit formulas are available for these saddle-shaped solutions. We expect that
the nondegeneracy results in this paper will be useful in the construction of solutions of
the generalized elliptic sine-Gordon equation in higher dimensions.

It is worth pointing out that W.u/ D 1 C cos u is essentially the only double well
potential such that the corresponding equation is integrable [14]. Note that the sine nonlin-
earity also appears in the Peierls–Nabarro equation, whose solutions have been classified
in [54]. A classification result like Theorem 1.3 for general double well potentials could
be very difficult.

Finally, we mention that recently there have been some interesting works on the con-
struction of minimal surfaces using Allen–Cahn type equations. See, for instance, [9, 21,
22, 25, 43]. Based on these links between minimal surfaces and Allen–Cahn type equa-
tions, it is expected that the classification results obtained in this paper could be used to
provide another proof of the existence of infinitely many closed geodesics on any given
Riemann surface. Actually this is one of our main motivations to study the elliptic sine-
Gordon equation.

The paper is organized as follows. In Section 2, we write down an explicit family of
2n-end solutions Un for the elliptic sine-Gordon equation. We investigate the Bäcklund
transformation of these solutions in Section 3. The nondegeneracy of Un and Theorem 1.2
will be proved in Section 4. In Section 5, we classify all the 2n-end solutions by their
asymptotic behavior at infinity. Finally, in Section 6, we compute the Morse index of
these solutions using a deformation argument and prove Theorem 1.3.
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2. A family of multiple-end solutions of the elliptic sine-Gordon
equation

In this section, for each n 2 N, we shall write down a family of explicit, real valued,
nonsingular solutions of the elliptic sine-Gordon equation:

(2.1) �@2xu � @
2
yu D sinu in R2:

We will see that these solutions are indeed 2n-ended, hence of finite Morse index. It turns
out that this family of solutions has 2n free parameters. This also means that this set of
solutions is a 2n-dimensional manifold.

Equation (2.1) has been studied by Leibbrandt in [41] using the Bäcklund transform-
ation, with an application to the Josephson effect. However, the solutions he found are
singular somewhere in the plane. Gutshabash–Lipovskiı̆ [28] studied the boundary value
problem of the elliptic sine-Gordon equation in the half plane using the inverse scattering
transform and obtained multi-soliton solutions in the determinant form, with certain para-
meters. The question that for which parameters will the solutions be real and nonsingular
was not considered there. The boundary problems of (2.1) in a half plane or a quarter have
also been studied by the Fokas direct method, see [19, 20, 48, 49].

The construction of explicit multi-soliton solutions of the hyperbolic (classical) sine-
Gordon equation (1.1) was carried out in [29], using the Hirota direct method. It is worth
mentioning that there are also related results on certain soliton solutions in higher dimen-
sions, we refer to [24, 30, 31, 53, 56] for further discussions in this direction. Note that the
solutions of the hyperbolic sine-Gordon equation obtained in [29] contain free paramet-
ers. At this point, let us emphasize that for many integrable systems, it is usually a delicate
issue to determine for which parameters the solutions are real and nonsingular. As we will
see, this issue is actually closely related with our analysis of the elliptic sine-Gordon equa-
tion (2.1) in this paper.

It turns out to be more convenient to replace u by uC � in (2.1). The equation then
transforms into

(2.2) @2xuC @
2
yu D sinu:

Our first observation is the following: in the hyperbolic sine-Gordon equation (1.1), if
we introduce the change of variable z D yi , where i represents the complex unit, then
we arrive at equation (2.2). Based on this, by choosing certain complex parameters for
the solutions of the hyperbolic sine-Gordon equation of [29], we then get multiple-end
solutions of the elliptic sine-Gordon equation. The case of 2-soliton has been studied
in [53].

To obtain solutions in closed form, we shall write the sine-Gordon equation in bilinear
form. Let D be the bilinear derivative operator (see [32], page 27). For any j; k 2 N, and
two functions �; �, we have

Dj
xD

k
y� � � WD

�
.@x � @x0/

j .@y � @y0/
k
� �
�.x; y/�.x0; y0/

�ˇ̌
x0Dx;y0Dy

:

For instance,

DxDy� � � D �@x@y� � @x�@y� � @y�@x�C �@x@y�:
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Throughout the paper, we use NF to denote the complex conjugate of F: Let us take the
bi-logarithmic transformation:

u D 2i ln
NF

F
�

Note that the log function is multiple-valued. Here we simply take the principle branch.
One can also choose other branches, which amounts to add 4k�; k 2 Z, to the function u.
We compute

sinu D
eiu � e�iu

2i
D

1

2i

�F 2
NF 2
�
NF 2

F 2

�
; @2xu D i

�D2
x
NF � NF

NF 2
�
D2
xF � F

F 2

�
:

Then equation (2.2) can be written as�
.D2

x CD
2
y/F � F C

1
2
. NF 2 � F 2/

�
NF 2 �

�
.D2

x CD
2
y/
NF � NF C 1

2
.F 2 � NF 2/

�
F 2 D 0:

We also refer to [32], page 45, for the derivation of the bilinear form in the case of
the hyperbolic sine-Gordon equation. We then get the following bilinear form of equa-
tion (2.2):

(2.3) .D2
x CD

2
y/F � F C

1

2
. NF 2 � F 2/ D �F 2;

where � is a real parameter. This means that if F satisfies (2.3), then u will be a solution
to (2.2). On the other hand, if (2.2) is true, then we can consider the function

�.x; y/ WD
.D2

x CD
2
y/F � F C

1
2
. NF 2 � F 2/

F 2
�

Writing � into real and imaginary parts, �1.x; y/C i�2.x; y/, we see that �2 D 0: Hence
necessary (at least when F ¤ 0) there holds

.D2
x CD

2
y/F � F C

1

2
. NF 2 � F 2/ D �1F

2:

Fix an integer n2N: Let pj ; qj ; j D 1; : : : ;n, be real numbers satisfying p2j C q
2
j D 1:

Define

(2.4) ˛.j; k/ WD
.pj � pk/

2 C .qj � qk/
2

.pj C pk/2 C .qj C qk/2
�

We will always assume throughout the paper that .pj ; qj / ¤ ˙.pl ; ql /, for j ¤ l . This
assumption is consistent with our classification result in Section 4. Note that ˛.j; k/ D
˛.k; j / � 0: Moreover, since p2j C q

2
j D 1, we have

(2.5) pj � iqj D
1

pj C iqj
�

Therefore, we can rewrite ˛ in the form

˛.j; k/ D
.pj � pk C iqj � iqk/

�
1

pjCiqj
�

1
pkCiqk

�
.pj C pk C iqj C iqk/

�
1

pjCiqj
C

1
pkCiqk

�
D �

.pj � pk C iqj � iqk/
2

.pj C pk C iqj C iqk/2
�(2.6)
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We then define

a.j1; : : : ; jm/ WD 1; if m D 0,1;

a.j1; : : : ; jm/ WD
Y

k<l�m

˛.jk ; jl /; if m � 2:(2.7)

Let us introduce the notation �j D pjx C qjy C �0j , j D 1; : : : ; n, where at this moment,
the �0j are real parameters. Then we define

fn D

bn=2cX
kD0

� X
¹n;2kº

�
a .j1; : : : ; j2k/ exp

�
�j1 C � � � C �j2k

�� �
;(2.8)

gn D

b.n�1/=2cX
kD0

� X
¹n;2kC1º

�
a .j1; : : : ; j2kC1/ exp

�
�j1 C � � � C �j2kC1

�� �
:(2.9)

Here the notation
P
¹n;kº means summing over all possible k different integers j1; : : : ; jk

from the set of integers ¹1; : : : ; nº: The floor function bxc represents the greatest integer
less than or equal to x.

In the special case n D 3, we have

f3 D

1X
kD0

� X
¹3;2kº

a.j1; : : : ; j2n/ exp.�j1 C � � � C �j2k /
�

D 1C a.1; 2/ exp.�1 C �2/C a.1; 3/ exp.�1 C �3/C a.2; 3/ exp.�2 C �3/
D 1C ˛.1; 2/ exp.�1 C �2/C ˛.1; 3/ exp.�1 C �3/C ˛.2; 3/ exp.�2 C �3/;

g3 D

1X
kD0

� X
¹3;2kC1º

a.j1; : : : ; j2kC1/ exp.�j1 C � � � C �j2kC1/
�

D exp.�1/C exp.�2/C exp.�3/C a.1; 2; 3/ exp.�1 C �2 C �3/
D exp.�1/C exp.�2/C exp.�3/C ˛.1; 2/˛.1; 3/˛.2; 3/ exp.�1 C �2 C �3/:

It is worth mentioning that these solutions can also be written in the determinant
form ([46]). Here we choose to use the form (2.8), (2.9) because it is more convenient
to check the positiveness of the function.

Theorem 2.1. For each n, let fn and gn be defined by (2.8) and (2.9). Then the function
4 arctan.gn=fn/ is a solution to the elliptic sine-Gordon equation (2.2).

Proof. The proof is similar to that of [29]. We sketch it for completeness.
For fixed integer n, we would like to find explicit n-soliton solutions of the bilinear

equation (2.3), with the parameter � being zero. The equation to be solved becomes

(2.10) .D2
x CD

2
y/F � F C

1

2
. NF 2 � F 2/ D 0:
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Note that the constant 1 is a solution to this equation. The key idea is to seek solutions
with formal expansion in powers of ":

(2.11) F D 1C "F1 C "
2F2 C � � �

We will see that for the n-soliton solutions stated in Theorem 2.1, this power series trun-
cates into a polynomial of " with degree n:

Inserting (2.11) into (2.10), we find that for the O."/ terms there holds

(2.12) .D2
x CD

2
y/F1 � 1C

1

2

�
NF1 � F1

�
D 0:

For the O."2/ terms,

(2.13) 2.D2
x CD

2
y/F2 � 1C

�
D2
x CD

2
y

�
F1 � F1 D �

1

2

�
NF 21 � F

2
1 C 2

NF2 � 2F2
�
:

The O."3/ terms are

(2.14) .D2
x CD

2
y/F3 � 1C

�
D2
x CD

2
y

�
F2 � F1 �

1

2

�
NF2 NF1 � F2F1 C NF3 � F3

�
:

The expansion can be further performed to any higher order.
Let us choose

F1 WD i

nX
jD1

exp.�j /:

Since p2j C q
2
j D 1, we see that (2.12) is satisfied by this choice. Moreover, a direct com-

putation shows that

.D2
x CD

2
y/F1 � F1 D �2

X
j1<j2

��
.pj1 � pj2/

2
C .qj1 � qj2/

2
�

exp.�j1 C �j2/
�
:

We now define
F2 WD

X
j1<j2

�
a.j1; j2/ exp.�j1 C �j2/

�
:

Here the index j2 � n: Then we can compute

.D2
x CD

2
y/F2 � 1 D

X
j1<j2

�
a.j1; j2/

�
.pj1 C pj2/

2
C .qj1 C qj2/

2
�

exp.�j1 C �j2/
�
:

From this, using the definition (2.4) of a.j1; j2/, we find that

2.D2
x CD

2
y/F2 � 1C

�
D2
x CD

2
y

�
F1 � F1 D 0:

Hence equation (2.13) also holds.
To proceed, we define

F3 WD i
X

j1<j2<j3

�
a.j1; j2; j3/ exp.�j1 C �j2 C �j3/

�
:
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We would like to show that with this choice, the "3 order terms (2.14) sum up to zero.
Indeed, for fixed triple j1 < j2 < j3, a direct computation tells us that in (2.14), the
coefficient J before i exp.�j1 C �j2 C �j3/ is

a.j1; j2/
�
.pj1 C pj2 � pj3/

2
C .qj1 C qj2 � qj3/

2
� 1

�
C a.j2; j3/

�
.pj2 C pj3 � pj1/

2
C .qj2 C qj3 � qj1/

2
� 1

�
C a.j1; j3/

�
.pj1 C pj3 � pj2/

2
C .qj1 C qj3 � qj2/

2
� 1

�
C a.j1; j2; j3/

�
.pj1 C pj2 C pj3/

2
C .qj1 C qj2 C qj3/

2
� 1

�
:

Using (2.5) and (2.6), setting vj WD pj C iqj , we find that J is equal to

.vj1 � vj2/
2

.vj1 C vj2/
2

�
1 � .vj1 C vj2 � vj3/

� 1
vj1
C

1

vj2
�

1

vj3

��
C
.vj2 � vj3/

2

.vj2 C vj3/
2

�
1 � .vj2 C vj3 � vj1/

� 1
vj2
C

1

vj3
�

1

vj1

��
C
.vj1 � vj3/

2

.vj1 C vj3/
2

�
1 � .vj1 C vj3 � vj2/

� 1
vj1
C

1

vj3
�

1

vj2

��
C
.vj1 � vj2/

2 .vj2 � vj3/
2 .vj1 � vj3/

2

.vj1 C vj2/
2 .vj2 C vj3/

2 .vj1 C vj3/
2

�
1 � .vj1 C vj2 C vj3/

� 1
vj1
C

1

vj2
C

1

vj3

��
:

Multiplying it by .vj1 C vj2/
2.vj2 C vj3/

2.vj1 C vj3/
2vj1vj2vj3 , we obtain a homogeneous

polynomial in vj1 ; vj2 ; vj3 , of degree 9: Let us denote this polynomial by L.vj1 ; vj2 ; vj3/:
Observe that .v2j1 � v

2
j2
/2 is a factor of L. Due to symmetry, this implies that L is a

polynomial of degree at least 12: Hence L has to be identically zero. Next we consider
the special case that the triple .j1; j2; j3/ has repeated indices, for instance, j1 D j2 < j3.
Observe that L is continuous respect to vj1 ; vj2 ; vj3 . Hence sending vj2 to vj1 , we see that
in this special case, we also have LD 0. This proves that (2.14) is zero. Note that the case
of repeated indices can also be directly proved in the same way as the general case, by
regarding vj1 ; vj2 ; vj3 as abstract variables.

Now for 4 � j � n, let us define

Fj WD exp
�
.1 � .�1/j /

�i

4

� X
l1<���<lj�n

�
a.l1; : : : ; lj / exp.�l1 C � � � C �lj /

�
:

In particular, this implies that for odd j; Fj is purely imaginary; while for even j , Fj is
real valued. We also set Fj D 0 if j > n:

We claim that the O."k/ terms sum up to zero in the power series expansion of " for
each k � 4: We only consider the case of k being odd. The proof is similar if k is even.

For fixed indices j1 � � � � � jk , the coefficient before i exp.�j1 C �j2 C � � � C �jk / is
equal to

P
l Gl , where

Gl WD
X
m.l/

�
˛.jm1 ; : : : ; jml / ˛.jmlC1 ; : : : ; jmk /.h � 1/

�
:

Here

h WD .vjm1 C � � � C vjml � vjmlC1 � � � � � vjmk /.v
�1
jm1
C � � � C v�1jml

� v�1jmlC1
� � � � � v�1jmk

/;
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the notation
P
m.l/ means summation over indices m1; : : : ; mk satisfying mj � k, and

m1 < � � � < ml I mlC1 < � � � < mk :

Multiplying Gl by
� Qk

lD1 vjl
�� Q

a<b�k.vja C vjb /
2
�
, we get a homogeneous polyno-

mial L with degree k2: On the other hand, the function .v2jl � v
2
jm
/2 is a factor of L:

Hence the degree of L is at least 2k.k � 1/: It follows that L is identically zero. This
finishes the proof of the claim.

Finally, we take " D 1 and set fn D ReF , gn D ImF: Then we have

2i ln
NF

F
D 4 arctan

gn

fn
�

The proof of the theorem is thereby completed.

Note that fn and gn are both positive functions. By Theorem 2.1, the functions

(2.15) Un WD 4 arctan
gn

fn
� �

are a family of smooth solution to the elliptic sine-Gordon equation (2.1), with pj ; qj ; �0j
being parameters. Note that �� < Un < �:

Next, we would like to analyze the asymptotic behavior of Un at infinity. We have the
following.

Lemma 2.2. Let c 2R be a fixed constant and let k be a fixed index. Suppose .xj ; yj / is a
sequence of points such that �k.xj ; yj /D c and x2j C y

2
j !C1 as j !C1. Moreover,

relabeling .pm; qm/, m D 1; : : : ; n; if necessary, we can assume that as j !C1,

�m.xj ; yj /!C1; m D 1; : : : ; k � 1;

�m.xj ; yj /! �1; m D k C 1; : : : ; n:

Then we have

lim
j!C1

Un.xj ; yj / D

²
4 arctan .exp .�k � ˇk// � �; if k is odd,
4 arctan .exp .��k � ˇk// � �; if k is even,

where ˇk D
Pk�1
jD1 ln .˛.j; k// :

Proof. We first consider the case that k is odd. Then as j ! C1, the main order term
of fn is

a .1; : : : ; k � 1/ exp.�1 C � � � C �k�1/:

At the same time, the main order of gn is

a.1; : : : ; k/ exp .�1 C � � � C �k/ :

Hence along this sequence, Un converges to

4 arctan
�a.1; : : : ; k � 1/

a.1; : : : ; k/
ec
�
� � D 4 arctan.exp.�k � ˇk// � �:

If k is even, then as j !C1, the main order term of fn is

a.1; : : : ; k/ exp.�1 C � � � C �k/I
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while the main order term of gn will be

a.1; : : : ; k � 1/ exp.�1 C � � � C �k�1/:

Hence in this case,

Un ! 4 arctan
�a.1; : : : ; k � 1/

a.1; : : : ; k/
e�c

�
� � D 4 arctan.exp.��k � ˇk// � �:

By Lemma 2.2, away from the origin, the nodal set of the solutions Un is asymptotic
to 2n half straight lines, each line is parallel to one of the lines �j D 0; j D 1; : : : ; n, with
the phase shift determined by the constants ˇk appearing in Lemma 2.2. HenceUn is a 2n-
end solution. Note that Un contains 2n free real parameters: pj ; �0j ; j D 1; : : : ; n: Hence
this solution set is a 2n dimensional manifold. Note that the dimension 2n is consistent
with the prediction given by the moduli space theory [11] of the Allen–Cahn type equation.

In the special case n D 2, if we choose p1 D p2 D p and q1 D �q2 D q, �01 D �
0
2 D

ln p
q

, then we get the solution

'p;q.x; y/ WD 4 arctan
�p cosh .qy/
q cosh .px/

�
� �:

This corresponds to a 4-end solution of the elliptic sine-Gordon equation (1.2). Note that
on the lines px D ˙qy, 'p;q D 4 arctan.p=q/ � �: In the special case p D q D

p
2=2,

the solution is

(2.16) 4 arctan
�cosh.y=

p
2/

cosh.x=
p
2/

�
� �:

This is the classical saddle solution.
We remark that this family of 4-end solutions 'p;q has analogous in the theory of min-

imal surfaces. It is the so called Scherk second surface family, which contains embedded
singly periodic minimal surfaces in R3: Explicitly, these surfaces can be described by

cos2 � cosh
x

cos �
� sin2 � sinh

y

sin �
D cos z:

Here � is a parameter. Each of these surfaces has four wings, called ends of the surfaces.
Geometrically, they are obtained by desingularizing two intersected planes with intersec-
tion angle �:

3. Bäcklund transformation of the multiple-end solutions

Lamb [40] has established a superposition formula for the Bäcklund transformation of
the hyperbolic sine-Gordon equation. In particular, the formula enables us to get multi-
soliton solutions in an algebraic way. However, in this formulation, for n-soliton solutions
with n large, it will be quite tedious to write down the explicit expressions for the solutions.
Nevertheless, it turns out that the soliton solutions in Theorem 2.1 can be obtained through
the Bäcklund transformation. This will be discussed in detail in this section.
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In the light-cone coordinates, the hyperbolic sine-Gordon equation has the form

(3.1) @s@tu D sinu; .s; t/ 2 R2:

Let k be a real parameter. The Bäcklund transformation between two solutions u1 and u2
of (3.1) is given by (see for instance [51])

(3.2)

´
@su1 D @su2 � 2k sin u1Cu2

2
;

@tu1 D �@tu2 � 2k
�1 sin u1�u2

2
:

An interesting property of this transformation is the following: if two functions u1 and u2
solve the system (3.2), then they satisfy (3.1) simultaneously.

Next we recall the bilinear form of the hyperbolic sine-Gordon equation ([32]). Let
F D f C ig: We still write u in bi-logrithmic form:

u D 2i ln
NF

F
D 4 arctan

g

f
�

Here the log and arctan function are also taken to be the principle branch. Then (3.1) has
the bilinear form

DsDtF � F D
1

2
.F 2 � NF 2/:

The following result can be found in [32].

Lemma 3.1. Suppose u1 D 2i ln. NF=F /, u2 D 2i ln. NG=G/ satisfy

(3.3)

´
DsG � F D �

k
2
NG NF ;

DtG � NF D �
1
2k
NGF:

Assume k is real. Then u1 and u2 satisfy (3.2).

Proof. We sketch the proof for completeness. We have

@su1 � @su2 D 2i
�@s NF
NF
�
@sF

F

�
� 2i

�@s NG
NG
�
@sG

G

�
D 2i

NG@s NF � NF@s NG

NF NG
� 2i

G@sF � F@sG

FG
�(3.4)

On the other hand,

(3.5) sin
u1 C u2

2
D sin

�
i ln
NF NG

FG

�
D

1

2i

�FG
NF NG
�
NF NG

FG

�
:

From (3.4) and (3.5), using (3.3) and the assumption that k is real, we deduce

@su1 � @su2 D �ki
NF NG

FG
C ki

FG

NF NG
D �2k sin

u1 C u2

2
�

Similarly, we have
@tu1 C @tu2 D �2k

�1 sin
u1 � u2

2
�
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Fix n 2 N: Let kj ; ıj ; j D 1; : : : ; n, be real parameters. We now set

ǰ WD kj s C k
�1
j t C ıj ; j D 1; : : : ; n:

At this moment, they are regarded as functions of the real variables s and t: We define

Gn WD
X
"

�
exp

h nX
jD1

�"j
2

�
ǰ C

�i

2

��
C
n�i

4

i Y
j<l�n

.kj � "j "l kl /

�
:

Here the summation
P
" is taken over all possible n-tuples ."1; : : : ; "n/with "j D˙1;j D

1; : : : ; n: Note that the Gn are complex-valued functions. By this definition, we have

G1 D exp
�
�
ˇ1

2

�
C i exp

�ˇ1
2

�
;

G2 D �.k1 � k2/ exp
�1
2
.ˇ1 C ˇ2/

�
C .k1 � k2/ exp

�1
2
.�ˇ1 � ˇ2/

�
C i.k1 C k2/ exp

�1
2
.ˇ1 � ˇ2/

�
C i.k1 C k2/ exp

�1
2
.�ˇ1 C ˇ2/

�
:

When n D 0, Gn is understood to be 1:

Lemma 3.2. Assume that kj ; ıj ; j D 1; : : : ; n, are real numbers, kj ¤ 0. Then Gn�1
and Gn are connected through the following Bäcklund transformation :´

DsGn �Gn�1 D �
kn
2
NGn NGn�1;

DtGn � NGn�1 D �
1
2kn
NGnGn�1:

Results of this type for the KdV equation and certain superposition formulas can be
found in [33]. Since we are not able to locate the precise references for a direct proof of
this lemma, here we sketch the proof for the first identity. The second one follows from
same arguments.

Proof. Fix the integer n and let us introduce the notation

" D ."1; : : : ; "n/; "0 D ."01; : : : ; "
0
n�1/:

To simplify notations, we also set

h1 WD exp
� nX
jD1

�"j
2

�
ǰ C

�i

2

��
C
n�i

4

� Y
j<l�n

.kj � "j "l kl /;

h2 WD exp
� n�1X
jD1

�"0j
2

�
ǰ C

�i

2

��
C
.n � 1/�i

4

� Y
j<l�n�1

.kj � "
0
j "
0
l kl /:

Using @s ǰ D kj , we can compute

2Dsh1 � h2 D
� nX
jD1

."j kj / �

n�1X
jD1

."0j kj /
�
h1h2

D

� nX
jD1

."j kj / �

n�1X
jD1

."0j kj /
�Y
j<n

.kj � "j "nkn/W:(3.6)
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Here,

W WD
Y

m<l�n�1

�
.km � "m "l kl /

�
km � "

0
m "
0
l kl
��

exp
�"n
2

�
ˇn C

�i

2

��
� exp

� n�1X
jD1

� ."0j C "j /
2

�
ǰ C

�i

2

��
C
.2n � 1/�i

4

�
:

With all these notations, we have

(3.7) 2DsGn �Gn�1 D
X
";"0

�h nX
jD1

."j kj / �

n�1X
jD1

."0j kj /
iY
j<n

.kj � "j "nkn/W

�
:

It turns out that this expression can be further simplified, due to cancellations between
some terms. Observe that if for some index j0 � n� 1, "j0 D "

0
j0

, then the corresponding
term does not contribute to the coefficient

nX
jD1

."j kj / �

n�1X
jD1

."0j kj /:

To compute the right-hand side of (3.7), we first consider two simple cases for the
summation indices.

Case 1: In the summation, "1 D �"01 and for 2 � j � n � 1, "j D "0j :
Fix the indices "j D "0j with j � 2: Then in this case, for different "1 D �"01, each

term in the right-hand side of (3.7) has the common factorY
1<l�n�1

.k21 � k
2
l /

Y
1<m<l�n�1

.km � "m "l kl /
2

Y
2�j�n�2

.kj � "j "nkn/

� exp
�"n
2

�
ˇn C

�i

2

�
C

n�1X
jD2

�
"j

�
ǰ C

�i

2

��
C
.2n � 1/�i

4

�
:

Taking out this common factor and freezing the indices "2; : : : ; "n, we are led to compute

I1 WD
X
"1

Œ."nkn C 2"1k1/ .k1 � "1 "nkn/� :

Here the summation is over the index "1 D ˙1, since we impose the restriction that "1 D
�"01: Using the fact that "2j D 1, we deduce

I1 D
X
"1

�
"nknk1 � "1k

2
n C 2"1k

2
1 � 2"nk1kn

�
:

The summation over the second term is zero, since the terms with "1 D 1 and "1 D �1
cancel each other. The same occurs for the third term. Hence we obtain I1 D �2"nk1kn:
On the other hand, we computeX

"1

Œ"nkn .k1 � "1 "nkn/� D 2"nknk1:
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It then follows that
I1 D �

X
"1

Œ"nkn .k1 � "1 "nkn/� :

Using this identity, we find that, when the indices "j D "0j , j � 2, are fixed,

X
"1D�"

0
1

�h nX
jD1

."jkj / �

n�1X
jD1

."0jkj /
iY
j<n

.kj � "j "nkn/W

�
D �

X
"1D�"

0
1

�
"nkn

Y
l�n�1

.kl � "l "nkn/
Y

m<l�n�1

�
.km � "m "l kl /

�
km � "

0
m "
0
l kl
��

� exp
�"n
2

�
ˇn C

�i

2

�
C

n�1X
jD1

� ."j C "0j /
2

�
ǰ C

�i

2

��
C
.2n � 1/�i

4

��
:

Denote the right-hand side by F1: On the other hand, for the same fixed indices "j D
"0j ; j � 2, in NGn NGn�1, we have the term

F �1 WD
X

"1D�"
0
1

� Y
l�n�1

.kl � "l "nkn/
Y

m<l�n�1

�
.km � "m "l kl /

�
km � "

0
m"
0
l kl
��

� exp
�"n
2

�
ˇn �

�i

2

�
C

n�1X
jD1

� ."j C "0j /
2

�
ǰ �

�i

2

��
�
.2n � 1/�i

4

��
:

Since "1 D �"01 and "j D "0j for j � 2, we always have

"n exp
h�
"n C

n�1X
jD1

."j C "
0
j /C 2n � 1

��i
2

i
D 1:

Hence

(3.8) F1 D �knF
�
1 :

Case 2: The indices satisfy "1 D �"01; "2 D �"
0
2, and for 3 � j � n � 1, "j D "0j :

In this case, for fixed indices "j D "0j with j � 3, terms in (3.7) have the common
factorY
2<l�n�1

�
.k21 � k

2
l /.k

2
2 � k

2
l /
� Y
2<m<l�n�1

.km � "m "l kl /
2

Y
2�j�n�2

�
kj � "j "nkn

�
� exp

�"n
2

�
ˇn C

�i

2

�
C

n�1X
jD3

�
"j

�
ǰ C

�i

2

��
C
.2n � 1/�i

4

�
:

Taking out this common factor and freezing the indices "3; : : : ; "n, in view of the assump-
tion "1 D �"01 and "2 D �"02, we are led to compute

I2 WD
X
"1;"2

�
."nkn C 2"1k1 C 2"2k2/ .k1 � "1 "nkn/ .k2 � "2 "nkn/ .k1 � "1 "2k2/

2
�
:
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To simplify I2, let us first of all compute

I2;2 WD
X
"1;"2

�
."1k1 C "2k2/ .k1 � "1 "nkn/ .k2 � "2 "nkn/ .k1 � "1 "2k2/

2
�
:

We can expand the bracket into individual terms. Observe that if a term has odd power
of "1 or "2, then taking the summation over this term will yield zero, due to cancellation
betweenC1 and �1. Hence we obtain

I2;2 D
X
"1;"2

�
."1k1/k1 .�"2 "nkn/ .�2"1 "2k1k2/C ."1k1/ .�"1 "nkn/ k2 .k

2
1 C k

2
2/
�

C

X
"1;"2

�
."2k2/ k1 .�"2 "nkn/ .k

2
1 C k

2
2/C ."2k2/ .�"1"nkn/ k2 .�2k1"1"2k2/

�
D

X
"1;"2

�
2"nk

3
1 k2kn � "nk1k2kn .k

2
1 C k

2
2/ � "nk1k2kn .k

2
1 C k

2
2/C 2"nk1k

3
2 kn

�
D 0:

Therefore,

I2 D
X
"1;"2

�
"nkn .k1 � "1 "nkn/ .k2 � "2 "nkn/ .k1 � "1 "2k2/

2
�
:

It follows from this identity that when the indices "j D "0j , j � 2, are fixed, we have

X
"1D�"

0
1;"2D�"

0
2

�h nX
jD1

."jkj / �

n�1X
jD1

."0jkj /
iY
j<n

.kj � "j "nkn/W

�
D

X
"1D�"

0
1;"2D�"

0
2

�
"nkn

Y
l�n�1

.kl � "l "nkn/
Y

m<l�n�1

�
.km � "m"lkl /

�
km � "

0
m"
0
lkl
��

� exp
�"n
2

�
ˇn C

�i

2

�
C

n�1X
jD1

� ."j C "0j /
2

�
ǰ C

�i

2

��
C
.2n � 1/�i

4

��
:

Denote the right-hand side by F2: On the other hand, for the same fixed indices "j D
"0j ; j � 3, in NGn NGn�1, we have the term

F �2 WD
X

"1D�"
0
1;"2D�"

0
2

� Y
l�n�1

.kl � "l "nkn/
Y

m<l�n�1

�
.km � "m "l kl /

�
km � "

0
m "
0
l kl
��

� exp
�"n
2

�
ˇn �

�i

2

�
C

n�1X
jD1

� ."j C "0j /
2

�
ǰ �

�i

2

��
�
.2n � 1/�i

4

��
:

Since "1 D �"01; "2 D �"
0
2, and "j D "0j for j � 3, we always have

"n exp
h�
"n C

n�1X
jD1

."j C "
0
j /C 2n � 1

��i
2

i
D �1:
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It follows that

(3.9) F2 D �knF
�
2 :

Having understood Case 1 and Case 2, we proceed to consider the general case.
Assume without loss of generality that the indices satisfy, for some integer m0,

"j D �"
0
j ; j D 1; : : : ; m0; and "j D "

0
j ; j D m0 C 1; : : : ; n � 1:

Then we can compute (3.7) by separating these indices into pairs ."1; "2/; ."3; "4/; : : :
Applying formula (3.9) for each pair and using (3.8) in case m0 is odd, we finally deduce

2DsGn �Gn�1 D �kn NGn NGn�1

The proof is thus completed.

In view of the definition of Gn, we now define !n to beX
"W
Qn
mD1 "mD.�1/

n

�
exp

h nX
jD1

�"j
2

�
ǰ C

�i

2

��
C
n�i

4

i Y
j<l�n

.kj � "j "l kl /

�
;

where "j D ˙1: Similarly, we define �n byX
"W
Qn
mD1 "mD.�1/

nC1

�
exp

h nX
jD1

�"j
2

�
ǰ C

�i

2

��
C
.n � 2/�i

4

i Y
j<l�n

.kj � "j "l kl /

�
:

Note that if kj ; ıj are real numbers, and s; t are real variables, then

!n D ReGn; �n D ImGn:

In particular, we have

!0 D 1; �0 D 0;

!1 D exp
�
�
ˇ1

2

�
; �1 D exp

�ˇ1
2

�
;

!2 D �.k1 � k2/ exp
�1
2
.ˇ1 C ˇ2/

�
C .k1 � k2/ exp

�1
2
.�ˇ1 � ˇ2/

�
�2 D .k1 C k2/ exp

�1
2
.ˇ1 � ˇ2/

�
C .k1 C k2/ exp

�1
2
.�ˇ1 C ˇ2/

�
:

Applying Lemmas 3.1 and 3.2, we see that the real valued function Qun WD 4arctan.�n=!n/
satisfies

(3.10)

´
@s Qun�1 D @s Qun � 2kn sin Qun�1CQun

2
;

@t Qun�1 D �@t Qun � 2k
�1
n sin Qun�1�Qun

2
�

For later applications, we would like to generalize this system to complex valued functions
(the function arctan is understood to be the principle branch). This is the content of the
following.
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Lemma 3.3. Assume kj and ıj are complex numbers, and s and t are complex variables.
Then (3.10) is still true.

Proof. We already know that (3.10) is true for real parameters. The assertion of the lemma
then follows from the fact that the functions involved are analytic with respect to those
parameters and variables.

We now come back to the solutions Un of the elliptic sine-Gordon equation appeared
in Theorem 2.1. We would like to show that they are indeed the Bäcklund transformation
of certain .n � 1/-soliton type solutions. This will be achieved by applying Lemma 3.3.
To do this, first of all, we need to write the functions fn and gn in a form adapted to
Lemma 3.2.

Recall that pj ; qj are parameters in Un: For j D 1; : : : ; n, let kj D pj C iqj and
choose a complex number �j such that

e�j D
Y
l<j

kl C kj

kl � kj

Y
l>j

kj C kl

kj � kl
�

For instance, one can simply choose �j to be the principle value of the log function evalu-
ated at the right-hand side.

Since p2j C q
2
j D 1, we know that k�1j D pj � iqj D Nkj : Recall that �j D pjx C

qjy C �
0
j . We emphasize that here x; y are regarded as real variables. Let us now define

(3.11) Q�j WD �j � �j :

We then set

(3.12) Qfn WD
X

"W
nQ

mD1
"mD.�1/n

�
exp

h nX
jD1

�"j
2

�
Q�j C

�i

2

��
C
n�i

4

i Y
j<l�n

.kj � "j "l kl /

�
;

where "j D ˙1: We also define
(3.13)

Qgn D
X

"W
nQ

mD1
"mD.�1/n�1

�
exp

h nX
jD1

�"j
2

�
Q�j C

�i

2

��
C
.n � 2/�i

4

i Y
j<l�n

.kj � "j "l kl /

�
:

Lemma 3.4. Let fn and gn be defined by (2.8) and (2.9). There holds

gn

fn
D
Qgn
Qfn
�

Proof. Since �j D Q�j C �j , fn can be written in the form

bn=2cX
mD0

� X
¹n;2mº

Œa .i1; : : : ; i2m/ exp .�i1 C � � � C �i2m/ exp . Q�i1 C � � � C Q�i2m/�
�
:
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For fixed indices .i1; : : : ; i2m/, using the definition (2.7) of a, we have

a .i1; : : : ; i2m/ exp .�i1 C � � � C �i2m/

D .�1/m.2m�1/
Y

j<l�2m

� kij � kil
kij C kil

�2
exp .�i1 C � � � C �i2m/

D .�1/m.2m�1/
Y

j<l�n

kj � "j "l kl

kj � kl
;

where "j D 1 if j D i1; : : : ; i2mI otherwise "j D �1: Note that in this case,

nX
jD1

"j D 4m � n:

Hence the sign satisfies

.�1/m.2m�1/ D exp
��i
4

� nX
jD1

"j C n
��
:

It follows that

fn exp
�
�
1

2
. Q�1 C � � � C Q�n/

�
D

1Q
j<l�n

.kj�kl /

X
"W

nQ
mD1

"mD.�1/n

�
exp

� nX
jD1

�"j
2

�
Q�jC

�i

2

��
C
n�i

4

� Y
j<l�n

.kj�"j "lkl /

�

D
1Q

j<l�n.kj � kl /
Qfn:

Similarly, we have

gn exp
�
�
1

2
. Q�1 C � � � C Q�n/

�
D

1Q
j<l�n.kj � kl /

Qgn:

As a consequence,
gn

fn
D
Qgn
Qfn
�

This finishes the proof.

Let Q�j ; j D 1; : : : ; n � 1, be defined by (3.11). We define 
 D 
n�1 to be

X
"W
Qn�1
mD1 "mD.�1/

n�1

�
exp

h n�1X
jD1

�"j
2

�
Q�j C

�i

2

��
C
.n � 1/�i

4

i Y
j<l�n�1

.kj � "j "l kl /

�
:
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Moreover, we define � D �n�1 by

X
"W
Qn�1
mD1 "mD.�1/

n

�
exp

h n�1X
jD1

�"j
2

�
Q�j C

�i

2

��
C
.n � 3/�i

4

i Y
j<l�n�1

.kj � "j "l kl /

�
:

We emphasize that Q�j ; j D 1; : : : ; n � 1, actually also depends on kn:

Lemma 3.5. The function �=
 is purely imaginary.

Proof. For each fixed j , we choose �0j such that

exp.�j / WD exp.�0j /
Y
l<j

kl C kj

kl � kj

Y
j<l�n�1

kl C kj

kl � kj
�

Note that there are infinitely many choices for such �0j . We may just choose one of them,
for instance, the one arising from the principle branch of the log function. Consider the
functions 
 0 and � 0 defined by


 0 WD
X

"W
n�1Q
mD1

"mD.�1/n�1

�
exp

�n�1X
jD1

�"j
2

�
�0j C

�i

2

��
C
.n � 1/�i

4

� Y
j<l�n�1

.kj � "j "lkl /

�
;

� 0 WD
X

"W
n�1Q
mD1

"mD.�1/n

�
exp

� n�1X
jD1

�"j
2

�
�0j C

�i

2

��
C
.n � 3/�i

4

� Y
j<l�n�1

.kj � "j "lkl /

�
:

By the proof of Lemma 3.4, we have

fn�1 D exp
�1
2
. Q�1 C � � � C Q�n�1/

�

 0

Y
j<l�n�1

1

kj � kl
;

gn�1 D exp
�1
2
. Q�1 C � � � C Q�n�1/

�
� 0

Y
j<l�n�1

1

kj � kl
�

Since Q�j D �j � �j , using the definition of �0j , we find that

exp. Q�j / D exp.�0j /
kj C kn

kj � kn
WD exp.�0j C �

00
j /:

Then 
 is equal to

X
"W
n�1Q
mD1

"mD.�1/n�1

�
exp

hn�1X
jD1

�"j
2

�
�0j C �

00
j C

�i

2

��
C
.n � 1/�i

4

i Y
j<l�n�1

.kj � "j "lkl /

�
:
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Therefore, still using the proof of Lemma 3.4 (with the phase constant �0j replaced by
�0j C �

00
j ), we can also write �=
 as

(3.14)

b.n�2/=2cP
mD0

� P
¹n�1;2mC1º

h
a.i1; : : : ; i2mC1/

2mC1Q
jD1

kijCkn

kij �kn
exp.�i1 C � � � C �i2mC1/

i�
b.n�1/=2cP
mD0

� P
¹n�1;2mº

h
a.i1; : : : ; i2m/

2mQ
jD1

kijCkn

kij �kn
exp.�i1 C � � � C �i2m/

i� �

On the other hand, from the fact that

a.j; n/ D �
� kj � kn
kj C kn

�2
;

we infer that kjCkn
kj�kn

is imaginary. This together with (3.14) tell us that �=
 is imaginary.

Let us set u D 4 arctan.gn=fn/ D 4 arctan. Qgn= Qfn/ and v D 4 arctan.�=
/. Here the
arctan function is still understood to be the principle value. Let us define

(3.15)
²
x D s C t;

y D i .s � t / :

A direct consequence of Lemma 3.3 is the following.

Lemma 3.6. The functions u and v are connected through the following Bäcklund trans-
formation :

(3.16)

´
@xv D i@yu � kn sin vCu

2
� Nkn sin v�u

2
;

i@yv D @xu � kn sin vCu
2
C Nkn sin v�u

2
�

Proof. Applying Lemma 3.3, using the fact that k�1n D Nkn, we see that the functions u; v
satisfy ´

@sv D @su � 2kn sin vCu
2
;

@tv D �@tu � 2 Nkn sin v�u
2
�

Note that @s D @x C i@y ; @t D @x � i@y : Hence,´
@xv C i@yv D @xuC i@yu � 2kn sin vCu

2
;

@xv � i@yv D �@xuC i@yu � 2 Nkn sin v�u
2
�

The system (3.16) follows immediately.

We point out that since the function �=
 is purely imaginary, sin.v=2/ and cos.v=2/
should be understood as

(3.17) sin
�
2 arctan

�




�
D

2
�


2 C �2
; cos

�
2 arctan

�




�
D

2 � �2


2 C �2
�
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Moreover, @xv D 4

@x���@x



2C�2
: Hence, sin.u˙v

2
/ and cos.u˙v

2
/ are complex valued func-

tions, with possible singularities at those points where 
2 C �2 D 0. The analysis of these
singularities will be carried out in the next section.

Let n be fixed and let Q�j be defined as before. For ı D 1; : : : ; n� 2, we now define 
ı
to be X

"W
Qı
mD1 "mD.�1/

ı

�
exp

h ıX
jD1

�"j
2

�
Q�j C

�i

2

��
C
ı�i

4

i Y
j<l�ı

.kj � "j "l kl /

�
:

Moreover, we define �ı byX
"W
Qı
mD1 "mD.�1/

ı�1

�
exp

h ıX
jD1

�"j
2

�
Q�j C

�i

2

��
C
.ı � 2/�i

4

i Y
j<l�ı

.kj � "j "l kl /

�
:

Moreover, we define 
0 D 1 and �0 D 0: Let vı D arctan.�ı=
ı/. Arguing similarly as in
Lemma 3.5, we know that for ı D 1; : : :, the function �n�2ı


n�2ı
is real valued, while �n�2ıC1


n�2ıC1

is purely imaginary (except �0=
0, which is always equal to 0).
A direct generalization of Lemma 3.6 is the following.

Lemma 3.7. For ı D 1; : : : ; n � 1, the functions vı and vı�1 are connected through the
following Bäcklund transformation :

(3.18)

´
@xvı�1 D i@yvı � kı sin vı�1Cvı

2
� Nkı sin vı�1�vı

2
;

i@yvı�1 D @xvı � kı sin vı�1Cvı
2
C Nkı sin vı�1�vı

2
�

4. Linearized Bäcklund transformation and nondegeneracy of the
2n-end solutions

This section will be devoted to prove the nondegeneracy of the multiple-end solutions. To
state our result in a more precise way, let us recall that Un is the 2n-end solution defined
in (2.15), and �0j are “phase” parameters in Un. Let u D Un C � D 4 arctan.gn=fn/ D
4 arctan. Qgn= Qfn/. In this section, the differentiation of u with respect to these parameters
will be denoted by �j : That is, �j WD @�0j u, j D 1; : : : ; n: Since for any �0j , Un is a solution
to the elliptic sine-Gordon equation, �j automatically solves the linearized equation:

��j D �j cosu:

For convenience, let us restate Theorem 1.2, which is already claimed in the first section.

Theorem 4.1. Suppose � is bounded in R2 and satisfies the linearized equation

�� D � cosu:

Then there exist constants c1; : : : ; cn such that

� D

nX
jD1

cj �j :
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Roughly speaking, this result tells us that the solution Un is L1 nondegenerate. The
main idea of the proof is as follows. Using the linearized Bäcklund transformation, we
transform � into a kernel � of the linearized operator at the trivial solution 0: Hence���
�D 0: The solutions to this equation can be classified. By analyzing the reversed Bäcklund
transformation from the trivial solution 0 to u, we then conclude that � has to be of the
form stated in Theorem 4.1.

Linearizing the Bäcklund transformation (3.16) at .v;u/ (with perturbation of the form
."�; "�/ and " tends to 0), we get the linearized system´

@x� D i@y� � kn cos uCv
2

�
�C�
2

�
� Nkn cos u�v

2

�
���
2

�
;

i@y� D @x� � kn cos uCv
2

�
�C�
2

�
C Nkn cos u�v

2

�
���
2

�
:

Intuitively, given function �, we would like to solve this system and find a solution �: For
this purpose, we write it in the form

(4.1)
²
L� DM�;

T� D N�;

where

L� WD @x� C
�
kn cos

uC v

2
C Nkn cos

u � v

2

��
2
;

T� WD i@y� C
�
kn cos

uC v

2
� Nkn cos

u � v

2

��
2
;

M� WD i@y� �
�
kn cos

uC v

2
� Nkn cos

u � v

2

��
2
;

N� WD @x� �
�
kn cos

uC v

2
C Nkn cos

u � v

2

��
2
�

To simplify the notation, we write Qfn as f , and Qgn as g: Using (3.17), we see that
explicitly, L� is equal to

@x� C
�
kn

� 2 .f 
 � g�/2

.f 2 C g2/ .
2 C �2
� 1

�
C Nkn

� 2 .f 
 C g�/2

.f 2 C g2/ .
2 C �2
� 1

���
2

WD @x� C Re.� � kn/�;

where the function � is defined to be

(4.2) 2kn
.f 
 � g�/2

.f 2 C g2/.
2 C �2/
�

Similarly, we have
T� D i@y� C i Im.� � kn/�:

Note that by Lemma 3.5, �=
 is purely imaginary. As a consequence, the function 
2C �2

could be equal to zero somewhere in R2: We define this singular set to be

� D �.v/ WD
®
.x; y/ 2 R2 W 
2 C �2 D 0

¯
:
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To analyze � , we also define

S0 WD ¹.x; y/ 2 � W 
 D 0º and S� WD ¹.x; y/ 2 � W 
 ¤ 0º:

The closure of S� will be denoted by NS�. These sets depend on the function v, which is
determined by the parameters pj ; qj ; �0j . Observe that NS� is also a subset of � . Rotating
the axis if necessary, we can assume pj ¤ 0, for all j: By the classification results to be
proved in the next section, we actually can assume that pj < 0 for all j . Using the identity

cos �1 C i sin �1 � .cos �2 C i sin �2/
cos �1 C i sin �1 C .cos �2 C i sin �2/

D i tan
�1 � �2

2
;

we may further assume (by relabeling the indices if necessary) that

kj � kl

kj C kl
i < 0; if j < l:

This property together with an induction argument based on formula (3.14) ensure that in
the Bäcklund transformation sequence ¹v1; : : : ; vn�1º, the functions vn�2ı are real and
nonsingular for ı D 1; 2; : : :

Lemma 4.2. Let R0 be a large constant and let BR0 be the ball of radius R0 centered at
the origin. The set �nBR0 consists of 2n � 2 curves. Each curve is asymptotic to a line
which is parallel to one of the lines of the form pjx C qjy D 0, j D 1; : : : ; n � 1:

Proof. We first recall that 
 is the sum of all those terms of the form:

exp
� n�1X
jD1

�"j
2

�
Q�j C

�i

2

��
C
.n � 1/�i

4

� Y
j<l�n�1

.kj � "j "l kl /;

where
Qn�1
jD1 "j D .�1/

n�1: At the same time, � is the sum of terms

exp
� n�1X
jD1

�"j
2

�
Q�j C

�i

2

��
C
.n � 3/�i

4

� Y
j<l�n�1

.kj � "j "l kl /;

where
Qn�1
jD1 "j D .�1/

n:

Let ¹.xj ; yj /ºC1jD1 be a sequence of points in � such that x2j C y
2
j ! C1: Using the

fact that j
 j D j� j in � , we infer that, up to a subsequence, there exist an index j0 and a
universal constant C such that

j�j0.xj ; yj /j � C; j D 1; : : :

Otherwise, j�=
 j will be tending toC1 or 0, depending on the parity of n. Then without
loss of generality, we can assume that as j !C1,

�m ! �1; for m D 1; : : : ; j0 � 1;
�m !C1; for m D j0 C 1; : : : ; n:
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Suppose n � j0 D 2k C 1 is odd; then the main order term in � is

A exp
�1
2
.�Q�1 � � � � � Q�j0�1 C Q�j0 C Q�j0C1 C � � � C Q�n�1/

� Y
j<l�n�1

.kj � "
0
j "
0
l kl /;

where "01 D � � � D "
0
j0�1
D �1, "0j0 D � � � D "

0
n�1 D 1, and

A D exp
��i
4

� n�1X
jD1

"0j C n � 3
��
D exp.k�i/:

On the other hand, the main order term in 
 is

B exp
�1
2
.�Q�1 � � � � � Q�j0�1 � Q�j0 C Q�j0C1 C � � � C Q�n�1/

� Y
j<l�n�1

.kj � "j "l kl /;

where "1 D � � � D "j0 D �1, "j0C1 D � � � D "n�1 D 1, and

B D exp
��i
4

� n�1X
jD1

"j C n � 1
��
D exp.k�i/:

It follows that as j !C1,

(4.3)
�




ˇ̌̌
.xj ;yj /

! exp. Q�j0/
j0�1Y
jD1

kj C kj0
kj � kj0

n�1Y
jDj0C1

kj0 � kj

kj0 C kj
�

Note that if n � j0 is even, then (4.3) still holds. We know that � D ˙
i: Let �j0 be the
complex number defined by

exp.�j0/ D ˙i exp.��j0/
j0�1Y
jD1

kj C kj0
kj � kj0

n�1Y
jDj0C1

kj0 � kj

kj0 C kj
�

Note that �j0 is real. Then using the fact that Q�j0 D �j0 � �j0 and (4.3), we find that

exp.�j0 C �j0/j.xj ;yj / ! 1:

This implies that .xj ; yj / is on the curve in � which is asymptotic to the line

pj0x C qj0y C �
0
j C �j0 D 0:

This finishes the proof.

Lemma 4.3. As minjD1;:::;n jpjx C qjyj ! C1, we have

�.x; y/! 0; if pnx C qny !C1;
�.x; y/! 2kn; if pnx C qny ! �1:
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Proof. Suppose minjD1;:::;n jpjx C qjyj ! C1 and pnx C qny ! C1: Without loss
of generality, we assume that �j .x; y/! �1 for j D 1; : : : ; m0, and �j .x; y/! C1
for j D m0 C 1; : : : ; n:

If n �m0 is even, then the main order term (up to a coefficient) in f is

exp
�1
2
.��1 � � � � � �m0 C �m0C1 C � � � C �n/

�
:

This implies that g=f ! 0: On the other hand, the main order term (up to a coefficient)
in � is

exp
�1
2
.��1 � � � � � �m0 C �m0C1 C � � � C �n�1/

�
:

Hence 
=� ! 0: It follows that for each fixed y,

� D 2kn
.
=� � g=f /2

.1C .g=f /2/.1C .
=�/2/
! 0:

If n �m0 is odd, then the main order term (up to a coefficient) in g is

exp
�1
2
.��1 � � � � � �m0 C �m0C1 C � � � C �n/

�
:

Hence f=g! 0: Similarly, the main order term in 
 is

exp
�1
2
.��1 � � � � � �m0 C �m0C1 C � � � C �n�1/

�
;

and �=
 ! 0: Therefore, we still have

� D 2kn
.
=� � g=f /2

.1C .g=f /2/.1C .
=�/2/
! 0:

Next, we suppose minjD1;:::;n jpjx C qjyj ! C1 and pnx C qny ! �1: We may
assume that, for some index m0, there holds �j .x; y/ ! C1 for j D 1; : : : ; m0, and
�j .x; y/! �1 for j D m0 C 1; : : : ; n:

If m0 is even, then the main order term (up to a coefficient) in f is

exp
�1
2
.�1 C � � � C �m0 � �m0C1 � � � � � �n/

�
:

As a consequence, g=f ! 0: The main order term (up to a coefficient) in 
 is

exp
�1
2
.�1 C � � � C �m0 � �m0C1 � � � � � �n�1/

�
;

which implies that �=
 ! 0: We then deduce that

� D 2kn
.1 � g�=.f 
//2

.1C .g=f /2/.1C .�=
/2/
! 2kn:
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If m0 is odd, then the main order term (up to a coefficient) in g is

exp
�1
2
.�1 C � � � C �m0 � �m0C1 � � � � � �n/

�
:

Hence f=g! 0: Similarly, 
=� ! 0: We then deduce that

� D 2kn
.f 
=.g�/ � 1/2

.1C .f =g/2/.1C .
=�/2/
! 2kn:

This finishes the proof.

For each fixed y, let us consider the homogeneous first order ODE L� D 0, that is,

(4.4) @x� C Re.� � kn/� D 0:

If � is a smooth function, then Lemma 4.3 tells us that the integral
R x
�1

�.l; y/dl is well
defined and (4.4) has a solution of the form

�.x; y/ WD exp
�
pnx C qny �

Z x

�1

Re.�.l; y// dl
�
:

However, since in reality � has singularities, we need to define � in a rigorous way. To do
this, it will be important to understand the function

# WD kn
.f 
 � g�/2

.f 2 C g2/.
@s
 C �@s�/
�

Let us first consider the simple case nD 2. We then have 
 D exp
�
�
1
2
Q�1
�
; � D exp

�
1
2
Q�1
�
,

f D � exp
�1
2
. Q�1 C Q�2/

�
.k1 � k2/C exp

�1
2
.�Q�1 � Q�2/

�
.k1 � k2/;

g D exp
�1
2
. Q�1 � Q�2/

�
.k1 C k2/C exp

�1
2
.�Q�1 C Q�2/

�
.k1 C k2/ :

By definition, 
2 C �2 D 0 on S�, which implies that 1C exp.2 Q�1/ D 0: If exp. Q�1/ D i ,
then

g

f
D

exp
�
1
2
. Q�1 � Q�2/

�
.k1 C k2/C exp

�
1
2
.�Q�1 C Q�2/

�
.k1 C k2/

� exp
�
1
2
. Q�1 C Q�2/

�
.k1 � k2/C exp

�
1
2
.�Q�1 � Q�2/

�
.k1 � k2/

D
k1 C k2

k1 � k2
i:

Moreover, recalling the relation (3.15) between .x; y/ and .s; t/, we get

@s
 C i@s�



D �k1:

If follows that

# D �
k2

k1

�
1C k1Ck2

k1�k2

�2
1 �

�
k1Ck2
k1�k2

�2 D 1 on S�:

One can show that if exp. Q�1/ D �i , we still have # D 1 on S�: We would like to prove
that this identity is true for all n: For this purpose, we first show the following.
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Lemma 4.4. Let .xj ; yj / be a sequence of points in S� such that x2j C y
2
j ! C1, as

j !C1: Then

(4.5) #.xj ; yj /! 1 as j !C1:

Proof. As in the proof of Lemma 4.2, we still assume that as j !C1,

�m ! �1; for m D 1; : : : ; j0 � 1;
�m !C1; for m D j0 C 1; : : : ; n:

It follows that as j !C1,

(4.6)
�




ˇ̌̌
.xj ;yj /

! exp
�
Q�j0
� j0�1Y
jD1

kj C kj0
kj � kj0

n�1Y
jDj0C1

kj0 � kj

kj0 C kj
�

Similarly, we have

(4.7)
g

f
! � exp

�
�Q�j0

� j0�1Y
jD1

kj � kj0
kj C kj0

nY
jDj0C1

kj0 C kj

kj0 � kj
�

Since 
 D ˙i� at .xj ; yj /, from (4.6) and (4.7), we get

(4.8)
g2

f 2
! �

�kj0 C kn
kj0 � kn

�2
:

We also have
g�

f 

! �

kj0 C kn

kj0 � kn
�

Hence as j !C1, at .xj ; yj /,

kn
.f � g�=
/2

.f 2 C g2/
D kn

�
1 � g�

f 


�2�
1C g2

f 2

� ! kn

�
1C

kj0Ckn

kj0�kn

�2
1 �

�kj0Ckn
kj0�kn

�2 D �kj0 :
Then, (4.5) follows from the fact that


@s
 C �@s�


2
! �kj0 :

Lemma 4.5. # D 1 on S�:

We point out that a simplified proof of this result will be sketched in the proof of
Lemma 4.9. However, the proof given below may be also of independent interest.

Proof. On S�, � D˙i
:We may assume without loss of generality that � D 
i: The case
of � D �
i is similar. We then would like to prove that

(4.9) kn
.f � gi/
2
� .f 2 C g2/.@s
 C i@s�/ D 0 on S�:
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Let us consider the case of n D 3. The idea for the general case is same, but the
notations would be heavy. We denote

a�.i1; : : : ; im/ WD a.i1; : : : ; im/

mY
jD1

kij � k3

kij C k3
�

Recall that (see (3.14))


 D 1C a�.1; 2/ exp.�1 C �2/ and � D a�.1/ exp.�1/C a�.2/ exp.�2/:

On S , from � D 
i , we get

(4.10) exp.�2/ D
i � a�.1/ exp.�1/

a�.2/ � ia�.1; 2/ exp.�1/
�

It follows that


 D 1C a�.1; 2/ exp.�1/
Œi � a�.1/ exp.�1/�

a�.2/ � ia�.1; 2/ exp.�1/

D
a�.2/ � ia�.1; 2/ exp.�1/C a�.1; 2/ exp.�1/Œi � a�.1/ exp.�1/�

a�.2/ � ia�.1; 2/ exp.�1/

WD
J1

a�.2/ � ia�.1; 2/ exp.�1/
�

Similarly,

f D 1C a.1; 3/ exp.�1 C �3/C Œa.1; 2/ exp.�1/C a.2; 3/ exp.�3/� exp.�2/

D
Œ1C a.1; 3/ exp.�1 C �3/�Œa�.2/ � ia�.1; 2/ exp.�1/�

a�.2/ � ia�.1; 2/ exp.�1/

C
Œa.1; 2/ exp.�1/C a.2; 3/ exp.�3/�Œi � a�.1/ exp.�1/�

a�.2/ � ia�.1; 2/ exp.�1/

WD
J2

a�.2/ � ia�.1; 2/ exp.�1/
�

g D exp.�1/C exp.�2/C exp.�3/C a.1; 2; 3/ exp.�1 C �2 C �3/

D
Œexp.�1/C exp.�3/�Œa�.2/ � ia�.1; 2/ exp.�1/�

a�.2/ � ia�.1; 2/ exp.�1/

C
Œ1C a.1; 2; 3/ exp.�1 C �3/�Œi � a�.1/ exp.�1/�

a�.2/ � ia�.1; 2/ exp.�1/

WD
J3

a�.2/ � ia�.1; 2/ exp.�1/
�

We also have

@s
 C i@s� D Œ.k1 C k2/a
�.1; 2/ exp.�1/C ia�.2/k2�

Œi � a�.1/ exp.�1/�
a�.2/ � ia�.1; 2/ exp.�1/

C ik1a
�.1/ exp.�1/

Œa�.2/ � ia�.1; 2/ exp.�1/�
a�.2/ � ia�.1; 2/ exp.�1/

D
J4

a�.2/ � ia�.1; 2/ exp.�1/
�
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We then get

kn
.f � gi/
2
� .f 2 C g2/.@s
 C i@s�/ D

knJ1.J2 � J3i/
2 � .J 22 C J

2
3 /J4

Œa�.2/ � ia�.1; 2/ exp.�1/�3
�

Let us write

knJ1.J2 � J3i/
2
� .J 22 C J

2
3 /J4 D

X
j;k

Aj;k exp.j�1 C k�3/:

We would like to show thatAj;k D 0: To see this, we assume without loss of generality that
along a sequence .xj ; yj / with j�2j bounded, both �1 and �3 tend to C1, and �1 > �3.
Observe that the main order term is A6;2 exp.6�1 C 2�3/: By Lemma 4.4, along this
sequence, #! 1: This implies thatA6;2 has to be zero, otherwise the limit of # will not be
equal to 1: Once we know A6;2 is zero, the main order term becomes A6;1 exp.6�1 C �3/:
Using again the fact that # ! 1 along .xj ; yj /, we deduce that A6;1 is 0: Repeating this
argument, we see that Aj;k D 0 for all j; k: The identity (4.9) is then proved.

We remark that, in the case of n D 3, one can also explicitly compute Aj;k : For
instance, A0;0 is

k3 a
�.2/.a�.2/ � i.i//2 � .a�.2/2 C i2/i2a�.2/k2

D a�.2/
h
k3

.2k2/
2

.k2 � k3/2
C k2

�
1 �

.k2 C k3/
2

.k2 � k3/2

�i
D 0:

The coefficient A6;0 of exp.6�1/ is equal to

� k3 a
�.1; 2/a�.1/

�
� a.1; 2/a�.1/ � i.�ia�.1; 2//

�2
�
�
.�a.1; 2/a�.1//2 C .�ia�.1; 2//2

��
.k1 C k2/a

�.1; 2/.�a�.1//C k1a
�.1/a�.1; 2/

�
D a�.1; 2/a�.1/.a.1; 2/a�.1//2

�
� k3.1C a

�.2//2 � k2.1 � .a
�.2//2/

�
D 0:

For general n, this computation would be tedious.

At this stage, we emphasize that the function # is not well defined on the set S0.v/:
For a given function v with parameters pj ; qj ; �0j , it is not clear whether the corresponding
set S0.v/ is empty or only consists of finitely many points. In principle, it is even possible
that S0 contains a smooth curve. The following result deals with some special cases of
parameters, but it will not be relevant to our later proof in this section.

Lemma 4.6. There exist parameters pj ; qj ; �0j ; j D 1; : : : ; n � 1, such that for the cor-
responding solution v, the set S0 is empty.

Proof. Let ı be a small positive number to be determined later on. Let us denote the

lines �j D 0 by lj : For j D 1; : : : ; n, we choose pj D j=.2n/, qj D
q
1 � p2j and �0j D

j 2 ln ı: Note that for this choice, when ı is small, no three lines lj intersect at same point.
Moreover, as ı! 0, the distance between the intersection points tends to infinity. We also
remark that there are many other different choices.
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Let M > 0 be a constant independent of ı, also to be determined later on. Consider
the region � which consists of those points .x; y/ satisfying: there exists at most one �j
such that j�j .x; y/j �M:

In view of (3.14), �=
 D H1=H2, where

H1 WD

b.n�2/=2cX
mD0

� X
¹n�1;2mC1º

h
a.i1; : : : ; i2mC1/

2mC1Y
jD1

kijCkn

kij�kn
exp.�i1 C � � � C �i2mC1/

i�
;

H2 WD

b.n�1/=2cX
mD0

� X
¹n�1;2mº

h
a.i1; : : : ; i2m/

2mY
jD1

kij C kn

kij � kn
exp.�i1 C � � � C �i2m/

i�
:

Let

m0 WD min
.j1;:::;jl /;l�n�1

°ˇ̌̌
a .j1; : : : ; jl /

lY
bD1

�kjb C kn
kjb � kn

�ˇ̌̌±
;

m1 WD max
.j1;:::;jl /;l�n�1

°ˇ̌̌
a .j1; : : : ; jl /

lY
bD1

�kjb C kn
kjb � kn

�ˇ̌̌±
:

We claim that if exp.M=4/ > m1
m0
2n, then�\ S0 D ;. Indeed, suppose .x0; y0/ is a point

in �: Assume without loss of generality that j�1.x0; y0/j � M: We can also assume that
for some k0,

�j > M; for j D 2; : : : ; k0; and �j < �M; for j D k0 C 1; : : : ; n:

We consider two different cases.
Case 1. k0 is even.
If �1.x0; y0/ > M=2, then the main order term in H1 is

exp.�1 C � � � C �k0/:

This term dominates the sum of other terms in H1: More precisely, since exp.M=4/ >
m1
m0
2n, we have

jH1.x0; y0/j � exp
�
�1 C � � � C �k0

� �
1 �

1

2

�
> 0:

Hence �.x0; y0/ ¤ 0: On the other hand, if �1.x0; y0/ � M=2, then the main order term
in H2 is

exp.�2 C � � � C �k0/:

This term dominates the sum of other terms in H2: Hence 
.x0; y0/ ¤ 0:

Case 2. k0 is odd.
If �1.x0; y0/ > M=2, then the main order term in H2 is

exp.�1 C � � � C �k0/:

This term dominates the sum of other terms in H2, hence 
.x0; y0/ ¤ 0: If �1.x0; y0/ �
M=2, then the main order term in H1 is

exp.�2 C � � � C �k0/:
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This term dominates the sum of other terms in H1: Hence � .x0; y0/ does not vanish. The
claim is thus proved.

Now fix an M satisfying exp.M=4/ > m1
m0
2n: Consider .x0; y0/ 2 R2n�: If ı is suf-

ficiently small, then by the choice of pj ; qj ; �0j , there exist precisely two �j such that
their absolute value at .x0; y0/ is not larger than M: Assume they are �1 and �2: The
function H1 has the form

k1 C kn

k1 � kn
exp .�1/C

k2 C kn

k2 � kn
exp .�2/C C1.ı/;

The function H2 has the form

1 �
� k1 � k2
k1 C k2

�2 k1 C kn
k1 � kn

k2 C kn

k2 � kn
exp .�1 C �2/C C2.ı/:

Here C1.ı/;C2.ı/ tend to zero as ı! 0: Note that kjCkn
kj�kn

is purely imaginary. Hence for ı
sufficiently small, either the equation H1 D 0 has no solution, or the equation H2 D 0

has no solution. Hence the set S0 is empty. Actually, in this case, by our choice of kj ,
necessarily the equation H1 D 0 has no solution. The proof is completed.

Throughout the section, we shall use B�.x0; y0/ to denote the open ball of radius �
centered at .x0; y0/ : Roughly speaking, the following lemma states that the set NS� cannot
contain several curves intersect at one point.

Lemma 4.7. Suppose .x0; y0/ 2 NS�, and S0 \ B�.x0; y0/ D ¹.x0; y0/º for some � > 0.
Then locally around .x0; y0/, NS� is a smooth curve. More precisely, there exists ı > 0 such
that either

NS� \ ¹.x; y/ W jx � x0j < ı; jy � y0j < ıº D ¹.F.y/; y/ ; y 2 .y0 � ı; y0 C ı/º ;

where F is a smooth function, or

NS� \ ¹.x; y/ W jx � x0j < ı; jy � y0j < ıº D ¹.x; F�.x// ; x 2 .y0 � ı; y0 C ı/º ;

where F� is a smooth function.

Proof. Without loss of generality, we can assume that 
 is real valued and � is purely
imaginary. Hence � D i��, where �� is real valued.

If .x0; y0/ 2 S�, then j
 j D j� j ¤ 0 and by (4.9), we have


@s
 C �@s� D
kn.f 
 � g�/

2

2.f 2 C g2/
�

This implies that as a complex valued function, at .x0; y0/,

j@s.

2
C �2/j D

jkn

2j

2
�

This also means that

jr.
2 � ��2/j D
jkn


2j

2
¤ 0:
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Note that the function 
2 � ��2 can be regarded as a map from R2 to R: Therefore, by the
implicit function theorem, the result of the lemma is true in the case that .x0; y0/ 2 S�: In
the rest of the proof we may assume that .x0; y0/ 2 NS�nS�: In particular, .x0; y0/ 2 S0:

Since 
 and �� are real analytic functions, for ı small, the set

S� \ ¹.x; y/ W jx � x0j < ı; jy � y0j < ıº

consists of finitely many disjoint smooth curves, c1; : : : ; cm: Each curve cj is determined
by a smooth map Mj W .0; 1/! R2, where limr!0 Mj .r/ D .x0; y0/: The direction of
these curves at .x0; y0/ will be denoted by ej WDM0

j .0/: We also write ej D .ej;1; ej;2/:
To prove the lemma, it will be suffice to show thatmD 2 and e1 D �ce2, for some c > 0.

We define ˛ and ˇ by

exp.iˇ/ D pn C iqn; exp.i˛/ D
f 2 � g2

f 2 C g2
� i

2fg

f 2 C g2
�

The function ˛ is indeed a function of x; y. Since f; g > 0, we can choose ˛ to be taking
values in .��; 0/ : On S�, if 
 D ��, we have

# D

2

@s .
2 � ��2/
exp .i.ˇ C ˛// :

If 
 D ���, then

# D

2

@s .
2 � ��2/
exp .i.ˇ � ˛// :

To avoid confusion, we call j̨ WD ˛jcj the restriction of ˛ to the curve cj .
The key observation of the proof is the following: the fact that u; v are connected

through the Bäcklund transformation does not depend on the choice of the coordinate
system. Hence if we rotate the coordinate system by an angle � , then the corresponding
function

# 0 WD exp ..� C ˇ/i/
.f 
 � g�/2

@s0 .
2 � �2/

in the new coordinate system is still equal to 1: That is, if we denote the new coordinate
system by .x0; y0/, then on S�, if 
 D ��,

(4.11) # 0 D exp ..� C ˇ C ˛/i/

2

@s0 .
2 � �2/
D 1;

and if 
 D ���, then

(4.12) # 0 D exp ..� C ˇ � ˛/i/

2

@s0 .
2 � �2/
D 1:

We split the proof into two different cases.

Case 1. f .x0; y0/ ¤ g.x0; y0/:
Since we have the freedom of choosing different coordinate systems, we may choose

�1 D �ˇ. We set

e0j;1 C ie
0
j;2 D .ej;1 C iej;2/ exp .i�1/ ; j D 1; : : : ; m:
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We claim that there exists at most one j such that e0j;2 > 0:Assume to the contrary that
0 < e0j1;2 < � � � < e

0
jl ;2

, where l � 2: Since f .x0; y0/ ¤ g.x0; y0/, we find that if .x; y/
is close to .x0; y0/, then cos ˛.x; y/ ¤ 0: On the other hand, since S0 \ B�.x0; y0/ D
¹.x0; y0/º, the function @x0.
2 � ��2/ will have different signs on the curves cj1 and cj2 :
This contradicts with the identity (4.11) and (4.12). This proves the claim. Similarly, there
is at most one direction with e0j;2 < 0: We can then assume, by relabeling the indices if
necessary, that e01;2 > 0; e

0
2;2 < 0, and e0j;2 D 0; j D 3; : : : ; m:

Next we choose �2 D �1 C � , with j� j being small: We denote the new coordinate
system by .x^; y^/: Assume 
 D �� on c1 and 
 D ��� on c3: Then


2

@s^ .
2 � ��2/
exp .i .� C ˛1// D 1; on c1;(4.13)


2

@s^ .
2 � ��2/
exp .i .� � ˛3// D 1; on c3:(4.14)

Observe that ˛1 and ˛3 tend to ˛.x0;y0/¤��=2, as .x;y/! .x0;y0/:Hence cos.�C˛1/
and cos.� � ˛3/ have the same sign when j� j is small. On the other hand, since the dir-
ection of c3 is parallel to the x0 coordinate axis, the function @x^.
2 � �2/ has different
sign on c3, for the two different choices of � D ˙�0, where �0 is a fixed small positive
constant. This contradicts with (4.13) and (4.14). Hence m has to be equal to 2: Note that
this argument also tells us that there at most two indices of j such that e0j;2 D 0. Now we
deduce that the function 
�� has same sign on c1 and c2 (otherwise, m � 3). We only
consider the case 
 D ��: Then

# D

2

@s.
2 � ��2/
exp .i.ˇ C ˛// ; on c1 and c3:

If e1 ¤ �e2, we can always rotate the coordinate system .x; y/ into a new one .x#; y#/,
such that @x#.
2 � ��2/ has different sign on c1 and c3. This is a contradiction.

Case 2. f .x0; y0/ D g.x0; y0/:
In this case, the proof is similar to Case 1, with minor modifications. More precisely,

in Case 1, we have taken �1 D �ˇ: Now we take �1 D �ˇ C "0, where "0 > 0 is a small
constant. Observe that for .x; y/ close to .x0; y0/, cos."0 C ˛1/ and cos."0 � ˛1/ have
the same sign. The rest of the proof is same as that of Case 1.

We remark that without the assumption that S0 \B�.x0; y0/D ¹.x0; y0/º, Lemma 4.7
is still true. This generalization will be proved in Lemma 4.9.

Lemma 4.8. Suppose .x0; y0/ 2 S0 and j
 j � j� j in Bı.x0; y0/, for some ı > 0: Then
.x0; y0/ is a removable singularity of �: That is, the limit

lim
.x;y/!.x0;y0/;.x;y/…�

�.x; y/

exists.
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Proof. Lemma 3.6 tells us that´
@xv D i@yu � kn sin vCu

2
� Nkn sin v�u

2
;

i@yv D @xu � kn sin vCu
2
C Nkn sin v�u

2
:

The first equation in this system can be written as

4
@x.�=
/

1C .�=
/2
D 4i

@y.g=f /

1C .g=f /2

� .pn C qni/
� 2
�


2 C �2
f 2 � g2

f 2 C g2
�

2 � �2


2 C �2
2fg

f 2 C g2

�
� .pn � qni/

� 2
�


2 C �2
f 2 � g2

f 2 C g2
C

2 � �2


2 C �2
2fg

f 2 C g2

�
:

Still setting � D i��, we get
(4.15)

@x

���



�
D

@y.g=f /

1C .g=f /2

�
1 �

���



�2�
� pn

��




f 2 � g2

f 2 C g2
C

�
1C

���



�2� qnfg

f 2 C g2
�

Similarly, the second equation of the system has the form
(4.16)

�@y

���



�
D

@x.g=f /

1C .g=f /2

�
1 �

���



�2�
C pn

�
1C

���



�2� fg

f 2 C g2
C qn

��




f 2 � g2

f 2 C g2
�

Differentiating equation (4.15) with respect to x and equation (4.16) with respect to y, we
get

�
���



�
D

2��=


1C .g=f /2

�
@y

���



�
@x

� g
f

�
� @x

���



�
@y

� g
f

��
C

�
1C

���



�2��
qn@y

� fg

f 2 C g2

�
� pn@x

� fg

f 2 C g2

��
C

2fg

f 2 C g2
��




�
qn@y

���



�
� pn@x

� fg

f 2 C g2

��
�
��




�
pn@y

� f 2 � g2
f 2 C g2

�
C qn@x

� f 2 � g2
f 2 C g2

��
�
f 2 � g2

f 2 C g2

�
pn@y

���



�
C qn@x

���



��
:

Inserting (4.15) and (4.16) into this equation, we find that ��=
 satisfies an equation of
the form

(4.17) �
���



�
D

3X
jD0

�
aj .x; y/

���



�j�
;

where aj are smooth functions determined by f; g: Since 
 and �� are both real ana-
lytic and j��=
 j � 1, the function ��=
 can be smoothly extended to the punctured ball
Bı.x0; y0/n¹.x0; y0/º: Since j��=
 j � 1, elliptic regularity and the removable singular-
ity theorem of harmonic functions tell us that actually ��=
 can be regarded as a smooth
function in Bı.x0; y0/:
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Now we distinguish two cases.

Case 1. lim.x;y/!.x0;y0/
��



D A0 2 .�1; 1/:

In this case, we have

lim
.x;y/!.x0;y0/

�.x; y/ D lim
.x;y/!.x0;y0/

kn .f 
 � ig�
�/2

.f 2 C g2/ .
2 � ��2/

D
kn .f � igA0/

2

.f 2 C g2/ .1 � A20/

ˇ̌̌
.x;y/D.x0;y0/

:

Case 2. lim.x;y/!.x0;y0/
��



D ˙1:

We first consider the case where the limit is equal 1: From (4.15), (4.16), we deduce
that at the point .x0; y0/,

@x

���



�
D �pn

f 2 � g2

f 2 C g2
C

2qnfg

f 2 C g2
WD c;(4.18)

@y

���



�
D �2pn

fg

f 2 C g2
� qn

f 2 � g2

f 2 C g2
WD d:(4.19)

Observe that c2 C d2 D 1: Hence

��



D 1C c.x � x0/C d.y � y0/CO..x � x0/

2
C .y � y0/

2/; as .x; y/! .x0; y0/:

But this contradicts with the assumption that j
 j � j� j in Bı.x0; y0/: Hence the limit
cannot be 1: Similarly, it cannot be �1: Therefore Case 2 will not happen.

In view of the proof this lemma, we now define

S D
°
.x0; y0/ 2 � : lim

x!x0

ˇ̌̌��


.x; y0/

ˇ̌̌
D 1

±
:

By this definition, automatically we have S� � S:

Lemma 4.9. Suppose .x0; y0/ 2 S: Then locally around .x0; y0/, S is a smooth curve.
Moreover, there exist real numbers c;d , with c2C d2 D 1, such that as .x;y/! .x0; y0/,

�.x; y/ D
c C di CO.jx � x0j C jy � y0j/

c.x � x0/C d.y � y0/CO..x � x0/2 C .y � y0/2/
�

Proof. If .x0; y0/ 2 S�, then the result follows from the implicit function theorem and the
fact that # D 1 on S�:

If .x0; y0/ 2 NS�nS�, then for ı small, the set NS� \ Bı .x0; y0/ separates Bı.x0; y0/
into several disjoint connected open components �j ; j D 1; : : : Since

@s

���



�
D

@s�

� � ��@s



2
;
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we find that

@s

���



�
D

8<: � @s.

2���2/


2
; if 
 D �� ¤ 0;

@s.

2���2/


2
; if 
 D ��� ¤ 0:

Hence using equations (4.15) and (4.16), we deduce that for any .x1; y1/ 2 S , there holds

(4.20) #.x; y1/! 1; as x ! x1:

We observe that the proof of Lemma 4.8 yields that any point .x1; y1/ 2 S is not isol-
ated in S (��=
 satisfies equation (4.17) and is smooth around .x1; y1/). We also observe
that if .x2; y2/ 2�1 \ .S0nS/, then in a small neighborhood of .x2; y2/, either 
2 � ��2,
or 
2 � ��2. Now with (4.20) at hand, we can deal with the arcs contained in �1 \ S in
a similar way as that of S�. Hence we can apply arguments of Lemma 4.7 to infer that
�1 \ S D ;. At this point, we emphasize that in principle, �1 \ S0 could be nonempty.
Note that this argument also tells us that the set NS� \ Bı.x0; y0/ separates Bı.x0; y0/
precisely into two disjoint connected open components �1; �2, each component being
diffeomorphic to a half ball.

Now we can assume without loss of generality that at some points in �1, there holds
j��=
 j < 1. Since �1 \ S D ;, we must have j��j � j
 j in �1: Note that the function
��=
 still satisfies equation (4.17). That is,

�
���



�
D

3X
jD0

�
aj .x; y/

���



�j�
in �1:

Elliptic regularity and j��=
 j � 1 imply that ��=
 is smooth and that the limit A0 D
lim.x;y/!.x0;y0/

��



exists. SinceBı.x0;y0/\S� is not empty, there holds jA0j D 1:Hence

it follows from same arguments as that of the previous lemma that as .x; y/! .x0; y0/,
if A0 D 1, then

��



D A0 C c.x � x0/C d.y � y0/CO..x � x0/

2
C .y � y0/

2/;

where c and d are defined in (4.18) and (4.19). As a consequence, in a small neighborhood
of .x0; y0/,

�.x; y/ D
c C di CO.jx � x0j C jy � y0j/

c.x � x0/C d.y � y0/CO..x � x0/2 C .y � y0/2/
�

A similar formula holds in the case of A0 D �1.
Finally, suppose .x0; y0/ 2 �n NS�: By Lemma 4.8, if

(4.21) j
 j � j� j ; or j
 j � j� j; in Bı.x0; y0/; for some ı > 0;

then the limit lim.x;y/!.x0;y0 �.x; y/¤˙1 and .x0; y0/ … S: On the other hand, if (4.21)
does not hold, then by the previous arguments, one can show that .x0; y0/ 2 S , and the
set Bı.x0; y0/ \ S is a smooth curve. Moreover, one still has

�.x; y/ D
c C di CO.jx � x0j C jy � y0j/

c.x � x0/C d.y � y0/CO..x � x0/2 C .y � y0/2/
;

for some constants c; d with c2 C d2 D 1:
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Recall that we have defined

�.x; y/ D exp
�
pnx C qny �

Z x

�1

Re.�.l; y// dl
�
:

Let .x0; y0/ 2 S . By Lemma 4.9, we may assume that around this point, S is the graph
of a smooth function x D F.y/ (the case that S is the graph of a function y D F�.x/ can
be handled in a similar way). Then we can define the integral in � in the principle value
sense. Applying Lemma 4.9 and using the fact that �2=
2 is real valued, we find that in a
small neighborhood � of .x0; y0/,

(4.22) �.x; y/ D
G.x; y/

x � F.y/
;

where G is a function smooth in �:
At this moment, � only satisfies the first equation of (4.1). However, it “asymptotic-

ally" satisfies the second equation of (4.1), which means that ��1T � ! 0 as x ! �1:
Later on we shall prove that indeed � satisfies the second equation of (4.1), in certain
sense. On the other hand, with the help of the function �, for given �, we can solve the first
equation in (4.1) using the variation of parameters formula. However, to simultaneously
solve the system (4.1), we need the following.

Lemma 4.10. Let u and v be the functions defined in Lemma 3.6. Suppose that two func-
tions � and � satisfy L� DM� and

�� � � cosu D 0:

Let ˆ WD T� �N�: Then ˆ satisfies the following ODE :

(4.23) @xˆ D �
�kn
2

cos
v C u

2
C

Nkn

2
cos

v � u

2

�
ˆ:

Proof. Lemma 3.6 tells us that u; v satisfy´
�@xv C i@yu � kn sin vCu

2
� Nkn sin v�u

2
D 0;

�i@yv C @xu � kn sin vCu
2
C Nkn sin v�u

2
D 0:

We denote the left-hand side of the first equation by A1, and that of the second equation
by A2. Then we compute

i@yA1 � @xA2 D ��u �
kni

2

�
@yv C @yu

�
cos

v C u

2
�

Nkni

2

�
@yv � @yu

�
cos

v � u

2

C
kn

2
.@xv C @xu/ cos

v C u

2
�

Nkn

2
.@xv � @xu/ sin

v � u

2
�

In view of the identities:

�@xv C i@yu D A1 C kn sin
v C u

2
C Nkn sin

v � u

2
;

�i@yv C @xu D A2 C kn sin
v C u

2
� Nkn sin

v � u

2
;
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we find that i@yA1 � @xA2 is equal to

��uC
�
A1 C kn sin

v C u

2
C Nkn sin

v � u

2

�� Nkn
2

cos
v � u

2
�
kn

2
cos

v C u

2

�
C

�
A2 C kn sin

v C u

2
� Nkn sin

v � u

2

�� Nkn
2

cos
v � u

2
C
kn

2
cos

v C u

2

�
:

Using the fact that jknj D 1, we obtain

i@yA1 � @xA2 D ��uC sinuC A1
� Nkn
2

cos
v � u

2
�
kn

2
cos

v C u

2

�
C A2

� Nkn
2

cos
v � u

2
C
kn

2
cos

v C u

2

�
:(4.24)

Note that the linearization of ��uC sinu D 0 is

�� � � cosu D 0:

Moreover, the linearization of A1 D 0 is L� DM�I while that of the equation A2 D 0 is
T� DN�:Hence differentiating equation (4.24) in u;v, we get the desired identity (4.23).

With Lemma 4.10 at hand, we proceed to prove the following.

Lemma 4.11. T � D 0 in R2nS:

Proof. For each fixed y0 2 R, we consider the set

Ey0 WD ¹x W .x; y0/ 2 Sº:

Observe that the functions 
 and � are explicitly given by suitable combination of expo-
nential functions. Hence S is the zero set of a real analytic function. This together with
Lemma 4.2 tell us that for fixed y0, the set Ey0 has no accumulation points (the existence
of an accumulation point would imply that Ey0 contains a whole straight line). Hence Ey0
has finitely many elements, denoted by �j .y0/; j D 1; : : :, in increasing order.

We claim that T � D 0, if x 2 .�1; �1.y0//:
To see this, let " > 0 be a small constant. We choose x0 2 .�1; �1.y0// and let �.y/

be a function to be determined, with the initial condition �.y0/ D 1 and

(4.25) T .��/.x0; y/ D 0; for y 2 .y0; y0 C "/:

This equation can be written as

(4.26) �0 C .��1@y� � Im.� � kn//� D 0:

This is an ODE for � and can be locally solved, yielding a solution for (4.25).
Since � only depends on y, the function �� satisfies the first equation of (4.1). Hence

by Lemma 4.10, the function T .��/ satisfies the ODE

@x.T .��// D �
�kn
2

cos
v C u

2
C

Nkn

2
cos

v � u

2

�
.T .��//;
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for x 2 .�1; x0/; y 2 .y0; y0 C "/: It then follows from (4.25) and the uniqueness of
solutions to ODEs that

(4.27) T .��/ D 0; for x 2 .�1; x0/; y 2 .y0; y0 C "/:

In this equation, let us send x to �1: Then from (4.26) and the asymptotic behavior of �
and � , we get that

�0.y/ D 0; for y 2 .y0; y0 C "/:

This together with the initial condition �.y0/ D 1 tell us that indeed � � 1: In view
of (4.27),

T .�/ D 0; for x 2 .�1; x0/; y 2 .y0; y0 C "/:

The claim is then proved.
Next let us choose x1 2 .�1.y0/; �2.y0//: Let �1.y/ be the function with initial condi-

tion �1.y0/ D 1 and

T .�1�/.x1; y/ D 0; for y 2 .y1; y1 C "/:

Then same arguments as before tell us that

(4.28) T .�1�/ D 0; for x 2 .�1.y0/; x1/; y 2 .y1; y1 C "/:

We would like to show that �01 D 0: To do this, we will send x to �1.y0/ in equation (4.28).
We have, for y 2 .y0; y0 C "/,

(4.29) �01 C .�
�1@y� � Im.� � kn//�1 D 0; for x > �1.y0/:

On the other hand, we already know that T .�/ D 0 for x < �1.y0/: This means

��1@y� � Im.� � kn/ D 0; for x < �1.y0/:

Denote
… WD ��1@y� � Im.� � kn/:

The asymptotic behavior (4.22) of � near .�1.y0/; y0/ implies that

(4.30) lim
x!.�1.y0//C

….x; y0/ D lim
x!.�1.y0//�

….x; y0/:

Combining this with (4.29), we find that �01 D 0: Hence �1 is a constant and

T .�/ D 0; for x 2 .�1.y0/; �2.y0//; y D y0:

Repeating these arguments in the interval .�j .y0/; �jC1.y0//; j D 2; : : : ; we see that

T .�/ D 0; for x ¤ �j .y0/; y D y0:

Since y0 is arbitrary chosen, the lemma is then proved.
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Let � be a bounded kernel of the linearized elliptic sine-Gordon equation. That is,

(4.31) ���C � cosu D 0:

For each fixed y, the variation of parameters formula tells us that the first equation in (4.1)
has a solution of the form

(4.32) �.x; y/ D �.x; y/

Z x

�1

��1M�dl;

where the function ��1M� is evaluated at .l; y/: Note that ��1M� is smooth in R2. This
together with the assumption that pn < 0 imply that the integral is well defined. However,
since � has singularities on S , � is also singular along S , but the singular behavior is well
controlled. The following result can be regarded as a generalization of Lemma 4.11.

Lemma 4.12. Let � be a bounded solution of (4.31). The function � defined by (4.32)
satisfies system (4.1) in R2nS: As a consequence, � is a kernel of the linearized elliptic
sine-Gordon equation at v in the following sense :

(4.33) ��� C � cos v D 0 in R2nS:

Proof. We follow the same idea as in the proof of Lemma 4.11. We wish to show that

(4.34) T� D N� in R2nS:

Choose x0 2 .�1; �1.y0// and let �.y/ be the function satisfying the initial condition
�.y0/ D 0 and

(4.35) T .�� C �/.x0; y/ D N�; for y 2 .y0; y0 C "/:

Then the function G WD T .�� C �/ �N� satisfies

@xG D �
�kn
2

cos
v C u

2
C

Nkn

2
cos

v � u

2

�
G ;

for x 2 .�1; x0/; y 2 .y0; y0 C "/: The initial condition (4.35) then implies that G D 0

and hence
T .�� C �/ D N�; for x 2 .�1; x0/; y 2 .y0; y0 C "/:

Sending x to �1, using the fact that N�! 0 as x ! �1, we find that �0 D 0. Thus
� � 0: We deduce that

T� D N�; for x 2 .�1; x0/; y 2 .y0; y0 C "/:

Next we choose x1 2 .�1.y0/; �2.y0//: Let �1.y/ be the function with initial condition
�1.y0/ D 0 and

T .�1� C �/.x1; y/ D N�; for y 2 .y1; y1 C "/:

Then same arguments as before tell us that

T .�1� C �/ D N�; for x 2 .�1.y0/; x1/; y 2 .y1; y1 C "/:
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Sending x to �1.y0/, we have, for y 2 .y0; y0 C "/,

(4.36) �01 C .�
�1@y� � Im.� � kn//�1 C ��1T� D ��1N�; for x > �1.y0/:

Denote …1 WD ��1.N� � T�/: The asymptotic behavior (4.22) of � near .�1.y0/; y0/
again implies that

lim
x!.�1.y0//C

…1.x; y0/ D lim
x!.�1.y0//�

…1.x; y0/:

This combined with (4.30) and (4.36) yields �01 D 0: Hence �1 D 0 and

T� D N�; for x 2 .�1.y0/; �2.y0//; y D y0:

Once (4.34) is proved, it then follows from the linearization of the Bäcklund trans-
formation that � satisfies (4.33). The proof is completed.

Now we are ready to prove Theorem 4.1 (Theorem 1.2). That is, the nondegeneracy of
2n-end solution (it can be regarded as an n-soliton).

Proof of Theorem 4.1. Let us fix a solution uDUnC�: Suppose � is a nontrivial bounded
kernel of the corresponding linearized operator:

�� D � cosu:

By the linear decomposition lemma of [11] and the asymptotic behavior of �j , there exist
c1; : : : ; cn such that the function

�� WD � �

nX
jD1

cj �j

decays exponentially fast to 0 as x ! �1, uniformly in y: That is, there exist constants
C; ı > 0 such that

j��.x; y/j < C exp.�ıjxj/; x < 0:

We point out that for each fixed y, � always decays to zero as jxj ! 1: Note that at
this moment, we do not know whether �� decays to zero as x ! C1, uniformly in y.
Nevertheless, we would like to prove that �� D 0:

Applying Lemma 4.12 to the function ��, we get a corresponding kernel � of the
linearized operator at the function v D 4 arctan.�=
/. That is,

�� D � cos v:

Explicitly,

(4.37) �.x; y/ D �.x; y/

Z x

�1

��1M�� dl:

Here the function ��1M�� in the integral is evaluated at .l; y/: Since �� decays expo-
nentially fast to 0 as x tends to �1, � also decays to zero as x ! �1: Note that � is
singular at S: However, the singular behavior of � is well controlled.
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Let us write � as �n�1, and 
 as 
n�1: By Lemma 3.7, the function vn�1 WD v D

4 arctan �n�1

n�1

is the Bäcklund transformation of vn�2. That is, vn�2 and vn�1 satisfy

(4.38)

´
@xvn�2 D i@yvn�1 � kn�1 sin vn�2Cvn�1

2
� Nkn�1 sin vn�2�vn�1

2
;

i@yvn�2 D @xvn�1 � kn�1 sin vn�2Cvn�1
2

C Nkn�1 sin vn�2�vn�1
2

:

Recall that �n�2=
n�2 is a real valued function.
Let us write the function � by �n�1: Linearizing system (4.38) and denoting

�n�1 D 2kn�1
.
n�1
n�2 � �n�1�n�2/

2

.
2n�1 C �
2
n�1/.


2
n�2 C �

2
n�2/

;

we get the following equation to be solved for the unknown function �n�2:

(4.39)

´
@x�n�2 C Re.�n�1 � kn�1/�n�2 D i@y�n�1 � i�n�1 Im.�n�1 � kn�1/;

i@y�n�2 C i Im.�n�1 � kn�1/�n�2 D @x�n�1 � �n�1 Re.�n�1 � kn�1/:

Since �n�2=
n�2 is real valued, the function �n�1 has the same singular set S as �n.
Indeed, if P is a point outside S such that �n�2.P / D 
n�2.P / D 0, then by dividing the
numerator and denominator of �n�1 by �n�2.P / or 
n�2.P /, we see that P is actually
a removable singularity. The explicit formula (4.37) of �n�1 tells us that near a singular
point .x0; y0/ 2 S , there exist smooth functions F;G such that �n�1 �

G.x;y/
x�F.y/

is smooth.
As a consequence, near .x0; y0/, for some function QG,

(4.40) Mn�1�n�1 WD i
�
@y�n�1 � �n�1 Im.�n�1 � kn�1/

�
�
QG.x; y/

x � F.y/
�

Define

�n�2.x; y/ WD exp
�
pn�1x C qn�1y C

Z x

�1

�n�1.l; y/ dl
�
:

By Lemma 4.12, the system (4.39) has a solution

(4.41) �n�2.x; y/ D �n�2.x; y/

Z x

�1

Mn�1�n�1

�n�2
dl:

Note that �n�2.x; y/ D O.x � F.y// around the singular set S: Here one need to be
careful about the definition of �n�2:More precisely, suppose .x0;y0/2 S , then for x > x0,
with x � x0 small, the right-hand side of (4.41) is defined to be

lim
"!0C

h
�n�2.x; y/

� Z x0�"

�1

C

Z x

x0C"

�Mn�1�n�1

�n�2
dl
i
:

Using (4.40), we find that �n�2 is continuous in R2: We would like to show that �n�2
is actually smooth. To see this, we use the fact that �n�2 satisfies the linearized equation
away from the singular set S: That is,

(4.42) ��n�2 D �n�2 cos vn�2:
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Let .x0; y0/ 2 S: From (4.41), we see that there exists a smooth function g, such that near
.x0; y0/, the function

�n�2 � g.y/.x � F.y// ln jx � F.y/j

is smooth. Inserting it into (4.42), we find that the function g� 0:As a consequence, �n�2
is smooth.

With the function �n�2 at hand, now let us consider the linearized Bäcklund trans-
formation between vn�3 D 4 arctan �n�3


n�3
and vn�2 D 4 arctan �n�2


n�2
:´

@x�n�3 C Re.�n�2 � kn�2/�n�3 D i@y�n�2 � i�n�2 Im.�n�2 � kn�2/;

i@y�n�3 C i Im.�n�2 � kn�2/�n�3 D @x�n�2 � �n�2 Re.�n�2 � kn�2/:

Here,

�n�2 D 2kn�2
.
n�2
n�3 � �n�2�n�3/

2

.
2n�2 C �
2
n�2/.


2
n�3 C �

2
n�3/
�

Note that the function �n�3=
n�3 is purely imaginary. Hence it is now singular at the set

�n�3 WD ¹.x; y/ 2 R2 W 
2n�3 C �
2
n�3 D 0º:

We can also define the set S0;n�3; S�;n�3; Sn�3: Following the same proof as that of
Lemma 4.5, one can show that on S�;n�3, there still holds

#n�3 WD kn�2
.
n�2
n�3 � �n�2�n�3/

2

.
2n�2 C �
2
n�2/.
n�3@s
n�3 C �n�3@s�n�3/

D 1:

Hence the same arguments as above tell us that the corresponding function �n�3 has sim-
ilar asymptotic behavior near the singular set Sn�3 as the function �n�1 near S . Using this
information, we can further analyze the linearized Bäcklund transformation between vn�4
and vn�3 and get a smooth solution �n�4 of the equation

��n�4 D �n�4 cos vn�4:

Repeating the above procedure, we may consider the Bäcklund transformation between
vj D 4 arctan �j


j
and vj�1 D 4 arctan �j�1


j�1
; j D n � 4; : : : ; 1: Linearizing these Bäcklund

transformations and solving them similarly as in Lemma 4.12 (one also need to be careful
about the point singularities in these systems), we finally get a solution �0 of the equation

��0 � cos.v0/�0 D 0:

Observe that whether or not �1=
1 is real valued, the function v0 D 4 arctan �0=
0 is
always equal to 0. Hence from the previous argument, one can actually show that �0 is
smooth.

We claim that �0 is bounded in R2. To see this, let us first estimate �n�1, which is
defined by (4.37). In view of this definition, we need to analyze the function �. Observe
that by Lemma 4.3, the function � tends to the limit 0 or 2kn away from the ends.
Moreover, since we have assumed that pn < 0, this limit is 0 in the region„� WD ¹.x; y/ W
pnx C qny > 0º; while in „C WD ¹.x; y/ W pnx C qny < 0º, the limit is 2kn.
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Let us define
‚� WD ¹.x; y/ 2 „� W dist..x; y/; S/ > 1º:

Recall that by Lemma 4.2, outside a large ball, the set S consists of finitely many curves
asymptotic to rays, with each ray being parallel to one of the ends. In ‚�, using the
exponential decay of � away from the ends, we have

(4.43) exp.�pnx � qny/� D exp
�
�

Z x

�1

Re.�.l; y// dl
�
� C:

Therefore, in ‚�, we can estimate

�n�1 D �

Z x

�1

��1M�� dl � C:

This estimate can be refined. Indeed, since ��! 0 as x!�1, uniformly in y, we have,
in „�,

(4.44) �n�1 ! 0; as x ! �1; uniformly in y:

Similarly, we define

‚C WD ¹.x; y/ 2 „C W dist..x; y/; S/ > 1º:

In ‚C, since � converges to 2kn away from the ends, we haveZ x

�1

Re.�.l; y// dl D 2pn
�
x C

qn

pn
y
�
CO.1/:

Therefore, in ‚C, there holds

(4.45) exp .pnx C qny/ � D exp
�
2pnx C 2qny �

Z x

�1

Re .�.l; y// dl
�
� C:

To estimate �n�1 in ‚C, we define

B.y/ WD

Z C1
�1

��1M�� dl:

Note that this is well defined, because � is exponential growing as x ! ˙1: We have
�n�1 ! �.x; y/B.y/, as x !C1: Inserting this into the equation

@y�n�1 C Im.� � kn/�n�1 D �iN��;

and using the fact that � also solves the equation

@y� C Im.� � kn/� D 0;

we infer that d
dy

B D 0 and hence B is a constant. Using the estimates (4.43) and (4.45)
of �, and the fact that �� converges to 0 as jyj ! C1 for all x < 0, we find that, if
qn > 0, then B.y/! 0 as y ! �1, and if qn < 0, then B.y/! 0 as y !C1: As a
consequence, B D 0: Then in ‚C, we can write

�n�1 D �

Z x

�1

��1M�� dl D �

Z x

C1

��1M�� dl:
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This together with the estimate (4.45) of � imply that �n�1 �C:Note that in the region
¹.x; y/ W dist..x; y/; S/ � 1º, the asymptotic behavior of �n�1 is determined by that of �,
and we can estimate

j�n�1j �
ˇ̌̌ C

x � F.y/

ˇ̌̌
;

provided that S is locally determined by x D F.y/I and j�n�1j � j C
y�F�.x/

j, if S is locally
determined by y DF�.y/:With this information at hand, we can proceed to estimate �n�2
using similar arguments as for �n�1: Recall that �n�2 is smooth. One then can show that
actually j�n�2j � C in R2: Repeating this arguments, we finally deduce that �0 is also
bounded.

Having proved that �0 is bounded, we can use the Liouville theorem to conclude that
�0 D 0:

Up to now, we have defined �j ; j D 1; : : : ; n � 1, and proved that �0 is zero. We
would like to show that �1 � 0: To see this, we analyze the reverse linearized Bäcklund
transformation from v0 to v1:´

@x�0 C Re.�1 � k1/�0 D i@y�1 � i�1 Im.�1 � k1/;

i@y�0 C i Im.�1 � k1/�0 D @x�1 � �1 Re.�1 � k1/:

Since �0 D 0, we see that necessarily, �1 D c��, for some constant c, where

�� WD exp
�
� p1x � q1y C

Z x

�1

�1.l; y/ dl
�
:

Note that �� D ��11 . By the asymptotic behavior of �1, �� does not decay to zero along
the line p1x C q1y D 0: But on the other hand, an estimate of the form (4.44) also holds
for the function �1 in the region

¹.x; y/ W p1x C q1y > 0º ;

Hence necessarily there holds c D 0 and �1 D 0: We remark that the function �� arises
from differentiating the function v1 with the phase parameter �01: That is, �� D c0@�01v1,
where c0 is a constant. Repeating the above arguments, we see that �n�1 D 0, and �� D 0:
Hence by the definition of ��, we obtain � D

Pn
jD1 cj �j : This finishes the proof.

5. Inverse scattering transform and the classification of multiple-end
solutions

We consider the elliptic sine-Gordon equation in the form

(5.1) �u D sinu; 0 < u < 2�:

Under the correspondence � C � $ u, multiple-end solutions of the equation ��� D
sin � correspond to those solutions of (5.1) whose � level sets are asymptotic to finitely
many half straight lines at infinity. Along these rays, the solutions u resemble the one
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dimensional heteroclinic solution 4 arctan ex in the transverse direction. In this section,
we would like to classify these solutions using the inverse scattering transform of the
elliptic sine-Gordon equation, developed in [28]. For inverse scattering of the classical
hyperbolic sine-Gordon equation, we refer to [1, 8, 15].

The main result of this section is the following.

Proposition 5.1. Suppose � is a 2n-end solution of the equation��� D sin�: Then there
exist parameters pj ; qj ; �0j ; j D 1; : : : ; n, such that � D Un, where Un is defined in (2.15).

Let us denote � C � by u and let use I to denote the 2 � 2 identity matrix. Let � be a
complex spectral parameter, and let �j be the Pauli spin matrices:

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
:

Note that �2j D I , �3�1 D i�2 D ��1�3, �3�2 D �i�1 D ��2�3, and �2�1 D �i�3 D
��1�2. Equation (5.1) has a Lax pair

ˆx D Aˆ;(5.2)
ˆy D Bˆ:(5.3)

Here ˆ is vector valued or 2 � 2 matrix valued, depending on the contexts. Moreover, the
matrices A and B are defined by

A WD
i

4

h�
� �

cosu
�

�
�3 � .ux � iuy/�2 �

sinu
�

�1

i
;

B WD
1

4

h
�

�
�C

cosu
�

�
�3 C .ux � iuy/�2 �

sinu
�

�1

i
:

Indeed, the compatibility of (5.2) and (5.3) yields

Ay C AB D Bx C BA:

A direct computation shows that this is equivalent to equation (5.1).
Define K.�/ WD � � 1=�: For each fixed y 2 R, as x !˙1, due to the exponential

decay of u to 0 or 2� , we see that

A!
Ki

4
�3:

We would like to investigate the existence of matrix valued solutionsˆ˙ of (5.2) such that
ˆ˙.x; y/! exp

�
Ki
4
�3x

�
, as x!˙1, using Picard iteration under certain assumptions

on �: It turns out that different columns of ˆ˙ have different analytic properties (with
respect to �). This is the content of the following result.

Lemma 5.2. Assume Im � � 0 and � ¤ 0: There exists a solution ˆC;1 to the equation
@xˆC;1 DAˆC;1, satisfyingˆC;1 exp.�Kix=4/� .1; 0/T ! 0, as x!C1: There also
exists a solution ˆ�;2 to the equation @xˆ�;2 D Aˆ�;2, satisfying ˆ�;2 exp.Kix=4/ �
.0; 1/T ! 0, as x!�1: Moreover, ˆC;1 and ˆ�;2 are analytic with respect to � in the
region ¹� W Im� > 0; � ¤ 0º:
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Proof. Let us define

(5.4) A�.u; �/ WD A.u; �/ �
Ki�3

4
�

We write

A� D

�
A�11 A�12
A�21 A�22

�
:

Note that each entry of A� tends to 0 as jxj ! C1: Let us introduce the column vector

'C;1 D ˆC;1 exp
�
�
Kix

4

�
D .'C;11; 'C;21/

T :

For each fixed .y; �/, we consider the integral equation

(5.5)

´
'C;11.x; y; �/ D 1C

R x
C1

�
A�11'C;11 C A

�
12'C;21

�
.s; y; �/ ds;

'C;21.x; y; �/ D
R x
C1

exp
�
Ki
2
.s � x/

� �
A�21'C;11 C A

�
22'C;21

�
.s; y; �/ ds:

If 'C;1 satisfies (5.5), then @xˆC;1 D AˆC;1:
Now suppose Im�� 0 and impose the boundary condition 'C;1.x;y;�/! .1; 0/T , as

x!C1:Under this boundary condition, the system (5.5) has a unique solution. This can
be proved by Picard iteration, starting from the constant vector .1; 0/T : More precisely,
we define the sequence

�
'
.n/
C;11; '

.n/
C;21

�
in the following way. Let

�
'
.0/
C;11; '

.0/
C;21

�
WD .1; 0/

and8<: '
.n/
C;11.x; y; �/ D 1C

R x
C1

�
A�11'

.n�1/
C;11 C A

�
12'

.n�1/
C;21

�
.s; y; �/ ds;

'
.n/
C;21.x; y; �/ D

R x
C1

exp
�
Ki
2
.s � x/

� �
A�21'

.n�1/
C;11 C A

�
22'

.n�1/
C;21

�
.s; y; �/ ds:

If Im� � 0 and � ¤ 0, then

(5.6) Re
�Ki
2

�
D �

1

2

�
1C

1

j�j

�
Im� � 0:

This condition ensures that the integralZ x

C1

exp
�Ki
2
.s � x/

��
A�21'

.n�1/
C;11 C A

�
22'

.n�1/
C;21

�
.s; y; �/ ds

is well defined. Note that the integrand depending analytically on �.
To simplify the notation, let us suppress the y and � dependences of these functions.

We have the following estimates:

j'
.1/
C;11.x/j � 1C

Z C1
x

jA�11.s/j ds; j'
.1/
C;21.x/j �

Z C1
x

jA�21.s/j ds:

Let us define

(5.7) Q.x/ WD

Z C1
x

�
jA�11 .s/j C jA

�
12.s/j C jA

�
21.s/j C jA

�
22.s/j

�
ds:
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Then
j'
.1/
C;11.x/j � 1CQ.x/ and j'

.1/
C;21.x/j � Q.x/:

Inserting these estimates into the integral equation defining '.2/
C;j1 and integrating by parts,

we obtain

j'
.2/
C;11.x/j � 1CQ.x/C

1

2
Q2.x/ and j'

.2/
C;21.x/j � Q.x/C

1

2
Q2.x/:

Using an induction argument, we get

(5.8) j'
.n/
C;11.x/j �

nX
jD0

Qj .x/

j Š
and j'

.n/
C;21.x/j �

nX
jD1

Qj .x/

j Š
�

It follows that .'.n/C;11; '
.n/
C;21/ converges to a solution .'C;11; 'C;21/, which is analytic in �

in the region ¹� W Im� > 0; � ¤ 0º: By (5.8), we also have

(5.9) j'C;11.x/j � exp.Q.x// and j'C;12.x/j � exp.Q.x// � 1:

Observe that since the integral in '.n/C;1 is fromC1 to x, we have .'C;11; 'C;21/! .1; 0/,
as x !C1: We also have @xˆC;1 D AˆC;1: We emphasize that if the lower limit C1
in the integrand defining 'C;21 is replaced by other numbers, then 'C;21 will not have the
desired asymptotic behavior.

Same arguments as above yield a solution .'�;12; '�;22/ satisfying '�;2.x; y; �/!
.0; 1/T , as x ! �1, and the integral equation´

'�;12.x; y; �/ D
R x
�1

exp
�
�
Ki
2
.s � x/

� �
A�11'�;12 C A

�
21'�;22

�
.s; y; �/ ds;

'�;22.x; y; �/ D 1C
R x
�1

�
A�21'�;12 C A

�
22'�;22

�
.s; y; �/ ds:

This solution is also analytic in ¹� W Im� > 0; � ¤ 0º: This finishes the proof.

For each fixed y 2 R, ˆC and ˆ� are solutions of the same ODE system. Hence they
are related by

(5.10) ˆC.x; y; �/ D ˆ�.x; y; �/

�
a.�; y/ b.�; y/

b�.�; y/ a�.�; y/

�
;

for some functions a; b; a�; b�, which are independent of x: We emphasize that the func-
tion a defined here is not the same as that defined in Section 2.

Lemma 5.3. For each � 2 Cn¹0º with Im� � 0, there holds

ˆC;1.x; y; �/ D i�2ˆC;2 .x; y;��/ :

Similarly, for each � 2 Cn¹0º with Im� � 0, there holds

ˆ�;1.x; y; �/ D i�2ˆ�;2 .x; y;��/ :
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Proof. Let us write ˆ˙ into columns: ˆ˙ D Œˆ˙;1; ˆ˙;2�, where

ˆ˙;j D
h
ˆ˙;1j
ˆ˙;2j

i
; j D 1; 2:

For j D 1; 2, we define

‚˙;j WD
h
ˆC;2j
�ˆC;1j

i
D i�2ˆ˙;j :

By the symmetry of A, we know that ‚C;1 satisfies

@x‚C;1.x; y; �/ D A.u;��/‚C;1.x; y; �/:

It follows from the asymptotic behavior ofˆ˙;j at infinity and the uniqueness of solutions
to the ODE that

(5.11) ‚C;1.x; y; �/ D �ˆC;2.x; y;��/:

Similarly, ‚�;1.x; y; �/ D �ˆ�;2.x; y;��/:

Lemma 5.4. Suppose � 2 Rn¹0º: We have that a�.�; y/ D a.��; y/ and b�.�; y/ D
�b.��; y/: As a consequence,

ˆC.x; y; �/ D ˆ�.x; y; �/

�
a.�; y/ b.�; y/

�b.��; y/ a.��; y/

�
:

Proof. By definition, ˆC and ˆ� are related by

(5.12)
²
ˆC;1 D aˆ�;1 C b

�ˆ�;2;

ˆC;2 D bˆ�;1 C a
�ˆ�;2:

From the second equation of (5.12), we get

‚C;2 D b‚�;1 C a
�‚�;2:

Using this and Lemma 5.3, we obtain

(5.13) ˆC;1.x; y;��/ D �b.�; y/ˆ�;2.x; y;��/C a
�.�; y/ˆ�;1.x; y;��/:

On the other hand, by the first equation of (5.12),

(5.14) ˆC;1.x; y;��/ D a.��; y/ˆ�;1.x; y;��/C b
�.��; y/ˆ�;2.x; y;��/:

Comparing (5.13) with (5.14), we finally deduce

a�.�; y/ D a.��; y/; b�.�; y/ D �b.��; y/:

The functions a.�; y/ and b.�; y/ are a priori depending on y and the spectral para-
meter �: Nevertheless, we have the following.
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Lemma 5.5. Suppose u is a solution to (5.1). Assume � 2Rn¹0º: Then a.�;y/D a.�;0/,
and

(5.15) b.�; y/ D b.�; 0/ exp
�
�
1

2
.�C ��1/ y

�
:

Proof. Recall that ˆC satisfies (5.2), but it does not satisfy (5.3). However, the function
ˆ� WD ˆC exp.�1

4
.�C 1

�
/�3y/ satisfies the equation

@yˆ
�
D Bˆ�:

Inserting (5.10) into this equation, we get

@yˆ�

h
a.�; y/ b.�; y/

�b.��; y/ a.��; y/

i
exp

�
�
1

4

�
�C

1

�

�
�3y

�
Cˆ�

h
@ya.�; y/ @yb.�; y/

�@yb.��; y/ @ya.��; y/

i
exp

�
�
1

4

�
�C

1

�

�
�3y

�
Cˆ�

h
a.�; y/ b.�; y/

�b.��; y/ a.��; y/

i
@y

h
exp

�
�
1

4

�
�C

1

�

�
�3y

�i
D Bˆ�

h
a.�; y/ b.�; y/

�b.��; y/ a.��; y/

i
exp

�
�
1

4

�
�C

1

�

�
�3y

�
:

Sending x to �1 and using the fact that ˆ� tends exponentially fast to exp.Ki
4
�3x/, we

obtainh
@ya.�; y/ @yb.�; y/

�@yb.��; y/ @ya.��; y/

i
C

h
a.�; y/ b.�; y/

�b.��; y/ a.��; y/

i �
�
1

4

�
�C

1

�

�
�3

�
D �

1

4

�
�C

1

�

�
�3

h
a.�; y/ b.�; y/

�b.��; y/ a.��; y/

i
:

It follows that
@ya D 0; @yb D �

1

2

�
�C

1

�

�
b:

The assertion of the lemma follows immediately from these two equations.

Without loss of generality, we may assume that � is rotated so that no end is parallel to
the x-axis. Since � is a multiple-end solution of (1.2), there exists a choice of parameters
pj ; qj ; �

0
j , with pj > 0; j D 1; : : : ; n, such that the zero level set of the corresponding

solution Un has the same asymptotic lines as that of �, as y!C1:We denote the a part
of the scattering data of Un C � by Oa.�; y/:

Lemma 5.6. Assume � 2 Rn¹0º: We have a.�; y/ D Oa.�; y/ and b.�; y/ D 0:

Proof. By (5.12),

(5.16) ˆC;1.x; y; �/ D a.�; y/ˆ�;1.x; y; �/ � b.��; y/ˆ�;2.x; y; �/:

We rewrite ˆC D exp
�
Ki�3
4
x
�
ˆ�C: Then ˆ�C satisfies

(5.17) @xˆ
�
C D exp

�
�
Ki�3x

4

�
A� exp

�Ki�3x
4

�
ˆ�C:



Y. Liu and J. Wei 406

Consider the norm kMk WD
�P

j;k jmjkj
2
�1=2, where mjk are entries of a matrix M: We

have, by (5.17), for some constant C0,

(5.18) @xkˆ
�
Ck � C0 kA

�
k kˆ�Ck:

Applying the refined asymptotics theorem (Theorem 2.1 of [11]), we deduce that A�

decays exponentially fast to 0 away from each end. It then follows from (5.18) and the
Gronwall inequality that kˆ�Ck � C in R2, for a universal constant C: Hence kˆCk � C:
Similarly, kˆ�k � C: Then in view of the relation (5.16), by sending x to �1, we see
that for each fixed �, jb.�; y/j is uniformly bounded with respect to y: This together
with (5.15) implies b.�; y/ � 0:

We use OA to denote the matrix obtained from replacing u by Un in A: Let Ô ˙ be the
matrix valued solutions of the equation @x Ô ˙D OA Ô ˙, with the same asymptotic behavior
as that of ˆ˙: To compare Ô ˙ with ˆ˙, we write

@xˆC D OAˆC C .A � OA/ˆC:

By the variation of parameters formula, we have

(5.19) ˆC D Ô C

�
I C

Z x

C1

. Ô C/
�1.A � OA/ˆC ds

�
:

By the choice of Un, there exists ı > 0 such that

(5.20) j� � Unj � C exp
�
� ı

p
x2 C y2

�
; for y > 0:

Similar estimates hold for the derivatives of � � Un. Hence from (5.19), we deduce

kˆC � Ô Ck � C exp
�
� ı

p
x2 C y2

�
; for y > 0:

Arguing in the same manner,

kˆ� � Ô �k � C exp
�
� ı

p
x2 C y2

�
; for y > 0:

Now, in view of the relations

ˆC;1.x; y; �/ D a.�; y/ˆ�;1.x; y; �/; Ô
C;1.x; y; �/ D Oa.�; y/ Ô �;1.x; y; �/;

we conclude that for fixed �,

lim
y!C1

.a.�; y/ � Oa.�; y// D 0:

This together with Lemma 5.5 implies that for any y 2 R, a.�; y/ D Oa.�; y/:

Observe that
ImK D

�
1C

1

j�j2

�
Im�:

By Lemma 5.2, we now know that the functions ˆC;1 and ˆ�;2 are analytic in the
upper half �-plane R2;C; while ˆC;2 and ˆ�;1 are analytic in the lower half �-plane.
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We use W.ˆC;1; ˆ�;2/ to denote the Wronskian determinant of ˆC;1 and ˆ�;2: That is,
W.ˆC;1; ˆ�;2/ D jˆC;1; ˆ�;2j: Note that for � 2 Rn¹0º, we have ˆC;1 D a.�/ˆ�;1 �
b.��/ˆ�;2, hence we obtain

W.ˆC;1; ˆ�;2/ D W.a.�/ˆ�;1;ˆ�;2/ �W.b.��/ˆ�2;ˆ�;2/ D aW.ˆ�;1; ˆ�;2/:

Using the asymptotic behavior of ˆ�;1; ˆ�;2 as x ! �1, we have W.ˆ�;1; ˆ�;2/ D 1:
This then implies that for � 2 Rn¹0º,

(5.21) a.�; y/ D W.ˆC;1; ˆ�;2/:

Hence a can be analytically extended into R2;C using (5.21). By the asymptotic behavior
ofˆC;1;ˆ�;2 as �! 0, a will be continuous up to the boundary of R2;C:We also remark
that if � is in the lower half plane, then the behavior of ˆC;1 is much more delicate,
because in general, solutions with the desired asymptotic behavior at C1 may not be
unique.

We have the following generalization of Lemma 5.6.

Lemma 5.7. Assume Im � � 0 and � ¤ 0: Let a be defined by (5.21). Then a.�; y/ D
Oa.�; y/:

Proof. Recall that by Lemma 5.2, the function 'C;1DˆC;1 exp.�Kix
4
/ satisfies the integ-

ral equations´
'C;11.x; y; �/ D 1C

R x
C1

�
A�11'C;11 C A

�
21'C;21

�
.s; y; �/ ds;

'C;21.x; y; �/ D
R x
C1

exp
�
Ki
2
.s � x/

� �
A�21'C;11 C A

�
22'C;21

�
.s; y; �/ ds:

This solution is analytic in the upper half �-plane. Similarly, for the corresponding func-
tions O'C;1 associated with the potential Un, we have´

O'C;11.x; y; �/ D 1C
R x
C1

�
OA�11'C;11 C

OA�12'C;21
�
.s; y; �/ ds;

O'C;21.x; y; �/ D
R x
C1

exp
�
Ki
2
.s � x/

� �
OA�21'C;11 C

OA�22'C;21
�
.s; y; �/ ds:

If we set �j WD 'C;j1.x; y; �/ � O'C;j1.x; y; �/, j D 1; 2, then

(5.22)

´
�1 D

R x
C1

�
OA�11�1 C

OA�21�2 C f1
�
.s; y; �/ ds;

�2 D
R x
C1

exp
�
Ki
2
.s � x/

� �
OA�21�1 C

OA�22�2 C f2
�
ds;

where

f1 WD .A�11 � OA
�
11/ 'C;11 C .A

�
12 �

OA�12/ 'C;21;

f2 WD .A�21 � OA
�
21/ 'C;11 C .A

�
22 �

OA�22/ 'C;21:

Due to the estimate (5.9), 'C;1; O'C;1 are uniformly bounded for .x; y/ in the whole plane.
Similarly, using the decay estimate (5.20), we infer from (5.22) and the Picard iteration of
.�1; �2/ that

j�1.x/j �

Z C1
x

�
jf1.s/j C jf2.s/j

�
ds exp.Q.x//;

j�2.x/j �

Z C1
x

�
jf1.s/j C jf2.s/j

�
ds exp.Q.x//:
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Here Q.x/ is defined by (5.7). It follows that

lim
y!C1

Œ'C;1 .0; y; �/ � O'C;1 .0; y; �/� D 0:

Similarly, letting '�;2 D ˆ�;2 exp
�
Kix
4

�
, we have

lim
y!C1

Œ'�;2 .0; y; �/ � O'�;2 .0; y; �/� D 0:

Using the definition of a, we then deduce

lim
y!C1

Œa.�; y/ � Oa .�; y/� D 0:

On the other hand, we can still prove that @ya.y; �/ D 0: Hence a.�; y/ D Oa.�; y/: This
finishes the proof.

Let �j ; j D 1; : : : ;m, be the zeros of a in R2;C: At these points, by the definition of a,
there holds W.ˆC;1; ˆ�;2/ D 0: Hence the vectors ˆC;1 and ˆ�;2 are co-linear to each
other. Let us define cj by the formula

ˆC;1.x; y; �j / D cj .y/ˆ�;2.x; y; �j /:

Then c0j D �
1
2
.�j C 1=�j /cj and therefore cj .y/ D cj .0/ exp.�1

2
.�j C 1=�j /y/: It is

worth pointing out that unlike b, the function cj is in general not uniformly bounded
with respect to y: Let us use Ocj .y/ to denote the corresponding function of Un: It is a
natural question that whether one can prove cj .y/ D Ocj .y/, following a similar idea as
that of Lemma 5.6. It turns out that, to do this, one need to directly analyze the precise
asymptotic behavior of ˆC;1 as y !1: While in principle this can be done, we choose
to bypass this difficulty and verify it a posteriori, after we prove that � D Un:

Now we have all the necessary scattering data at hand, which are a; b; �j ; cj :

Lemma 5.8. Suppose all the zeros of a in the upper half �-plane are simple. Then u D
Un C �:

Before proceeding to the proof, we emphasize that the result of this lemma is proved
under the additional assumption that all the zeros of a in the upper half �-plane are simple.
However, we will show in Lemma 5.9 that for the standard solution Un C � , the corres-
ponding scattering data Oa only has simple zeros, which in turn implies that a only has
simple zeros. The proof of Lemma 5.9 does not depend on the result of Lemma 5.8;
however, the construction of explicit Jost functions in Lemma 5.9 is inspired by the for-
mula (5.25) of the proof of Lemma 5.8.

Proof of Lemma 5.8. We would like to carry out a simplified version of the inverse scat-
tering procedure to construct the potential u from the scattering data, following [28]. Part
of the arguments here are more or less standard. Since it is not easy to locate the precise
references, we sketch the proof below for completeness.

For fixed y 2 R, by (5.16), we have, for � 2 R,

(5.23) ˆ�;1.x; y; �/ D
ˆC;1.x; y; �/

a.�; y/
�
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Consider the operator

.Pf /.�/ WD
1

2�i

Z C1
�1

f .�/

� � �
d�:

Let us rewrite equation (5.23) as
(5.24)

ˆ�;1.x; y; �/ exp
�
�
K.�/i

4
x
�
� .1; 0/T D

ˆC;1.x; y; �/

a.�; y/
exp

�
�
K.�/i

4
x
�
� .1; 0/T :

The left-hand side is analytic in the lower half � plane, while the right-hand side is mero-
morphic in the upper half plane with simple poles �j ; j D 1; : : : ; m: Here Im �j > 0:

Note that the function exp
�
�
K.�/i
4
x
�

has two essential singularities: � D1 and � D 0:
However, one can show that

ˆ�;1.x; y; �/ exp
�
�
K.�/i

4
x
�
� .1; 0/T ! 0 as �!1:

Moreover, ˆ�;1.x; y; �/ exp
�
�
K.�/ i
4

x
�

can be continued to the origin. We refer to [15],
page 396, for related discussion on this issue for the hyperbolic sine-Gordon equation. For
each fixed � 2 C with Im � < 0, applying the operator P to both sides of equation (5.24),
using the residue theorem and the fact that ˆC;1.�j / D cjˆ�;2.�j /, we obtain

ˆ�;1.x; y; �/ exp
�
�
K.�/i

4
x
�
� .1; 0/T(5.25)

D

mX
jD1

h
Qcj

� � �j
exp

�
�
K.�j /i

4
x
�
ˆ�;2.x; y; �j /

i
;

where

(5.26) Qcj .y/ WD
cj .y/

@�a.�j ; y/
�

On the other hand, by Lemma 5.3, ˆ�;2.x; y;��/ D �i�2ˆ�;1.x; y; �/: Hence taking
� D ��l in (5.25), we get

i�2ˆ�;2.x; y; �l / exp
�K.�l /i

4
x
�
� .1; 0/T

D �

mX
jD1

h
Qcj

�l C �j
exp

�
�
K.�j /i

4
x
�
ˆ�;2.x; y; �j /

i
:

This is a system ofm equations for the functions ˆ�;2.x; y; �j /, j D 1; : : : ;m: LetM be
the matrix with entries

mlj WD
Qcj .y/

�l C �j
exp

�
�
K.�j /

2
ix
�
:

Let � WD .�1; : : : ; �2m/T , where

�l D

´
exp

�
K.�l / ix

4

�
ˆ�;22.x; y; �l /; if l D 1; : : : ; m;

exp
�
K.�l�m/ ix

4

�
ˆ�;12.x; y; �l�m/; if l D mC 1; : : : ; 2m:
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Then we get

(5.27)
�

I M

�M I

�
� D e1;

where I is the m �m identity matrix and e1 D .1; : : : ; 1; 0; : : : ; 0/T : Observe that�
I M

�M I

�
D

�
I 0

iI I

� �
I C iM M

0 I � iM

� �
I 0

�iI I

�
:

Defining

��C D
�

I 0

�iI I

�
�; e�C D

�
I 0

�iI I

�
e1; ZC D

�
I C iM M

0 I � iM

�
;

we can transform equation (5.27) into ZC��C D e
�
C. It follows that for j D 1; : : : ; m,

(5.28) �j D
detHC;j
detZC

;

where the matrixHC;j is obtained from replacing the j -th column ofZC by the vector e�C:
Similarly, we have

�j D
detH�;j
detZ�

; j D 1; : : : ; m;

where

e�� D
�
I 0

iI I

�
e1; Z� D

�
I � iM M

0 I C iM

�
;

and H�;j is obtained from replacing the j -th column of Z� by e��:
Inserting (5.25) into the vector equation @xˆ�;1 D Aˆ�;1, expanding both sides in

terms of � (for � large), and comparing the O.1/ term in the second component, we get

ux � iuy D 2i

mX
jD1

h
Qcj .y/ exp

�
�
iK.�j /

4
x
�
ˆ�;22.x; y; �j /

i
:

Hence by (5.28),

ux � iuy D 2i

mX
jD1

h
Qcj .y/ exp

�
�
iK.�j /

2
x
�detHC;j

detZC

i
:

We would like to simplify this expression. To do this, let us set

�j WD Qcj .y/ exp
�
�
iK.�j /

2
x
�
:

Note that in terms of �j , the entries of M are of the form �j =.�l C �j /: We use QZC to
represent the matrix obtained from ZC by multiplying the l and l C m-th rows of ZC
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by �l , l D 1; : : : ; m: For each fixed j D 1; : : : ; m, applying the same operation to the
matrix HC;j , we get the corresponding matrix QHC;j : Then

(5.29) ux � iuy D 2i

mX
jD1

�j det QHC;j
det QZC

�

Similarly, we also have

(5.30) ux � iuy D 2i

mX
jD1

�j det QH�;j
det QZ�

�

Observe that .@x � i@y/.�l�j /D�i.�l C �j /�l�j :We define the matrix QM whose entries
are .�l C �j /�1�l�j : Let QI be the diagonal matrix whose entries on the diagonal is �j ; j D
1; : : : ; m: For fixed j , observe that in det QHC;j C det QH�;j , terms involving the last m
components of the j -th column of det QHC;j and det QH�;j cancel. Hence we have

mX
jD1

�
�j det QHC;j C �j det QH�;j

�
D 2 det

�
QI C i QM

� �
@x � i@y

�
det

�
QI � i QM

�
� 2 det

�
QI � i QM

� �
@x � i@y

�
det

�
QI C i QM

�
:

In view of the fact that det QZ˙ D det. QI C i QM/ det. QI � i QM/, we infer

ux � iuy D 2i
�
@x � i@y

�
ln

det. QI � i QM/

det. QI C i QM/
D 2i

�
@x � i@y

�
ln

det.iI CM/

det.�iI CM/
�

Next we show that u can be written in the Hirota form appeared in Section 2. Indeed,
if we define ��j D �

�1
j �j , then the entries ofM become .�l C �j /�1�j ��j and there holds

(5.31) det.iI CM/ D

mX
jD1

� X
l1<���<lj

�
im�j b.l1; : : : ; lj /�

�
l1
� � � ��lj

��
;

where

b.l1; : : : ; lj / D
Y

1�˛<ˇ�j

��l˛ � �lˇ
�l˛ C �lˇ

�2
:

This precisely means that u has the Hirota form given in Section 2. The identity (5.31)
can be proved by considering the coefficients of the polynomial

g.r/ WD det jirI CM j:

For instance, since the determinant of the matrix
� 2�j
�nC�j

�
n;j

is equal to

Y
1�˛<ˇ�m

��˛ � �ˇ
�˛ C �ˇ

�2
;
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then g.0/ can be explicitly computed and is equal to

detM D b.1; : : : ; m/ ��1 � � � �
�
mI

while the coefficient of ir is the sum of all the .m � 1/-th order principle minors M :X
l1<���<lm�1

�
b.l1; : : : ; lm�1/ �

�
l1
� � � ��lm�1

�
:

Now we would like to compare u with Un C �: Recall that in the expression of Un C
� D 4 arctan. Qgn= Qfn/, there are parameters pj ; qj ; �0j ; j D 1; : : : ;m, and pj are chosen to

be positive. On the other hand, in ��j , the coefficient before x is�K.�j /
2
i , which is equal to

Im�j

2

�
1C

1

.Re�j /2 C .Im�j /2

�
� i

Re�j
2

�
1 �

1

.Re�j /2 C .Im�j /2

�
:

The coefficient before y is �1
2
.�j C �

�1
j /, which is equal to

�
Re�j
2

�
1C

1

.Re�j /2 C .Im�j /2

�
� i

Im�j

2

�
1 �

1

.Re�j /2 C .Im�j /2

�
:

Since u is real valued and has the same asymptotic behavior as Un C � as y ! C1, it
then follows, from the Hirota form of u, that .Re�j /2 C .Im�j /2 D 1,mD n:Moreover,

(5.32) Im�j D pj ; Re�j D �qj ; for j D 1; : : : ; m;

and u D Un C � , cj .0/ D Ocj .0/:
We would like to point out that for � 2 C with Im� � 0,

(5.33) a.�/ D Oa.�/ D

mY
jD1

� � �j

�C �j
�

Indeed, for � 2 Rn¹0º, from (5.23) and detˆ˙ D 1, and b D 0, we get a.�/a.��/ D 1:
Let us define

ˇ.�/ D a.�/

mY
jD1

�C �j

� � �j
�

The function ˇ is analytic in the upper half �-plane R2;C: By (5.23) and (5.25), using the
asymptotic behavior of ˆC;1(as x !C1), we find that for some constants dj ,

1

a.�/
D 1C

mX
jD1

dj

� � �j
; if � 2 R:

Now in view of a.�/a.��/ D 1, we deduce that

a.�/ D

mY
jD1

� � �j

�C �j
; if � 2 R.

That is, ˇ.�/ D 1 for � 2 R. Hence by the Liouville theorem, ˇ.�/ D 1 in R2;C. We then
get (5.33). The proof is completed.
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Next, we proceed to compute the scattering data of the “standard” solution Un C �:
We first point out that the scattering data Oa; Ob; �j ; Ocj of Un C � is well defined through
functions Ô ˙, which are solutions of ODEs in the Lax pair. We have the following.

Lemma 5.9. Let pj ; qj be the parameters appearing in the solution Un C � and let �j
be defined through (5.32). Then the scattering data Oa of Un C � is given by

Oa.�/ D

nY
jD1

� � �j

�C �j
; for � 2 R2;C:

Proof. Before proceeding to the details, which requires tedious computation, let us sketch
the main idea of the proof. The proof has two main steps. In the first step, we compute the
scattering data of the simplest two-end solution U1C � by finding the explicit form of the
corresponding Ô ˙ (the so called Jost function). In the second step, for n > 1; we analyze
the behavior of Ô ˙ for y !1, using the asymptotic behavior of Un C �: The reason
we can do this is that Oa is independent of y: Now our key observation is that as y tends
to 1, Un C � asymptotically splits into n heteroclinic solutions (U1 C � with suitable
parameters), passing each one of these heteroclinic solutions along the x direction, we
gain a factor ���j

�C�j
in Oa (for � 2 Rn¹0º), because Oa is the “ratio” between Ô C;1 and Ô �;1:

Step 1. Compute Oa for U1 C �:
We shall define Ô �;1 directly. The definition given below is inspired by (5.25). More

precisely, define

Ô
�;1.x; y; �/ D exp

�K .�/ i
4

x
�
.1; 0/T

C exp
�K.�/i

4
x
� nX
jD1

h
Qcj .y/

� � �j
exp

�
�
K.�j /i

4
x
�
Ô
�;2.x; y; �j /

i
:(5.34)

Here,

Qcj .y/ WD Ocj .y/
h
@�

� nY
lD1

� � �l

�C �l

�ˇ̌̌
�D�j

i�1
D
Ocj .0/ exp.�1

2
.�j C 1=�j /y/

2�j

Y
l¤j

�j C �l

�j � �l
;(5.35)

the Ocj .0/ are parameters, and Ô �;2.x; y; �j / D . Ô �;12.x; y; �j /; Ô �;22.x; y; �j //
T is

given by

Ô
�;12.x; y; �j / D exp

�
�
K.�j /ix

4

�detHC;j C i detHC;jCn
detZC

;

Ô
�;22.x; y; �j / D exp

�
�
K.�j /ix

4

� �detHC;j
detZC

�
:
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With the definition of Qcj given by (5.35), mlj is defined by

mlj WD
Qcj .y/

�l C �j
exp

�
�
K.�j /

2
ix
�
:

We emphasize that in this lemma, Qcj .y/ is not defined through (5.26), but through (5.35).
Hence the definition of Qcj .y/ here does not require any assumption of simpleness of the
zeros of Oa.

Intuitively, the function Ô �;1 should satisfy

(5.36) @x Ô �;1 D OA Ô �;1:

However, a direct proof of this fact for general n seems to be quite tedious. Nevertheless,
in what follows, we will see that in the case of n D 1, we can verify (5.36) by direct
computation. Indeed, in this case, we have

U1 C � D 2i ln
i Cm11

�i Cm11

�

We also have

sinU1 D
1

2i

h� i Cm11

�i Cm11

�2
�

�
�i Cm11

i Cm11

�2i
;(5.37)

cosU1 D �
1

2

h� i Cm11

�i Cm11

�2
C

�
�i Cm11

i Cm11

�2i
:(5.38)

Moreover,

Ô
�;1.x; y; �/ D exp

�K .�/ i
4

x
�
.1; 0/T

C exp
�K.�/i

4
x
� h

Oc1.y/

2.� � �1/�1
exp

�
�
K.�1/i

4
x
�
Ô
�;2.x; y; �1/

i
;

where Ô �;2.x; y; �1/ D . Ô �;12.x; y; �1/; Ô �;22.x; y; �1//T ,

Ô
�;12.x; y; �1/ D exp

�
�
K.�1/ix

4

� m11

1Cm2
11

;

Ô
�;22.x; y; �1/ D exp

�
�
K.�1/ix

4

� 1

1Cm2
11

�

Recall that

OA Ô �;1 D
i

4

h�
�C

cosU1
�

�
�3 �

��
@x � i@y

�
U1
�
�2 C

sinU1
�

�1

i
Ô
�;1:

The first component J1 of the vector OA Ô �;1 is

i

4

�
�C

cosU1
�

�
exp

�K.�/i
4

x
�h
1C

Oc1.y/

2 .� � �1/ �1
exp

�
�
K.�1/i

2
x
� m11

1Cm2
11

i
C
1

4

��
@x � i@y

�
U1
�

exp
�K.�/i

4
x
�h

Oc1.y/

2 .� � �1/ �1
exp

�
�
K.�1/i

2
x
� 1

1Cm2
11

i
C
i

4

sinU1
�

exp
�K .�/ i

4
x
� h

Oc1.y/

2 .� � �1/ �1
exp

�
�
K .�1/ ix

2

� 1

1Cm2
11

i
:
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Recall that the function m11 is defined by

m11 D
Oc1.y/

4�21
exp

�
�
K.�1/i

2
x
�
:

Using this, we find that J1 exp
�
�
K.�/i
4

x
�

is equal to

i

4

�
�C

cosU1
�

��
1C

2�1

� � �1

m2
11

1Cm2
11

�
C
1

4

��
@x � i@y

�
U1
� � 2�1

� � �1

m11

1Cm2
11

�
C
i

4

sinU1
�

� 2�1

� � �1

m11

1Cm2
11

�
:

On the other hand, the first component J �1 of @x Ô �;1 has the form

K.�/i

4
exp

�K.�/i
4

x
��
1C

2�1

� � �1

m2
11

1Cm2
11

�
C exp

�K.�/i
4

x
� 2�1

� � �1

�K.�1/im2
11

.1Cm2
11/

2
�

Now we can compute

4.J1 � J
�
1 / exp

�
�
K .�/ i

4
x
�
D i

1C cosU1
�

�
1C

2�1

� � �1

m2
11

1Cm2
11

�
C i

sinU1
�

2�1

� � �1

m11

1Cm2
11

�
8i

� � �1

m2
11

.1Cm2
11/

2
�

Inserting (5.37), (5.38) into the right-hand side, we see that it is identically zero. Therefore,
the first component of @x Ô �;1 � OA Ô �;1 vanishes: Similarly, its second component is 0.
We then obtain @x Ô �;1 D OA Ô �;1: We also observe that Ô �1 has the required asymptotic
behavior:

Ô
�1 exp.�Kix=4/! .1; 0/; as x ! �1:

With the explicit form of the function Ô �;1 at hand, using the relation Ô C;1 D a Ô �;1
for � 2 Rn¹0º, we directly compute that

(5.39) Oa.�/�1 D 1C
d1

� � �1
; if � 2 Rn¹0º;

for some constant d1 (actually one can calculate directly that d1 D 2�1). In view of
Oa.�/ Oa.��/ D 1 for � 2 Rn¹0º, we deduce from (5.39) that

(5.40) Oa.�/ D
� � �1

�C �1
; if � 2 Rn¹0º:

We should point out that at this moment we still do not know whether �1 is a zero of Oa:
Hence we cannot use the argument of the last paragraph in the proof of Lemma 5.8 to
conclude that Oa.�/D ���1

�C�1
in R2;C: To bypass this difficulty, we would like to show that Oa
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cannot have repeated zeros in R2;C: Indeed, suppose to the contrary that ��j is a zero of Oa
in the upper half � plane with multiplicity � > 1: Then using the residue theorem as that
of (5.25), we find that in Ô �;1.x; y; �/, there are terms like

ˆC;1.x; y; �
�
j / exp

�
�
K.��j /i

4
x
�

.� � ��j /
�

�

This together with the relation Ô C;1 D a Ô �;1 implies that Oa�1 will not have the form
�C�1
���1

on R, which is a contradiction. Hence all the zeros of Oa has to be simple and then
by Lemma 5.8, the scattering data of U1 C � is given by

a.�/ D Oa.�/ D
� � �1

�C �1
; for � 2 R2;C:

Step 2. Compute Oa for Un C �; n > 1:
Let us first compute the scattering data Oa of the four-end solution U2 C �: To carry

out the analysis in full detail, we need to introduce some additional notation. U2 C � has
two ends in the upper half x-y plane, which are two half straight lines denoted by L1; L2:
Along each end, as y ! C1, it converges to the one dimensional solution U1 C � with
suitable parameters, pj ; qj ; �j;0: Let us denote the one dimensional solution around L1 by
U1;˛ C � , and the one around L2 by U1;ˇ C �:We also assume without loss of generality
that L1 is at the left of L2 in the upper half plane.

For U1;˛ C � and U1;ˇ C � , we have corresponding Jost functions Ô �;1;˛ and Ô �;1;ˇ ,
defined in the first step. Hence

@x Ô �;1;˛ D OA˛ Ô �;1;˛; @x Ô �;1;ˇ D OAˇ Ô �;1;ˇ :

Moreover, Ô �;1;˛ exp.�Kix=4/! .1; 0/T , and Ô �;1;ˇ exp.�Kix=4/! .1; 0/T , as x!
�1: We emphasize that Ô �1;˛ and Ô �1;ˇ also depend on the y variable.

The Jost function of U2 C � will still be denoted by Ô �;1, but at this moment we do
not have explicit formula for it (although it is expected to be of the form (5.34), we did
not prove that, because the computation is tedious). We also have

@x Ô �;1 D OA Ô �;1

and Ô �;1 exp.�Kix=4/! .1;0/T , as x!�1:Recall that for �2Rn¹0º, Oa.�/ is defined
by the relation

(5.41) Ô
C;1 D a Ô �;1;

where Ô C;1 is the Jost function with Ô C;1 exp.�Kix=4/! .1; 0/T , as x!C1: Hence
computing Oa amounts to analyzing the asymptotic behavior of Ô �;1 as x !C1:

In the following, we consider the relevant functions in the upper half plane. The half
straight lines L1 and L2 form an angle. Let us denote its angular bisector as L�: Since
U2 C � tends to U1;˛ C � along the end L1 exponentially fast, the proof of Lemma 5.6
tells us that for some positive constant ı1,
(5.42)
j Ô �;1 � Ô �;1;˛j � C exp

�
� ı1

p
x2 C y2

�
; if y > 0 and .x; y/ is at the left of L�:
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We remark that although Lemma 5.6 deals with matrix valued solutions, the argument
also can be applied to vector valued solutions with straightforward changes. On the other
hand, by the explicit formula of Ô �1;˛ (or using the fact that the scattering data Oa of U1;˛
is .� � �1/=.�C �1/), we have, if .x; y/ lies in the right of L1, then

(5.43)
ˇ̌̌
Ô
�1;˛.x; y/ exp .�Kix=4/ �

�C �1

� � �1
.1; 0/T

ˇ̌̌
� C exp .�ı2d.x; y// :

where ı2 > 0 is a small positive constant and d.x; y/ is the distance of .x; y/ to L1:
Combining (5.42) and (5.43), we find that on the line L�,

(5.44)
ˇ̌̌
Ô
�;1.x; y/ exp .�Kix=4/ �

�C �1

� � �1
.1; 0/T

ˇ̌̌
� C exp .�ıd.x; y// ;

for some small positive constant ı:
Next let us consider the function Ô �

�;1;ˇ
, defined by

Ô �
�;1;ˇ WD

�C �1

� � �1
Ô
�;1;ˇ :

Note that Ô �
�;1;ˇ

still satisfies the equation @x Ô ��;1;ˇ D OAˇ Ô
�
�;1;ˇ

: We haveˇ̌̌
Ô �
�;1;ˇ exp .�Kix=4/ �

�C �1

� � �1
.1; 0/T

ˇ̌̌
� C exp

�
� Qı Qd.x; y/

�
; on L�;

for some positive constant Qı, where Qd.x; y/ denotes the distance of .x; y/ to L2: Hence
by (5.44), reducing ı if necessary, we get, for .x; y/ 2 L� in the upper half plane,ˇ̌

Ô
�;1.x; y/ � Ô

�
�;1;ˇ

ˇ̌
� C exp.�ıy/:

Again by the proof of Lemma 5.6, we find that for .x; y/ at the left of L�,

(5.45)
ˇ̌
Ô
�;1.x; y/ � Ô

�
�;1;ˇ

ˇ̌
� C exp.�ıy/C C exp

�
� ı

p
x2 C y2

�
:

Here we emphasize that in the right-hand side of the above inequality we have the term
C exp.�ıy/. The reason is that, on the line L�, Ô �;1.x; y/ and Ô �

�;1;ˇ
are not identical.

Nevertheless, we also know that a solution � of the equation @x� D OA� with initial con-
dition � D Ô �;1.x; y/ � Ô ��;1;ˇ at L� is bounded by C exp.�ıy/ at the right of L�: This
fact again follows from the proof of Lemma 5.6, which uses the assumption � 2 R in an
essential way.

Now by the asymptotic behavior of Ô �;1;ˇ as x !C1, (5.45) implies that

lim
x!C1

ˇ̌̌
Ô
�;1.x; y/ exp .�Kix=4/ �

�C �1

� � �1

�C �2

� � �2
.1; 0/T

ˇ̌̌
� C exp.�ıy/:

Sending y toC1 and using (5.41), we deduce

Oa.�/ D
� � �1

�C �1

� � �2

�C �2
; for � 2 Rn¹0º:
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For general Un C �; n � 2, we can repeat the above arguments as we pass across each
end along the x direction, and conclude that

Oa.�/ D

nY
jD1

� � �j

�C �j
; for � 2 Rn¹0º:

Then we can use the arguments in the last paragraph of Step 1 to conclude that all the
zeros of Oa are simple and

Oa.�/ D

nY
jD1

� � �j

�C �j
; for � 2 R2;C:

This finishes the proof.

With these preparations, we are now ready to prove the main result of this section.

Proof of Proposition 5.1. Recall that a is the scattering data of our original solution u:
Lemma 5.7 tells us that u and Un C � have the same a part of the scattering data: Hence

a.�/ D

nY
jD1

� � �j

�C �j
; for � 2 R2;C:

In particular, all the zeros of a in the upper half �-plane are simple. We then apply
Lemma 5.8 to conclude that u D Un C �: The proof is completed.

6. Morse index of the multiple-end solutions

In this section, we shall compute the Morse index of the multiple-end solutions Un of the
elliptic sine-Gordon equation ��u D sin u through a deformation argument. By defini-
tion, the Morse index of Un is the total number of negative eigenvalues of the operator
�!���� � cosUn defined on L2.R2/: The main result of this section is the following.

Proposition 6.1. The Morse index of the 2n-end solutions to the elliptic sine-Gordon
equation is equal to n.n � 1/=2:

We shall split the proof of this result into several lemmas. Before proceeding, let us
first of all briefly recall the so called end-to-end construction of multiple-end solutions of
the Allen–Cahn type equation, developed in [39]. Roughly speaking, for each n � 2, we
can glue n.n � 1/=2 number of four-end solutions together by matching their ends and
obtain a solution with 2n ends.

To explain the construction more precisely, we choose n straight linesL1; : : : ;Ln such
that these lines intersect at n.n� 1/=2 distinct points. The intersection point ofLi withLj
will be denoted by !i;j : We assume the minimal distance between those points !i;j is
equal to 2:

For each k large, the end-to-end construction in [39] tells us that we can “desingular-
ize” the configuration of n rescaled lines kL1; : : : ; kLn. Actually, we can put four-end
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solutions gi;j near each rescaled intersection point k!i;j at a distance of O.1/ order in a
suitable way and match their ends to form an approximate solution Quk . The center of gi;j
will be denoted by zi;j D zi;j .uk/: Around each zi;j , Quk is equal to gi;j : By slightly
adjusting their ends, we can perturb the approximate solution Quk into a true solution uk of
the Allen–Cahn type equation.

Throughout this section, we shall use Br .p/ to denote be the ball of radius r centered
at the point p: Let c0 be a fixed large constant. The following estimate is a direct byproduct
of the end-to-end construction: there exists ı > 0 such that

(6.1) juk � Qukj � C exp.�ık/; in Bc0k.0/:

This essentially follows from the fact that the error � Quk C sin Quk of the approximate
solution Quk is of the order O.e�ık/:

Lemma 6.2. Let uk be a solution obtained from the end-to-end construction discussed
above. The Morse index of uk is at least n.n � 1/=2 for k large.

Proof. For each pair of indices .i; j /; i; j D 1; : : : ;n; i < j , we use �i;j with k�i;j kL1 D 1
to denote a choice of the negative eigenfunction of the operator��� cosgi;j , correspond-
ing to the (unique) negative eigenvalue �i;j : That is,

���i;j � �i;j cosgi;j D �i;j�i;j :

The total number of such functions is n.n � 1/=2:
Let �i;j be a cutoff function localized near zi;j , such that

�i;j D

´
1; in Bp

k
.zi;j /;

0; in R2 nB
2
p
k
.zi;j /:

We can also assume that �i;j and its first derivatives are uniformly bounded with respect
to k: Let ��i;j WD �i;j�i;j : Since the mutual distance between those point zi;j are of the
order O.k/, we see that the ��i;j have disjoint supports. Using the fact that �i;j decays
exponentially fast to zero away from zi;j , we can show that for k large,Z

R2

�
jr��i;j j

2
� .��i;j /

2 cosuk
�

D

Z
R2

��
jr�i;j j

2
� �2i;j cosuk

�
�2i;j C 2�i;j�i;jr�i;jr�i;j C �

2
i;j jr�i;j j

2
�
< 0:

Hence the Morse index of uk is at least n.n � 1/=2:

Before proceeding, we need to introduce some notations. Let N .uk/ be the nodal set
of uk and let d.p;N .uk// be the distance of a point p to the set N .uk/: Let r0 be a large
constant. We set

� D �r0 WD
[

i;j;i<j

Br0.zi;j .uk//:

We use H to denote the one dimensional heteroclinic solution. Explicitly,

H.s/ D 4 arctan.es/ � �:
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Throughout the section, we use C to denote a universal constant. One of the main ingredi-
ents in the proof of Proposition 6.1 is the following.

Lemma 6.3. Let ��2
k
.with �k > 0/ be a negative eigenvalue of the operator �� �

cosuk : Then there exists a constant # < 0 independent of k, such that ��2
k
< # for all k:

Proof. Let �k be the corresponding eigenfunction of the eigenvalue��2
k

, normalized such
that k�kkL1 D 1:

First of all, we would like to prove that if r0 is a fixed constant chosen to be large
enough, then

k�kkL1.�r0/
� ˛;

where ˛ is some positive constant independent of k:
By definition, �k satisfies

(6.2) ���k � �k cosuk D ��2k �k :

As d.p;N .uk//! C1, there holds jukj ! � and cos uk ! �1: It follows that when
d.p;N .uk// is sufficiently large, � cos uk C �2k � 1=2: Hence by constructing suitable
barrier functions of exponential type, we find that for some positive constant ı > 0,

(6.3) j�k.p/j � C exp .�ıd.p;N .uk/// ; for p 2 R2:

Let us estimate �k in the region R2n�: To be more specific, we focus on the region
around the nodal line l�, which connects two, say g1;2 and g1;3, adjacent four-end solu-
tions. Without loss of generality, using (6.1), we may assume that this nodal line is given
by the graph of the function y D w.x/, and reducing ı if necessary,

jw.x/j � C exp .�ımin ¹jx � t1j ; jx � t2jº/ ; x 2 Œt1; t2�;

with .t1;w.t1// 2 @Br0.z1;2.uk//, .t2;w.t2// 2 @Br0.z1;3.uk//: Note the jt1 � t2j is of the
order O.k/, and t1; t2 actually also depend on k:

Let us define the function

h.x/ WD

Z C1
�1

�k.x; y/H
0.y/ dy:

Since �k satisfies (6.2), for x 2 Œt1; t2�, h satisfies

�h00.x/ D ��2kh.x/CO .exp .�ımin ¹jx � x1j ; jx � x2jº//„ ƒ‚ …
�.x/

:

The variation of parameters formula then tells us that for some constants a; b,

h.x/ D a exp .�kx/C b exp .��kx/C
1

2�k
exp .�kx/

Z x

t1

exp .��ks/ �.s/ ds

�
1

2�k
exp .��kx/

Z x

t1

exp .�ks/ �.s/ ds:(6.4)

Let us define

f .s/ D

Z s

.t1Ct2/=2

�.s/ ds:
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By the estimate of �, we have

jf .s/j � C exp .�ımin ¹jx � t1j; jx � t2jº/ :

Integrating by parts leads to

I WD
1

2�k
exp .�kx/

Z x

t1

exp .��ks/ �.s/ ds �
1

2�k
exp .��kx/

Z x

t1

exp .�ks/ �.s/ ds

D
1

2
exp .�kx/

Z x

t1

f .s/ exp .��ks/ ds C
1

2
exp .��kx/

Z x

t1

f .s/ exp .�ks/ ds:

Then I can be estimated by

jI j � C exp .�ımin ¹jx � t1j; jx � t2jº/ :

Let I0.x/ WD a exp.�kx/C b exp.��kx/: By the maximum principle, we have

jI0.x/j � max ¹jI0.t1/j; jI0.t2/jº ; for x 2 Œt1; t2�:

Therefore,

jh.x/j � C
�
jh.t1/j C jh.t2/j C exp .�ımin ¹jx � t1j; jx � t2jº/

�
:

In particular, this implies that

(6.5) jh.x/j � Ck�kkL1.�/ C C exp .�ımin ¹jx � t1j ; jx � t2jº/ ; x 2 Œt1; t2�:

On the other hand, we define

�� WD �k.x; y/ � h.x/H
0.y/:

Let �0 > 0 be a fixed small constant and let y0.x/ WD �0 min¹jx � t1j; jx � t2jº C 10:
Consider the region

E WD ¹.x; y/ W x 2 .t1; t2/; y 2 .�y0.x/; y0.x//º :

Let � be a cutoff function such that � D 0 in R2nE, and � D 1 in

¹.x; y/ W x 2 .t1 C 1; t2 � 1/; y 2 .�y0.x/C 1; y0.x/ � 1/º :

Define � D ���: Observe that although � is not necessary orthogonal toH 0, we still haveZ
R2

�.x; y/H 0.y/dy D

Z
Œ�k.x; y/ � h.x/H

0.y/�� dy

D O
�

exp.�ımin¹jx � t1j; jx � t2jº/
�
:

By the decay estimate (6.3) of �k , we have

��� � � cosH.y/ D O
�

exp.�ımin¹jx � t1j; jx � t2jº/
�
:

Applying the estimates established in Lemma 3.5 of [12], reducing ı if necessary, we get

(6.6) j�j � C exp .�ımin ¹jx � t1j; jx � t2jº/ :
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Estimates (6.3), (6.5) and (6.6) tell us that (enlarging the constant r0 if necessary)

k�kkL1.�/ � ˛;

where ˛ is some positive constant independent of k:
To prove the lemma, we assume to the contrary that for a sequence kn ! C1, the

eigenvalues �kn.ukn/ were tending to 0:We still denote kn by k and �kn.ukn/ by �k.uk/:
Suppose for some constant ˛ > 0, a pair of indices .N{; Nj / satisfies

k�kkL1.Br0 .zN{; Nj // � ˛ > 0 for all k:

Then the function �k.z � zN{; Nj / converges to a nontrivial bounded kernel ˇN{; Nj of the oper-
ator �� � cos QgN{; Nj , where QgN{; Nj is the four-end solution centered at the origin obtained
from suitable translation of gN{; Nj : We would like to analyze the asymptotic behavior of �k
around zN{; Nj in a more precise way.

To simplify the notation, we assume zN{; Nj D 0: After a possible rotation, the four-end
solution QgN{; Nj has the form

4 arctan
p cosh.qy/
q cosh.px/

� �;

where p; q are positive constants with p2 C q2 D 1: Then by the L1-nondegeneracy
of four-end solutions, ˇi;j D �1@x QgN{; Nj C �2@y QgN{; Nj , for some constants �1; �2: The nodal
curve of QgN{; Nj in the first quadrant is asymptotic to the line

l1 W qy � px D ln
q

p
�

The ends in the second, third and fourth quadrants are asymptotic to l2, l3 and l4 respect-
ively, where

l2 W qy C px D ln
q

p
; l3 W �qy � px D ln

q

p
and l4 W �qy C px D ln

q

p
�

Without loss of generality, we assume p < q: The case of p � q is similar. The line l1
intersects with the y-axis at the point .0; 1

q
ln q
p
/: This point will be denoted by PC: The

intersection point of the line l3 with the y axis will be denoted by P� WD .0;� 1q ln q
p
/:

We also introduce the coordinate system .x1; y1/ adapted to the end in the first quadrant,
where the x1 axis is on l1, and the y1 axis is orthogonal to l1: Hence the angle between
the x and x1 axes is equal to arctan p

q
, which is also equal to the angle between the y

and y1 axes. The origin of the .x1; y1/ coordinate system will be the point PC: Similarly,
for j D 2; 3; 4, we have the coordinate system .xj ; yj / corresponding to the end in the
j -th quadrant, where the xj axis is on lj . The origin of .x2; y2/-system is PC, while the
origin of the .x3; y3/ and .x4; y4/ systems is P�:

By the linear decomposition lemma (Lemma 4.2 of [11]), or using the explicit formula
of the four-end solutions, there exists constant ı > 0, such that

j@x QgN{; Nj C qH
0.y1/j C j@y QgN{; Nj � pH

0.y1/j � C exp.�ıx1/; in the first quadrant.
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Hence in this region,

(6.7) ˇN{; Nj D .��1q C �2p/H
0.y1/CO.exp.�ıx1//:

Similar asymptotic behaviors hold in other quadrants. Let us list them below for later
purpose:

ˇN{; Nj D .�1q C �2p/H
0 .y2/CO .exp .�ıx2// ; in the second quadrant,

ˇN{; Nj D .�1q � �2p/H
0 .y3/CO .exp .�ıx3// ; in the third quadrant,

ˇN{; Nj D .��1q � �2p/H
0 .y4/CO .exp .�ıx4// ; in the fourth quadrant.

We also set a1 WD ��1q C �2p, a2 WD �1q C �2p, a3 WD �1q � �2p, a4 WD ��1q � �2p:
By the end-to-end construction (see the construction of the kernel �k at the end of the

proof of this lemma), there exists a solution 
k solving

(6.8) ��
k � 
k cosuk D 0;

such that for some constant ı > 0, j
k � ˇN{; Nj j � C exp.�ık/ in Bk.zN{; Nj /: The bound
exp.�ık/ essentially follows from the estimate (6.1). Recall that

(6.9) ���k � �k cosuk D ��2k �k :

If we denote the outward normal derivative with respect to the boundary of the ball Bk WD
Bk.zN{; Nj / by @� , then from (6.8) and (6.9), we deduce

(6.10) �2k D

R
@Bk

.
k@��k � �k@�
k/R
Bk
.�k
k/

�

For j D 1; : : : ; 4, in the j -th quadrant, by (6.4) and (6.6),

(6.11) �k D
�
bk;j exp.��kxj /Cmk;j exp.�kxj /

�
H 0.yj /C �j .x; y/;

where bk;j ; mk;j are constants depending on k and

j�j j � C exp.�ıxj /; in the j -th quadrant.

We emphasize that in the decomposition of the form (6.11), the constants bk;j ; mk;j may
not be uniquely determined and may not be uniformly bounded with respect to k: How-
ever, we know that as k ! C1, around zN{; Nj , �k ! ˇN{; Nj and �k ! 0: This implies that
as k !C1,

bk;j Cmk;j ! aj ; for j D 1; : : : ; 4:

Recall that the minimal distance between points k!i;j is equal to 2k:Using the asymptotic
behavior of ˇN{; Nj and (6.11), we haveZ

@Bk

.
k @��k � �k@�
k/

D

4X
jD1

.aj �k Œ�bk;j exp.��kk/Cmk;j exp.�kk/�/CO.exp.�ık//:(6.12)
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On the other hand, still by (6.7) and (6.11), we have
(6.13)Z

Bk

.�k
k/ D �
�1
k

4X
jD1

�
aj Œ�bk;j .exp .��kk/ � 1/Cmk;j .exp.�kk/ � 1/�

�
CO.1/:

To simplify the notation, let us set

M WD

4X
jD1

�
aj Œ�bk;j exp .��kk/Cmk;j exp.�kk/�

�
; and

N WD

4X
jD1

�
aj .bk;j �mk;j /

�
:(6.14)

Using these notations and (6.12), (6.13), we see from the identity (6.10) that

�2k D
�kM CO .exp.�ık//
��1
k
M C ��1

k
N CO.1/

�

This implies that

(6.15) N D ��1k O .exp.�ık//C o .1/ :

Claim: �kk ! 0 as k !C1.
To prove this claim, we assume to the contrary that the claim is not true. Then we

can find a subsequence, still denoted by �k , such that �k � c1k�1 for some fixed positive
constant c1: Then by (6.15),

(6.16) N ! 0; as k !C1:

Note that for each pair of indices .i0; j0/, we can associate to it the corresponding quant-
ity N , which satisfies (6.16). To make things more rigorous, let us introduce some nota-
tion.

For any pair of indices .i; j /, we have the rescaled lines kLi ; kLj introduced at the
beginning of this section. They intersect at the point k!i;j : We also designate a direction
for each of these lines. We know that around the point zi;j , we have put the four-end
solution gi;j as a building block for the approximate solution for uk : As k ! C1,
�k.z � zi;j / tends to a kernel ˇi;j of the operator ��� cos Qgi;j : Previous analysis tell us
that along the four ends of Qgi;j , we can associate the data aj ; bk;j ; mk;j : To distinguish
between different intersection points, we write those “a” part of the data as a�i;C;j and
a�i;�;j : More precisely, a�i;C;j will be the “a” along the end of Qgi;j corresponding to the
positive direction of kLi , while a�i;�;j will be the “a” along the end of Qgi;j correspond-
ing to the negative direction of kLi : Similarly, we have b�i;C;j ; m

�
i;C;j and b�i;�;j ; m

�
i;�;j ,

which actually depend on k: We also point out that some of a�i;˙;j could be zero.
For each fixed j D 1; : : : ; n, we associate the following quantities to the line kLj :

Pj WD
X
i¤j

�
a�j;C;i .b

�
j;C;i �m

�
j;C;i /C a

�
j;�;i .b

�
j;�;i �m

�
j;�;i /

�
;

Qj WD
X
i¤j

�
a�i;C;j .b

�
i;C;j �m

�
i;C;j /C a

�
i;�;j .b

�
i;�;j �m

�
i;�;j /

�
:
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Summing up the identities (6.16) for all pairs of indices .i; j /, we find that as k !C1,

nX
lD1

Ql ! 0:

There are two possible cases.
Case 1. There exist a constant � > 0, and an index j0, both independent of k, such

that Qj0 > � for all k large.
In this case, summing up the identities (6.16) for all pairs of indices of the form .i; j0/,

we find that

(6.17) Pj0 � �
�

2
; for k large.

We can relabel the indices such that j0 D n, and the intersection points !1;n; : : : ; !n�1;n
are in the order consistent with the positive kLn direction. Fix an index i and write the
line segment connecting k!i;n with k!iC1;n as L�: For the four-end solution gi;n, the
coordinate system adapted to its end corresponding to L� will be written as .xi ; yi /: For
the four-end solution giC1;n, the coordinate system adapted to its end corresponding toL�

will be written as .xiC1; yiC1/: As we have analyzed above, around L�, the main order
(the part parallel to H 0) of �k in the .xi ; yi /-coordinate has the form�

b�n;C;i exp .��kxi /Cm�n;C;i exp .�kxi /
�
H 0.yi /I

while the main order of �k in .xiC1; yiC1/-coordinate has the form�
b�n;�;iC1 exp .��kxiC1/Cm�n;�;iC1 exp .�kxiC1/

�
H 0 .yiC1/ :

Choose any point on L� and let di be the sum of its xi and xiC1 coordinates. Note that
di D O.k/: Then we have the following relation:

(6.18) b�n;C;i D m
�
n;�;iC1 exp .di�k/ :

Similarly,
b�n;�;iC1 D m

�
n;C;i exp .di�k/ :

It follows that

(6.19) b�2n;C;i �m
�2
n;C;i C b

�2
n;�;iC1 �m

�2
n;�;iC1 D .m

�2
n;C;i Cm

�2
n;�;iC1/ .exp.2di�k/� 1/:

In view of the fact that b�n;C;i Cm
�
n;C;i D a

�
n;C;i C o.1/, we obtain

a�n;C;i .b
�
n;C;i �m

�
n;C;i / D b

�2
n;C;i �m

�2
n;C;i C o.jb

�
n;C;i �m

�
n;C;i j/;

D b�2n;C;i �m
�2
n;C;i C o.1/ .1C jm

�
n;C;i j/;

and
a�n;�;i .b

�
n;�;i �m

�
n;�;i / D b

�2
n;�;i �m

�2
n;�;i C o.1/ .1C jm

�
n;�;i j/:

Here we remark that under the assumption that �k � c1k�1, we can actually show that the
m�i;˙;j are uniformly bounded with respect to k: But the proof below does not need this.
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Now by (6.19), for the line kLn, we have

Pn D
X
i¤n

�
a�n;C;i

�
b�n;C;i �m

�
n;C;i

�
C a�n;�;i

�
b�n;�;i �m

�
n;�;i

��
D

n�2X
iD1

��
m�2n;C;i Cm

�2
n;�;iC1

�
.exp .2di�k/ � 1/

�
C
�
b�2n;�;1 �m

�2
n;�;1

�
C
�
b�2n;C;n�1 �m

�2
n;C;n�1

�
C o.1/

n�1X
iD1

�
1C

ˇ̌
m�n;C;i

ˇ̌
C
ˇ̌
m�n;�;i

ˇ̌�
:(6.20)

Due to the fact that �k decays to zero at infinity, there holds m�n;�;1 D m
�
n;C;n�1 D 0: It

follows that

b�2n;�;1 �m
�2
n;�;1 C b

�2
n;C;n�1 �m

�2
n;C;n�1 D a

�2
n;�;1 C a

�2
n;C;n�1 C o.1/:

Therefore using the assumption that �k � c1k�1, we get

exp.2di �k/ � 1 � exp.2c1di k�1/ � 1 � c2 > 0

for some fixed constant c2 and thus lim infk!C1Pn � 0: This contradicts with (6.17) and
hence Case 1 cannot happen.

Case 2. For any index l , Ql ! 0 as k !C1:
In this case, we should have

(6.21) lim
k!C1

Pl D 0; for any fixed index l:

On the other hand, we still have identities similar to the form (6.20), for any line kLj : In
view of the assumption that k�kkL1 D 1, we know that for at least one pair of indices
.i0; j0/, the constant aj0;C;i0 is nonzero. Without loss of generality, we assume j0 D n:

If a�n;�;1 is nonzero, by (6.20), we have lim infk!C1 Pn > 0, which contradicts
with (6.21). If a�n;�;1 D 0, then we consider m�n;C;1: There are two possible subcases.

Subcase 1. Up to a subsequence, jm�n;C;1j � ˛0 > 0, where ˛0 is a constant independ-
ent of k:

In this subcase, still by (6.20), we have lim infk!C1 Pn > 0, which again contradicts
with (6.21).

Subcase 2. m�n;C;1 ! 0 as k !C1:
In this subcase, using the fact that a�n;C;1 D a�n;�;1 D 0, we have b�n;C;1 ! 0 as

k !C1. Hencem�n;�;2 also tends to 0, by (6.18). Now instead of a�n;�;1, we can consider
a�n;�;2. If a�n;�;2 is nonzero, then we again get a contradiction by using (6.20).

This procedure can be repeated until we arrive at an;�;i0 and get a contradiction. Hence
Case 2 cannot happen. The Claim is then proved.

Let c be a fixed large constant. With the information on �k at hand, next we would
like to prove: there exists a function �k satisfying k�kkL1 < C1,

k�k � �kkL1.Bck/ D o.1/;
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and

(6.22) ���k � �k cosuk D 0:

The proof of this fact will be based on the end-to-end construction. Let us explain it in the
sequel. More details about the end-to-end construction can be found in Section 3 of [39].

We recall that around each zi;j , the sequence of functions �k.z � zi;j / converges
to ˇi;j , where ˇi;j is bounded and

��ˇi;j � ˇi;j cos Qgi;j D 0:

Up to a rotation of the coordinate system, we can choose positive direction ej D .ej;1; ej;2/
for each line kLj such that ej;1 > 0: We also assume jej j D 1 and ej;2 < ejC1;2 for all j:
For each fixed index j , the line kLj intersects with other n � 1 lines. The one with the
rightmost intersection point with kLj will be denoted by kL�j : The ends of uk in the right
half plane are asymptotic to the lines kLj ; j D 1; : : : ; n: For the functions ˇ�j ;j , recall
that we have introduced the constants aj;C;�j .

Let " > 0 be a small parameter. Let kLj;" be the line obtained by parallel translation
of kLj in the direction orthogonal to ej with a distance equal to "jaj;C;�j j: If aj;C;�j is
positive, then kLj;" is above kLj , and if aj;C;�j is negative, then kLj;" will be below kLj :

By the end-to-end construction, there exists a solution uk;" to the equation ��uk;" D
sinuk;", whose ends in the right half plane are asymptotic to the lines kLj;"; j D 1; : : : ; n:
This construction relies on the fact that we can consecutively adjust the centers of the
four-end solutions according to the new set of lines kLj;", from right to left. Let us define

�k WD lim
"!0

uk;" � uk

"
�

Then �k is the desired function. To see this, we first observe that by the construction,
�k satisfies (6.22) and has the same asymptotic behavior as ˇ�j ;j along the end kLj in
the positive kLj direction. Note that for any bounded kernel of the four-end solution, its
asymptotic behavior (the part parallel to H 0) at infinity is determined by its asymptotic
behavior along two of its ends. The estimate �k D o.k�1/ tells us that away from the
centers of gi;j , the projection of �k ontoH 0 is not too far from a constant, indeed, its error
is of order o.1/:We then deduce that k�k � �kkL1.Bck/ D o.1/: It remains to prove that �k
is bounded. To show this, let us recall that uk is equal to Un with suitable parameters
pj ; qj ; �

0
j : We then consider the solutions Un;" with the same pj ; qj as Un, and with �0j;"

being close to �0j , chosen in such a way that the ends of Un;" in the right half plane is
asymptotic to kLj;": Then we define the function

��k WD lim
"!0

Un;" � Un

"
�

Since the ends of Un;" in the left half plane are also parallel to kLj ; j D 1; : : : ; n, we see
that k��

k
kL1 < C1: Now we consider the function ˆ WD �k � ��k : Then ˆ.x; y/! 0,

along the ends of uk in the right half plane. Then by the proof of nondegeneracy in Sec-
tion 4, ˆ D 0: The fact that ˆ D 0 can also be proved in the following way. We know
that the dimension of the kernel of the operator �� � cos uk in the space of functions
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with at most linearly growing rate along each end is equal to 2n, which follows from the
nondegeneracy of Un: On the other hand, differentiating Un with respect to qj yields a
kernel linearly growing along kLj , both in the positive and negative directions. These
provides us with n-linearly independent unbounded kernels. We also observe that differ-
entiating Un with respect to �0j yields a bounded kernel which does not decay to zero
along kLj , both in the positive and negative directions. Hence ˆ has to be zero. We then
conclude that �k is bounded and hence is the desired function. Note that there is a delicate
issue here. Namely we are not choosing �k to be ��

k
directly, because at the beginning

we do not have very precise asymptotic behavior of ��
k

and we cannot immediately infer
that k��

k
� �kkL1 D o.1/: This is why we use the end-to-end construction to get better

asymptotic behavior of �k :
Along each end, �k decays to zero. Let .x; y/ be the coordinates adapted to this end.

Then �k has the form

�k D bk exp .��kx/H 0 .y/CO
�
d.z;[zi;j /

�
:

Along this same end,
�k D akH

0 .y/CO
�
d.z;[zi;j /

�
Moreover, using the properties of �k , we have bk � ak! 0:We also know that there exists
at least one end such that the corresponding jakj is bounded away from 0 uniformly with
respect to k: We then compute that

R
R2.�k�k/ > 0, which implies �k D 0: We remark

that one can also use similar arguments as that of the proof of the claim above to con-
clude directly that �k D 0 (here one uses the fact that along each end, the m� part of the
function �k vanishes). In any case, this contradicts with ��2

k
< 0: Hence the lemma is

proved.

Lemma 6.4. The Morse index of uk is at most n.n � 1/=2 for k large.

Proof. Suppose to the contrary that there were n.n� 1/=2C1 negative eigenvalues (coun-
ted with multiplicity), with corresponding eigenfunctions �k;j ; j D 1; : : :, n.n� 1/=2C 1,
normalized such that k�k;j kL2.R2/ D 1, and

R
R2.�k;i�k;j / D 0 for i ¤ j:

For each index l and for each pair of indices .i0; j0/, as k ! C1, the sequence
'k.�/ WD �k;l .� � zi0;j0/ converges, up to a subsequence, to a function '1 satisfying

��'1 � '1 cos Qgi0;j0 D �i0;j0 '1;

where �i0;j0 is the unique negative eigenvalue of the operator �� � cos Qgi0;j0 : Note
that '1 could be the trivial zero function. However, for at least one pair of indices, it
will be nontrivial.

Let ��i;j be the function introduced in Lemma 6.2. Let d.p;[zi;j / be the distance of
a point p to the set of all points zi;j ; i; j D 1; : : : ; n; i ¤ j: For each fixed index l , up
to a subsequence, we can assume that for some constants ˛i;j;l ; i; j D 1; : : : ; n; i ¤ j ,
independent of k, and some ı > 0,

�k;l .z/ D
X
i;j;i¤j

.˛i;j;l �
�
i;j /C$l .z/ exp

�
�ıd.z;[zi;j /

�
;

where k$lkL1.R2/ ! 0 as k !C1:
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Observe that there exist constants cs; s D 1; : : :, n.n � 1/=2C 1, at least one of them
being nonzero, such that for each fixed pair of indices .i; j /,

n.n�1/=2C1X
sD1

˛i;j;s cs D 0:

Hence
n.n�1/=2C1X

sD1

cs �k;s D

n.n�1/=2C1X
sD1

�
cs$s.z/ exp.�ıd.z;[zi;j //

�
:

Since �k;i and �k;j are L2-orthogonal to each other for i ¤ j , the L2 norm of the left-

hand side is equal to
�Pn.n�1/=2C1

sD1 c2s
�1=2

> 0I while the L2 norm of the right-hand side
tends to 0 as k ! C1: This is a contradiction. Hence the Morse index of uk cannot be
greater than n.n � 1/=2 for k large.

We remark that from technical point of view, there is an alternative way to prove this
lemma: first, one can perturb the function ��i;j into a true eigenfunction O�i;j using the
implicit function theorem; then one can show that any eigenfunction corresponding to a
negative eigenvalue cannot be orthogonal to all these eigenfunctions O�i;j :

Proof of Proposition 6.1. We have proved that the Morse index of uk equals n.n � 1/=2
if k is large. Now observe that any 2n-end solution Un can be deformed to a solution of
the above form, through a family of 2n-end solutions. As we proved in Section 4, all the
solutions in this family are L1-nondegenerate. Due to the continuous dependence of the
eigenfunction upon this deformation, the Morse indices of all these solutions have to be
same. This implies that the Morse index of any 2n-end solutions is equal to n.n � 1/=2.

Proof of Theorem 1.3. Proposition 5.1 tells us that any 2n-end solution belongs to the
family Un: All solutions in this family are L1-nondegenerate and this family has 2n free
parameters. Hence the set M2n of the 2n-end solutions is a 2n dimensional manifold.
Proposition 6.1 tells us that their Morse index is equal to n.n � 1/=2: This finishes the
proof of Theorem 1.3.
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