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Localized regularity of planar maps of finite distortion

Olli Hirviniemi, István Prause and Eero Saksman

Abstract. In this article we study fine regularity properties for mappings of finite
distortion. Our main theorems yield strongly localized regularity results in the bor-
derline case in the class of maps of exponentially integrable distortion. Analogues of
such results were known earlier in the case of quasiconformal mappings. Moreover,
we study regularity for maps whose distortion has better than exponential integra-
bility.

1. Introduction

Let f W�!C be a function, where��C is a domain. We say that f is a (homeomorphic
and orientation preserving) mapping of finite distortion if the following conditions are
satisfied:

(i) f 2 W
1;1

loc .�/.
(ii) f W�! f .�/ is a homeomorphism with Jf � 0 a.e.
(iii) jDf j2 D Kf .z/J.z; f / for a.e. z 2 C, where Kf is a measurable function that

is finite almost everywhere.
In an analogous way, one may define mappings of finite distortion on subdomains

of Rd . In this article we only consider mappings of finite distortion on the plane. A planar
mapping of finite distortion satisfies a Beltrami equation

@f .z/ D �f .z/ @f .z/;

where �f is a measurable function with j�f .z/j < 1 for a.e. z. One has

j�f .z/j D
Kf .z/ � 1

Kf .z/C 1
�

Here and henceforth we employ the standard notation

@ WD
d

dz
D
1

2
.@x C i@y/ and @ WD

d

dz
D
1

2
.@x � i@y/:
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An important subclass is formed by mappings of finite exponential distortion which
have the property that for some positive constant p > 0 one has

(1.1) epKf .z/ 2 L1loc:

A natural version of the measurable Riemann mapping theorem, the Stoilow factorization
theorem, and many other basic features of the standard quasiconformal theory generalise
to these classes. For a good account of the theory we refer the reader to Chapter 20 of [4].
Improving on earlier results [9] (which has result valid also in n dimensions), it was shown
in [3] that for a mapping of exponentially integrable distortion satisfying (1.1) there is the
regularity

(1.2) jDf j2 logˇ .e C jDf j/ 2 L1loc for ˇ < p � 1;

and this is not necessarily true for ˇ D p � 1: Note that in the above results one is
interested only in the local regularity of mappings of finite distortion with exponentially
integrable distortion. Similarly, in our work it is enough to consider only the regularity
of principal maps near the origin since local regularity results may then be transferred by
the Stoilow factorisation theorem to maps that are defined on subdomains. Let us recall
that a principal map f WC! C is conformal (i.e., �f .z/D 0) outside the unit disk D and
f .z/ D z CO.1=jzj/ near infinity.

For (standard)K-quasiconformal maps (i.e.,Kf .z/�K <1, whereK is a constant),
the optimal area distortion [2] implies that Df 2 Lploc for p < 2K=.K � 1/, but this fails
in general in the borderline case p D 2K=.K � 1/. There is a substitute (Corollary 13.2.5
in [4]) in the form of inclusion in the weak spaceDf 2L2K=.K�1/;1loc . Another kind of res-
ult in the borderline case was given in Theorem 3.5 of [5], stating that aK-quasiconformal
map satisfies

(1.3) .K �Kf .z//jDf j
2K=.K�1/

2 L1loc;

which gives strongly localized regularity information on the map, especially we haveR
Kf �K�"

jDf j2K=.K�1/ < 1 for all " > 0. For further basic results on planar maps of
exponentially integrable distortion we refer e.g. to [6, 10, 12, 14, 15] and the references
therein.

The principal aim of the present note is to establish a strongly localized regularity
result for mappings of finite distortion analogous to (1.3). Our main result states the fol-
lowing.

Theorem 1.1. Assume that f is a planar .homeomorphic/ mapping of exponentially
integrable distortion satisfying (1.1) with p D 1. Then it holds that

(1.4)
Z
A

1

log4C".e CKf /
jDf j2 <1 for any " > 0

for any compact subset A � �.

Arguments in the proof of Theorem 1.1 also give the following result.

Theorem 1.2. With f a mapping of integrable distortion satisfying (1.1) for some p > 0,
we have

jDf j2 logp�1.e C jDf j/Œlog log.jDf j C 10/��.1C3pC"/ 2 L1loc for any " > 0:
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In the radial case, one can improve both Theorems 1.1 and 1.2:

Theorem 1.3. (i) Let f WC! C be a planar and radial homeomorphic mapping of finite
distortion with exponentially integrable distortion satisfying (1.1) with p D 1. ThenZ

A

1

log1C".e CKf /
jDf j2 <1 for any " > 0

and any compact subset A � C.

(ii) For radial maps of p-integrable distortion with p > 0 we have

jDf j2 log.e C jDf j/p�1 log log.jDf j C 10/�.1C"/ 2 L1loc for any " > 0:

Our next result considers mappings that in a sense lie in between mappings of expo-
nentially integrable distortion and standard quasiconformal maps.

Theorem 1.4. Assume that f is a planar homeomorphic mapping of finite distortion sat-
isfying the integrability

e.Kf .z//
˛

2 L1loc

for some ˛ > 1. Then, for any ˇ < 1 � 1=˛, it holds that

(1.5)
Z

D
jDf j2 exp

�
logˇ .e C jDf j/

�
<1:

The result is optimal in the sense that the conclusion fails for ˇ > 1 � 1=˛.

Sharpness of the previous theorem is shown by the map

f .z/ D c˛
z

jzj
exp

�
�

2
1�1=˛

log1�1=˛.e C 1=jzj/
�

for jzj < 1, and identity outside D. We expect that the extremal maps for Theorems 1.1
and 1.2 are also given by radial maps, so it is natural to state:

Conjecture 1.5. The conclusions of Theorem 1.3 remain true without assuming that the
map is radial.

Theorem 1.3 is sharp up to the possible borderline case. For any 0 < " < 1, we can
choose g"WC ! C to be

g".z/ WD
z

jzj

h
log

�
e C

1

jzj

�i�p=2 h
log log

�
e C

1

jzj

�i�"=2
for jzj < 1

and g".z/ WD cz elsewhere for some constant c. Then one directly verifies that g" is a
(radial) mapping of finite distortion satisfying (1.1) with p, but we have for general p,Z

D
jD.g"/j

2 log.e C jD.g"/j/p�1 log log.jD.g"/j C 10/�1C" D1;

and for p D 1 we have Z
D

1

log1�".e CKg"/
jD.g"/j

2
D1:
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Section 2 below contains the proof of Theorems 1.1 and 1.2 assuming the quantitat-
ive estimate of Lemma 2.2. Next, Section 3 gives careful quantitative estimates for the
decay of the Neumann series associated with the Beltrami equation. Then in Section 4
we are ready to accomplish the proof of Lemma 2.2, and also to complete the proof of
Theorem 1.4. Finally, Section 5 treats the case of radial mappings, i.e., Theorem 1.3.

2. Proof of Theorems 1.1 and 1.2

In this section we prove Theorem 1.1 as well as Theorem 1.2 assuming Lemma 2.2, whose
proof we provide later. It is useful to note the general comparison for mappings of finite
distortion j@f j � jDf j � 2j@f j.

Proof of Theorem 1.1. Our basic assumption is that f is a principal mapping of finite
distortion with

(2.1)
Z

D
eKf � zC <1;

and we denote by � the Beltrami coefficient of f . However, we first consider the class of
quasiconformal f that satisfy (2.1) with a fixed zC . After obtaining uniform estimates for
this class, we then at the end of the proof use approximation to deduce results for maps of
finite distortion.

We next fix 0 < " < 1=2 and, for any w with 0 � <w � 1, we let fw be the unique
principal solution to the Beltrami equation

@fw.z/ D �w.z/ @fw.z/;

where

�w.z/ WD
�.z/

j�.z/j
j�.z/jwC":

A main idea in the proof is to consider the functions

gw D .1 � j�j/
.1�w/=2 @fw

and apply the analytic interpolation theorem, or actually a very special case of it that
reduces to a vector-valued Phragmén–Lindelöf type maximum principle.

To accomplish this, note that since the dependence w 7! �w is analytic, we deduce by
the Ahlfors–Bers theorem that the dependence w 7! fw (as an L2.D/-valued function) is
analytic over the closed strip, and hence also g depends analytically on w. Especially, the
mapw 7! gw is continuous in the strip and analytic in the interior. Moreover, by a standard
application of the Neumann series and the definition of g we see that kgwkL2.D/ � C. zC/
for all w in the closed strip ¹0 �<w � 1º. Fix h 2 C10 .D/ with khkL2.D/ D 1. A fortiori,
the function w 7!

R
D gw.z/h.z/dm.z/ is a continuous and bounded analytic function in

the closed strip and analytic in the interior. If we denote

zMr WD sup
<wDr

ˇ̌̌ Z
D
gw.z/h.z/ dm.z/

ˇ̌̌
;

and
Mr WD sup

<wDr

kgwkL2.D/;
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then we have, by a classical version of the Hadamard three lines theorem, that

zM� �
zM 1��
0
zM �
1 �M

1��
0 M �

1 :

Since h 2 C10 .D/ is arbitrary, we in fact have for any � 2 .0; 1/,

(2.2) M� �M
1��
0 M �

1 :

In order to continue the proof we need several auxiliary results.

Lemma 2.1. For any w with <w D 0 we have
R

D jgw j
2 � C"�1; with a universal con-

stant C . In particular, M0 � C0 "
�1=2.

Proof. As fw is a quasiconformal principal mapping, we obtain by the Bieberbach area
formula, Z

D
J.z; fw/ D jf .D/j � �:

To use this, note first that as J.z; h/ D j@hj2 � j@hj2, we have by the definition of g for
any w with <w D 0,Z

D
jgw j

2
D

Z
D
.1 � j�j/j@fw j

2
D

Z
D

1 � j�j

1 � j�w j2
J.z; fw/ �

Z
D

1 � j�j

1 � j�j2"
J.z; fw/:

As x 7! x2" is a concave function whose derivative at x D 1 equals 2", we have x2" �
1C 2".x � 1/ for all x > 0. This implies that

1 � j�j

1 � j�j2"
�

1 � j�j

2".1 � j�j/
D

1

2"
;

finishing the proof.

Lemma 2.2. For any w with <w D 1, it holds that
R

D jgw j
2 � C"�4: The constant C

depends only on zC in (2.1) . In particular, M1 � C0 "
�2.

We postpone the proof of this lemma to Section 4 as it needs more preparation, espe-
cially one needs to carefully check the dependence of constants in certain arguments of [3].

In order to continue the proof, we choose � D 1 � " in (2.2) and note that f1�" D f
in order to obtain

(2.3)
Z

D
.1 � j�.z/j/"j@f j2 dm.z/ D

Z
D
.1 � j�.z/j/"j@f1�".z/j

2 dm.z/ �
C

"4
�

Up to now we have considered the case where f is quasiconformal and satisfies (2.1).
We then choose a sequence of quasiconformal maps that converge to f locally uniformly
and satisfy the condition (2.1). In order to find such a sequence one may e.g. use the
factorization (see Corollary 4.4 in [3]) f D g ı h, where g is (say) 5-quasiconformal andR

D e
5Kh � zC C �e5. In this situation one may approximate h by quasiconformal maps hn

by truncating its dilatation in a standard way, and one defines fn WD g ı hn, and then the
sequence fn satisfies (2.1) with possibly slightly increased zC , but uniformly in n. That
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we have the convergence hn ! h locally uniformly is deduced by the fact that in this
regime the Neumann-series of hn converges in L2 with uniform bounds for kth term, and
clearly we have convergence in L2 for each individual term of the Neumann-series. Thus
Dhn ! Dh in L2loc, which implies local convergence in VMO for the maps hn, and the
uniform convergence then follows by the known uniform modulus of continuity estimates
for mappings of exponentially integrable distortion.

Since fn ! f locally uniformly, we obtain that fn ! f in the sense of distribu-
tions, and hence @fn ! @f in the sense of distributions. Let us then fix p < 2. We have
by (1.2) that

R
B
j@fnj

p � C uniformly in n for any fixed ball, and the same inequal-
ity holds also for f instead of fn. This verifies (by using the density of test functions
in Lq) that the convergence in distributions upgrades to weak convergence @fn

w
! @f in

Lp.D/: This immediately implies the weak convergence in Lp.D/ of .1 � j�.z/j/"=p@fn
to .1� j�.z/j/"=p@f , and we obtain by the basic properties of weak Lp-convergence and
the uniform estimate (2.3) thatZ

D
.1 � j�.z/j/"j@f jp dm.z/ � lim inf

n!1

Z
D
.1 � j�.z/j/" j@fnj

p dm.z/

� lim inf
n!1

Z
D
.1 � j�.z/j/" j@fnj

2 dm.z/C � �
C 0

"4
�

By letting p % 2 we finally obtain for the general f the desired inequality

(2.4)
Z

D
.1 � j�.z/j/" j@f j2 �

C 0

"4
;

and again, the constant C 0 in (2.4) does not depend on ".
The inequality (2.4) already provides a non-trivial localization result because we may

consider small values of ". However, as we have all values " 2 .0; 1=2/ at our disposal,
the result can be improved on by invoking the following observation:

Lemma 2.3. Let h and W be non-negative functions on D, with W.z/ � 1 for all z. Let
also "0 2 .0; 1=2/, ˛; C > 0 be positive constants. Assume that for any 0 < " < "0 we
have

(2.5)
Z

D
.W.z//"h.z/ dm.z/ �

C

"˛
�

Then there is a constant C1 D C1."0; ˛; C / such that for 0 < � � 1,Z
D

1�
log

�
e C 1

W.z/

��˛C� h.z/ dm.z/ � C1

�
�

Proof. The assumption remains valid ifW is replaced by min.W;1=2/, and the conclusion
obtained in this case yields the original one, in view of the assumption. We may hence
assume thatW.z/ 2 Œ0; 1=2� for all z. From (2.5) it immediately follows that if 0 < � � 1,
then Z "0

0

"˛�1C�
Z

D
.W.z//"h.z/ dm.z/ d" � C

Z "0

0

"��1 d" D
C

�
"
�
0 :
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On the other hand, we can use Fubini’s theorem to conclude thatZ "0

0

"˛�1C�
Z

D
.W.z//"h.z/ dm.z/ d" D

Z
D
h.z/

Z "0

0

"˛�1C�.W.z//" d" dm.z/:

For those z with W.z/ D 0, the inner integral is 0. Let now 0 < a WD W.z/ � 1=2. Then
the inner integral is equal toZ "0

0

x˛C��1ax dx D
1�

log
�
1
a

��˛C��1 Z "0

0

�
log

�1
a

�
x
�˛C��1

e�.log. 1a /x/ dx

D
1�

log
�
1
a

��˛C� Z "0 log. 1a /

0

s˛C��1e�s ds:

The last integral factor approaches �.˛C �/ uniformly on �2 Œ0;1� as a! 0. The positive
function �W .0; 1=2� � Œ0; 1�! R,

�.a; �/ WD

�
log

�
e C 1

a

��˛C��
log

�
1
a

��˛C� Z log. 1a /"0

0

s˛C��1e�s ds;

extends therefore to a continuous positive function on Œ0; 1=2� � Œ0; 1�. Therefore there is
a positive constant c > 0 so that for all z we haveZ "0

0

"˛�1C�.W.z//"d" �
c�

log
�
e C 1

W.z/

��˛C� ;
which finishes the proof.

Theorem 1.1 is obtained by applying Lemma 2.3 in conjunction with inequality (2.4)
using the choices W.z/ WD .1 � j�.z/j/ and ˛ D 4:

Remark. Generalizing Theorem 1.1 for values p ¤ 1 appears to require interpolating in
Orlicz space settings instead of L2 with suitable counterparts of Lemmas 2.1 and 2.2. We
have not attempted to carry out the necessary details for the generalisations since it would
considerably increase the technicality of the paper.

Proof of Theorem 1.2. Following the argument of the proof of Lemma 2.2 and keeping
track of the dependence of constant factors, we obtain under the assumption (1.1) that,
instead of the result stated in Lemma 2.2, we obtain for general p thatZ

D
jDf j2 log.e C jDf j/p�1 log�"

�
e C jDf j

�
� C"�.1C3p/:

Then, as before, the statement follows by an application of Lemma 2.3.

Remark. We note that one may apply Lemma 2.3 again directly on the result stated in
Theorem 1.1, and this yields that the integralZ

A

1

log4C".e CKf /
jDf j2
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is bounded by C=". Thus taking ˛ D 1 in Lemma 2.3 we obtain a statement of the formZ
A

1

log4.e CKf /.log log.10CKf //1C"
jDf j2 <1 for any " > 0:

An industrious reader may refine this result by iterating the lemma, obtaining estimates
for weights with more iterations of logarithms.

3. Decay of the Neumann series

For the proof of Lemma 2.2 we need quantitative versions of several auxiliary results
in [3]. In this section we establish decay estimates for the Neumann series that suffice
both for Theorem 1.1 and for Theorem 1.4. Our proof follows rather closely the ideas
of [3, 8], but keeping track of the dependence of the constants is somewhat non-trivial
even in the case ˛ D 1 which relates to that considered in [3, 8].

The Beurling operator � is the singular integral

��.z/ WD �
1

�

Z
C

�.�/

.z � �/2
d�:

Recall that in the context of quasiconformal mappings, the classical Beltrami equation in
W
1;2

loc .C/,
@f .z/ D �.z/ @f .z/;

has a unique principal solution f .z/ D z C O.1=z/ – for this and other basic facts on
quasiconformal maps we refer the reader to [1,4]. We can use the identity @f � 1D �.@f /

to write the Beltrami equation equivalently for ! D @f :

!.z/ D �.z/.�!.z/C 1/;

which is solved by the Neumann series

! D .I � ��/�1� D �C ���C �����C � � � :

The series converges absolutely when j�.z/j � k < 1 almost everywhere because � is
a unitary operator in L2.C/. This is no longer true if only j�.z/j < 1, but we have as
substitute the estimates of Lemma 3.1. We state here a refined (in the case ˛ D 1) and
generalized (for ˛ > 1) version of Theorem 3.1 in [3] needed for our purposes. Its proof
is adapted from the original proof in [3].

Lemma 3.1. Let j�.z/j < 1 almost everywhere, with �.z/ � 0 for jzj > 1. Assume that
the distortion function K.z/ D 1Cj�.z/j

1�j�.z/j
satisfies

eK
˛

2 Lp.D/; for some p > 0 and ˛ � 1:

In case ˛ > 1 we have, for every p > 0, ˇ 2 Œp=2; p/ and n 2 N,Z
C
j.��/n�j2 �C exp

�
� 2.ˇ=2/1=˛

1

1 � 1=˛

�
.nCˇ=4C 1/1�1=˛ � .ˇ=4C 1/1�1=˛

��
:
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where by denoting ı WD .p�ˇ/2

ˇ.pCˇ/
, zC WD 8p

p�ˇ

� R
D e

pK˛
�.p�ˇ/=2p , b WD .ˇ=2/1=˛ , and B WD

max
�

b
1�1=˛

..2b=ı/˛�1 � .1C ˇ=4/1�1=˛/; 0
�

we have

(3.1) C WD .4ı�2 zCe2B C 1/:

In the case ˛ D 1 one instead hasZ
C
j.��/n�j2 � C0

�nC ˇ=4C 1
ˇ=4C 1

��ˇ
; n 2 N;

where

(3.2) C0 WD 12
ˇC3.p=ˇ � 1/�.5C2ˇ/

� Z
D
epK

� 1
2 .1�ˇ=p/

:

Proof. We first note that a simple computation shows that the case ˛ D 1 follows from the
case ˛ > 1 by first assuming that k�k1 < 1 and letting ˛! 1C in estimate (3.1). Hence
we may assume that ˛ > 1 and start by fixing 0 < ˇ < p. For n 2 N, divide the unit disk
into two sets,

Bn D
°
z 2 D W j�.z/j > 1 �

2ˇ1=˛

.4n/1=˛ C ˇ1=˛

±
and Gn D D n Bn:

By Chebychev’s inequality,

jBnj �
� Z

D
epK

˛
�
e�4np=ˇ :

The terms of the Neumann series  n D .��/n� and the auxiliary terms gn are obtained
inductively:

 n D ��. n�1/;  0 D �; and gn D �Gn��.gn�1/; g0 D �:

For gn we can estimate by using the fact that � is L2-isometry to see that

kgnk
2
L2
D

Z
Gn

j�S.gn�1/j
2
�

�
1 �

2ˇ1=˛

.4n/1=˛ C ˇ1=˛

�2
kgn�1k

2
L2
;

and therefore

kgnkL2 �

nY
jD1

�
1 �

2ˇ1=˛

.4j /1=˛ C ˇ1=˛

�
kg0kL2

D exp
� nX
jD1

log
�
1 �

2ˇ1=˛

.4j /1=˛ C ˇ1=˛

��
k�kL2 :

As log.1 � x/ � �x for x < 1, and k�kL2 �
p
� , it follows that

kgnkL2 � exp
�
� 21�2=˛ˇ1=˛

nX
jD1

1

j 1=˛ C .ˇ=4/1=˛

�
�1=2

� exp
�
� 2�1=˛ˇ1=˛

nX
jD1

1

.j C ˇ=4/1=˛

�
�1=2;
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where we applied the inequality .j /1=˛ C .ˇ=4/1=˛ � 21�1=˛.j C ˇ=4/1=˛: The sum
inside the exponential can be estimated by an integral:

nX
jD1

1

.j C ˇ=4/1=˛
�

Z nC1

1

dx

.x C ˇ=4/1=˛
D
.nC 1C ˇ=4/1�1=˛ � .1C ˇ=4/1�1=˛

.1 � 1=˛/
;

(3.3)

so that

(3.4) kgnkL2 � exp
�
� 2�1=˛ˇ1=˛

.nC 1C ˇ=4/1�1=˛ � .1C ˇ=4/1�1=˛

1 � 1=˛

�
:

The difference of  n and gn is

 n � gn D �Gn ��. n�1 � gn�1/C �Bn ��. n�1/:

For the norms, this gives

k n � gnkL2 �
�
1 �

2ˇ1=˛

.4j /1=˛ C ˇ1=˛

�
k n�1 � gn�1kL2 C

p
R.n/

with
R.n/ D k�Bn��. n�1/k

2
L2
D

Z
Bn

j.��/n�j2:

By induction and estimating like in (3.3) we deduce

k n�gnkL2 �
�
1 �

2ˇ1=˛

.4n/1=˛ C ˇ1=˛

�
k n�1 � gn�1kL2 C

p
R.n/

�

nX
jD1

p
R.j /

nY
kDjC1

�
1 �

2ˇ1=˛

.4k/1=˛ C ˇ1=˛

�
D

nX
jD1

p
R.j / exp

� nX
kDjC1

log
�
1 �

2ˇ1=˛

.4k/1=˛ C ˇ1=˛

��
�

nX
jD1

p
R.j / exp

�
� 21�2=˛ˇ1=˛

nX
kDjC1

1

k1=˛ C .ˇ=4/1=˛

�
�

nX
jD1

p
R.j / exp

�
� 2�1=˛ˇ1=˛

.nC 1C ˇ=4/1�1=˛ � .j C 1C ˇ=4/1�1=˛

1 � 1=˛

�
D exp

�
� 2�1=˛ˇ1=˛

1

1�1=˛

�
.nC 1/1�1=˛ � .1C ˇ=4/1�1=˛

��
(3.5)

�

nX
jD1

exp
�
2�1=˛ˇ1=˛

1

1�1=˛

�
.jC1Cˇ=4/1�1=˛ � .1Cˇ=4/1�1=˛

��p
R.j /:

We next recall that in [3] the Astala area distortion result jf �.E/j � �M jEj1=M for
quasiconformal maps was used to estimate R.n/ by considering the solution f D f � to
the Beltrami equation

@f D ��@f;
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with j�j < 1 via expressing the term .��/n� of the Neumann series

@f � D

1X
nD0

�nC1.��/n�

by a Cauchy integral

.��/n� D
1

2�i

Z
j�jD�

1

�nC2
@f � d�;

multiplying by the characteristic function �Bn and by forcing the Jabobian to appear under
the integral. This yielded (see [3], p. 8) for any � with just k�k1 � 1, any M > 1, and
any E � D the general estimates

k�E  nk
2
L2
� �

�M C 1
M � 1

�2n .M C 1/2
4

jEj1=M and(3.6)

k�E �. n/k
2
L2
� �

�M C 1
M � 1

�2nC2 .M C 1/2
4

jEj1=M :(3.7)

Choosing E D Bn this yieldsp
R.n/ �

p
�
�M C 1
M � 1

�n .M C 1/
2

jBnj
1=2M

�
p
�
�M C 1
M � 1

�n .M C 1/
2

� Z
D
epK

˛
�1=2M

e�2np=.ˇM/:

In our situation we may actually slightly improve this by invoking the Eremenko and
Hamilton form of the area distortion estimate stating, for any measurable E � D, the
inequality

(3.8) jg.E/j �M 1=M�1�1=M jEj1=M � �e1=.�e/jEj1=M :

This leads top
R.n/ �

p
�e1=.2�e/

�M C 1
M � 1

�nr .M C 1/2

4M

� Z
D
epK

˛
�1=2M

e�2np=.ˇM/:

We want to choose M > 1 in order to force R.n/ to decay exponentially. For that we
need to have

log
�M C 1
M � 1

�
�
2

M

p

ˇ
� �ı < 0:

Choose M D 2p=.p � ˇ/ and estimate

log
�M C 1
M � 1

�
�
2

M

p

ˇ
�

2

M � 1
�
2

M

p

ˇ
D
2.p � ˇ/

p C ˇ
�
2.p � ˇ/

2ˇ

D �
.p � ˇ/2

ˇ.p C ˇ/
DW �ı:
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Noting that .M C 1/2=.4M/ �M and
p
�e1=.2�e/ � 2, this yieldsp

R.n/ � zCe�ın with zC WD

s
8p

p � ˇ

� Z
D
epK

˛
�.p�ˇ/=4p

:

Hence, if we denote b WD 2�1=˛ˇ1=˛ , we obtain
nX

jD1

exp
�
2�1=˛ˇ1=˛

1

1 � 1=˛

�
.j C 1C ˇ=4/1�1=˛ � .1C ˇ=4/1�1=˛

��p
R.j /

� zC e
zB

1X
jD1

e�jı=2 � 2ı�1 zCe
zB ;

where zB WD supj�1
�

b
1�1=˛

�
.j C 1C ˇ=4/1�1=˛ � .1C ˇ=4/1�1=˛

�
� .ı=2/j

�
: An ele-

mentary computation where one simply differentiates with respect to j shows that

zB � B WD max
� b

1 � 1=˛

�
.2b=ı/˛�1 � .1C ˇ=4/1�1=˛

�
; 0
�
:

In view of (3.5) we then obtain

k n � gnkL2

� 2ı�1 zCeB exp
�
� 2�1=˛ˇ1=˛

1

1 � 1=˛

�
.nC 1C ˇ=4/1�1=˛ � .ˇ=4/1�1=˛

��
:

Together with (3.4) this proves the lemma.

4. Proof of Lemma 2.2 and Theorem 1.4

We start with an area distortion result that generalizes Corollary 3.2 and Theorem 5.1
in [3] to the range ˛ � 1. In case ˛ D 1 we need to keep careful track of the constants,
which is somewhat non-trivial in this situation, and hence for the readers sake we give the
details here although the basic idea of the proof follows that in [3, 8]. Thus for ˛ D 1 the
novelty of the statement as compared to Theorem 5.1 in [3] is in a precise estimation of
the dependencies of the constant terms. This is a crucial technical ingredient needed for
our main results.

Proposition 4.1. Let � and 0 < ˇ < p and f be as in Lemma 3.1.

(i) In case ˛ > 1, we have the area distortion estimate

(4.1) jf .E/j � c exp
�
� c0 log1�1=˛.e C 1=jEj/

�
with some constants c; c0 > 0.

(ii) In case ˛ D 1, under the additional assumption 1=2 < ˇ < p < 4, it holds that

(4.2) jf .E/j � A2jEj
ı=24
C A2 ı

�3ˇ log�ˇ .e C 1=jEj/
� Z

D
epK

�1=2
; E � D;

where we denoted ı WD p � ˇ and A2 is a universal constant.
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Proof of Proposition 4.1. We start by observing that our maps are Sobolev homeomorph-
isms that satisfy Lusin’s condition N . Especially, we obtain (using the notation of the
previous section)

jf .E/j D

Z
E

j@f j2 � j@f j2 � 2jEj C 2

Z
E

j@f � 1j2 D 2 jEj C 2k�E .@f � 1/k
2
2

� 2 jEj C 2
� 1X
nD0

k�ES nk2

�2
:(4.3)

We estimate the last written sum in two parts, and fix to that end an index m � 1 that will
be specified later on. First of all, using (3.6) with M D 3 yields

m�1X
nD0

k�ES nk2 �

m�1X
nD0

p
� 2nC2 jEj1=6 � 2mC3 jEj1=6:(4.4)

In case ˛ > 1 we choose ˇ D p=2 in Lemma 3.1 and obtain with small work the estimate

1X
nDm

k�ES nk2 � c1 exp.�c2m1�1=˛/:

Here and later, the cj ’s are constants that may depend on ˇ;p;˛, and whose exact value is
of no interest to us. By choosing m D b2C 1

12 log2 log 1=jEjc, we obtain in view of (4.3)
and the previous estimates

jf .E/j � 2jEj C c3jEj
1=12
C 4c1 exp

�
� c4 log1�1=˛.e C 1=jEj/

�
;

which proves part (i).
In case (ii) we have ˛ D 1. In this case we first assume that 2 < ˇ < p and an applic-

ation of Lemma 3.1 yields in this case� 1X
nDm

k�E n�k2

�2
� C0

� 1X
nDm

�nCˇ=4C1
ˇ=4C 1

��ˇ=2�2
�
4C0.ˇ=4C1/

2

.ˇ � 2/2

�mCˇ=4
ˇ=4C 1

�2�ˇ
where the expression for the constant C0 D C0.ˇ; p/ is given in (3.2). In view of (4.4) we
thus have

jf .E/j � 2jEj C 22mC7jEj1=3 C
8C0.ˇ=4C 1/

2

.ˇ � 2/2

�mC ˇ=4
ˇ=4C 1

�2�ˇ
:

Choosing m D
˙

1
12 log2 log.1C 1=jEj/

�
and noting that jEj � 4jEj1=6 and 12 log 2 � 9

yields

jf .E/j � 2000jEj1=6 C
8C0.ˇ=4C 1/

2

.ˇ � 2/2

� log..1=jEj C 1/1=9/C ˇ=4
1C ˇ=4

�2�ˇ
(4.5)

Our next step is to apply G. David’s factorisation trick to improve the above bound
and extend it to all values of p. We assume thus that f is as in the statement of the
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proposition (with the general assumption 1=2 < ˇ < p < 4) and recall from [3] that for
any M � 1 we may factorise f as f D g ı F , where g and F are principal mappings, g
is M -quasiconformal and F satisfies

IM WD

Z
D
epMK.z;F / � eM

Z
D
epK.z;f /:

Denote ˇ0 WD .p C ˇ/=2, and M D 2=.ˇ0 � ˇ/ D 4=.p � ˇ/ � 1. We will apply (4.5)
with parameters .Mˇ0;Mp/ instead of .ˇ;p/ in order to estimate jF.E/j. This is possible
since by the assumption p < 4 we have 2 < 2C ˇM D ˇ0M < pM . Thus,

jF.E/j � 2000jEj1=6

C
8C0.Mˇ0;Mp; IM /.Mˇ0=4C1/

2

.Mˇ0 � 2/2

� log..1C1=jEj/1=9/CMˇ0=4
1CMˇ0=4

�2�Mˇ0
:

Above, the notation C0.Mˇ0;Mp; IM / recalls the dependences of the constant C0. As g
is a principal quasiconformal mapping, we obtain from the standard area distortion estim-
ate (3.8),

jf .E/j D jg ı F.E/j � 4jF.E/j1=M :

By noting that 2�Mˇ0 D�Mˇ, andMˇ0=4D 1
2
pCˇ
p�ˇ

> .p=ˇ � 1/�1, combing the last
two inequalities leads to

jf .E/j � 8000jEj1=6M C 4 � 81=M
�C0.Mˇ0;Mp; Im/.Mˇ0=4C 1/2

.Mˇ/2

�1=M
�

� .log.1C 1=jEj//1=6 C .p=ˇ � 1/�1

1C .p=ˇ � 1/�1

��ˇ
:(4.6)

Here, sinceMp=Mˇ0 � 1D .p � ˇ/=.pC ˇ/� .p � ˇ/=2p and .p=ˇ0 � 1/=2M � 1=2
we obtain by recalling (3.2) and easy estimates,

81=M
�C0.Mˇ0;Mp; Im/.Mˇ0=4C 1/2

.Mˇ/2

�1=M
� A1.p=ˇ � 1/

�2ˇ
� Z

D
epK

�1=2
;

where A1 is an absolute constant. In the simplification we applied our assumption on the
range of p and ˇ and observed that .p � ˇ/�.p�ˇ/ has a universal upper bound. We also
observe in (4.6) that .p=ˇ � 1/ˇ has a universal upper bound, and by increasing A1 we
may replace log.1C 1=jEj/1=6 by log.1C 1=jEj/. In addition, in our situation p=ˇ � 1�
.p � ˇ/. Combining these estimates completes the proof of part (ii).

We then turn to the goals stated in the title of this section. As expected, we will
first estimate the integrability of the Jacobian using the estimates for area-distortion we
just proved. For that purpose we will first state a general lemma that yields (essentially
optimal) integrability estimates from estimates of area distortion.

Lemma 4.2. Assume that f is a principal mapping of finite distortion and gW Œ0; �/!
Œ0;1/ is concave with g.0/ D 0, satisfying for any measurable subsets E � B.0; 1/ the
area distortion estimate

(4.7) jf .E/j � g.jEj/:
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Then for any convex and increasing H on Œ0;1/ it holds thatZ
B.0;1/

H.Jf .z// dA.z/ �

Z �

0

H.g0.t// dt:

Proof. Let us denote by hW .0;�/!RC the decreasing rearrangement of Jf . By assuming
first that g is differentiable on .0; �/, our assumption may be rewritten asZ x

0

h.t/ dt �

Z x

0

g0.t/ dt for all x 2 .0; �/:

The statement now follows from a continuous version of the Hardy–Littlewood Pólya (or
Karamata) inequality, see Theorem 2.1 in [7] or [11].

Proof of Theorem 1.4. It follows from Lemma 4.2 and Proposition 4.1(i) that in our situ-
ation the higher integrability of Jf is at least as good as that of the derivative h0 on the
interval .0; �/, where

h.x/ WD exp
�
� c0 log1�1=˛.e C 1=x/

�
on the interval .0; �/. Namely, h is clearly decreasing near the origin which is enough for
us in order to apply Lemma 4.2. We may safely leave to the reader to check that �.h0/
is integrable near the origin with �.y/ WD y exp.logˇ .e C y// for ˇ < 1 � 1=˛: In other
words, we have Z

D
Jf exp.logˇ .e C Jf // <1 for ˇ < 1 � ˛�1:

By recalling that jDf j2 D KJf , the stated integrability of the derivative follows immedi-
ately by the elementary inequality

xy exp
�

logˇ
0

.e C xy/
�
� C

�
exp.px˛/C y exp

�
logˇ .e C y/

��
; x; y � 1:

for any 0 < ˇ0 < ˇ < 1 and p > 0, and where C D C.p; ˇ; ˇ0; ˛/: The latter inequality
follows easily by examining separately the cases x < exp..1=2/ logˇ .e C y// and x �
exp..1=2/ logˇ .e C y//.

Proof of Lemma 2.2. Easy estimates that just apply differentiation show that the function

x 7! .1C ı log.1C 1=x//�ˇ

is concave for x > 0 as soon as ı < .1 C ˇ/�1, which in our situation holds at least if
ı < 1=5:We now fix p D 1C 2", ˇ D 1C ", with " 2 .0; 1=10/ in Proposition 4.1 (ii) and
note that Lemma 4.2 yields the integrabilityZ

D
J.z; f / log.e C J.z; f // �

Z �

0

h0.x/ log.e C h0.x// dx;

where h.x/ WDA2x"=24CA2"�3�3".log.1C1=x//�1�"
�R

D e
pK
�1=2. Hence, if we denote

A3 WD A
0
2

� R
D e

pK
�1=2 with another universal constant A02, we have

h0.x/ � A3

�
"x�1C"=24 C

"�3

x

�
log.1C 1=x/

��2�"�
;
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Obviously, logh0.x/� log.A3/C3 log.1="/C3 log.10=x/; so that noting that
R �
0
h0.x/dx

D h.�/ � 10A3"
�3 we obtain thatZ

D
J.z; f / log.e C J.z; f // �

Z �

0

h0.x/ log.e C h0.x//dx

� 10A3"
�3
�

log.A3/C log.1="/
�

C 3A3

Z �

0

�
"x�1C"=24 C

"�3

x

�
log.1C 1=x/

��2�"� log.10=x/ dx

� A3 log.A3/106"�4:

In the estimation of the last written integral we noted thatZ �

0

"x�1C"=100 log.10=x/ dx � 105"�1;

and estimated the second integral from the above by

2 log.20/
�
"�3

Z 1=2

0

log.1=x/�1�"
dx

x
C 3"�3

�
� 40"�4:

We next note the well-known inequality stating that for any "2 .0;1/ and reals x;y > 0
it holds that

xy � x log.e C x/C e.1C"/y

(one simply checks that is true for " D 0). The choice x D Jj .z/, y D K WD Kf .z/, and
integration over D finally yields thatZ

D
jDf j2 � A4

� Z
D
e.1C"/K

�1=2
log

� Z
D
e.1C"/K

�
"�4 C

Z
D
e.1C"/K

� A5 "
�4

Z
D
e.1C"/K ;(4.8)

where A4 and A5 are universal constants.
We are now ready to complete the proof of Lemma 2.2. To that end we need to estab-

lish for any w with <w D 1 the key estimateZ
D
jgw j

2
�
C

"4
;

with constant C does not depend on ". Note that this estimate implies the bound M1 �

C1="
2 for some constant C1. Moreover, estimating the integrability of jgw j reduces to that

of j@.fw/j because jgw j D j@.fw/j a.e. since we have <w D 1:
Let us first estimate the distortionK.z;fw/. Assume that " 2 .0; 1=2/ and consider the

function r.x/ WD 1 � x1C" � .1C "=2/.1 � x/: We claim that r.x/ � 0 for x 2 Œ1=2; 1�.
As r is concave with r.1/D 0 and r 0.1/D�"=2< 0, it is enough to check that r.1=2/� 0;
or equivalently that 1C "=2 � 2 � 2�". In turn this follows from the concavity of " 7!
R."/ WD 2 � 2�" � .1C "=2/ and by noting that R.0/ D R.1=2/ D 0.
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We thus have that 1� j�.z/j1C" � .1C "=2/.1� j�.z/j/ assuming that j�.z/j � 1=2,
and we may estimate the distortion as follows:

K.z; fw/ D
1C j�.z/j1C"

1 � j�.z/j1C"

D �1C
2

1 � j�.z/j1C"
� �1C

2

min..1C "=2/.1 � j�.z/j/; 1 � 1=21C"/

� �1C
2

.1C "=2/.1 � j�.z/j/
C

2

1 � 1=21C"
� 3C

2

.1C "=2/.1 � j�.z/j/

D
1

1C "=2

�
� 1C

2

1 � j�.z/j

�
C 3C

1

1C "=2
�
K.z; f /

1C "=2
C 4:

It follows that Z
D
e.1C"=2/K.z;fw / �

Z
D
eK.z;f /C4C2" � e5

Z
D
eK.z;f /:

In conclusion, an application of inequality (4.8) (with "=4 in place of ") yields the
desired uniform bound Z

D
j@.fw/j

2
�

Z
D
jDfw j

2
�
C

"4
�

5. Proof of Theorem 1.3

Throughout this section we assume that f WD!D is a radial homeomorphism of the form

f .z/ D
z

jzj
�.jzj/;

where �W Œ0; 1�! Œ0; 1� is an increasing homeomorphism. We also assume that f is a map
with exponentially integrable distortion (satisfying (1.1)). By the Lusin condition, this
implies that � is absolutely continuous, and the assumed exponential integrability of Kf
can expressed as

(5.1)
Z 1

0

�
e
p
r�0.r/
�.r/ C e

p
�.r/

r�0.r/

�
rdr D C0 <1:

Our aim is to first prove an area distortion estimate for these maps.

Proposition 5.1. Let f WD ! D be a radial homeomorphism of exponentially integrable
distortion .see (1.1)/. Then for any measurable subset E � D,

jf .E/j � C
�

log.1C 1=jEj/
��p

:

The constant C D C.p; C0/ is uniform for fixed C0 and p 2 Œ1; 2�:

Proof. We shall denote by C constants whose actual size if of no interest to us, and their
value may change from line to line. We call the set E � D ‘radial’ if one has that z 2 E if
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and only if jzj 2E. By a standard approximation argument, it is enough to prove the claim
in the case where E is a disjoint union of sets of the form ¹a< jzj<b; ˛0<arg.z/<˛1º,
and this case is easily reduced to the case of radial sets. Thus, we may assume that E D
¹jzj 2 F; º where F � .0; 1/ is a disjoint union of open intervals.

For n D 1; 2; : : :, we denote the dyadic annuli An WD ¹2�n � jzj � 21�nº: Our first
goal is to estimate �.r/ from the above. To that end, fix n � 1 and note that by (5.1) and
Jensen’s inequality applied on the probability measure r�1dr on .e�n; e1�n/ and on the
convex function x 7! ep=x yields

log
�
�.e1�n/=�.e�n/

�
D

Z e1�n

e�n

r�0.r/

�.r/

dr

r
� p

�
log

� Z e1�n

e�n
exp

�
p
�.r/

r�0.r/

�dr
r

���1
� p

�
log

�
e2n

Z e1�n

e�n
exp

�
p
�.r/

r�0.r/

�
rdr

���1
�

p

logC0 C 2n
�

Applying this for first n annuli yields

(5.2) �.e�n/ � exp
� nX
kD1

p

logC0 C 2n

�
� Cn�p=2:

We next produce a very crude estimate of area distortion for radial sets E � An. Write
E D ¹jzj 2 F; º where F � .e�n; e1�n/ and note that jF j � enjEj: Let us observe first
that (5.1), Jensen’s inequality and the convexity of the map x 7! exp.p

p
x C 1/ on Œ0;1/

yield thatZ e1�n

e�n

�r�0.r/
�.r/

�2 dr
r
�

� 1
p

log
� Z e1�n

e�n
exp

�
p

s�r�0.r/
�.r/

�2
C 1

�dr
r

��2
� 1

�

� 1
p

log
�
e2n

Z e1�n

e�n
exp

�
p
r�0.r/

�.r/
C p

�
rdr

��2
� 1

� p�2.logC0 C 2nC p/2 � Cn2:

We may then compute using the above estimate, the bound (5.2) and Cauchy–Schwarz to
obtain, for radial subsets of E � An,

jf .E/j D 2�

Z
F

�.r/�0.r/dr � 2�.�.enC1//2
Z
F

r�0.r/

�.r/

dr

r

�
C

np

sZ
F

dr

r

sZ e1�n

e�n

�r�0.r/
�.r/

�2 dr
r

�
C

np

p
jF jen=2n � Cn1�pen

p
E:(5.3)
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We finally observe that in the general case we may assume that jEj D e�4N for some
integer N � 1. By using the estimates (5.2) and (5.3), it follows that

jf .E/j � jf .¹jzj � e�N º/j C

NX
nD1

jf .E \ An/j � �.�.e
�N //2CC

NX
nD1

enn1�p
p
e�4N

�
C

N p
CNe�N �

C 0

4N p
;

as was to be shown.

Proof of Theorem 1.3. One simply applies the area distortion estimate we just proved and
obtains the analogue of (4.8) now with term 1=" instead of 1="4. The first part follows
then directly from Lemma 2.3. Similarly, part (ii) follows by keeping the track of the
dependence of constant factors under this area distortion estimate.
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