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On a capacitary strong type inequality and related
capacitary estimates

Keng Hao Ooi and Nguyen Cong Phuc

Abstract. We establish a Maz’ya type capacitary inequality which resolves a spe-
cial case of a conjecture by David R. Adams. As a consequence, we obtain several
equivalent norms for Choquet integrals associated to Bessel or Riesz capacities. This
enables us to obtain bounds for the Hardy–Littlewood maximal function in a sub-
linear setting.

1. Introduction

Let ˛ be a real number and let s > 1. We define the space of Bessel potentials H˛;s D

H˛;s.Rn/, n � 1, as the completion of C1c .R
n/ with respect to the norm

kukH˛;s D kF �1Œ.1C j�j2/˛=2F .u/�kLs.Rn/;

where F is the Fourier transform in Rn. In the case ˛ > 0, it follows (see, e.g., [8]) that a
function u belongs to H˛;s if and only if

u D G˛ � f

for some f 2 Ls.Rn/, and moreover kukH˛;s D kf kLs.Rn/: Here,G˛ is the Bessel kernel
of order ˛ defined by G˛.x/ WD F �1Œ.1C j�j2/�˛=2�.x/.

Recall that the Bessel capacity associated to the Bessel potential spaceH˛;s is defined
for any set E � Rn by

Cap˛; s.E/ WD inf
®
kf ksLs.Rn/ W f � 0;G˛ � f � 1 on E

¯
:

A function f WRn ! Œ�1;C1� is said to be defined quasieverywhere (q.e.) if it is
defined at every point of Rn except for only a set of zero capacity Cap˛;s . The notion of
Choquet integral associated to Bessel capacities will be important in this work. For a q.e.
defined function wWRn ! Œ0;1�, the Choquet integrals of w is defined byˆ

Rn

w dCap˛;s WD
ˆ 1
0

Cap˛;s.¹x 2 Rn W w.x/ > tº/ dt:
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One of the fundamental results of potential theory is the following Maz’ya’s capa-
citary inequality, originally obtained by Maz’ya, and subsequently extended by Adams,
Dahlberg, and Hansson:ˆ

Rn

.G˛ � f /
s dCap˛;s � A

ˆ
Rn

f s dx;

which holds for any nonnegative Lebesgue measurable function f . See, e.g., [3], [9]
and [7], and in particular, see Section 2.3.1 and the historical comments in Section 2.3.13
of [7]. This kind of capacitary inequalities and their many applications are discussed in
Chapters 2, 3 and 11 of [7].

In [2], Adams conjectured (in the context of Riesz capacities and Riesz potentials) that
another capacitary strong type inequality

(1.1)
ˆ

Rn

.G˛ � f / dCap˛;s � A
ˆ

Rn

f s.G˛ � f /
1�s dx

holds for any nonnegative Lebesgue measurable function f (see equation (3.11) in [2]).
(The integral

´
Rn f

s.G˛ � f /
1�sdx is understood as1whenever f D1 on a set of pos-

itive Lebesgue measure. In the case f � 0, it is understood as 0). Moreover, he essentially
showed for the corresponding Riesz capacities and potentials that this is true provided ˛ is
an integer in .0; n/ (see page 23 in [2]). However, we observed that his argument does not
appear to work for Bessel capacities and Bessel potentials as in (1.1) even with integers
˛ 2 .0; n/.

One of the main purposes of this note is to verify (1.1) for any real ˛ > 0.

Theorem 1.1. Let ˛ > 0 and s > 1 be such that ˛s � n. There exists a constant A > 0
such that (1.1) holds for any nonnegative Lebesgue measurable function f .

Our proof of (1.1) is also applicable to the setting of Riesz capacities and potentials,
and thereby extends the above mentioned results of [2] to all real ˛ 2 .0; n/.

Our approach to (1.1) is based mainly in our recent work [11] in which predual spaces
to a Sobolev multiplier type space were considered. For ˛ > 0; s > 1; and p > 1, let
M
˛;s
p D M

˛;s
p .Rn/ be the Banach space of functions f 2 Lploc.R

n/ such that the trace
inequality

(1.2)
�ˆ

Rn

.G˛ � h/
s
jf jp dx

�1=p
� Akhk

s=p

Ls.Rn/

holds for all nonnegative h 2 Ls.Rn/. A norm of a function f 2M ˛;s
p can be defined as

kf kM˛;s
p
WD sup

K

�´
K
jf .x/jp dx

Cap˛;s.K/

�1=p
;(1.3)

where the supremum is taken over all compact sets K � Rn with non-zero capacity. Note
that the right-hand side of (1.3) is known to be equivalent to the least possible constant A
in (1.2) (see [3, 9]).

In [11], we showed that a predual of M ˛;s
p is its Köthe dual space .M ˛;s

p /0 defined by

.M ˛;s
p /0 D

°
measurable functions f W sup

ˆ
jfgj dx < C1

±
;
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where the supremum is taken over all functions g in the unit ball of M ˛;s
p . The norm of

f 2 .M
˛;s
p /0 is defined as the above supremum. Thus we have

Œ.M ˛;s
p /0�� DM ˛;s

p ;

with equality of norms. Various characterizations of .M ˛;s
p /0 can be found in [11]. For our

purpose here the case p D s0 D s=.s � 1/ is of special interest. In particular, as mentioned
in Remark 2.10 in [11], it follows from [6, 10] that the space M ˛;s

s0 is an intrinsic space
associated to the nonlinear integral equation

u D G˛ � .u
s0/C f a.e.

Another important observation in [11] is the following equivalence:

(1.4)
ˆ

Rn

juj dCap˛;s ' 
˛;s.u/;

which holds for all q.e. defined functions u in Rn. Here the functional 
˛;s.�/ is defined
for each q.e. defined function u by


˛;s.u/ WD inf
°ˆ

f s dx W 0 � f 2 Ls.Rn/ and G˛ � f � juj1=s q.e.
±
:

Note that 
˛;s.tu/ D jt j
˛;s.u/ for all t 2 R and moreover 
˛;s.u1 C u2/ � 
˛;s.u1/C

˛;s.u2/ (see [11]). On the other hand, the Choquet integral

´
Rn j � jdCap˛;s is known

to be subadditive only for s D 2 and 0 < ˛ � 1. In particular, the set of all q.e. defined
functions u in Rn such that

´
Rn jujdCap˛;s < C1 is a normable space. An argument as

in the proof of Proposition 2.3 in [11] can be used to show that this space is complete.
As a consequence of (1.4) and the proof of Theorem 1.1, in this paper we obtain two

other characterizations for the Choquet integral. For a q.e. defined function u in Rn, we
denote by �˛;s.u/ and ˇ˛;s , ˛ > 0, s > 1, the following quantities:

�˛;s.u/ WD inf
®
kf k.M˛;s

s0
/0 W 0 � f 2 .M

˛;s
s0 /
0 and G˛ � f � juj q.e.

¯
and

ˇ˛;s.u/ WD inf
° ˆ

Rn

f s.G˛ � f /
1�s dx W f � 0; G˛ � f � juj q.e.

±
:

Theorem 1.2. Let ˛ > 0 and s > 1 be such that ˛s � n. For any q.e. defined function u
in Rn it holds that

(1.5)
ˆ

Rn

juj dCap˛;s ' �˛;s.u/ ' ˇ˛;s.u/:

In particular, we have

Cap˛;s.E/ ' �˛;s.�E / ' ˇ˛;s.�E /

for any set E � Rn.
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To discuss a consequence of Theorem 1.2, we now recall that the (center) local Hardy–
Littlewood maximal function is defined for each f 2 L1loc.R

n/ by

Mlocf .x/ D sup
0<r�1

1

jBr .x/j

ˆ
Br .x/

jf .y/j dy:

for every x 2 Rn.

Theorem 1.3. Let ˛ > 0 and s > 1 be such that ˛s � n. For any q > .n� ˛/=n and any
measurable and q.e. defined function f , we have

ˆ
Rn

.Mlocf /q dCap˛;s � A.n; ˛; s; q/
ˆ

Rn

jf jq dCap˛;s :

An interesting aspect of Theorem 1.3 is that the power q is allowed to be strictly
less than 1. Moreover, here we do not assume any continuity assumption on f . See [1],
Theorem 7.5 in [4], and [12] for some related results.

Finally, we remark that Theorems 1.1, 1.2, and 1.3 also hold in the homogeneous
setting provided ˛ 2 .0; n/, s > 1, and Bessel potentials and capacities are replaced by
the corresponding Riesz potentials and capacities. Moreover, in the homogeneous setting
the local Hardy–Littlewood maximal function Mloc can be replaced by the larger standard
Hardy–Littlewood maximal function.

Recall that the Riesz kernel I˛ , ˛ 2 .0; n/, is defined as the inverse Fourier transform
of j�j˛ (in the distributional sense), and explicitly we have I˛.x/ D 
.n; ˛/jxj˛�n, where

.n; ˛/ D �.n�˛

2
/=Œ�n=2 2˛�.˛=2/�. The Riesz potential of a nonnegative measure � is

defined by the convolution I˛ � �. For ˛ 2 .0; n/ and s > 1, the Riesz capacity cap˛;s is
defined for each set E � Rn by

cap˛; s.E/ WD inf
®
kf ksLs.Rn/ W f � 0; I˛ � f � 1 on E

¯
:

This capacity is the capacity associated to the homogeneous Sobolev space PH˛;s (see
Section 9 in [11]).

Notation. The characteristic function of a set E � Rn is denoted by �
E

. For two quant-
ities A and B , we write A ' B to mean that there exist positive constants c1 and c2 such
that c1A � B � c2A.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let L1.C / denote the space of quasicontinuous function f in Rn

such that
kf kL1.C/ WD

ˆ
Rn

jf j dCap˛;s < C1:

Recall a function f is said to be quasicontinuous (with respect to Cap˛;s) if for any � > 0
there exists an open setO such that Cap˛;s.O/ < � and f is continuous inOc WDRn nO .
It is known that the dual ofL1.C / can be identify with the space M˛;s DM˛;s.Rn/which
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consists of locally finite signed measures � in Rn such that the norm k�kM˛;s <C1 (see
Theorem 2.4 in [11]). Here we define

k�kM˛;s WD sup
K

j�j.K/

Cap˛;s.K/
;

where the supremum is taken over all compact sets K � Rn such that Cap˛;s.K/ 6D 0.
In view of (1.4), L1.C / is normable and thus it follows from the Hahn–Banach the-

orem that for any u 2 L1.C / we have

(2.1) kukL1.C/ ' sup
°ˇ̌̌ˆ

ud�
ˇ̌̌
W k�kM˛;s � 1

±
:

Let f be a nonnegative measurable and bounded function with compact support.
Applying (2.1) with u D G˛ � f , we haveˆ

Rn

G˛ � f dCap˛;s � A sup
k�kM˛;s�1

ˆ
G˛ � f d j�j D A sup

k�kM˛;s�1

ˆ
.G˛ � j�j/f dx

� A kf k.M˛;s

s0
/0 sup
k�kM˛;s�1

kG˛ � j�jkM˛;s

s0
� A kf k.M˛;s

s0
/0 ;

where the last inequality follows from Theorem 1.2 in [10]. By density (see Remark 3.3
in [11]), we see that the inequality

(2.2)
ˆ

Rn

G˛ � f dCap˛;s � A kf k.M˛;s

s0
/0

holds for any nonnegative function f 2 .M ˛;s
s0 /
0.

In proving (1.1) we may assume that
´

Rn f
s.G˛ � f /

1�s dx < C1 and hence f is
finite a.e. by our convention. In this case we must have that f 2 .M ˛;s

s0 /
0. Indeed, for any

g 2M
˛;s
s0 such that kgkM˛;s

s0
� 1, by Remark 2.10 in [11] and [6], there exists a nonnegative

function u 2 Ls
0

loc.R
n/ such that

u D G˛ � .u
s0/C

jgj

M
a.e.

for a constant M > 0 independent of g and u. Thus, as in [5] (see also [6]), we haveˆ
Rn

f jgj dx DM

ˆ
Rn

f .u �G˛ � .u
s0// dx DM

ˆ
Rn

.f u � us
0

G˛ � f / dx(2.3)

DM

ˆ
Rn

G˛ � f
�
u

f

G˛ � f
� us

0
�
dx

�Ms�s.s � 1/s�1
ˆ

Rn

f s.G˛ � f /
1�s dx;

where we used the Young inequality ab � as
0

=s0 � bs=s, a; b � 0, in the last inequality.
Thus taking the supremum over g 2M ˛;s

s0 such that kgkM˛;s

s0
� 1 in (2.3), we find

(2.4) kf k.M˛;s

s0
/0 � A

ˆ
Rn

f s.G˛ � f /
1�s dx < C1:

Finally, combining (2.2) with (2.4) we obtain (1.1) as desired.
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Remark 2.1. We remark that (1.1) and (2.2) are indeed equivalent. On one hand, the proof
above shows that (2.2) implies (1.1). On the other hand, (1.1) implies that

ˆ
Rn

G˛ � f dCap˛;s � A kf kKV

for any nonnegative measurable function f . Here we define

kf kKV WD inf
°ˆ

Rn

hs.G˛ � h/
1�s dx W h � jf j a.e.

±
:

(kf kKV is understood as1 if there is no measurable function h such that h � jf j a.e.
and
´

Rn h
s.G˛ � h/

1�s dx < C1.) As we observe in Remark 2.10 in [11], the two-sided
bound kf k.M˛;s

s0
/0 ' kf kKV follows from [6, 10]. Thus (1.1) implies (2.2).

3. Proof of Theorem 1.2

In order to prove Theorem 1.2, we first prove the following “integration by parts" lemma.

Lemma 3.1. Let ˛ > 0 and s > 1 be such that ˛s � n. Suppose that � is a nonnegative
measure such that the diameter of supp.�/ is less than 1. Then there is a constant A D
A.n; ˛; s/ > 0 such that, for f D .G˛ � �/s

0�1, we have

.G˛ � f /
s
� AG˛ � Œf .G˛ � f /

s�1�

pointwise everywhere in Rn.

Remark 3.2. For Riesz potentials, this lemma has been established for all f � 0 in [14]
(see also [6, 13]). In our setting, which deals with Bessel potentials, it is necessary to
require � to have compact support.

Proof of Lemma 3.1. Without loss of generality, we may assume that supp.�/ � B1=2.0/.
With f D .G˛ � �/s

0�1, we write f D f1 C f2, where

f1 D f�B3.0/
and f2 D f�B3.0/c

.with B3.0/c D Rn n B3.0//:

Then

(3.1) .G˛ � f /
s
� AŒ.G˛ � f1/

s
C .G˛ � f2/

s�:

We shall use the following pointwise two-sided estimates for G˛ (see, e.g., Sec-
tion 1.2.4 in [3]):

(3.2) G˛.x/ ' jxj
˛�n; 8jxj � 15; .0 < ˛ < n/:

and

(3.3) G˛.x/ ' G˛.x C y/; 8jxj � 3; jyj � 1; .˛ > 0/:
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We mention that (3.3) follows from the asymptotic behavior G˛ near infinity that can
be found, e.g., in equation (1.2.24) in [3].

We now write

ŒG˛ � f1.x/�
s
D

ˆ
jyj�3

G˛.x � y/f .y/
hˆ
jzj�3

G˛.x � z/f .z/ dz
is�1

dy:

Thus if jxj � 10, then jx � zj � 7 � jy � zj, which yields that

G˛.x � z/ � G˛.y � z/:

Therefore, we get

ŒG˛ � f1.x/�
s
� G˛ � Œf .G˛ � f /

s�1�.x/

in the case jxj � 10.
On the other hand, if jxj < 10, then for jyj � 3 by (3.2) we have

G˛.x � y/ ' jx � yj
˛�n:

Thus applying Lemma 2.1 in [13] we obtain

ŒG˛ � f1.x/�
s
� AG˛ � Œf1.G˛ � f1/

s�1�.x/ � AG˛ � Œf .G˛ � f /
s�1�.x/

in the case jxj < 10.
Combining these two estimates we get that

(3.4) ŒG˛ � f1.x/�
s
� AG˛ � Œf .G˛ � f /

s�1�.x/; 8x 2 Rn:

To estimate ŒG˛ � f2.x/�s we first observe the following bound:

(3.5) f2.x/ � AG˛ � f .x/; 8x 2 Rn:

Inequality (3.5) is trivial when jxj < 3. On the other hand, for jxj � 3, we have by (3.3),

.f2.x//
s�1
D

ˆ
jyj<1=2

G˛.x � y/d�.y/ � A

ˆ
jyj<1=2

G˛.x/d�.y/ D A k�kG˛.x/:

Note that for jy � xj < 1=2 and jxj � 3, by (3.3) we have

f .y/s�1 D

ˆ
jzj<1=2

G˛.y � z/d�.z/ � c0G˛.x/ k�k ;

and so, for jxj � 3,

G˛ � f .x/ �

ˆ
jy�xj<1=2

G˛.x � y/f .y/ dy

�

ˆ
jy�xj<1=2

G˛.x � y/.c0G˛.x/ k�k/
s0�1 dy

� c .k�kG˛.x//
s0�1
� c1f2.x/:

Thus (3.5) is verified. Now by Hölder’s inequality and (3.5) we have

(3.6) ŒG˛ � f2�
s
� AG˛ � .f

s
2 / � A1G˛ � Œf .G˛ � f /

s�1�:

At this point, combining (3.1), (3.4), and (3.6), we obtain the lemma.



K. H. Ooi and N. C. Phuc 596

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let u be a q.e. defined function in Rn. Suppose that f is a non-
negative measurable function such that G˛ � f � juj quasi-everywhere. Then by (2.2)
and (2.4) it follows thatˆ

Rn

juj dCap˛;s �
ˆ

Rn

G˛ � f dCap˛;s � A1 kf k.M˛;s

s0
/0 � A2

ˆ
Rn

f s.G˛ � f /
1�s dx:

Now taking the infimum over such f we arrive atˆ
Rn

juj dCap˛;s . �˛;s.u/ . ˇ˛;s.u/:

Thus to complete the proof, it is left to show that

(3.7) ˇ˛;s.u/ .
ˆ

Rn

juj dCap˛;s :

To this end, we first show (3.7) for uD�
E

, whereE is any set such that Cap˛;s.E/> 0
and the diameter of E is less than 1. By Theorems 2.5.6 and 2.6.3 in [3] one can find a
nonnegative measure � D �E with supp.�/ � E (called capacitary measure for E) such
that the function V E D G˛ � ..G˛ � �/s

0�1/ satisfies the following properties:

�E .E/ D Cap˛;s.E/ D
ˆ

Rn

V E d�E D

ˆ
Rn

.G˛ � �
E /s

0

dx;

and
V E � 1 quasieverywhere on E:

Let f D .G˛ � �/s
0�1. By Lemma 3.1, we have

�
E
� .V E /s D .G˛ � f /

s
� AG˛ � Œf .G˛ � f /

s�1� q.e.

Thus,

ˇ˛;s.�E / � A

ˆ
Rn

f s.G˛ � f /
.s�1/s

®
G˛ � Œf .G˛ � f /

s�1�
¯1�s

dx

� A

ˆ
Rn

f s.G˛ � f /
.s�1/s.G˛ � f /

.1�s/s dx

D A

ˆ
Rn

f s dx D A

ˆ
Rn

.G˛ � �/
s0 dx D ACap˛;s.E/;

as desired.
We now let ¹Bj ºj�0 be a covering of Rn by open balls with unit diameter. This

covering is chosen in such a way that it has a finite multiplicity depending only on n. We
shall use the following quasi-additivity of Cap˛;s:

(3.8)
X
j�0

Cap˛;s.E \Bj / �M Cap˛;s.E/

for any setE �Rn. For compact setsE, a proof of (3.8) can be found in Proposition 3.1.5
in [9]. The same proof also works for any set E provided one uses Corollary 2.6.8 in [3].



On a capacitary strong type inequality and related capacitary estimates 597

In proving (3.7), we may assume
´

Rn jujdCap˛;s <C1. LetEk D¹2k�1 < juj � 2kº,
and let Ej;k D Ek \Bj for k 2 Z and j � 0. We have

(3.9) ˇ˛;s.u/ D ˇ˛;s

�X
k2Z

juj�
Ek

�
� ˇ˛;s

�X
k2Z

X
j�0

juj�
Ej;k

�
:

For k 2 Z and j � 0, let

fj;k D .G˛ � �
Ej;k /s

0�1 and Fj;k D fj;k.G˛ � fj;k/
s�1:

By the above argument, we have

G˛ � .2
kFjk/ � c juj�Ej;k

q.e.

and ˆ
Rn

.2kFjk/
s.G˛ � .2

kFj;k//
1�s dx � A2kCap˛;s.Ejk/:

By (2.4), this gives

(3.10) k2kFj;kk.M˛;s

s0
/0 � A2

kCap˛;s.Ejk/:

Set F D supj;k 2
kFj;k . Then we have .G˛ � F /1�s � .G˛ � .2kFj;k//1�s for any

k 2 Z and j � 0. Moreover,

G˛ � F � c
X
k2Z

juj�
Ek
� c1

X
k2Z

X
j�0

juj�
Ej;k

q.e.

due to the finite multiplicity of ¹Bj ºj�0. Also, it follows from (3.8) and (3.10) that

kF k.M˛;s

s0
/0 � C1

X
k2Z

X
j�0

2kCap˛;s.Ej;k/ � C2
X
k2Z

2kCap˛;s.Ek/

� A

ˆ
Rn

juj dCap˛;s < C1:

In particular, F is finite a.e. and thus there is a set N such that jN j D 0 and

Rn D
S
k2Z;j�0 ¹0 < F � 2

kC1Fj;kº
S
¹F D 0º

S
N:

Thus we find

ˇ˛;s

�X
k2Z

X
j�0

juj�
Ej;k

�
� A

ˆ
Rn

F s.G˛ � F /
1�s dx

� A
X
k2Z

X
j�0

ˆ
¹0<F�2kC1Fj;kº

F s.G˛ � F /
1�s dx

� A
X
k2Z

X
j�0

ˆ
Rn

.2kFj;k/
s.G˛ � .2

kFj;k//
1�s dx

� A
X
k2Z

X
j�0

2kCap˛;s.Ejk/ � C
ˆ

Rn

juj dCap˛;s :

Inequality (3.7) now follows from (3.9) and the last bound. This completes the proof
of the theorem.
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Remark 3.3. For Riesz potentials I˛ � f and Riesz capacities cap˛;s , where ˛ 2 .0; n/
and s > 1, the corresponding bound (3.7) can be obtained using (1.4) and the pointwise
bound

(3.11) .I˛ � f /
s
� AI˛ � Œf .I˛ � f /

s�1�;

which holds for all nonnegative measurable functions f (see [13, 14]). Indeed, for any
f � 0 such that I˛ � f � juj1=s q.e., by (3.11) we have AI˛ � Œf .I˛ � f /s�1� � juj q.e.,
and thus again by (3.11),

ˇ˛;s.u/ � A

ˆ
Rn

f s.I˛ � f /
.s�1/sI˛ � Œf .I˛ � f /

s�1�1�s dx � A

ˆ
Rn

f s dx:

Minimizing over such f and recalling (1.4), we get the corresponding bound (3.7) as
desired.

4. Proof of Theorem 1.3

Proof of Theorem 1.3. By Theorem 1.2, we have
ˆ

Rn

jf jq dCap˛;s ' inf
° ˆ

Rn

hs.G˛ � h/
1�s dx W h � 0; .G˛ � h/

1=q
� jf j q.e.

±
:

On the other hand, for any h � 0 and .G˛ � h/1=q � jf j q.e., by Theorem 3.1 in [11]
we have

Mlocf �MlocŒ.G˛ � h/
1=q� � A.G˛ � h/

1=q

pointwise everywhere, provided q > .n � ˛/=n. Thus
ˆ

Rn

jf jq dCap˛;s � c inf
°ˆ

Rn

gs.G˛ � g/
1�s dx W g � 0; .G˛ � g/

1=q
�Mlocf q.e.

±
'

ˆ
Rn

.Mlocf /q dCap˛;s :

This completes the proof of the theorem.
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