

Erratum to "Harmonic quasiconformal mappings between \mathcal{C}^1 smooth Jordan domains"

David Kalaj

A few small changes have to be made in the paper "Harmonic quasiconformal mappings between C^1 smooth Jordan domains" by David Kalaj (Rev. Mat. Iberoam. **38** (2022), no. 1, 95–111).

(1) The title of Section 3.1 should be replaced by:

3.1. Assume first that f is β -Hölder continuous, where $\beta > \alpha$ is fixed, and prove that the Hölder constant does not depend on f

(2) The first three lines of Section 3.1 should be replaced by:

Since $f = g + \bar{h}$ is β -Hölder continuous, the function $(1 - |z|)^{1-\beta}(|h'| + |g'|)$ is bounded, and so the maximum

$$A = \max_{|z| \le 1} (1 - |z|)^{1 - \alpha} |i(h'(z) - g'(z))|$$

is attained in a point of the unit disk.

(3) The title of Section 3.2 should be replaced by:

3.2. Let us remove the assumption f is β -Hölder continuous and use an approximation argument

(4) In Section 3.2, in line 16 (from the beginning), instead of " α -Hölder", it should be " $\sqrt{\alpha}$ -Hölder"; and the exponent α in lines 18 and 24 (displayed formulas) should be $\alpha^{2/3}$.

(5) In the same subsection, in line 25, instead of " $\Phi_{p_j,0}^{-1}$ is smooth on T_j ", it should be " $\Phi_{p_i,0}^{-1}$ is $\alpha^{1/3}$ -Hölder continuous on T_j (in view of Corollary 2.3)".

(6) In the last part of the proof of Theorem 1.1 (case (b)), instead of "Theorem 1.4", it should be "Corollary 2.3".

²⁰²⁰ Mathematics Subject Classification: Primary 30C62; Secondary 30C20, 31A20. *Keywords*: Harmonic mappings, quasiconformal mappings, smooth domains.

References

Kalaj, D.: Harmonic quasiconformal mappings between C¹ smooth Jordan domains *Rev. Mat. Iberoam.* 38 (2022), no. 1, 95–111.

Received November 6, 2021.

David Kalaj

Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro; davidkalaj@gmail.com