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Asymptotic monotonicity of the orthogonal speed
and rate of convergence for semigroups of

holomorphic self-maps of the unit disc

Filippo Bracci, Davide Cordella and Maria Kourou

Abstract. We show that the orthogonal speed of semigroups of holomorphic self-
maps of the unit disc is asymptotically monotone in most cases. Such a theorem
allows to generalize previous results of D. Betsakos and D. Betsakos, M. D. Contreras
and S. Díaz-Madrigal and to obtain new estimates for the rate of convergence of
orbits of semigroups.

1. Introduction

The theory of continuous semigroups of holomorphic self-maps of the unit disc D WD ¹z 2
C W jzj < 1º – or just, for short, semigroups in D – is a flourishing subject of study since
the early nineteen century, both as a subject by itself and for many different applications,
see, e.g., [1–3, 10, 16, 18, 19] and bibliography therein.

In this paper we are interested in considering the so-called “rate of convergence” of
the orbits of a non-elliptic semigroup in D to its Denjoy–Wolff point. Estimates for the
rate of convergence of an orbit of a non-elliptic semigroup in D have been obtained in
[5–7, 12–15, 17].

In particular, in [5], D. Betsakos proved that if .�t / is a semigroup in D with Denjoy–
Wolff point � 2 @D, then there exists a constant K > 0 such that

(1.1) j�t .0/ � � j � Kt
�1=2; t � 0:

The point 0 can be easily replaced with any z 2 D. However, the exponent �1=2 of t
is sharp, and can be replaced with �1 in case .�t / is either hyperbolic or parabolic with
positive hyperbolic step.

In Theorem 5.3 of [7] (see also Theorem 16.3.1 in [10]), D. Betsakos, M. D. Contreras
and S. Díaz-Madrigal got an estimate of the previous type with the exponent �1=2 re-
placed by ��=.˛ C ˇ/ in case the image of the Koenigs function of the semigroup is
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contained in a sector of the form W˛;ˇ WD p C i¹re
i� W r > 0;�˛ < � < ˇº with ˛; ˇ 2

Œ0; �� and ˛ C ˇ > 0 for some – completely irrelevant for this discussion – point p 2 C.
In [8] (see also [10], Chapter 16), the first named author introduced three quantit-

ies, called speeds, which are defined in intrinsic terms using the hyperbolic distance and
showed that the previous estimates can be translated in terms of one of such speeds. To be
more concrete, let � 2 @D be the Denjoy–Wolff point of .�t /. Let �.�t .0// 2 .�1; 1/� be
the closest point to �t .0/ in the sense of hyperbolic distance kD in D. For t � 0, we let

vo.t/ WD kD.0; �.�t .0///;

and call it the orthogonal speed of .�t /. It can be shown that vo.t/ � �1
2

log j� � �t .0/j,
and therefore (1.1) can be translated in

(1.2) lim inf
t!C1

h
vo.t/ �

1

4
log t

i
> �1;

and, similarly, the estimate in Theorem 5.3 of [7] can be obtained by replacing 1=4 by
�=.2.˛ C ˇ//.

Now, in Proposition 6.5 of [8] (see also Corollary 16.2.6 in [10]) it is proved that
the orthogonal speed of a semigroup whose image under the Koenigs function is a sector
W˛;ˇ , goes like � �

2.˛Cˇ/
log t as t ! C1. Therefore, (1.2) and Theorem 5.3 in [7] can

be rephrased as lim inft!C1Œvo.t/�wo.t/� > �1, where w0.t/ is the orthogonal speed
of the semigroup whose image under the Koenigs function is a sector W˛;ˇ . Hence, the
following natural question was raised in [8] (see Question 4 in Section 8 of [8]):

Question. Let .�t / and . Q�t / be non-elliptic semigroups in D with Koenigs functions h
and Qh, respectively, and denote by vo.t/ (respectively, Qvo.t/) the orthogonal speed of .�t /
(respectively, . Q�t /). Assume h.D/ � Qh.D/. Is it true that

lim inf
t!C1

Œvo.t/ � Qvo.t/� > �1‹

In other words, is the orthogonal speed asymptotically monotone?

In this paper we give a (partial) affirmative answer to the previous question. In partic-
ular, we prove that if one replaces the lim inf with lim sup, the answer is always yes.

Theorem 1.1. Let .�t / and . Q�t / be non-elliptic semigroups in D. Let h .respectively, Qh/
be the Koenigs function of .�t / .respectively, of . Q�t //. Suppose that h.D/ � Qh.D/. Then

lim sup
t!C1

Œvo.t/ � Qvo.t/� > �1;

or, equivalently,

lim inf
t!C1

j�t .0/ � � j

j Q�t .0/ � Q� j
< C1;

where � 2 @D is the Denjoy–Wolff point of .�t / and Q� 2 @D is the Denjoy–Wolff point
of . Q�t /.

Also, we are able to provide a (complete) affirmative answer to the question in many
cases:
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Theorem 1.2. Let .�t / and . Q�t / be non-elliptic semigroups in D. Let h .respectively, Qh/
be the Koenigs function of .�t / .respectively, of . Q�t //. Suppose that h.D/ � Qh.D/ and
that

(1) either h.D/ is quasi-symmetric with respect to vertical axes,

(2) or Qh.D/ is quasi-symmetric with respect to vertical axes,

(3) or Qh.D/ is starlike with respect to some w0 2 Qh.D/.

Then
lim inf
t!C1

Œvo.t/ � Qvo.t/� > �1;

or, equivalently, there exists K > 0 such that for all t � 0,

j�t .0/ � � j � Kj Q�t .0/ � Q� j;

where � 2 @D is the Denjoy–Wolff point of .�t / and Q� 2 @D is the Denjoy–Wolff point
of . Q�t /.

Here, we say that a starlike at infinity domain � is quasi-symmetric with respect to
vertical axes if there exists K > 0 such that K�1ı�.t/ � ıC.t/ � Kı�.t/, for all t � 0,
where for some z0 2 �, we denote by

QıC.t/ WD inf¹jw � .z0 C i t/j W Rew � Re z0; w 2 C n�º;

Qı�.t/ WD inf¹jw � .z0 C i t/j W Rew � Re z0; w 2 C n�º;

and ı˙.t/ WD min¹t; Qı˙.t/º.
It was proved in [9] that h.D/ is quasi-symmetric with respect to vertical axes if and

only if .�t .0// converges non-tangentially to the Denjoy–Wolff point.
Condition (3) in Theorem 1.2 is clearly satisfied by the sectors of type W˛;ˇ , with

˛; ˇ 2 Œ0; �� and ˛ C ˇ > 0, hence, our theorem generalizes the results in [5] and [7],
Theorem 5.3.

In Theorem 5.6 of [7], the authors get some estimates in the case where h.D/DW˛;ˇ ,
with ˛; ˇ 2 Œ0; �� and ˛ C ˇ > 0. Indeed, they prove that,

(1) if ˛;ˇ > 0, then there exists a constantK > 0 such that j Q�t .0/� � j �Kt�1=.˛Cˇ/,
for all t � 0;

(2) if either ˛ D 0 or ˇ D 0, then there exists a constantK > 0 such that, for all t � 0,
j Q�t .0/ � � j � Kt

�1�1=.˛Cˇ/.
Now, if ˛; ˇ > 0, then h.D/ D W˛;ˇ is quasi-symmetric with respect to vertical axes

and then the result can be obtained also from Theorem 1.2 (and the explicit computation of
the orthogonal speed of .�t /). While, if either ˛ D 0 or ˇ D 0, the picture does not enter
into the hypotheses of Theorem 1.2 because h.D/ is not quasi-symmetric with respect
to the vertical axes and we have no information on Qh.D/. However, the estimate (2) in
Theorem 1.2 is not a relation between the orthogonal speeds of .�t / and . Q�t / (but between
the orthogonal speeds of . Q�t / and the total speed of .�t /), and can be also obtained by the
methods illustrated in this paper (see Remark 3.2).

The proof of Theorem 1.2 is based on harmonic measure theory. Suppose � ¨ C is a
simply connected domain. The harmonic measure at a pointw 2�with respect toD� @�
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is denoted by ! .w;D;�/. In Proposition 4.2, we prove that there exists a constantK > 0

such that for all t � 1, ˇ̌̌
v0.t/C

1

2
log! .0;At ;D/

ˇ̌̌
� K;

whereAt is defined as follows. For t � 1, let at 2 @D\¹Imz > 0º be the intersection of @D
with the circle containing ��t .0/, orthogonal to .�1; 1/ and orthogonal to @D at at . Then
let QAt � @D be the closed arc containing 1 with end points at and at . Define At WD � QAt .

Then, in Section 5, we give some estimates of harmonic measures, based on Gaier’s
theorem and the strong Markov property. With these tools at hand, in the fundamental
Lemma 6.1, we show the (almost) monotonicity of the orthogonal speed, in the case where
a certain harmonic measure along the orbit of the semigroup is bounded from below by
zero. This lemma allows us to prove Theorem 1.1 and Theorem 6.2, which is a more
general version of Theorem 1.2 (and from which Theorem 1.2 follows). In Section 7, we
give some applications of our results. In particular, we discuss the rate of convergence in
case the image of the Koenigs function contains/is contained in domains of type …˛ WD

¹z 2 C W Im z > jRe zj˛º for ˛ > 1 and of type „.˛; �/ WD .�H \…˛/ [W.�/, where
W.�/ WD ¹z 2 C j arg.z/ 2 .�=2 � �; �=2/º.

We end the paper with Section 8 containing some open questions originating from this
work.

2. Semigroups in the unit disc

In this section we briefly recall the basics of the theory of semigroups of holomorphic self-
maps of the unit disc, as needed for our aims. We refer the reader to the books [1,10,16,18]
for details.

Definition 2.1. A continuous semigroup .�t / of holomorphic self-maps of D, or just a
semigroup in D for short, is a semigroup homeomorphism between the semigroup of real
non-negative numbers (with respect to sum) and the semigroup of holomorphic self-maps
of D (with respect to composition). Here, as usual, the chosen topology for RC is the
Euclidean topology and the space of holomorphic self-maps of D is endowed with the
topology of uniform convergence on compacta.

A semigroup .�t / without fixed points in D is called non-elliptic. If .�t / is a non-
elliptic semigroup, �t has the same Denjoy–Wolff point � 2 @D, for all t > 0. Moreover,
limt!C1 �t .z/ D � 2 @D, for all z 2 D.

Let .�t / be a non-elliptic semigroup in D. Up to conjugate with a rotation, we can
assume that the Denjoy–Wolff point of .�t / is 1. The Denjoy–Wolff theorem (see, e.g.,
Theorem 1.8.4 in [10]) implies that

(2.1) �t .E.1;R// � E.1;R/;

for all t � 1 and R > 0, where E.1;R/ WD ¹z 2 D W j1 � zj2 < R.1 � jzj2/º.
Let us denote the right half-plane by

H WD ¹w 2 C W Rew > 0º
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and let C WD!H be the Cayley transform defined by C.z/D .1C z/=.1� z/. Then (2.1)
implies that for all s � t � 0,

(2.2) Re .C.�s.0/// � Re .C.�t .0///:

This is, in fact, the Denjoy–Wolff theorem version in H (see also Theorem 1.7.8 in [10]).
If .�t / is a non-elliptic semigroup in D, then there exists a (essentially unique) uni-

valent function hWD ! C such that
(1) h.�t .z// D h.z/C i t for all z 2 D, t � 0,
(2)

S
t�0.h.D/ � i t/ D �, where � is either a vertical strip, or a vertical half-plane

or C.
The function h is called the Koenigs function of .�t /.

3. Speeds of semigroups

Speeds of non-elliptic semigroups in D have been introduced in [8] (see also Chapter 16
in [10]). We recall here the basic facts needed.

Let � 2 @D and let � WD .�1; 1/� . Then � is a geodesic for the hyperbolic distance kD

in D. For every z 2 D, there exists a unique point, �.z/ 2 � such that

kD.z; �.z// D min¹kD.z; w/ W w 2 �º:

Definition 3.1. Let .�t / be a non-elliptic semigroup in D with Denjoy–Wolff point � 2
@D. The (total/ speed v.t/ of .�t / is

v.t/ WD kD.0; �t .0//; t � 0:

The orthogonal speed vo.t/ of .�t / is

vo.t/ WD kD.0; �.�t .0///; t � 0:

The tangential speed vT .t/ of .�t / is

vT .t/ WD kD.�t .0/; �.�t .0///; t � 0:

As a consequence of “the Pythagoras theorem in hyperbolic geometry”, we have the
following relation for all t � 0 (see equation (16.1.2) in [10] or equation (5.2) in [8]):

(3.1) vo.t/C vT .t/ �
1

2
log 2 � v.t/ � vo.t/C vT .t/:

Also, as a consequence of the Julia lemma and (3.1) (see equation (16.1.3) in [10] or
equation (5.3) in [8]),

(3.2) vT .t/ � vo.t/C 4 log 2:
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Moreover, the speeds of a semigroup are related to certain quantities, whose asymp-
totic estimates go under the name “rate of convergence” of a semigroup. For all t � 0, we
have

(3.3)

ˇ̌̌
v.t/ �

1

2
log

1

1 � j�t .0/j

ˇ̌̌
�
1

2
log 2;ˇ̌̌

vo.t/ �
1

2
log

1

j� � �t .0/j

ˇ̌̌
�
1

2
log 2;ˇ̌̌

vT .t/ �
1

2
log
j� � �t .0/j

1 � j�t .0/j

ˇ̌̌
�
3

2
log 2:

Since the definition of the speeds is given in hyperbolic terms, the speeds are invariant
under conformal changes of coordinates. In particular, one can check that if .�t / is a
non-elliptic semigroup in D with Denjoy–Wolff point 1 and C WD ! H is the Cayley
transform C.z/ D .1C z/=.1 � z/, then (see equation (5.1) in [8] or Section 6.5 in [10])
the orthogonal speed of .�t / is

(3.4) vo.t/ D kH.1; �t / D
1

2
log �t ;

where we let C.�t .0// D �tei�t for some �t > 0 and �t 2 .��=2; �=2/, t � 0.
In particular, by (3.1) and (3.2), we have

v.t/ � 2vo.t/C 4 log 2:

Since v.t/!C1, as t!C1, (because �t .0/! � 2 @D), it follows that limt!C1 v
o.t/

D C1 and, in particular, limt!C1 �t D C1.

Remark 3.2. Let .�t / and . Q�t / be non-elliptic semigroups in D. Let h (respectively, Qh )
be the Koenigs function of .�t / (respectively, of . Q�t /). Let v.t/; vo.t/ and Qv.t/; Qvo.t/
denote the total and the orthogonal speeds of .�t / and . Q�t /, respectively. Suppose that
h.D/ � Qh.D/. Then clearly v.t/ � Qv.t/. Moreover, by (3.1),

Qvo.t/ � Qv.t/C
1

2
log 2 � v.t/C

1

2
�

Hence,
lim inf
t!C1

Œv.t/ � Qvo.t/� > �1:

For instance, if h.D/DW˛;ˇ , with ˛;ˇ 2 Œ0;�� and ˛C ˇ > 0, but either ˛ D 0 or ˇ D 0,
then

v.t/ �
� C ˛ C ˇ

2.˛ C ˇ/
log t

(see Proposition 6.5 in [8] or Corollary 16.2.6 in [10]). From this, condition (2) of The-
orem 5.6 in [7] follows.

It is presently unknown if we can replace �C˛Cˇ
2.˛Cˇ/

log t with (the more natural) estimate

vo.t/ �
�

2.˛ C ˇ/
log t:

In the final part of this section, we give some geometric conditions on the image of the
Koenigs function of a semigroup, which assures that vo.t/ is a non-decreasing function
of t .
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Lemma 3.3. Let .�t / be a non-elliptic semigroup in D. Suppose that v.t2/ � v.t1/, for
some t2 � t1 � 0. Then vo.t2/ � vo.t1/.

Proof. Suppose t2 > t1 and v.t2/ � v.t1/. We can assume that the Denjoy–Wolff point of
.�t / is 1. Let C.z/ WD 1Cz

1�z
be the Cayley transform from D to H. Let �tei�t WD C.�t .0//,

with �t > 0 and �t 2 .��=2; �=2/, t � 0. Then, v.t/ D kH.1; �te
i�t /. By (2.2),

(3.5) �t2 cos �t2 � �t1 cos �t1 � 1:

This implies that �t2e
i�t2 belongs to the set ¹w 2 C W Rew � �t1 cos �t1º.

LetD.1; v.t1// WD ¹w 2H W kH.1;w/ < v.t1/º, which is a Euclidean disc of center a
real number r 2 .0;C1/, containing 1 in its interior and �t1e

i�t1 on its boundary (in fact,
the center is cosh.2v.t1// and the radius sinh.2v.t1//D j cosh.2v.t1//� �t1e

i�t1 j, but we
do not need this explicit computation). In particular, @D.1; v.t1// contains both �t1e

i�t1

and �t1e
�i�t1 . From this, a simple geometric consideration shows that

¹w 2 C W Rew � �t1 cos �t1 ; jwj � �t1º � D.1; v.t1//:

From the hypothesis, since �t2e
i�t2 62D.1;v.t1//, the previous equation together with (3.5)

imply immediately that �t2 � �t1 , and, hence, vo.t2/ � vo.t1/.

Proposition 3.4. Let .�t / be a non-elliptic semigroup with Koenigs function h. If h.D/ is
convex, then Œ0;C1/ 3 t 7! v.t/ is non-decreasing.

Proof. Let 0 � t1 � t2 and assume by contradiction that v.t2/ < v.t1/. Note that v.t/ D
kD.0;�t .0//D kh.D/.h.0/;h.0/C i t/. Hence, if v.t2/ < v.t1/, it follows that h.0/C i t2 2
D.h.0/; v.t1// WD ¹w 2 C W kh.D/.h.0/; w/ < v.t1/º. Since the hyperbolic distance in
a convex domain is a convex function, it follows that the hyperbolic discs are convex.
Therefore, if h.0/C i t2 2 D.h.0/; v.t1//, since h.0/ 2 D.h.0/; v.t1// as well, it follows
that h.0/C is 2D.h.0/;v.t1// for all s 2 Œ0; t2�. However, h.0/C i t1 2D.h.0/;v.t1// and
equivalently, v.t1/ D kh.D/.h.0/; h.0/C i t1/ < v.t1/. We are led to a contradiction.

More generally, we have the following result.

Proposition 3.5. Let .�t / be a non-elliptic semigroup with Koenigs function h. If h.D/ is
starlike with respect to h.0/, then Œ0;C1/ 3 t 7! v.t/ is non-decreasing.

Proof. Since the hyperbolic discs centered at h.0/ are also starlike with respect to h.0/
(see, e.g., Theorem 2.10 in [11]), the proof is similar to the proof of Proposition 3.4 and
we omit it.

4. Orthogonal speed and harmonic measure

Lemma 4.1. Let .�t / be a non-elliptic semigroup in D with Denjoy–Wolff point 1. Let
C.z/ WD 1Cz

1�z
be the Cayley transform from D to H. Let �tei�t WD C.�t .0//, with �t > 0

and �t 2 .��=2; �=2/, t � 0. There exists K > 0 such that for all t � 1,ˇ̌̌
vo.t/C

1

2
log! .1;‚t ;H/

ˇ̌̌
� K;

where ‚t WD ¹iy W jyj � �tº D ¹iy W jyj � jC.�t .0//jº.
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Proof. Let !t WD !.1;‚t ;H/. By Example 7.2.5 in [10],

!t D
1

�
Arg

� i�t � 1
1C i�t

�
:

Since limt!C1 �t DC1, there exists t0 > 0 such that �t > 1, for all t � t0. Hence, from
the previous formula, for all t � t0,

!t D
1

�
arctan

2�t

�2t � 1
�

Moreover, there exists t1 � t0 such that 2�t=.�2t � 1/ < 1, for all t � t1. For y 2 Œ0; 1�,
we know that �

4
y � arctan y � y. Hence, there exist constants 0 < c1 < c2 such that for

all t � t1,
c1

�t
�
1

2

1

�t � 1=�t
� !t �

2

�

1

�t � 1=�t
�
c2

�t
�

The above inequality and (3.4) lead to the result at once.

Let .�t / be a non-elliptic semigroup in D with Denjoy–Wolff point 1. Note that, by the
Denjoy–Wolff theorem (see, e.g., Theorem 1.8.4 in [10]), for every t > 0, Re �t .0/ > 0.
Bearing this in mind, we can state the following proposition.

Proposition 4.2. Let .�t / be a non-elliptic semigroup in D with Denjoy–Wolff point 1.
For t � 1, let at 2 @D \ ¹Im z > 0º be the intersection of @D with the circle containing
�t .0/, orthogonal to .�1; 1/ and orthogonal to @D at at . Let At � @D be the closed arc
containing 1 and with end points at and at . Then there exists a constant K > 0 such thatˇ̌̌

v0.t/C
1

2
log! .0;At ;D/

ˇ̌̌
� K; for all t � 1:

Proof. It follows at once from Lemma 4.1 and the conformal invariance of the harmonic
measure under the Cayley transform.

5. Estimates of harmonic measures

In all this section, .�t / denotes a non-elliptic semigroup in D with Denjoy–Wolff point 1.
Let C.z/ WD 1Cz

1�z
be the Cayley transform from D to H. Let �tei�t WD C.�t .0//, with

�t > 0 and �t 2 .��=2; �=2/, t � 0. For t � 1, let

�t WD ¹�se
i�s W s � tº and ��t WD ¹iy W jyj � min

s�t
�sº:

In addition, set ‚t WD ¹iy W jyj � �tº and note that ��t D ‚t if and only if �s � �t for
all s � t .

Lemma 5.1. There exists an increasing sequence ¹tnº, with t1 � 1, converging to C1
such that ‚tn D �

�
tn

, for all n.
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Proof. Since Œ0;C1/ 3 t 7! �t is continuous and limt!C1 �t DC1, there exists t1 � 1
so that �s � �t1 for all s � t1. Then, by induction, we take tn � tn�1 C 1 to be a point of
minimum of Œtn�1 C 1;C1/ 3 t 7! �t .

Lemma 5.2. Let t � 1. For all s � t ,

!.�se
i�s ; ��t ;H/ �

1

2
�

Proof. Let t0 � t be such that �t0 WDmin¹�s W s � tº. By definition, ��t D ¹iy W jyj � �t0º.
Consider the automorphism T WH!H give by T .w/ WD w=�t0 . LetG1 WD ¹iy W jyj � 1º.
By the conformal invariance of harmonic measure, we have

!.�se
i�s ; ��t ;H/ D !

�
�s
�t0
ei�s ; G;H

�
:

Since �s=�t0 � 1, we have!. �s
�t0
ei�s ;G;H/� 1=2 (this follows from a direct computation,

or see Lemma 7.1.10 in [10] and use conformal invariance under the Cayley transform).

Lemma 5.3. Fix � 2 .0; �=2/. Then there exists C D C.�/ > 0 such that for all t � 1,
with j�t j � � , we have

!.�se
i�s ; ‚t ;H/ � C;

for all s � t .

Proof. By (2.2), for every s � t , we have �s cos�s � �t cos�t . Therefore, �s
�t
ei�s 2¹w2HW

Rew > cos �tº. Hence, repeating the argument in Lemma 5.2 with t0 D t , we obtain

!.�se
i�s ; ‚t ;H/ D !

�
�s
�t
ei�s ; G;H

�
> C.�/ > 0;

where
C.�/ WD min¹! .w;G;H/ W Rew > cos �º:

Lemma 5.4. For all t � 1,

!.1;‚t ;H/ < 2!.1; �t ;H n �t /:

Proof. This is essentially a consequence of Hall’s (or Gaier’s) theorem. To give some
details, let at 2 @D and At � @D be as in Proposition 4.2. Let A0t � At be the arc with
end points 1 and at . LetWt WD ¹�s.0/ W s � tº, t � 1. Then, by Gaier’s theorem (see, e.g.,
Theorem 7.2.13 in [10]), for all t � 1,

!.0;Wt ;H nWt / > !.0;A
0
t ;H/:

Now, by definition of harmonic measure (or see, e.g. equation (7.1.2) in [10]), denoting
by `.A0t / the Euclidean length of A0t , we have

!.0;A0t ;H/ D
1

2�
`.A0t / D

1

2�

`.At /

2
D
1

2
!.0; At ;H/:

Therefore, !.0;Wt ;H nWt / > 1
2
!.0;At ;H/. Using the conformal invariance of the har-

monic measure and the Cayley transform, we have the result.
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Lemma 5.5. Let t � 1. Suppose that there exists c D c.t/ > 0 such that for all s � t ,

(5.1) !.�se
i�s ; ‚t ;H/ � c:

Then
!.1;‚t ;H/ � c!.1; �t ;H n �t /:

Proof. By the strong Markov property for harmonic measure (see Lemma 3.7 in [4]), we
have

!.1;‚t ;H/ D !.1;‚t ;H n �t /C

Z
�t

!.˛;‚t ;H/ !.1; d˛;H n �t /;

where, considering the measure � WD !.1; �;H n �t / on the boundary of H n �t , we let
!.1; d˛;H n �t / WD d� (i.e., the integration with respect to the measure �).

Therefore, by hypothesis (5.1),

!.1;‚t ;H/ �

Z
�t

!.˛;‚t ;H/ !.1; d˛;H n �t /

� c

Z
�t

!.1; d˛;H n �t / D !.1; �t ;H n �t /:

6. Asymptotic monotonicity of orthogonal speed

In this section, .�t / and . Q�t / are non-elliptic semigroups in D with Koenigs functions h
and Qh, respectively. We assume that 1 is the Denjoy–Wolff point of both .�t / and . Q�t /.

We use the notations introduced in the previous section, and we let �t , ��t and ‚t be
the sets associated to �t , and Q�t , Q��t and Q‚t the corresponding ones associated to . Q�t /.

Lemma 6.1. Suppose h.D/ � Qh.D/. Let c > 0. Then there exists a constant H 2 R such
that, for every t � 1 so that

(6.1) !. Q�se
i Q�s ; Q‚t ;H/ � c 8s � t;

we have
vo.t/ � Qvo.t/ � H:

Proof. LetC WD!H be the Cayley transform given byC.w/D .1Cw/=.1�w/. Hence,
h ıC�1WH! h.D/ is a biholomorphism such that h.0/D r C i t0, for some r; t0 2R and
h.C�1.�t // D r C i Œt0 C t;C1/. Similarly, Qh ı C�1WH! Qh.D/ is a biholomorphism
mapping Q�t onto Qr C i ŒQt0 C t;C1/, with Qh.0/ D Qr C i Qt0, for some Qr; Qt0 2 R.

Case 1. Assume r D Qr and t0 D Qt0.
Let T WD r C i Œt0C t;C1/. By (in order of usage) Lemma 5.4, conformal invariance,

domain monotonicity and again conformal invariance, we obtain

!.1;‚t ;H/
.Lemma 5.4/

< 2!.1; �t ;H n �t /
(conformal inv.)
D 2!.r C i t0; T; h.D/ n T /

(domain monoton.)
� 2!.r C i t0; T; Qh.D/ n T /

(conformal inv.)
D 2!.1; Q�t ;H n Q�t /

(Lemma 5.5)
�

2

c
!.1; Q‚t ;H/:
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Therefore, by Lemma 4.1 (denoting by QK > 0 the constant related to . Q�t / and by K > 0

the one related to .�t /), we have

vo.t/ � �
1

2
log!.1;‚t ;H/ �K � �

1

2
log!.1; Q‚t ;H/ �K �

1

2
log

2

c

� Qvo.t/C QK �K �
1

2
log

2

c
�

Setting H WD QK �K � 1
2

log 2
c

, we have the result in this case.

Case 2. General case.
Let w0 2 D be such that Qh.w0/ D r C i t0 (this is possible because h.D/ � Qh.D/).

Let AWD ! D be an automorphism such that A.1/ D 1 and A.w0/ D 0. Let Q't WD A ı
Q�t ı A

�1. Hence, . Q't / is a non-elliptic semigroup in D with Denjoy–Wolff point 1, and
it is easy to check that Qh ı A�1 is the Koenigs function of . Q't /. Moreover, Qh ı A�1.0/ D
Qh.w0/ D r C i t0. Therefore, by Case 1,

vo.t/ � Qw0.t/ � H;

where Qw0.t/ denotes the orthogonal speed of . Q't /. By Proposition 16.1.6 in [10], there
exists H 0 > 0 such that j Qvo.s/ � Qwo.s/j � H 0 for all s � 0, hence

vo.t/ � Qvo.t/ � H �H 0:

Proof of Theorem 1.1. By Proposition 16.1.6 in [10], up to conjugation, we can assume
without loss of generality that 1 is the Denjoy–Wolff point of both .�t / and . Q�t /.

By Lemma 5.1 and Lemma 5.2, there exists an increasing sequence ¹tnº, t1 � 1, con-
verging toC1 such that!. Q�sei

Q�s ; Q‚tn ;H/� 1=2, for all s� tn. Therefore, by Lemma 6.1,
there exists H 2 R such that

vo.tn/ � Qv
o.tn/ � H

for all n. The wanted statement follows at once from (3.3).

Theorem 6.2. Let .�t /; . Q�t / be non-elliptic semigroups in D. Let h .respectively, Qh/ be
the Koenigs function of .�t / .respectively, of . Q�t //. Suppose that h.D/ � Qh.D/ and that

(1) either ¹�t .0/º converges non-tangentially to the Denjoy–Wolff point,

(2) or ¹ Q�t .0/º converges non-tangentially to the Denjoy–Wolff point,

(3) or Œ0;C1/ 3 t 7! Qvo.t/ is .eventually/ non-decreasing,

(4) or Œ0;C1/ 3 t 7! Qv.t/ is .eventually/ non-decreasing.

Then
lim inf
t!C1

Œvo.t/ � Qvo.t/� > �1:

Proof. By Proposition 16.1.6 in [10], up to conjugation, we can assume without loss of
generality that 1 is the Denjoy–Wolff point of both .�t / and . Q�t /.

(1) In this hypothesis, lim supt!C1 v
T .t/ <C1, hence, by (3.1), there exists c1 > 0

such that jv.t/ � vo.t/j � c1, for all t � 1.
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Since h.D/ � Qh.D/, then v.t/ � Qv.t/C c2, for some c2 2 R and for all t � 0. Taking
into account again (3.1), we have

vo.t/ � v.t/C c1 � Qv.t/C c1 C c2 � Qv
o.t/C c1 C c2 �

1

2
log 2;

for all t � 0, and we are done.
(2) In this hypothesis, by Lemma 5.3, there exists C > 0 such that for all t � 1, we

have !. Q�sei
Q�s ; Q‚t ;H/ � C , for all s � t . Therefore, by Lemma 6.1, there exists H 2 R

such that, for all t � 1,
vo.t/ � Qvo.t/ � H:

(3) The map t 7! Qvo.t/ is (eventually) non-decreasing if and only if t 7! 1
2

log Q�r
is (eventually) non-decreasing, if and only if t 7! Q�r is (eventually) non-decreasing. By
definition, the latter condition is eventually equivalent to Q��t D Q‚t . If this is satisfied, by
Lemma 5.2, !. Q�sei

Q�s ; Q‚t ;H/ � 1=2, for all s � t and for all t large enough. Again, the
result follows then from Lemma 6.1.

(4) It follows at once from Lemma 3.3 and (3).

Proof of Theorem 1.2. (1) (respectively, (2)) follows at once by Theorem 6.2 (1) (respect-
ively, (2)) and Theorem 1.1 in [9] (or Theorem 17.3.1 in [10]).

(3) In case w0 D Qh.0/, the result follows from Proposition 3.5 and Theorem 6.2 (4).
In case w0 ¤ Qh.0/, let AWD! D be an automorphism of D such that A.w0/ D 0. Let

Q't WD A ı Q�t ı A
�1. Hence, . Q't / is a non-elliptic semigroup in D, and it is easy to check

that h1 WD Qh ı A�1 is the Koenigs function of . Q't /. Since h1.D/ is starlike with respect
to 0 by construction and hypothesis, it follows by Proposition 3.5 that the total speed w.t/
of . Q't / is non-decreasing. Hence, by Theorem 6.2 (4),

lim inf
t!C1

Œvo.t/ � wo.t/� > �1;

where wo.t/ denotes the orthogonal speed of . Q't /. By Proposition 16.1.6 in [10], there
exists a constantK1>0 such that j Qvo.t/�wo.t/j �K1 for all t � 0. The wanted statement
follows at once from (3.3).

7. Some applications

As it is clear from Theorem 1.1 or Theorem 1.2 (and (3.3)), in order to obtain explicit
estimates for the rate of convergence of orbits in terms of the geometry of the image of
the Koenigs function of a semigroup, the main issue is to have estimates of the rate of
convergence in special domains.

In this section, we estimate the orthogonal speed of semigroups whose Koenigs func-
tion has image given by some special forms and apply our main results to get general
applications.

1. Fix ˛ > 1 and consider the following simply connected domain:

…˛ WD ¹z 2 C j Im z > jRe zj˛º
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The domain…˛ is starlike at infinity. Therefore, if h˛ WD!…˛ is a Riemann map, it turns
out that h˛ is the Koenigs function of the semigroup .�˛t /where �˛t .z/ WD h

�1.h.z/C i t/,
z 2 D, t � 0. Clearly, .�˛t / is a non-elliptic semigroup in D. Since

S
t�0.…˛ � i t/ D C,

i

i t q
t � 1

2
C i

�
t � 1

2

�
�

q
s � 1

2
C i

�
t � 1

2

�

Figure 1. The domain …˛ with ˛ D 2.

the semigroup is parabolic with zero hyperbolic step. We might assume, without loss of
generality, that h˛.0/ D i and 1 is the Denjoy–Wolff point of .�˛t /. The domain …˛ is
symmetric with respect to the imaginary axis, and therefore by Theorem 1.1 in [9] (or
Theorem 17.3.3 in [10]), the orbits of .�t / converge non-tangentially to 1. Moreover,


 W Œ0;C1/ �! …˛ with 
.t/ WD i.t C 1/

is a geodesic for the hyperbolic distance of h.D/ (see, e.g., Proposition 6.1.3 in [10])
and h.Œ0; 1// D 
.Œ0;C1// (since h�1.
.t//! 1 as t ! C1, we have that Œ0; 1/ and
h�1.
.Œ0;C1// are geodesics in D, whose closure contain both 0 and 1, hence, they
are equal). In particular, the tangential speed of .�˛t / is identically zero, the orthogonal
speed vo˛.t/ coincides with the total speed v˛.t/ and, since 
 is a geodesic,

v˛.t/ D k…˛ .i; i.1C t // D

Z 1Ct

1

�…˛ .isI i/ ds:

By the distance lemma for convex simply connected domains (see, e.g., Theorem 5.2.2
in [10]),

(7.1)
1

2

Z 1Ct

1

ds
ı˛.is/

� v˛.t/ �

Z 1Ct

1

ds
ı˛.is/

;

where ı˛.ir/ denotes the Euclidean distance from ir to the boundary of …˛ .

Lemma 7.1. Let ˛ > 1. For any c 2 .0; 1/, there exists s0 � 1 such that for all s � s0,

cs1=˛ � ı˛.is/ � s
1=˛:

Proof. Fix s � 1. Since s1=˛ is the distance of is to the point s1=˛ C is 2 @…˛ , it is clear
that ı˛.is/ � s1=˛ . By the symmetry of …˛ , there exists x � 0 such that

ı˛.is/
2
D j.x C ix˛/ � isj2 D x2 C .x˛ � s/2:
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In fact, the point x is the largest positive root of the equation

(7.2) x˛ C
1

˛
x2�˛ � s D 0:

Note that, if 1 < ˛ � 2, this equation has a unique positive root for any s � 1, while, if
˛ > 2 and s � 1, there are two positive roots.

Now let x˛.s/ WD x be the point defined above. The function s 7! x˛.s/ is strictly
increasing and when s goes to infinity, x˛.s/ diverges toC1, as well. By (7.2),

s D x˛.s/
˛
�
1C

1

˛x˛.s/2.˛�1/

�
;

and one deduces that there exists a positive strictly increasing function g˛.s/W Œ1;C1/!
.0; 1/ such that lims!C1 g˛.s/ D 1 and

ı˛.is/ � x˛.s/ D g˛.s/ � s
1=˛:

Thus the proof is completed.

Remark 7.2. If ˛ D 2, we have

ı2.is/ D

r
s �

1

2
C

�
�
1

2

�2
D

r
s �

1

4
�

Now we can apply Lemma 7.1 to (7.1). SinceZ 1Ct

1

s�1=˛ ds D
� ˛

˛ � 1

��
� 1C .1C t /1�1=˛

�
;

for any � > 0 and for sufficiently large t (depending on � and ˛),

(7.3)
1

2

� ˛

˛ � 1

�
t1�1=˛ . v˛.t/ D v

o
˛.t/ . .1C �/

� ˛

˛ � 1

�
t1�1=˛;

where f1.t/ . f2.t/ means that there exists � 2 R, such that f2.t/ � f1.t/ � � for all t .
As a direct application of Theorem 1.2, (7.3) and (3.3), we get the following result.

Proposition 7.3. Suppose .�t / is a non-elliptic semigroup in D with Denjoy–Wolff point �
and Koenigs function h. Let vo.t/ be the orthogonal speed of .�t /.

(1) Suppose that h.D/ � p C…˛ , for some ˛ > 1 and p 2 C. Then

lim inf
t!C1

h
vo.t/ �

˛

2.˛ � 1/
t1�1=˛

i
> �1;

or, equivalently, there exists K > 0 such that for all t � 0,

j�t .0/ � � j � K exp
�
�

˛

˛ � 1
t1�1=˛

�
:
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(2) Suppose that p C…˛ � h.D/, for some ˛ > 1 and p 2 C. Then for any � > 0,

lim sup
t!C1

h
vo.t/ �

.1C �/˛

.˛ � 1/
t1�1=˛

i
< C1

or, equivalently, there exists K.�/ > 0 such that for all t � 0,

j�t .0/ � � j � K.�/ exp
�
�
2.1C �/˛

˛ � 1
t1�1=˛

�
:

2. Let ˛ > 1 and � 2 .0; ��. We let

„.˛; �/ WD .�H \…˛/ [W.�/;

where W.�/ WD ¹z 2 C j arg.z/ 2 .�=2 � �; �=2/º.

i

i t H

t
2
C i t

2

p
3

�

q
t � 12 C i

�
t � 12

�

Figure 2. The domain „.2; �=6/.

Once again, such a domain is starlike at infinity. It is convex when 0 < � � �=2,
otherwise it is starlike with respect to any point z 2 H with arg.z/ > 0. If h˛;� WD !
„.˛; �/ is a Riemann map, then it is the Koenigs function of the semigroup �˛;�t .z/ WD

h�1
˛;�
.h˛;� .z/C i t// defined for any z 2 D and t � 0. As

S
t�0.„.˛; �/� i t/ is the whole

complex plane, the semigroup .�˛;�t / is parabolic with zero hyperbolic step. Again, we
can assume h˛;� .0/ D i , without loss of generality. For any t � 1,

ıC
˛;�
.i t/ WDmin ¹inf¹jz � i t j j Re z � 0; z 2 C n„.˛; �/º; tº D

´
.sin �/t; � 2.0; �=2/;
t; � 2 Œ�=2; ��;

while

ı�˛;� .i t/ WD min ¹inf¹jz � i t j j Re z � 0; z 2 C n„.˛; �/º; tº D ı˛.i t/;

where ı˛.i t/ is the distance from the boundary of …˛ , considered in the first example.
By Lemma 7.1, ı˛.i t/ D O.t1=˛/, so it follows that the domain is not quasi-symmetric
with respect to vertical axes. In particular, by Theorem 1.1 (2) in [9], each orbit of the
semigroup .�˛;�t / converges tangentially to its Denjoy–Wolff point and we can assume
that up to conjugation with a rotation, it is equal to 1.

Let us recall the following result.
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Lemma 7.4 ([10], Corollary 16.2.6). Let be �; � 2 Œ0;��, not both equal to zero. Consider
the domain

W.�; �/ D ¹z 2 C j arg.�iz/ 2 .��; �/º :

Let .�t / be a semigroup of holomorphic self-maps in D with Koenigs map h and h.D/ D
p CW.�; �/, for some p 2 C.

(1) If both � and � are non-zero, the tangential speed vT .t/ of .�t / is bounded, while
for the total and orthogonal speeds one has

v.t/ � vo.t/ �
1

2

� �

� C �

�
log t:

(2) If otherwise � 2 .0; �� and �D 0, the speeds of .�t / have the following behavior :

vT .t/ �
1

2
log t; vo.t/ �

�

2�
log t; v.t/ �

� C �

2�
log t:

When � D 0 and � 2 .0; ��, the result is analogous, just replace � with �.

Returning to our domain„.˛;�/, we have thatW.�/�„.˛;�/. Moreover, for any �2
.0; �� we can find a point p� 2 C, for which „.˛; �/ � p� CW.�; �/. So by Lemma 7.4
and Theorem 1.2, it follows that for the orthogonal speed vo

˛;�
of .�˛;�t / one has

(7.4)
�

2�
.1 � �/ log t . vo˛;� .t/ .

�

2�
log t;

where � WD �
�C�
2 .0; �

�C�
� is arbitrarily small, for � sufficiently close to zero. More

generally, by the same argument, we have an analogous outcome to Proposition 7.3.

Proposition 7.5. Suppose .�t / is a non-elliptic semigroup in D with Denjoy–Wolff point �
and Koenigs function h. Let vo.t/ be the orthogonal speed of .�t /.

(1) Suppose that h.D/ � p C„.˛; �/, for some ˛ > 1, � 2 .0; �� and p 2 C. Then
for any � 2 .0; �

�C�
�,

lim inf
t!C1

h
vo.t/ �

�

2�
.1 � �/ log t

i
> �1;

or, equivalently, there exists K.�/ > 0 such that for all t � 0,

j�t .0/ � � j � K.�/ t
.�1C�/�=� :

(2) Suppose that p C„.˛; �/ � h.D/, for some ˛ > 1, � 2 .0; �� and p 2 C. Let’s
assume that h.D/ is starlike with respect to an inner point. Then

lim sup
t!C1

h
vo.t/ �

�

2�
log t

i
< C1

or, equivalently, there exists K > 0 such that for all t � 0,

j�t .0/ � � j � K t
��=� :
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Remark 7.6. The results above do not depend on ˛. This is not a deficiency of the meth-
ods we use, but a natural fact, due to (7.4). In other words, in the previous setting, the
“non-tangential” side controls the orthogonal speed. Indeed, condition (2) of Proposi-
tion 7.5 is equivalent to assume the (weaker) hypothesis that pCW.�/ � h.D/ and h.D/
is starlike.

On the other hand, it is interesting to note that the exponent ˛ controls the tangential
speed of the semigroup .�˛;�t /, which is not influenced by the angle � .

Proposition 7.7. For the tangential speed of the semigroup .�˛;�t /, the following estimates
.up to real constants/ hold :

1

4

�
1 �

1

˛

�
log t . vT˛;� .t/ .

1

2

�
1 �

1

˛

�
log t:

Hence for any � 2 .0; �
�C�

�, we have the following bounds for the total speed :� �
2�
.1 � �/C

1

4
�
1

4˛

�
log t . v˛;� .t/ .

� �
2�
C
1

2
�
1

2˛

�
log t:

Proof. We divide the proof into steps.

Step 1. Lower bound for tangential speed.
Let H be the curve

H W Œ1;1/ �! „.˛; �/ with H.r/ D rei.���/=2:

This curve is a quasi-geodesic, as its hyperbolic length is

`„.˛;�/.H; Œr1; r2�/ � `W.�/.H; Œr1; r2�/ �

Z r2

r1

dr
ıW.�/.H.r//

D
1

sin �
2

log
r2

r1

and by the distance lemma for simply connected domains (see, e.g., Theorem 3.5 in [9]),

k„.˛;�/.H.r1/;H.r2// �
1

4
log

�
1C

r2 � r1�
sin �

2

�
r1

�
�
1

4
log

r2

r1
�

By means of the Gromov shadowing lemma (see, e.g., Theorem 6.3.8 in [10]), it is enough
to find bounds for

inf
r�1

k„.˛;�/.i t;H.r//;

since the same bounds, up to constants not depending on t , will hold also for vT
˛;�
.t/.

Now, once t is chosen big enough, ı„.˛;�/.i t/ D ı˛.i t/ D O.t1=˛/. If .sin �
2
/r �

ı˛.i t/, then

k„.˛;�/.i t;H.r// �
1

4
log

�
1C
ji t �H.r/j�

sin �
2

�
r

�

D
1

4
log

 
1C

q
r2 C t2 � 2rt cos �

2�
sin �

2

�
r

!
�
1

4
log

�
1C

t � r�
sin �

2

�
r

�
;
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which is a decreasing function of r , so

inf
1�r�.sin �2 /

�1ı˛.it/

k„.˛;�/.i t;H.r//�
1

4
log

�
1C

t�
�

sin �
2

��1
ı˛.i t/

ı˛.i t/

�
�
1

4

�
1�

1

˛

�
log t:

On the other hand, if .sin �
2
/r > ı˛.i t/, then

k„.˛;�/.i t;H.r// �
1

4
log

�
1C
ji t �H.r/j

ı˛.i t/

�
�
1

4
log

�
1C

�
sin �

2

�
t

ı˛.i t/

�
and so, one concludes that vT

˛;�
.t/ & 1

4
.1 � 1=˛/ log t .

Step 2. Upper bound for tangential speed.
For every t greater than some fixed t0 � 1, ı„.˛;�/.i t/ D ı˛.i t/ and the point qt WD

i t C ı˛.i t/ belongs toW.�/�„.˛;�/. So for any t � t0 and r � 1, we define the path �t;r
given by the concatenation of the Euclidean segment from i t to qt :

Lt W Œ0; 1� �! „.˛; �/ with Lt .s/ D i t C ı˛.i t/s;

where 
t;r is the geodesic arc with respect to the hyperbolic metric ofW.�/ joining qt with
H.r/D rei.���/=2. By possibly increasing t0, we may also assume that ı„.˛;�/.Lt .s// �
ı˛.i t/, for any 0 � s � 1. Therefore we have

k„.˛;�/.i t;H.r//

� `„.˛;�/.�t;r / D `„.˛;�/.Lt /C `„.˛;�/.
t;r / � `„.˛;�/.Lt /C `W.�/.
t;r /

�

Z 1

0

ı˛.i t/ ds
ı„.˛;�/.Lt .s//

C kW.�/.qt ;H.r// �

Z 1

0

ı˛.i t/ ds
ı˛.i t/

C kW.�/.qt ;H.r//

D 1C kW.�/.qt ;H.r//:

Now let ˇt WD �=2 � arg qt , so that t � tanˇt D ı˛.i t/. Thus, considering the conformal
map z 7! z�=� which sends eW .�/ WD ei.���/=2W.�/ onto H, and using known estimates
for kH (see for instance Lemma 2.1 in [8]),

kW.�/.qt ;H.r// D kW.�/.jqt j e
i.�=2�ˇt /; rei.���/=2/ D keW .�/.jqt jei.�=2�ˇt /; r/

D keW .�/�1; jqt jr ei.�=2�ˇt /
�
D kH

�
1;
jqt j

�=�

r�=�
ei.�=2��=�ˇt /

�
�
�

2�
log
jqt j

r
C
1

2
log

1

sin
�
�
�
ˇt
� C 1

2
log 2:

By choosing r D jqt j D t
p
1C tan2 ˇt and by observing that, since limt!C1 ˇt D 0,

log
1

sin.�
�
ˇt /
� log

�

�ˇt
� log

1

tanˇt
D log

t

ı˛.i t/
�

�
1 �

1

˛

�
log t;

we conclude that

vT˛;� .t/ � k„.˛;�/.i t;H.jqt j// .
1

2

�
1 �

1

˛

�
log t:

Step 3. Total speed.
The statement for the total speed v˛;� follows directly from (3.1) and (7.4).
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8. Final remarks and open questions

Theorem 1.1 and Theorem 6.2 move towards the direction of giving an affirmative answer
to Question 4 in [8]. However, the complete answer is still unknown, and, as it follows
from the results in Section 5, if counterexamples exist, they are rather peculiar.

Note that (using the same notation as in Section 5), given a semigroup .�t / of D, since
�s ! C1, as s ! C1, by the same argument of Lemma 5.2, for all t � 1, there exists
st � t such that

inf
s�t
!.�se

i�s ; ‚t ;H/ D !.�st e
i�st ; ‚t ;H/ and lim inf

s!C1
!.�se

i�s ; ‚t ;H/ > 0:

Question (i). Does there exist a semigroup .�t / of D so that

lim inf
t!C1

!.�st e
i�st ; ‚t ;H/ D 0‹

By the results in Section 5, if such a semigroup exists, the orbits do not converge non-
tangentially to the Denjoy–Wolff point. Then the orthogonal – and hence the total – speed
is not (eventually) non-decreasing. This raises the second question.

Question (ii). Does there exist a semigroup .�t / of D so that the orthogonal speed
is not (eventually) non-decreasing? Note that this is equivalent to ask if t 7! �t is not
(eventually) non-decreasing, for a semigroup .�t / of D.
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