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Removable singularities for Lipschitz caloric functions
in time varying domains

Joan Mateu, Laura Prat and Xavier Tolsa

Abstract. In this paper we study removable singularities for regular .1; 1=2/-Lip-
schitz solutions of the heat equation in time varying domains. We introduce an asso-
ciated Lipschitz caloric capacity and we study its metric and geometric properties
and the connection with the L2 boundedness of the singular integral whose kernel is
given by the gradient of the fundamental solution of the heat equation.

1. Introduction

A compact set E � C is said to be removable for bounded analytic functions if for any
open set� containingE, every bounded function analytic on� nE has an analytic exten-
sion to�. In [1], Ahlfors showed thatE is removable for bounded analytic functions if and
only if E has zero analytic capacity. Analytic capacity is a notion that, in a sense, meas-
ures the size of a set as a non removable singularity. In the higher dimensional setting,
one considers removable sets for Lipschitz harmonic functions: we say that a compact set
E �RnC1 is removable for Lipschitz harmonic functions if, for each open set��RnC1,
every Lipschitz function f W�!R that is harmonic in� nE is harmonic in the whole�.
Nowadays, very complete results are known for removable sets for bounded analytic func-
tions in the plane (see [23] for example) and also in the higher dimensional setting for
removable sets for Lipschitz harmonic functions (see [24], [16], [17]). The Cauchy trans-
form and the Riesz transforms play a prominent role in their study.

In the present paper we study removable singularities for regular .1; 1=2/-Lipschitz
solutions of the heat equation in time varying domains. The parabolic theory in time
varying domains is an area that has experienced a lot of activity in the last years, with
fundamental contributions by Hofmann, Lewis, Murray, Nyström, Silver, and Strömqvist
[6], [7], [8], [9], [10], [12], [13], [19].

Next we introduce some notation and definitions. Our ambient space is RnC1 with a
generic point denoted as Nx D .x; t/ 2RnC1, where x 2Rn and t 2R. We let‚ denote the
heat operator,‚D�� @t ; where�D�x is the Laplacian with respect to the x variable.
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Then, for a smooth function f depending on .x; t/ 2 RnC1,

‚.f / D �f � @tf D 0

is just the heat equation.
Given Nx D .x; t/ and Ny D .y; u/, with x; y 2 Rn, t; u 2 R, we consider the parabolic

distance in RnC1 defined by

distp. Nx; Ny/ D max
�
jx � yj; jt � uj1=2

�
:

Sometimes we also write j Nx � Nyjp instead of distp. Nx; Ny/. We denote by Bp. Nx; r/ a para-
bolic ball (i.e., in the distance distp) centered at Nx with radius r . By a parabolic cubeQ of
side length `, we mean a set of the form

I1 � � � � � In � InC1;

where I1; : : : ; In are intervals in R with length `, and InC1 is another interval with
length `2. We write `.Q/ D `.

We say that a Borel measure � in RnC1 has upper parabolic growth of degree nC 1
if there exists some constant C such that

(1.1) �.Bp. Nx; r// � Cr
nC1 for all Nx 2 RnC1; r > 0.

Clearly, this is equivalent to saying that any parabolic cube Q � RnC1 satisfies �.Q/ �
C 0`.Q/nC1. Given E � RnC1, we denote by †.E/ the family of (positive) Borel meas-
ures � supported on E which have upper parabolic growth of degree nC 1 with constant
C D 1 in (1.1).

Throughout the paper, k � k�;p denotes the norm of the parabolic BMO space:

kf k�;p D sup
Q

�

ˆ
Q

jf �mQf j dm;

where the supremum is taken over all parabolic cubes Q � RnC1, dm stands for the
Lebesgue measure in RnC1 andmQf is the mean of f with respect to dm. For a function
f WRnC1 ! R, we set

@
1=2
t f .x; t/ D

ˆ
f .x; s/ � f .x; t/

js � t j3=2
ds:

We say that a compact set E � RnC1 is Lipschitz removable for the heat equation (or
Lipschitz caloric removable) if for any open set � � RnC1, any function f WRnC1 ! R
such that

(1.2) krxf kL1.�/ <1 and k@
1=2
t f k�;�;p <1

satisfying the heat equation in � n E, also satisfies the heat equation in the whole �.
Functions satisfying (1.2) are called regular .1; 1=2/-Lipschitz in the literature (see [19],
for example). So perhaps it would be more precise to talk about regular .1; 1=2/-Lipschitz
removability. However, we have preferred the simpler terminology of Lipschitz removab-
ility for shortness.
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Our motivation to study the singularities for regular .1; 1=2/-Lipschitz functions, with
the parabolic BMO condition in the half derivative with respect to time, comes from the
results in [6], [7], [12], and [13]. In these works in connections with parabolic singular
integrals and caloric layer potential on graphs, it has become clear that the right graphs are
the ones of functions that are Lipschitz in the space variable and have half time derivative
in parabolic BMO. The results that we obtain in this paper (like the ones about localization
of singularities that we describe below) also confirm that the parabolic BMO condition on
the half time derivative is a natural assumption.

Given a set E � RnC1, we define its Lipschitz caloric capacity by

(1.3) ‚.E/ D sup ¹jh�; 1ijº

the supremum taken over the distributions � in RnC1 such that supp � � E, krxW �
�kL1.RnC1/ � 1 and k@1=2t W � �k�;p � 1. HereW.x; t/ denotes the fundamental solution
of the heat equation in RnC1, that is,

W.x; t/ D

´
1

.4�t/n=2
e�jxj

2=.4t/ if t > 0;

0 if t � 0:

We shall now give a brief description of the main results in the paper. In Section 3
we deal with a localization result. More concretely, for a distribution �, we localize the
potentials rW � � and @1=2t W � � in the L1-norm and the parabolic BMO norm respect-
ively. The localization method for the Cauchy potential � � 1=z in the plane is a basic
tool developed by A. G. Vitushkin in the theory of rational approximation in the plane.
This was later adapted in [20] for the Riesz potential � � x=jxjn in Rn and used in prob-
lems of C 1-harmonic approximation. These localization results have also been essential to
prove the semiadditivity of analytic capacity and of Lipschitz harmonic capacity, see [22]
and [24] respectively (see also [21] for other related capacities). In Section 4 we restrict
ourselves to the case when the distribution � in (1.3) is a positive measure �. We show
that if � has upper parabolic growth of degree nC 1 and rxW � � is in L1.RnC1/, then
@
1=2
t W � � is bounded in the parabolic BMO-norm. This fact will be very useful when

studying the capacity ‚;C, whose definition is analogous to the one in (1.3) but with the
supremum restricted to positive measures.

In Section 5 we study the connection between Lipschitz caloric removability and the
capacity ‚. In particular, we show that a compact set E � RnC1 is Lipschitz caloric
removable if and only if ‚.E/ D 0. We also compare the capacity ‚ to the parabolic
Hausdorff content HnC1

1;p and we prove that if E has zero .nC 1/-dimensional parabolic
Hausdorff measure, i.e., HnC1

p .E/ D 0, then ‚.E/ D 0 too. In the converse direction,
we show that if E has parabolic Hausdorff dimension larger than nC 1, then ‚.E/ is
positive. Hence, the critical parabolic dimension for Lipschitz caloric capacity (and thus
for Lipschitz caloric removability) occurs in dimension n C 1, in accordance with the
classical case. We remark here that the parabolic Hausdorff measure HnC1

p ; the para-
bolic Hausdorff content HnC1

1;p ; and the parabolic Hausdorff dimension are defined as in
the Euclidean case (see [14], for instance), just replacing the Euclidean distance by the
parabolic distance introduced above. Then it turns out that RnC1 has parabolic Hausdorff
dimension nC 2.
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In Section 5 we also introduce a new capacity z‚;C. We consider the convolution
operator T with kernel K D rxW , which is of Calderón–Zygmund type in the parabolic
space. We denote by T � its dual operator. Then we set z‚;C.E/ D sup�.E/; where the
supremum is taken over all positive measures � 2 †.E/ such that

kT�kL1.RnC1/ � 1 and kT ��kL1.RnC1/ � 1:

We show that the capacity z‚;C can be characterized in terms of the L2-norm of T and
that ‚ & z‚;C. Then we show that any subset of positive measure HnC1

p of a regular
Lip.1; 1=2/ graph has positive capacity z‚;C and is non-removable. In particular, any
subset of positive measure HnC1

p of a non-horizontal hyperplane (i.e., not parallel to
Rn � ¹0º) is non-removable. Let us remark that any horizontal plane has parabolic Haus-
dorff dimension n, and thus any subset of a horizontal plane is removable.

In the last section of the paper we construct a self-similar Cantor set E � R3 with
positive and finite measure H3

p , and we show that it is Lipschitz removable for the heat
equation. The construction extends easily to RnC1, with n � 1 arbitrary, but we work
in R3 for simplicity. Our example is inspired by the typical planar 1=4 Cantor set in the
setting of analytic capacity (see p. 35 in [23], for example).

By analogy with what happens with analytic capacity [2] or Lipschitz harmonic capa-
city [17], and because of the examples of regular Lip.1; 1=2/ graphs and the Cantor set
mentioned above, one should expect that a set E � RnC1 is Lipschitz caloric removable
if and only if it is parabolic purely .n C 1/-unrectifiable in some sense. Remark that it
seems natural to define that set E as parabolic purely .nC 1/-unrectifiable if it intersects
any regular Lip.1; 1=2/ graph at most in a set of measure HnC1

p zero (see [19] for some
results on parabolic uniform rectifiability). A first step in this direction might consist in
proving that ‚.E/ > 0 if and only if z‚;C.E/ > 0 (or even that both capacities are com-
parable). However, there is a big obstacle when trying to follow this approach. Namely,
the kernel K D rxW is not antisymmetric and thus, if � is such that T � D rxW � �
is in L1.RnC1/, apparently one cannot get any useful information regarding T ��. This
prevents any direct application of the usual T1 or T b theorems from Calderón–Zygmund
theory, which are essential tools in the case of analytic capacity or Lipschitz harmonic
capacity. A connected question is the following: is it true that a set is removable for the
heat equation if and only if it is removable for the adjoint heat equation �f C @tf D 0?

Some comments about the notation used in the paper: as usual, the letter C stands for
an absolute constant which may change its value at different occurrences. The notation
A . B means that there is a positive absolute constant C such that A � CB . Also, A� B
is equivalent to A . B . A.

2. Some preliminary estimates

In the next lemma we will obtain upper bounds for the kernels W.x; t/; rxW.x; t/,
@tW.x; t/ and @1=2t W.x; t/:

Lemma 2.1. For any Nx D .x; t/; x 2 Rn and t 2 R; the following holds :

.a/ 0 � W. Nx/ .
1

j Nxjnp
; .b/ jrxW. Nx/j .

1

j NxjnC1p

;
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.c/ j@1=2t W. Nx/j .
1

jxjn�1 j Nxj2p
; .d/ j@tW. Nx/j .

1

j NxjnC2p

�

Proof. To prove inequality (a), we use the fact that e�jyj . min.1; jyj�n=2/, and then we
get

W. Nx/ .
1

tn=2
min

�
1;
tn=2

jxjn

�
D

1

max.tn=2; jxjn/
D

1

j Nxjnp
�

Concerning estimate (b), we have

rxW.x; t/ D c
x

tn=2C1
e�jxj

2=.4t/ �
¹t > 0º

:

So using now that e�jyj . min.jyj�1=2; jyj�1�n=2/, we derive

jrxW. Nx/j . c
jxj

tn=2C1
min

� t1=2
jxj

;
tn=2C1

jxjnC2

�
D

1

max.t .nC1/=2; jxjnC1/
D

1

j NxjnC1p

�

For inequality (d), we compute

@tW. Nx/ D
� c1

tn=2C1
e�jxj

2=.4t/
C
c2jxj

2

tn=2C2
e�jxj

2=.4t/
�
�
¹t > 0º

;

and then we argue as above. We leave the details for the reader.
The proof of inequality (c) will take some more work. Clearly, we may assume x ¤ 0.

First we write W.x; t/ in the form

W.x; t/ D
c

jxjn

�
jxj2

4t

�n=2
e�jxj

2=.4t/ �
¹t > 0º

D
c

jxjn
f
� 4t
jxj2

�
;

where
f .s/ D

1

sn=2
e�1=s �

¹s > 0º
:

Notice that f is a C1 function that vanishes at1. Then we have

@
1=2
t W.x; t/ D

c

jxjn
@
1=2
t

h
f
� 4 �
jxj2

�i
.t/:

By a change of variable, it is immediate to check that

@
1=2
t

h
f
� 4 �
jxj2

�i
.t/ D

2

jxj
@
1=2
t f

� 4t
jxj2

�
;

and thus
@
1=2
t W.x; t/ D

c

jxjnC1
@
1=2
t f

� 4t
jxj2

�
:

We will show below that, for any t 2 R,

(2.1) j@
1=2
t f .t/j . min.1; jt j�1/:

Clearly, this implies that

j@
1=2
t W.x; t/j .

1

jxjnC1
min

�
1;
jxj2

t

�
D

1

max.jxjnC1; jxjn�1t /
D

1

jxjn�1 j Nxj2p
�
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The proof of (2.1) is a straightforward but lengthy calculation. We split the integral as
follows:

j@
1=2
t f .t/j �

ˆ
jsj�jt j=2

jf .s/ � f .t/j

js � t j3=2
ds C

ˆ
jt j=2<jsj�2jt j

jf .s/ � f .t/j

js � t j3=2
ds

C

ˆ
jsj>2jt j

jf .s/ � f .t/j

js � t j3=2
ds

D I1 C I2 C I3:

To estimate I1 we use that js � t j � jt j in its domain of integration, and then we get

(2.2) I1 .
1

jt j3=2

ˆ
jsj�jt j=2

1

jsjn=2
e�1=jsj ds C

1

jt j3=2

ˆ
jsj�jt j=2

1

jt jn=2
e�1=jt j ds:

The second summand equals

C

jt j3=2
1

jt jn=2�1
e�1=jt j D

C

jt j.nC1/=2
e�1=jt j:

The integral in the first summand of (2.2) can be estimated as follows:ˆ
jsj�jt j=2

1

jsjn=2
e�1=jsj ds

� e�1=.2jt j/
ˆ
jsj�1

1

jsjn=2
e�1=.2jsj/ ds C e�1=.2jt j/

ˆ
1�jsj�jt j=2

1

jsjn=2
ds

. e�1=.2jt j/.1C jt j1=2/:

Hence,

I1 .
1

jt j3=2
e�1=.2jt j/.1C jt j1=2/C

1

jt j.nC1/=2
e�1=jt j . min

�
1;
1

jt j

�
:

To deal with I2, we distinguish two cases, according to whether s has the same sign
as t or not. In the first case we write s 2 Y , and in the second one, s 2 N . In the case
s 2 N , with jt j=2 � jsj � 2jt j, it turns out that js � t j � jt j, and thus

I2;N WD

ˆ
s2N;jt j=2�jsj�2jt j

jf .s/ � f .t/j

js � t j3=2
ds

.
1

jt j3=2

ˆ
jsj�2jt j

1

jsjn=2
e�1=jsj ds C

1

jt j3=2

ˆ
jsj�2jt j

1

jt jn=2
e�1=jt j ds:

Observe that this last expression is very similar to the right-hand side of (2.2). Then, by
almost the same arguments we deduce that

I2;N . min
�
1;
1

jt j

�
:

To deal with the case when the sign of s is the same as the one of t (i.e., s 2 Y ), we take
into account that

jf .s/ � f .t/j � sup
�2Œs;t�

jf 0.�/j js � t j;
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Since in this case jt j=2 � j�j � 2jt j, it is immediate to check that for this � we have

jf 0.�/j .
1

jt jn=2C1
e�1=.4jt j/:

Thus,

I2;Y WD

ˆ
s2Y;jt j=2�jsj�2jt j

jf .s/�f .t/j

js � t j3=2
ds .

1

jt jn=2C1
e�1=.4jt j/

ˆ
jt j=2�jsj�2jt j

js� t j

js � t j3=2
ds

�
1

jt jn=2C1
e�1=.4jt j/

ˆ
jsj�2jt j

1

js � t j1=2
ds .

1

jt j.nC1/=2
e�1=.4jt j/ . min

�
1;
1

jt j

�
:

Finally, concerning I3, taking into account that js � t j � jsj & jt j in the domain of
integration,

I3 .
ˆ
jsj>2jt j

e�1=jsj C e�1=jt j

jt jn=2jsj3=2
ds .

ˆ
jsj>2jt j

e�1=jsj

jt jn=2jsj3=2
ds C

e�1=jt j

jt jn=2

ˆ
jsj>2jt j

ds

jsj3=2
�

It is immediate to check that none of the two summands exceeds Cmin.1; jt j�1/. So
gathering all the estimates above, the claim (2.1) follows.

3. Localization

Let 'WRnC1! R be a C 2 function. We say that ' is admissible for a parabolic cubeQ if
it is supported on Q and satisfies

(3.1) krx'k1 �
1

`.Q/
and k�'k1 C k@t'k1 �

1

`.Q/2
�

The main objective of this section is to show the following localization result.

Theorem 3.1. Let � be a distribution in RnC1 such that

krxW � �k1 � 1 and k@
1=2
t W � �k�;p � 1:

Let ' be a C 2 function admissible for a parabolic cube Q � RnC1. Then

krxW � .'�/k1 . 1 and k@
1=2
t W � .'�/k�;p . 1:

We say that a distribution � in RnC1 has upper parabolic growth of degree nC 1 if
there exists some constant C such that, given any parabolic cube Q and any function C 2

function ' admissible for Q, it holds

jh�; 'ij � C`.Q/nC1:

It is immediate to check that this definition is coherent with the one in (1.1) for positive
measures. If we want to be precise about the precise constant involved in the definition,
we will say that � has upper parabolic C -growth of degree nC 1.

Before proving Theorem 3.1, we need several lemmas. The first one shows that every
distribution � satisfying the hypotheses of Theorem 3.1 has upper parabolic growth of
degree nC 1.
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Lemma 3.2. Let � be a distribution in RnC1 such that

krxW � �k1 � 1 and k@
1=2
t W � �k�;p � 1:

Then � has upper parabolicC -growth of degree nC 1, whereC is some absolute constant.

Proof. Let ' be a C 2 function admissible for a parabolic cube Q. Since W is the funda-
mental solution of ‚, we can write

jh�; 'ij D jh�;‚' �W ij � jhW � �;�'ij C jhW � �; @t'ij D I1 C I2:

To estimate I1 we use that krx'k1 � 1=`.Q/ and krxW � �k1 � 1:

I1 D jhrxW � �;rx'ij � krxW � �k1

ˆ
jrx'j dm � `.Q/

nC1:

For I2 we consider the function g D @t' �t k, with k.t/ D jt j�1=2 and �t being the
convolution on the t variable. Taking the Fourier transform on the variable t , we get @t' D
c @

1=2
t g, for a suitable absolute constant c ¤ 0. WriteQDQ1 � IQ, withQ1 �Rn being

a cube of side length `.Q/ and IQ � R an interval of length `.Q/2. Because of the zero
mean of @t' (integrating with respect to t ), it is easy to check that jg.x; t/j decays at most
like jt j3=2 at infinity. Indeed, for t … 2IQ, denoting by sQ the center of IQ,

jg.x; t/j D
ˇ̌̌ˆ
IQ

@s'.x; s/

jt � sj1=2
ds
ˇ̌̌
D

ˇ̌̌ˆ
IQ

@s'.x; s/
� 1

jt � sj1=2
�

1

jt � sQj1=2

�
ds
ˇ̌̌

(3.2)

.
`.IQ/

jt � sQj3=2

ˆ
IQ

j@s'.x; s/j ds .
`.IQ/

jt � sQj3=2
�

Together with the fact that supp g � Q1 �R, this implies that g 2 L1.RnC1/. Further, it
is easy to check that

´
gdm D 0, for example with the help of the Fourier transform in t .

Using the zero average property of g, writing f D @1=2t W � �, we have

I2 D jhW � �; c @
1=2
t gij D jhf; c gij D

ˇ̌̌
c

ˆ
.f �mQf / g dm

ˇ̌̌
.
ˆ
2Q

jf �mQf j jgj dx dt C

ˆ
RnC1n2Q

jf �mQf j jgj dm

D I21 C I22:

Since for t 2 4IQ,

jg.x; t/j .
ˆ
IQ

j@t'.x; s/j

jt � sj1=2
ds . k@t'k1`.IQ/1=2 .

1

`.Q/
;

we have I21 . kf k�;p `.Q/nC2`.Q/�1 � `.Q/nC1.
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For I22, we split the domain of integration in annuli. Write Ai D 2iQ n 2i�1Q for
i � 1. Remark that for a parabolic cube Q D Q1 � IQ, we denote

2iQ D 2iQ1 � 2
2iIQ;

so that 2iQ is a parabolic cube too (notice that if Q is centered at the origin and we
consider the parabolic dilation ı�.x; t/ D .�x; �2t /, � > 0, we have 2iQ D ı2i .Q/).
Then, using the decay of g given by (3.2), we get
(3.3)

I22 .
1X
iD1

`.Q/2

`.2iQ/3

�ˆ
Ai\ suppg

jf �m2iQf j dmC

ˆ
Ai\ suppg

jm2iQf �mQf j dm
�
:

To estimate the first integral on the right-hand side, recall that supp g � Q1 � R. Using
Hölder’s inequality with some exponent q 2 .0;1/ to be chosen in a moment and the fact
that f 2 BMOp (together with John–Nirenberg), then we get
ˆ
Ai\ suppg

jf �m2iQf j dm �
�ˆ

2iQ

jf �m2iQf j
q dm

�1=q
m.suppg \ 2iQ/1=q

0

. `.2iQ/.nC2/=q .`.Q/n `.2iQ/2/1=q
0

D `.2iQ/.n=q/C2 `.Q/n=q
0

:

For the last integral on the right-hand side of (3.3), we write
ˆ
Ai\ suppg

jm2iQf �mQf j dm . im.2iQ \ suppg/ � i `.Q/n `.2iQ/2:

Therefore,

I22 .
1X
iD1

`.Q/2

`.2iQ/3

�
`.2iQ/.n=q/C2 `.Q/n=q

0

C i `.Q/n `.2iQ/2
�
:

Choosing q > n, we get
I22 . `.Q/nC1:

Before going to the next lemma, recall that a function f .x; t/ defined in RnC1 is
Lip 1=2 (or Hölder 1=2) in the t variable if

kf kLip1=2;t D sup
x2Rn; t;u2R

jf .x; t/ � f .x; u/j

jt � uj1=2
<1:

It is known that functions f with rxf 2 L1.RnC1/ and @1=2t f 2 BMOp.RnC1/ are
Lip 1/2 in t . More precisely,

kf kLip1=2;t . krxf kL1.RnC1/ C k@
1=2
t f k�;p:

See Lemma 1 in [5] and Theorem 7.4 in [7].
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Lemma 3.3. Let � be a distribution in RnC1 such that

krxW � �k1 � 1 and kW � �kLip1=2;t � 1:

Then, if ' is a C 2 function admissible for some parabolic cube Q � RnC1, we have

krxW � .'�/k1 . 1:

Proof. Notice that for f and g in C 2 we have ‚.fg/ D g‚f C f ‚g C 2rxf rxg:

Therefore, since W is the fundamental solution of ‚, for any constant c we can write

‚.' .W � � � c// D ' ‚.W � � � c/C‚' .W � � � c/C 2rx' � .rxW � �/(3.4)
D ' � C‚' .W � � � c/C 2rx' � .rxW � �/:

Therefore,

rxW � .'�/

D rx.'.W � ��c// � rxW � .‚'.W � ��c// � 2rxW � .rx'.rxW � �//:(3.5)

To estimate the L1 norm of (3.5), writeQ DQ1 � IQ, whereQ1 � Rn is a cube of side
length `.Q/ and IQ �R an interval of length `.Q/2 and choose c DW � �.xQ; tQ/, with
.xQ; tQ/ being the center of the parabolic cubeQ. SinceW � � is a Lipschitz function on
the x variable and Lip 1/2 on the t variable, for Nx D .x; t/ 2 Q we can write

jW � �.x; t/ �W � �.xQ; tQ/j � jW � �.x; t/ �W � �.xQ; t /j

C jW � �.xQ; t / �W � �.xQ; tQ/j

. `.Q/C .`.Q/2/1=2 . `.Q/:

(3.6)

Using this estimate together with krxW � �k1 � 1 and the fact that ' is admissible forQ,
we get

krx.'.W ���c//k1 � krx'k1kW ���W ��.xQ; tQ/k1Ck'k1krxW ��k1 . 1:

We claim now that if g is a function supported on Q and such that kgk1 � `.Q/�1,
then krxW � gk1 . 1. Once the claim is proved, to estimate the L1-norm of the second
and third terms in (3.5), take g D ‚'.W � � � c/ (recall that we have chosen c D W �
�.xQ; tQ/) and g D rx'.rxW � �/ respectively. Notice that in the first case the bound
kgk1 � `.Q/

�1 is obtained by using (3.6) and the fact that ' is admissible for Q, while
in the second case, one uses the admissibility of ' together with krxW � �k1 � 1. So
the claim applies to both terms, and we therefore obtain krxW � .'�/k1 . 1:

To prove the claim, notice that for Ny D .y; s/,

1

j NyjnC1p

D
1

.max.jyj; s1=2//nC1
�

1

jyjn�1=2
1

s3=4
�

Take a function g supported on Q and such that kgk1 � `.Q/�1. For Nx 2 2Q, using
Lemma 2.1 we have

jrxW � g. Nx/j � kgk1

ˆ
Q

dm. Ny/

j Nx � NyjnC1p

�
1

`.Q/

ˆ
Q1

dy

jx � yjn�1=2

ˆ
IQ

ds

jt � sj3=4
.
`.Q/1=2.`.Q/2/1=4

`.Q/
D 1:
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and if Nx 2 .2Q/c , then j Nx � NyjnC1p � `.Q/nC1. Therefore

jrxW � g. Nx/j � kgk1

ˆ
Q

dm. Ny/

j Nx � NyjnC1p

.
`.Q/nC2

`.Q/ `.Q/nC1
D 1:

Hence krxW � gk1 . 1. This finishes the proof of the claim and the lemma.

Lemma 3.4. Let � be a distribution in RnC1 such that

krxW � �k1 � 1 and kW � �kLip1=2;t � 1:

Then, if ' is a C 2 function admissible for some parabolic cube Q � RnC1, we have

kW � .'�/kLip1=2;t . 1:

Proof. For any constant c, from the identity (3.4) we can write

(3.7) W � '� D '.W � � � c/ � 2W � .rx'rx.W � �// �W � ..W � � � c/‚'/:

Set Nx D .x; t/ and Qx D .x; r/; with x 2 Rn and t; r 2 R. Then

W � .'�/. Nx/�W � .'�/. Qx/ D
�
'. Nx/.W � �. Nx/ � c/ � '. Qx/.W � �. Qx/ � c/

�
C
�
� 2W � .rx' rx.W � �//. Nx/C 2W � .rx' rx.W � �//. Qx/

�
C
�
�W � ..W � � � c/‚'/. Nx/CW � ..W � � � c/‚'/. Qx/

�
D AC B C C:

We start with the termA. If Nx; Qx …Q, thenAD 0. Otherwise, let us assume that Nx 2Q and
take cDW � �. NxQ/, where NxQ is the center ofQ. Choose a point Qx0 such that Qx0D Qx when
Qx 2Q, and otherwise take Qx0 2 2Q of the form Qx0 D .x; r 0/ satisfying j Qx0 � Nxj � j Qx � Nxj.
Observe that in any case we have

'. Qx/.W � �. Qx/ � c/ D '. Qx0/.W � �. Qx0/ � c/
�

and
j Nx � Qx0jp � min

�
C`.Q/; j Nx � Qxjp

�
:

Then we have

jAj � j'. Qx0/ � '. Nx/j jW � �. Qx0/ � cj C j'. Nx/j jW � �. Qx0/ �W � �. Nx/j

.
jr 0 � t j

`.Q/2
`.Q/C jr 0 � t j1=2 . jr 0 � t j1=2 � jr � t j1=2:

To estimate the terms B and C we need the following result.

Lemma 3.5. Let g be a function supported on a parabolic cubeQ and such that kgk1 .
1=`.Q/. Then kW � gkLip1=2;t . 1.
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Using Lemma 3.5 we can finish the proof of Lemma 3.4. To estimate B choose g D
rx'.rxW � �/. Then clearly kgk1 . 1=`.Q/ and thus jBj . jt � r j1=2. For the term C ,
set g D .W � � � c/‚', with c D W � �. NxQ/, NxQ D .xQ; tQ/ being the center of Q.
Then, for all Ny D .y; s/ 2 Q,

jW � �. Ny/ �W � �. NxQ/j � jW � �.y; s/ �W � �.xQ; s/j

C jW � �.xQ; s/ �W � �.xQ; tQ/j

� `.Q/krxW � �k1 C js � tQj
1=2
kW � �kLip1=2;t . `.Q/:

Consequently kgk1 . `.Q/k‚' k1 . `.Q/�1.

Proof of Lemma 3.5. Set Nx D .x; t/ and Qx D .x; r/; where x 2 Rn and t; r 2 R. Then

W � g.x; t/ D Cn

¨
1

.t � u/n=2
e
�
jx�zj2

4.t�u/ g.z; u/ �
¹u < tº

dz du

D Cn

¨
1

.t � u/1=2
1

jx � zjn�1
f
�
jx � zj2

t � u

�
g.z; u/ dz du;

where f .s/ D s.n�1/=2e�s�
¹s > 0º

.
So, takingQDQ1 � IQ;withQ1 �Rn being a cube of side length `.Q/ and IQ �R

an interval of length `.Q/2, we have

jW � g. Nx/ �W � g. Qx/j

.
1

`.Q/

¨
Q

1

jx � zjn�1

ˇ̌̌ 1

.t � u/1=2
f
�
jx � zj2

t � u

�
�

1

.r � u/1=2
f
�
jx � zj2

r � u

�ˇ̌̌
dz du

.
1

`.Q/

ˆ
Q1

dz

jx � zjn�1

ˆ
IQ

ˇ̌̌ 1

jt � uj1=2
�

1

jr � uj1=2

ˇ̌̌
du

C
1

`.Q/

ˆ
Q1

dz

jx � zjn�1

ˆ
IQ

1

jt � uj1=2

ˇ̌̌
f
�
jx � zj2

t � u

�
� f

�
jx � zj2

r � u

�ˇ̌̌
du

D AC B;

where in the last inequality we have used that kf k1 . 1: Now,

A .
ˆ
jt�uj�2jt�rj

ˇ̌̌ 1

jt � uj1=2
�

1

jr � uj1=2

ˇ̌̌
C

ˆ
jt�uj>2jt�rj

ˇ̌̌ 1

jt � uj1=2
�

1

jr � uj1=2

ˇ̌̌
D A1 C A2;

with

A1 �

ˆ
jt�uj�2jt�rj

du

jt � uj1=2
C

ˆ
jr�uj<3jt�rj

du

jr � uj1=2
. jt � r j1=2

and

A2 .
ˆ
jt�uj>2jt�rj

jt � r j

jt � uj3=2
du . jt � r j1=2:
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Finally, to estimate B we will use that for jt � uj > 2jt � r j,ˇ̌̌
f
�
jx � zj2

t � u

�
� f

�
jx � zj2

r � u

�ˇ̌̌
� kf 0k1;I jx � zj

2
ˇ̌̌ 1

t � u
�

1

r � u

ˇ̌̌
� jx � zj2

jt � r j

jt � uj2
kf 0k1;I ;

where I is the interval
�
jx�zj2

t�u
; jx�zj

2

r�u

�
: In the case jt � uj � 2jt � r j, we just take into

account that kf k1 � 1. Then,

B �
1

`.Q/

ˆ
jt�uj�2jt�rj

ˆ
z2Q1

1

jx � zjn�1
1

jt � uj1=2
dudz

C
1

`.Q/

ˆ
jt�uj>2jt�rj

ˆ
z2Q1

1

jx � zjn�1
1

jt � uj1=2
jx � zj2jt � r j

jt � uj2
kf 0k1;I dudz

D B1 C B2:

The term B1 is clearly bounded by C jt � r j1=2. To estimate B2 we use that f is a
smooth function satisfying jf 0.s/j . jsj�1 and that jsj � jx�zj

2

jt�uj
for all s 2 I . Therefore,

B2 .
1

`.Q/

ˆ
jt�uj>2jt�rj

ˆ
z2Q1

jt � r j

jx � zjn�3jt � uj5=2
jt � uj

jx � zj2
dudz . jt � r j1=2:

Lemma 3.6. Let � be a distribution in RnC1 such that

krxW � �k1 � 1 and k@
1=2
t W � �k�;p � 1:

Let Q;R � RnC1 be parabolic cubes such that Q � R. If ' is a C 2 function admissible
for Q, then we have ˆ

R

j@
1=2
t W � .'�/j dm . `.R/nC2:

Proof. From the integration by parts formula (3.7), we infer that

@
1=2
t W � .'�/ D @

1=2
t Œ'.W � � � c/� � 2@

1=2
t W � .rx' rxW � �/

� @
1=2
t W � ..W � � � c/‚'/:

We choose c D W � �. NxQ/, where NxQ is the centre of Q.
First we will estimate the L1 norm on R of the last two terms. We denote g1 D

rx' rxW � � and g2 D .W � � � c/ ‚'. Notice that, supp gi � Q for i D 1; 2, and
also

kg1k1 .
1

`.Q/
�

Also, from the respective Lip and Lip 1=2 conditions on the x and t variables, it follows

jW � �. Nx/ �W � �. NxQ/j . `.Q/ for all Nx 2 Q.

Therefore,

kg2k1 � kW � � �W � �. NxQ/k1;Q k‚'k1 . `.Q/
1

`.Q/2
D

1

`.Q/
�
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Next notice that, by Lemma 2.1,

j@
1=2
t W. Nx/j .

1

jxjn�1 j Nxj2p
�

1

jxjn�1 jxj1=2 jt j3=4
D

1

jxjn�1=2 jt j3=4
�

Then, writing Q D Q1 � IQ, where Q1 is a cube with side length `.Q/ in Rn and IQ is
an interval of length `.Q/2, we deduce that, for any Nx 2 RnC1,

j@
1=2
t W � gi . Nx/j .

1

`.Q/

ˆ
Q

j@
1=2
t W. Nx � Ny/j d Ny

.
1

`.Q/

ˆ
x2Q1

1

jx � yjn�1=2
dy

ˆ
u2IQ

1

jt � uj3=4
du

.
1

`.Q/
`.Q/1=2 .`.Q/2/1=4 D 1:

Therefore,ˆ
R

ˇ̌
2@
1=2
t W � .rx' rxW � �/C @

1=2
t W � ..W � � � c/‚'/

ˇ̌
dm . `.R/nC2:

So to prove the lemma it suffices to show thatˆ
R

ˇ̌
@
1=2
t

�
'.W � � �W � �. NxQ//

�ˇ̌
dm . `.R/nC2:

To this end, we consider a C1 function  Q such that �
Q
�  Q � �2Q, with jrx Qj .

1=`.Q/ and j@t Qj. 1=`.Q/2, and for any function F WRnC1!R consider the “smooth
mean” with respect to  Q defined by

m Q.F / D

´
F  Q dm´
 Q dm

�

Observe that for arbitrary functions f; gWR! R, we have

@
1=2
t .f g/.t/ D g.t/ @

1=2
t f .t/C f .t/ @

1=2
t g.t/C

ˆ
.f .s/ � f .t//.g.s/ � g.t//

js � t j3=2
ds:

Applying this with f D '.x; �/ and g D W � �.x; �/ �W � �. NxQ/, we get

@
1=2
t

�
'.W � � �W � �. NxQ//

�
.x; t/

D
�
W � �.x; t/ �W � �. NxQ/

�
@
1=2
t '.x; t/C '.x; t/ @

1=2
t W � �.x; t/

C

ˆ �
'.x; s/ � '.x; t/

� �
W � �.x; s/ �W � �.x; t/

�
js � t j3=2

ds

D
�
W � �.x; t/ �W � �. NxQ/

�
@
1=2
t '.x; t/

C '.x; t/
�
@
1=2
t W � �.x; t/ �m Q.@

1=2
t W � �/

�
C

ˆ �
'.x; s/ � '.x; t/

� �
W � �.x; s/ �W � �.x; t/

�
js � t j3=2

ds

C '.x; t/m Q.@
1=2
t W � �/

D A. Nx/C B. Nx/C C. Nx/CD. Nx/:
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To estimate A. Nx/, observe first that @1=2t '.x; t/ vanishes unless x 2 Q1. In the case
x 2 Q1, t 2 2IQ, by the smoothness of ' we have

j@
1=2
t '.x; t/j �

ˆ
j'.x; s/ � '.x; t/j

js � t j3=2
ds

.
1

`.Q/2

ˆ
2IQ

js � t j

js � t j3=2
ds C

ˆ
Rn2IQ

1

js � t j3=2
ds .

1

`.Q/
�

In the case x 2 Q1, t 62 2IQ, we have

j@
1=2
t '.x; t/j �

ˆ
j'.x; s/j

js � t j3=2
ds �

1

jt � tQj3=2

ˆ
j'.x; s/j ds .

`.Q/2

jt � tQj3=2
;

where NxQ D .xQ; tQ/. So in any case,

j@
1=2
t '.x; t/j .

`.Q/2

`.Q/3 C jt � tQj3=2
�

Then, using the Lip and Lip 1=2 conditions on x and t ofW � �, we infer that, for x 2Q1,

jA. Nx/j .
`.Q/2 .`.Q/C jt � tQj

1=2/

`.Q/3 C jt � tQj3=2
�

Therefore,
ˆ
R

jA. Nx/j d Nx .
ˆ
x2Q1

ˆ
jt�tQj�2`.R/2

`.Q/2 .`.Q/C jt � tQj
1=2/

`.Q/3 C jt � tQj3=2
dt

. `.Q/nC2
�
1C log

`.R/

`.Q/

�
. `.R/nC2:

To estimate the L1 norm of the term B we just use the fact that @1=2t W � � is in the
parabolic BMO space and that

jm Q.@
1=2
t W � �/ �mQ.@

1=2
t W � �/

ˇ̌
. k@1=2t W � �k�;p � 1:

Then,ˆ
R

ˇ̌
B. Nx/j d Nx D

ˆ
R

j'. Nx/
�
@
1=2
t W � �. Nx/ �m Q.@

1=2
t W � �/

�ˇ̌
d Nx

.
ˆ
Q

j@
1=2
t W � �. Nx/ �m Q.@

1=2
t W � �/

ˇ̌
d Nx . `.Q/nC2 � `.R/nC2:

We are now left with C. Nx/CD. Nx/. First we split

C. Nx/ D

ˆ �
'.x; s/ � '.x; t/

� �
W � �.x; s/ �W � �.x; t/

�
js � t j3=2

ds

D

ˆ
js�t j�`.Q/2

� � � C

ˆ
js�t j>`.Q/2

� � � D C1. Nx/C C2. Nx/:
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To estimate C1. Nx/ we use the smoothness of ' and the Lip 1/2 condition of W � � in t :

jC1. Nx/j .
ˆ
js�t j�`.Q/2

`.Q/�2 js � t j js � t j1=2

js � t j3=2
ds . 1;

so that
´
R
jC1. Nx/j d Nx . `.R/nC2.

Concerning C2. Nx/, we have

C2. Nx/ D

ˆ
js�t j>`.Q/2

W � �.x; s/ �W � �.x; t/

js � t j3=2
'.x; s/ ds

�

ˆ
js�t j>`.Q/2

W � �.x; s/ �W � �.x; t/

js � t j3=2
ds '.x; t/

D C2;1. Nx/ � C2;2. Nx/:

Using again the Lip 1/2 condition of W � � in t , and the fact that j'.x; �/j . �
IQ

, we
obtain

jC2;1. Nx/j .
ˆ
js�t j>`.Q/2

1

js � t j
'.x; s/ ds .

1

`.Q/2

ˆ
'.x; s/ ds . 1;

and so
´
R
jC2;1. Nx/j d Nx . `.R/nC2.

By the estimates above, we have
ˆ
R

j@
1=2
t W � .'�/j dm . `.R/nC2 C

ˆ
R

j � C2;2. Nx/CD. Nx/j d Nx;

where

C2;2. Nx/ D

ˆ
js�t j>`.Q/2

W � �.x; s/ �W � �.x; t/

js � t j3=2
ds '.x; t/

and
D. Nx/ D m Q.@

1=2
t W � �/ '.x; t/:

So to conclude the prove of the lemma it suffices to show that, for all Nx 2 Q,

(3.8)
ˇ̌̌
m Q.@

1=2
t W � �/ �

ˆ
js�t j>`.Q/2

W � �.x; s/ �W � �.x; t/

js � t j3=2
ds
ˇ̌̌

. 1:

To this end we first turn our attention to the term m Q.@
1=2
t W � �/. As above, for any

Ny D .y; u/ 2 RnC1 we split

@
1=2
t W � �. Ny/ D

ˆ
js�uj�`.Q/2

W � �.y; s/ �W � �.y; u/

js � uj3=2
ds

C

ˆ
js�uj>`.Q/2

W � �.y; s/ �W � �.y; u/

js � uj3=2
ds

DW F1. Ny/C F2. Ny/:
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Observe that the kernel

Ky.s; u/ D �js � uj � `.Q/2
W � �.y; s/ �W � �.y; u/

js � uj3=2

is antisymmetric, and thus

m QF1 D
1

k Qk1

˚
Ky.s; u/ Q.y; u/ ds dy du

D �
1

k Qk1

˚
Ky.s; u/ Q.y; s/ du dy ds

D
1

2 k Qk1

˚
Ky.s; u/ . Q.y; u/ �  Q.y; s// du dy ds:

Hence, by the smoothness of  Q and the Lip 1=2 condition of W � � in t ,

jm QF1j �
1

2 k Qk1

˚
js�uj�`.Q/2

jW � �.y; s/ �W � �.y; u/j

js � uj3=2
j Q.y; u/ �  Q.y; s/j

.
1

`.Q/nC2

˚
js�uj�`.Q/2;

y22Q1;u24IQ

js � uj1=2

js � uj3=2
ju � sj

`.Q/2
dudy ds . 1:

To prove (3.8), it remains to show that

(3.9)
ˇ̌̌
m QF2 �

ˆ
js�t j>`.Q/2

W � �.x; s/ �W � �.x; t/

js � t j3=2
ds
ˇ̌̌

. 1 for all Nx 2 Q.

Clearly, it suffices to prove that for all Nx 2 Q and Ny 2 2Q,ˇ̌̌
F2. Ny/ �

ˆ
js�t j>`.Q/2

W � �.x; s/ �W � �.x; t/

js � t j3=2
ds
ˇ̌̌
D
ˇ̌
F2. Ny/ � F2. Nx/

ˇ̌
. 1:

We denote At D ¹s 2 R W js � t j > `.Q/2º, and analogously Au. Then we splitˇ̌
F2. Ny/�F2. Nx/

ˇ̌
�

ˆ
AunAt

jW � �.y; s/ �W � �.y; u/j

js � uj3=2
ds

C

ˆ
AtnAu

jW � �.x; s/ �W � �.x; t/j

js � t j3=2
ds

C

ˆ
Au\At

ˇ̌̌W � �.x; s/ �W � �.x; t/
js � t j3=2

�
W � �.y; s/ �W � �.y; u/

js � uj3=2

ˇ̌̌
ds

D I1 C I2 C I3:

Using the Lip 1=2 condition of W � � in t and the fact that js � uj � `.Q/2 in Au n At
and js � t j � `.Q/2 in At n Au, it is immediate to check that

I1 C I2 . 1:
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Concerning I3, by the triangle inequality,

I3 �

ˆ
Au\At

ˇ̌̌ 1

js � t j3=2
�

1

js � uj3=2

ˇ̌̌ ˇ̌
W � �.x; s/ �W � �.x; t/

ˇ̌
ds

C

ˆ
Au\At

jW � �.x; s/ �W � �.x; t/ �W � �.y; s/CW � �.y; u/j

js � uj3=2
ds

D I3;1 C I3;2:

To estimate I3;1 we take into account thatˇ̌̌ 1

js � t j3=2
�

1

js � uj3=2

ˇ̌̌
.
jt � uj

js � t j5=2

in the domain of integration and we use the Lip 1=2 condition on W � �:

I3;1 .
ˆ
js�t j>`.Q/2

jt � uj

js � t j5=2
js � t j1=2 ds . 1:

Finally we deal with I3;2:

I3;2 �

ˆ
js�t j>`.Q/2

jW � �.x; s/ �W � �.y; s/j C jW � �.y; u/ �W � �.x; t/j

js � t j3=2
ds:

By the Lipschitz in x and Lip 1=2 in t conditions of W � �, we derive

jW � �.x; s/ �W � �.y; s/j C jW � �.y; u/ �W � �.x; t/j . `.Q/:

Therefore,

I3;2 .
ˆ
js�t j>`.Q/2

`.Q/

js � t j3=2
ds . 1:

Together with the preceding estimates for I1, I2, I3;1, this shows that

jF2. Ny/ � F2. Nx/j . 1 for all Nx 2 Q; and Ny 2 2Q,

which proves (3.9) and concludes the proof of the lemma.

Lemma 3.7. Let Q � RnC1 be a parabolic cube and let � be a distribution supported in
RnC1 n 4Q with upper parabolic 1-growth of degree nC 1 and such that

krxW � �k1 � 1 and kW � �kLip1=2;t � 1:

Then, ˆ
Q

j@
1=2
t W � � �mQ.@

1=2
t W � �/j dm . `.Q/nC2:

Proof. LetQ �RnC1 be a fixed parabolic cube. To prove the lemma, it is enough to show
that

(3.10) j.@
1=2
t W � �/. Nx/ � .@

1=2
t W � �/. Ny/j . 1

for Nx; Ny 2 RnC1 in the following two cases:
� Case 1: Nx; Ny 2 Q of the form Nx D .x; t/, Ny D .y; t/.
� Case 2: Nx; Ny 2 Q of the form Nx D .x; t/, Ny D .x; u/.
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Proof of (3.10) in Case 1. We split

j@
1=2
t W � �.x; t/ � @

1=2
t W � �.y; t/j

D

ˇ̌̌̌ˆ
W � �.x; s/ �W � �.x; t/

js � t j3=2
ds �

ˆ
W � �.y; s/ �W � �.y; t/

js � t j3=2
ds

ˇ̌̌̌
�

ˆ
js�t j�4`.Q/2

jW � �.x; s/ �W � �.x; t/j

js � t j3=2
ds

C

ˆ
js�t j�4`.Q/2

jW � �.y; s/ �W � �.y; t/j

js � t j3=2
ds

C

ˆ
js�t j>4`.Q/2

jW � �.x; s/ �W � �.x; t/ �W � �.y; s/CW � �.y; t/j

js � t j3=2
ds

DW A1 C A2 C B:

We will estimate the term A1 now. For s; t such that js � t j � 4`.Q/2, we write

jW � �.x; s/ �W � �.x; t/j � js � t j k@tW � �k1;3Q:

We claim that

(3.11) k@tW � �k1;3Q .
1

`.Q/
�

Once claim (3.11) is proved, we get that

jW � �.x; s/ �W � �.x; t/j .
js � t j

`.Q/
�

Plugging this into the integral that defines A1, we obtain

A1 .
ˆ
js�t j�4`.Q/2

js � t j

`.Q/ js � t j3=2
ds .

.`.Q/2/1=2

`.Q/
D 1:

By exactly the same arguments, just writing y in place of x above, we deduce also that

A2 . 1:

Concerning the term B , we write

B �

ˆ
js�t j>4`.Q/2

jW � �.x; s/ �W � �.y; s/j

js � t j3=2
ds

C

ˆ
js�t j>4`.Q/2

jW � �.x; t/ �W � �.y; t/j

js � t j3=2
ds:

Then,
jW � �.x; s/ �W � �.y; s/j � krxW � �k1 jx � yj . `.Q/:

The same estimate holds replacing .x; s/ and .y; s/ by .x; t/ and .y; t/. Hence,

B .
ˆ
js�t j>4`.Q/2

`.Q/

js � t j3=2
ds .

`.Q/

.`.Q/2/1=2
. 1:

So, once claim (3.11) is proved, (3.10) holds in Case 1.
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To show (3.11), we split RnC1 n 4Q into parabolic annuli Ak D 2kC1Q n 2kQ and
consider C 2 functions z�

k
, supported on 3

2
Ak which equal 1 on Ak , vanish on .3

2
Ak/

c and
satisfy X

k�3

z�
k
D 1 in RnC1 n 4Q

and
krx z�kk1 .

1

2k`.Q/
; kr

2
x z�kk1 C k@t z�kk1 .

1

.2k`.Q//2
�

Then, for each Nz D .z; v/ 2 3Q,

j@tW � �. Nz/j �
X
k�3

j@tW � . z�k�/. Nz/j:

Claim (3.11) will be proved if we show that for each k � 2,

(3.12) j@tW � . z�k�/. Nz/j .
2�k

`.Q/
�

Write
j@tW � . z�k�/. Nz/j D jh�; z�k@tW. Nz � �/ij D jh�;  kij;

the last equality being a definition of  k .
To estimate (3.12), we want to use the upper parabolic growth of �. Therefore we

have to study the admissibility conditions (3.1) of  k for each k. This means we have to
estimate the norms krx kk1 and k� kk1 C k@t kk1. Write

(3.13) rx k D rx z�k @tW. Nz � �/Crx@tW. Nz � �/ z�k :

The estimate of the L1-norm of the first term in (3.13) comes from krx z�kk1 .
.2k`.Q//�1 and Lemma 2.1, together with the fact that for Nx 2 Q and Nz 2 Ak we have

(3.14) j@tW. Nx � Nz/j .
1

j Nx � NzjnC2p

�
1

.2k`.Q//nC2
�

For the second term in (3.13) we have to compute rx@tW . Arguing as in the proof of
Lemma 2.1 one can show that

(3.15) jrx@tW. Nx/j .
1

max.t .nC3/=2; jxjnC3/
�

1

j NxjnC3p

�

Putting these estimates together we get

krx kk1 .
1

.2k`.Q//nC3
�

To estimate k� kk1 write

(3.16) � k D �z�k@tW. Nz � �/C 2rx z�krx@tW. Nz � �/C z�k�@tW. Nz � �/:
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Following the proof of Lemma 2.1 one can deduce that

(3.17) j�@tW. Nx/j .
1

max.t .nC4/=2; jxjnC4/
�

1

j NxjnC4p

�

Hence, using the estimates k�z�
k
k1 . .2k`.Q//�2, krx z�kk1 . .2k`.Q//�1, (3.15)

and (3.17), one obtains

k� kk1 .
1

.2k`.Q//nC4
�

To estimate k@t kk1 write

@t k D @t z�k @tW. Nz � �/C @
2
tW. Nz � �/ z�k :

The first term above is estimated by using k@t z�kk1 � .2
k`.Q//�2 and (3.14). For the

second term we argue as in the proof of Lemma 2.1 and obtain

j@2tW. Nx � Nz/j .
1

j Nx � NzjnC4p

�
1

.2k`.Q//nC4
;

for Nx 2 Q and Nz 2 Ak . Therefore

k@t kk1 .
1

.2k`.Q//nC4
�

Hence, by Lemma 3.2,

j.@tW � z�k�/. Nz/j D
1

.2k`.Q//nC2
jh�; .2k`.Q//nC2 kij .

.2k`.Q//nC1

.2k`.Q//nC2
D

2�k

`.Q/
;

which concludes the proof of claim (3.11) and of (3.10) in Case 1.

Proof of (3.10) in Case 2. As in Case 1 we write

j@
1=2
t W � �.x; t/ � @

1=2
t W � �.x; u/j

D

ˇ̌̌ˆ W � �.x; s/ �W � �.x; t/

js � t j3=2
ds �

ˆ
W � �.x; s/ �W � �.x; u/

js � uj3=2
ds
ˇ̌̌

�

ˆ
js�t j�4`.Q/2

jW � �.x; s/ �W � �.x; t/j

js � t j3=2
ds

C

ˆ
js�t j�4`.Q/2

jW � �.x; s/ �W � �.x; u/j

js � uj3=2
ds

C

ˆ
js�t j>4`.Q/2

ˇ̌̌W � �.x; s/ �W � �.x; t/
js � t j3=2

�
W � �.x; s/ �W � �.x; u/

js � uj3=2

ˇ̌̌
ds

DW A01 C A
0
2 C B

0:

The terms A01 and A02 can be estimated exactly in the same way as the terms A1 and A2 in
Case 1, so that

A01 C A
0
2 . 1:
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Concerning B 0 we have

B 0 �

ˆ
js�t j>4`.Q/2

ˇ̌̌W � �.x; s/ �W � �.x; t/
js � t j3=2

�
W � �.x; s/ �W � �.x; u/

js � uj3=2

ˇ̌̌
ds

�

ˆ
js�t j>4`.Q/2

ˇ̌̌ 1

js � t j3=2
�

1

js � uj3=2

ˇ̌̌ ˇ̌
W � �.x; s/ �W � �.x; t/

ˇ̌
ds

C

ˆ
js�t j>4`.Q/2

1

js � uj3=2

ˇ̌
W � �.x; t/ �W � �.x; u/

ˇ̌
ds:

Taking into account that, for js � t j > 4`.Q/2,ˇ̌̌ 1

js � t j3=2
�

1

js � uj3=2

ˇ̌̌
.
jt � uj

js � t j5=2
.

`.Q/2

js � t j5=2

and that kW � �kLip1=2;t . 1, we deduce

B 0 .
ˆ
js�t j>4`.Q/2

`.Q/2

js � t j5=2
js � t j1=2 ds C

ˆ
js�t j>4`.Q/2

1

js � uj3=2
jt � uj1=2 ds . 1:

We will also need the following (easy) technical result.

Lemma 3.8. Let � be a distribution in RnC1 which has upper parabolic 1-growth of
degree nC 1. Let ' be a C 2 function admissible for some parabolic cubeQ. Then '� has
upper C -parabolic growth of degree nC 1, for some absolute constant C > 0

Proof. Let  be a C 2 function admissible for some parabolic cube R. In the case `.Q/ �
`.R/, let S D Q, and otherwise let S D R. It is easy to check that c' is admissible
for S , for some absolute constant c > 0, and thus

jh'�;  ij D jh�; ' ij . `.S/nC1 � `.R/nC1:

The next lemma, together with Lemma 3.3, completes the proof of Theorem 3.1.

Lemma 3.9. Let � be a distribution in RnC1 such that

krxW � �k1 � 1 and k@
1=2
t W � �k�;p � 1:

Then, if ' is a C 2 function admissible for a parabolic cube Q, we have

k@
1=2
t W � .'�/k�;p � 1:

Proof. Let R � RnC1 be some parabolic cube. We have to show that there exists some
constant cR (to be chosen below) such that

ˆ
R

j@
1=2
t W � .'�/ � cRj dm . `.R/nC2:
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To this end, we consider a C 2 function z�
5R

which equals 1 on 5R, vanishes in 6Rc , and
satisfies

krx z�5Rk1 .
1

`.R/
and kr

2
x z�5Rk1 C k@t z�5Rk1 .

1

`.R/2
�

We also denote z�
5Rc
D 1 � z�

5R
. Then we splitˆ

R

j@
1=2
t W � .'�/ � cRj dm

�

ˆ
R

j@
1=2
t W � . z�

5R
'�/j dmC

ˆ
R

j@
1=2
t W � . z�

5Rc
'�/ � cRj dm DW I1 C I2:

To estimate I2 we intend to apply Lemma 3.7. Notice that supp. z�
5Rc
'�/ � 5Rc . We

claim that

(3.18) krxW � . z�5Rc'�/k1 . 1 and kW � . z�
5Rc
'�/kLip1=2;t . 1:

To check this, just write

W � . z�
5Rc
'�/ D W � .'�/ �W � . z�

5R
'�/:

Since ' is admissible for Q, we have

(3.19) krxW � .'�/k1 . 1 and kW � .'�/kLip1=2;t . 1:

Also, in case that `.R/ � `.Q/, it is easy to check that there exists some absolute con-
stant c > 0 such that c z�

5R
' is admissible for 5R. On the other hand, if `.R/ > `.Q/,

then c z�
5R
' is admissible for Q, for some absolute constant c > 0. So in any case, by

Lemmas 3.3 and 3.4,

krxW � . z�5R'�/k1 . 1 and kW � . z�
5R
'�/kLip1=2;t . 1:

Hence, (3.18) follows from (3.19) and the preceding estimates.
On the other hand, by Lemma 3.2, � has upper parabolic growth of degree nC 1, and

since c z�
5R
' is admissible either for 5R or for Q, z�

5R
'� also has upper parabolic C -

growth for some absolute constant C , by Lemma 3.8. Then, from Lemma 3.7, choosing
cR D mR

�
@
1=2
t W � . z�

5Rc
'�/

�
, we deduce that

I2 . `.R/nC2:

To estimate I1, we may assume that Q \ 6R ¤ ¿, since otherwise z�
5R
' � 0. Next

we distinguish two cases. First we assume that `.R/ � `.Q/, so that c z�
5R
' is admissible

for 5R. Then, from Lemma 3.6 we derive

I1 �

ˆ
5R

j@
1=2
t W � . z�

5R
'�/j dm . `.R/nC2:

In the case `.R/ > `.Q/, the fact that Q \ 6R ¤ ¿ implies that Q � 8R, and c z�
5R
' is

admissible for Q, for some c � 1. Then again from Lemma 3.6 we infer that

I1 �

ˆ
8R

j@
1=2
t W � . z�

5R
'�/j dm . `.R/nC2:

Together with the estimate obtained for I2, this proves the lemma.
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4. The case when � is a positive measure

The main goal of this section will be to prove the following result.

Lemma 4.1. Let � be a measure in RnC1 which has upper parabolic growth of degree
nC 1 with constant 1 such that

krxW � �k1 � 1:

Then
k@
1=2
t W � �k�;p . 1:

For that we need the following lemma.

Lemma 4.2. Let � be a measure in RnC1 which has upper parabolic growth of degree
nC 1 with constant 1. Then,

kW � �kLip1=2;t . 1:

Proof. Let Nx D .x; t/, Ox D .x; u/, and Nx0 D 1
2
. Nx C Ox/. Then, writing Ny D .y; s/, we split

jW � �. Nx/�W � �. Ox/j �

ˆ
j Ny� Nx0jp�2j Nx� Oxjp

jW.x � y; t � s/ �W.x � y; u � s/j d�. Ny/

C

ˆ
j Ny� Nx0jp<2j Nx� Oxjp

jW.x � y; t � s/�W.x � y; u � s/j d�. Ny/

DW I1 C I2:

To shorten notation, we write d WD j Nx � Oxjp D jt � uj1=2. Then we have

I1 .
X
k�1

ˆ
2kd�j Ny� Nx0jp<2kC1d

sup
�2Œ Nx� Ny; Ox� Ny�

j@tW.�/j jt � uj d�. Ny/:

Since

j@tW.�/j .
1

j�jnC2p

�
1

.2kd/nC2
if � 2 Œ Nx � Ny; Ox � Ny�, j Ny � Nx0jp � 2kd ,

we deduce that

I1 .
X
k�1

�.Bp. Nx0; 2
kC1d//

.2kd/nC2
jt � uj .

jt � uj

d
D jt � uj1=2:

Next we deal with I2. Writing B0 D Bp. Nx0; 2d/, we have

I2 � W � .�B0�/. Nx/CW � .�B0�/. Ox/:

Observe now that

0 � W � .�
B0
�/. Nx/ .

ˆ
Ny2B0

1

j Nx � Nyjnp
d�. Ny/

�

ˆ
j Nx� Nyj�4d

1

j Nx � Nyjnp
d�. Ny/ . d D jt � uj1=2:
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The last estimate follows by splitting the integral into parabolic annuli and using the para-
bolic growth of order nC 1 of �, for example. The same estimate holds replacing Nx by Ox.
Then gathering all the estimates above, the lemma follows.

Proof of Lemma 4.1. LetQ�RnC1 be a fixed parabolic cube. We have to show that there
exists some constant cQ (to be chosen below) such that

ˆ
Q

j@
1=2
t W � � � cQj dm . `.Q/nC2:

To this end, we consider a C 2 function z�
5Q

which equals 1 on 5Q, vanishes in 6Qc , and
satisfies

krx z�5Qk1 .
1

`.Q/
and kr

2
x z�5Qk1 C k@t z�5Qk1 .

1

`.Q/2
�

We also denote z�
5Qc D 1 � z�5Q. Then we split

ˆ
Q

j@
1=2
t W � � � cQj dm �

ˆ
Q

j@
1=2
t W � . z�

5Q
�/j dm

C

ˆ
Q

j@
1=2
t W � . z�

5Qc�/ � cQj dm DW I1 C I2:

To deal with the integral I1, we just write
ˆ
Q

j@
1=2
t W �. z�

5Q
�/jdm.

ˆ
Q

1

jxjn�1 j Nxj2p
�.z�

5Q
�/dm�

ˆ
6Q

1

jyjn�1 j Nyj2p
� .�

Q
m/d�:

Taking into account that, for Ny D .y; u/,

1

jyjn�1 j Nyj2p
�

1

jyjn�1=2
1

u3=4
;

and writing Q D Q1 � IQ, where Q1 is a cube with side length `.Q/ in Rn and IQ is an
interval of length `.Q/2, we deduce that for Nx D .x; t/ 2 6Q,

1

jyjn�1 j Nyj2p
� .�

Q
m/. Nx/ .

ˆ
y2Q1

1

jx � yjn�1=2
dy

ˆ
u2IQ

1

jt � uj3=4
du

. `.Q/1=2 .`.Q/2/1=4 D `.Q/:

Thus, ˆ
Q

j@
1=2
t W � . z�

5Q
�/j dm . `.Q/�.6Q/ . `.Q/nC2:

Next we will estimate the integral I2, taking cQ WD @
1=2
t W � . z�

5Qc�/. NxQ/, where NxQ
is the center of Q. We follow the same scheme as in the proof of Lemma 3.7. To show
that I2 . `.Q/nC2, it suffices to prove

j@
1=2
t W � . z�

5Qc�/. Nx/ � @
1=2
t W � . z�

5Qc�/. NxQ/j . 1:



J. Mateu, L. Prat and X. Tolsa 26

In turn, to prove this it is enough to show that

(4.1) j@
1=2
t W � . z�

5Qc�/. Nx/ � @
1=2
t W � . z�

5Qc�/. Ny/j . 1

for Nx; Ny 2 RnC1 in the following two cases:
� Case 1: Nx; Ny 2 Q of the form Nx D .x; t/, Ny D .y; t/.
� Case 2: Nx; Ny 2 Q of the form Nx D .x; t/, Ny D .x; u/.

Proof of (4.1) in Case 1. Let � D z�
5Qc . We split

j@
1=2
t W � .��/.x; t/ � @

1=2
t W � .��/.y; t/j

D

ˇ̌̌ˆ W � .��/.x; s/�W � .��/.x; t/

js � t j3=2
ds �

ˆ
W � .��/.y; s/�W � .��/.y; t/

js � t j3=2
ds
ˇ̌̌

�

ˆ
js�t j�4`.Q/2

jW � .��/.x; s/ �W � .��/.x; t/j

js � t j3=2
ds

C

ˆ
js�t j�4`.Q/2

jW � .��/.y; s/ �W � .��/.y; t/j

js � t j3=2
ds

C

ˆ
js�t j>4`.Q/2

jW � .��/.x; s/�W � ��/.x; t/�W � .��/.y; s/CW � .��/.y; t/j

js � t j3=2
ds

DW A1 C A2 C B:

First we will estimate the term A1. For s; t such that js � t j � 4`.Q/2, we write

jW � .��/.x; s/ �W � .��/.x; t/j � js � t j k@tW � .��/k1;3Q:

Observe now that for each Nz D .z; v/ 2 3Q,

j@tW � .��/. Nz/j .
ˆ
5Qc

1

j Nz � NwjnC2p

d�. Nw/ .
1

`.Q/
;

by splitting the last domain of integration into parabolic annuli and using the growth con-
dition of order nC 1 of �. Thus,

jW � .��/.x; s/ �W � .��/.x; t/j .
js � t j

`.Q/
�

Plugging this into the integral that defines A1, we obtain

A1 .
ˆ
js�t j�4`.Q/2

js � t j

`.Q/ js � t j3=2
ds .

.`.Q/2/1=2

`.Q/
D 1:

By exactly the same arguments, just writing y in place of x above, we deduce also that

A2 . 1:
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Concerning the term B , we write

B �

ˆ
js�t j>4`.Q/2

jW�.��/.x; s/�W� .��/.x; t/�W�.��/.y; s/CW�.��/.y; t/j

js � t j3=2
ds

�

ˆ
js�t j>4`.Q/2

jW � .��/.x; s/ �W � .��/.y; s/j

js � t j3=2
ds

C

ˆ
js�t j>4`.Q/2

jW � .��/.x; t/ �W � .��/.y; t/j

js � t j3=2
ds:

By Lemma 3.3, it follows that krxW � .��/k1 . 1, and thus

krxW � .��/k1 � krxW � �k1 C krxW � .��/k1 . 1:

Therefore,

jW � .��/.x; s/ �W � .��/.y; s/j � krxW � .��/k1 jx � yj . `.Q/:

The same estimate holds replacing .x; s/ and .y; s/ by .x; t/ and .y; t/. Hence,

B .
ˆ
js�t j>`.Q/2

`.Q/

js � t j3=2
ds .

`.Q/

.`.Q/2/1=2
. 1:

So (4.1) holds in this case.

Proof of (4.1) in Case 2. As in Case 1, we write

j@
1=2
t W � .��/.x; t/ � @

1=2
t W � .��/.x; u/j

D

ˇ̌̌ˆ W � .��/.x; s/�W � .��/.x; t/

js � t j3=2
ds�

ˆ
W � .��/.x; s/ �W � .��/.x; u/

js � uj3=2
ds
ˇ̌̌

�

ˆ
js�t j�4`.Q/2

jW � .��/.x; s/ �W � .��/.x; t/j

js � t j3=2
ds

C

ˆ
js�t j�4`.Q/2

jW � .��/.x; s/ �W � .��/.x; u/j

js � uj3=2
ds

C

ˇ̌̌ ˆ
js�t j>4`.Q/2

W � .��/.x; s/ �W � .��/.x; t/

js � t j3=2
ds

�

ˆ
js�t j>4`.Q/2

W � .��/.x; s/ �W � .��/.x; u/

js � uj3=2
ds
ˇ̌̌

DW A01 C A
0
2 C B

0:

The terms A01 and A02 can be estimated exactly in the same way as the terms A1 and A2 in
Case 1, so that

A01 C A
0
2 . 1:
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Concerning B 0, we have

B 0 �

ˆ
js�t j>4`.Q/2

ˇ̌̌W � .��/.x; s/ �W � .��/.x; t/
js � t j3=2

�
W � .��/.x; s/ �W � .��/.x; u/

js � uj3=2

ˇ̌̌
ds

�

ˆ
js�t j>4`.Q/2

ˇ̌̌ 1

js � t j3=2
�

1

js � uj3=2

ˇ̌̌ ˇ̌
W � .��/.x; s/ �W � .��/.x; t/

ˇ̌
ds

C

ˆ
js�t j>4`.Q/2

1

js � uj3=2

ˇ̌
W � .��/.x; t/ �W � .��/.x; u/

ˇ̌
ds

Taking into account that, for js � t j > 4`.Q/2,ˇ̌̌ 1

js � t j3=2
�

1

js � uj3=2

ˇ̌̌
.
jt � uj

js � t j5=2
.

`.Q/2

js � t j5=2

and that, by Lemma 4.2, W � .��/.x; �/ is Lip 1/2 in the variable t , we deduce that

B 0 .
ˆ
js�t j>4`.Q/2

`.Q/2

js � t j5=2
js � t j1=2 ds C

ˆ
js�t j>4`.Q/2

1

js � uj3=2
jt � uj1=2 ds . 1:

5. Capacities and removable singularities

Given a bounded set E � RnC1, we define

(5.1) ‚.E/ D sup jh�; 1ij;

where the supremum is taken over all distributions � supported on E such that

(5.2) krxW � �kL1.RnC1/ � 1 and k@
1=2
t W � �k�;p � 1:

We call ‚.E/ the Lipschitz caloric capacity of E. On the other hand, we define the
Lipschitz caloric capacity C of E, denoted by ‚;C.E/, in the same way as in (5.1),
but with the supremum restricted to all positive measures � supported on E satisfying
also (5.2). Obviously,

‚;C.E/ � ‚.E/:

Given � > 0, we consider the parabolic dilation

ı�.x; t/ D .�x; �
2t /:

It is immediate to check that

‚.ı�.E// D �
nC1 ‚.E/; ‚;C.ı�.E// D �

nC1 ‚;C.E/:
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Lemma 5.1. For every Borel set E � RnC1,

‚;C.E/ � ‚.E/ . HnC1
1;p .E/;

and
dimH;p.E/ > nC 1 ) ‚.E/ > 0:

In the lemma, dimH;p stands for the parabolic Hausdorff dimension.

Proof. The inequality ‚;C.E/ � ‚.E/ is trivial, and the arguments for the other state-
ments are standard. Indeed, to prove ‚.E/. HnC1

1;p .E/ first notice that we can assumeE
to be compact. Let � be a distribution supported on E such that

(5.3) krxW � �kL1.RnC1/ � 1 and k@
1=2
t W � �k�;p � 1;

and let ¹Aiºi2I be a collection of sets in RnC1 which cover E and such thatX
i2I

diamp.Ai /nC1 � 2HnC1
1;p .E/:

For each i 2 I , letBi be an open parabolic ball centered inAi with r.Bi /D diamp.Ai /, so
that E �

S
i2I Bi . By the compactness of E we can assume I to be finite. By means of a

parabolic version of the Harvey–Polking lemma (Lemma 3.1 in [4]), we can construct C1

functions 'i , i 2 I , satisfying:
� supp'i � 2Bi for each i 2 I ,
� krx'ik1 . 1=r.Bi /, kr2x'ik1 C k@t'ik1 . 1=r.Bi /

2,
�
P
i2I 'i D 1 in

S
i2I Bi ,

Hence, by Lemma 3.2,

jh�; 1ij D
ˇ̌̌X
i2I

h�; 'i ij .
X
i2I

r.Bi /
nC1
D

X
i2I

diamp.Ai /nC1 . HnC1
1;p .E/:

Since this holds for any distribution � supported on E satisfying (5.3), we deduce that
‚.E/ . HnC1

1;p .E/.

To prove the second assertion in the lemma, let E � RnC1 be a Borel set satisfying
dimH;p.E/ D s > nC 1. We may assume E to be bounded. We may apply a parabolic
version of the well-known Frostman lemma, which can be proved by arguments analogous
to classical ones replacing the usual dyadic lattice in RnC1 by the parabolic lattice Dp

defined as follows. For any k 2 Z we consider the family of parabolic cubes Dp;k of the
form®
.x; t/ 2 RnC1 W ij 2

�k
� xj < .ij C 1/2

�k and inC12
�2k
� t < .inC1 C 1/2

�2k
¯
;

where 1 � j � n and i1; : : : ; in; inC1 are arbitrary integers. Then we let

Dp D

[
k2Z

Dp;k :
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Arguing as in the proof of the Frostman lemma in Theorem 8.8 of [14] or The-
orem 1.23 of [23], from the fact that dimH;p.E/ D s > nC 1 it follows that there exists
some non-zero positive measure � supported on E satisfying �.Bp. Nx; r// � rs for all
Nx 2 RnC1 and all r > 0. Then, by Lemma 2.1 we deduce that, for all Nx 2 RnC1,

jrxW � �. Nx/j .
ˆ

1

j Nx � NyjnC1p

d�. Ny/ . diam.E/s�.nC1/:

Now, from Lemma 4.1 it follows that

k@
1=2
t W � �k�;p <1:

Therefore,

‚.E/ �
�.E/

max
�
krxW � �kL1.RnC1/; k@

1=2
t W � �k�;p

� > 0:
We say that a compact set E � RnC1 is Lipschitz removable for the heat equation (or

Lipschitz caloric removable) if for any open set � � RnC1, any function f WRnC1 ! R
such that

(5.4) krxf kL1.�/ <1 and k@
1=2
t f k�;�;p <1

satisfying the heat equation in � nE, also satisfies the heat equation in the whole of �.

Remark 5.2. Functions satisfying (5.4) are called regular .1; 1=2/-Lipschitz in the liter-
ature (see [19], for example). So perhaps it would be more precise to talk about regular
.1; 1=2/-Lipschitz removability or about regular .1; 1=2/-Lipschitz caloric capacity. How-
ever, we have preferred the simpler terminology of Lipschitz removability and Lipschitz
caloric capacity for shortness.

Theorem 5.3. A compact set E � RnC1 is Lipschitz caloric removable if and only if
‚.E/ D 0.

Proof. It is clear that if E is Lipschitz caloric removable, then ‚.E/ D 0. Conversely,
suppose that E � RnC1 is not Lipschitz caloric removable. So there exists some open set
� � RnC1 and some function f WRnC1 ! R satisfying

krxf kL1.�/ <1; k@
1=2
t f k�;�;p <1;

and ‚.f / � 0 in � n E but ‚.f / 6� 0 in � (in the distributional sense). So there exists
some (open) parabolic cube Q � � such that 4Q � � and ‚.f / 6� 0 in Q. Let � be a
non-negative C1 function which equals 1 in 2Q and vanishes in 3Qc , and let Qf D �f .
It is immediate to check that Qf is Lipschitz in RnC1 and @1=2t Qf 2 BMOp . Consider the
distribution � D ‚. Qf /. Since � does not vanish identically in Q, there exists some C1

function ' supported onQ such that h�;'i>0. Now take gDW � .'�/. By Theorem 3.1,

krxgk1 <1 and k@
1=2
t gk�;p <1;
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and thus, since supp.'�/ � Q \E,

‚.E/ � ‚.Q \E/

�
h' �; 1i

max
�
krxgk1; k@

1=2
t gk�;p

� D h�; 'i

max
�
krxgk1; k@

1=2
t gk�;p

� > 0:
From the preceding lemmas, it is clear that, for any compact set E � RnC1,
� if dimH;p.E/ > nC 1, then E is not Lipschitz caloric removable,
� if HnC1

p .E/D 0 (and so, in particular, if dimH;p.E/ < nC 1), then E is Lipschitz
caloric removable.

Thus the critical parabolic Hausdorff dimension for Lipschitz caloric removability (and
for ‚) is nC 1.

Next we consider the operator

T � D rxW � �;

defined over distributions � in RnC1. When � is a finite measure, one can easily check
that T�. Nx/ is defined for m-a.e. Nx 2 RnC1 by the integral

T�. Nx/ D

ˆ
rxW. Nx � Ny/ d�. Ny/:

For " > 0, we also consider the truncated operator

T"�. Nx/ D

ˆ
j Nx� Nyj>"

rxW. Nx � Ny/ d�. Ny/;

whenever the integral makes sense, and for a function f 2 L1loc.�/, we write

T�f � T .f �/; T�;"f � T".f �/:

We also denote

T��.x/ D sup
">0

jT"�.x/j; T�;�f .x/ D sup
">0

jT".f �/.x/j:

We say that T� is bounded in L2.�/ if the operators T�;" are bounded in L2.�/ uniformly
on " > 0.

Remark that T is a singular integral operator with Calderón–Zygmund kernel in the
parabolic space. More precisely:

Lemma 5.4. The kernel K � rxW of T satisfies the following :

(a) jK. Nx/j .
1

j NxjnC1p

for all Nx ¤ 0.

(b) jrxK. Nx/j .
1

j NxjnC2p

and j@tK. Nx/j .
1

j NxjnC3p

for all Nx ¤ 0.

(c) For all Nx; Nx0 2 RnC1 such that j Nx � Nx0jp � j Nxjp=2, Nx ¤ 0,

jK. Nx/ �K. Nx0/j .
j Nx � Nx0jp

j NxjnC2p

�
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Proof. The estimate in (a) already appears in Lemma 2.1. The estimates in (b) follow
by calculations analogous to the ones in that lemma. Finally, (c) is an easy consequence
of (b). Indeed, given Nx; Nx0 2 RnC1 such that j Nx � Nx0jp � j Nxj=2, write

Nx D .x; t/; Nx0 D .x0; t 0/; Ox D .x0; t /:

Then

jK. Nx/ �K. Nx0/j � jK. Nx/ �K. Ox/j C jK. Ox/ �K. Nx0/j

� jx � x0j sup
y2Œx;x0�

jrxK..y; t//j C jt � t
0
j sup
s2Œt;t 0�

j@tK.. Nx
0; s//j

.
jx � x0j

j NxjnC2p

C
jt � t 0j

j NxjnC3p

.
j Nx � Nx0j

j NxjnC2p

�

Recall that given E � RnC1, we denote by†.E/ the family of (positive) Borel meas-
ures� supported onE which have upper parabolic growth of degree nC 1with constant 1,
that is,

�.Bp. Nx; r// � r
nC1 for all Nx 2 RnC1; r > 0.

Given E � RnC1, we define

(5.5) z‚;C.E/ D sup�.E/;

where the supremum is taken over all measures � 2 †.E/ such that

(5.6) kT�kL1.RnC1/ � 1 and kT ��kL1.RnC1/ � 1:

Here T � is dual of T . That is,

T ��. Nx/ D

ˆ
K. Ny � Nx/ d�. Ny/:

In the next theorem, among other things, we characterize z‚;C.E/ in terms of the
measures in †.E/ such that T� is bounded in L2.�/.

Theorem 5.5. The following holds, for any set E � RnC1 :

z‚;C.E/ . ‚;C.E/ � sup
®
�.E/ W � 2 †.E/; kT�kL1.RnC1/ � 1

¯
:

Also,
z‚;C.E/ � sup

®
�.E/ W � 2 †.E/; kT�kL2.�/!L2.�/ � 1

¯
:

All the implicit constants in the above estimates are independent of E.

Proof. Denote

S1 D sup
®
�.E/ W � 2 †.E/; kT�kL1.RnC1/ � 1

¯
;

S2 D sup
®
�.E/ W � 2 †.E/; kT�kL2.�/!L2.�/ � 1

¯
:

Notice first the trivial fact that z‚;C.E/ � S1. The fact that S1 & ‚;C.E/ is an
immediate consequence of the definition of ‚;C and Lemma 3.2. The converse estimate
follows from the fact that if kT�kL1.RnC1/ � 1 and � has upper parabolic growth of
degree nC 1 with constant 1, then k@1=2t W � �k�;p . 1, by Lemma 4.1.
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The arguments to show that z‚;C.E/ � S2 are standard. Indeed, let � 2 †.E/ be
such that z‚;C.E/ � 2�.E/ and kT�kL1.RnC1/ � 1, kT ��kL1.RnC1/ � 1. By a Cotlar
type inequality analogous to the one in Lemma 5.4 of [15], say, one deduces that

(5.7) kT"�kL1.�/ . 1 and kT �" �kL1.�/ . 1;

uniformly on " > 0.
To obtain the boundedness of the operator T� in L2.�/ we will use the T b theorem

of Hytönen and Martikainen [11], Theorem 2.3, for non-doubling measures in geometric-
ally doubling spaces. Remark that the parabolic space is geometrically doubling (with the
distance distp) and thus we can apply that theorem T b theorem, with the choice b D 1.
Taking into account the conditions (5.7), to ensure that T� is bounded in L2.�/, by The-
orem 2.3 in [11] it is enough to check that the weak boundedness property is satisfied for
balls with thin boundaries. That is, for some fixed A > 0,

(5.8) jhT�;"�B ; �Bij � C�.2B/;

for any parabolic ball B � RnC1 with A-thin boundary, uniformly on " > 0. A parabolic
ball of radius r.B/ is said to have A-thin boundary if

(5.9) �¹x W distp.x; @B/ � t r.B/º � A t�.2B/ for all t 2 .0; 1/,

See Lemma 9.43 in [23] regarding the abundance of such balls, if one chooses A appro-
priately (just depending on n).

To prove (5.8), let us consider a C1 function ' with compact support in 2B such that
' � 1 on B and write

jhT�;"�B ; �Bij �

ˆ
B

jT�;"'j d�C

ˆ
B

jT�;".' � �B/j d�:

Since kT�kL1.RnC1/ � 1, by Lemma 4.1 and Theorem 3.1, kT .'�/kL1.RnC1/ � 1, which
in turn implies that kT".'�/kL1.RnC1/ � 1 uniformly on " > 0. So we deduce that first
integral on the right side is bounded by C�.B/. To get a bound of the second integral we
will use that B has a thin boundary and the property (a) in Lemma 5.4. The estimates are
very standard, but we write the details for the convenience of the reader:

ˆ
B

jT�;".' � �B/jd� .
ˆ
2BnB

ˆ
B

d�.y/

jx � yjnC1p

d�.x/

�

X
j�0

ˆ
¹x…BWdistp.xI@B/�r.B/=2j º

ˆ
B

d�.y/

jx � yjnC1p

d�.x/:

Given j and x … B such that distp.x; @B/ � r.B/=2j ; since � 2 †.E/ one has

ˆ
B

d�.y/

jx � yjnC1p

d�.x/ .
kDjX
kD�1

ˆ
jx�yjp�r.B/=2k

d�.y/

jx � yjnC1p

d�.x/

.
kDjX
kD�1

�.B.x; 2�kr.B//

.r.B/2�k/nC1
. j C 2:
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Therefore, by (5.9),
ˆ
B

jT�;".' � �B/j d� .
X
j�1

.j C 2/�.¹x W distp.x; @B/ � 2�j r.B/º/

.
X
j�0

j C 2

2j
�.2B/ . �.2B/:

Consequently, the weak boundedness property (5.8) holds and so T� is bounded inL2.�/,
with kT�kL2.�/!L2.�/ . 1. This gives that

S2 & z‚;C.E/:

To prove the converse estimate, let � 2 †.E/ be such that kT�kL2.�/!L2.�/ � 1 and
S2 � 2�.E/. From theL2.�/ boundedness of T�, one deduces that T and T � are bounded
from the space of finite signed measuresM.RnC1/ to L1;1.�/. That is, there exists some
constant C > 0 such that for any measure � 2M.RnC1/, any " > 0, and any � > 0,

�
�®
x 2 RnC1 W jT"�.x/j > �

¯�
� C

k�k

�
;

and the same replacing T" by T �" . The proof of this fact is analogous to the one of The-
orem 2.16 in [23]1. Then, by a well-known dualization of these estimates (essentially due
to Davie and Øksendal) and an application of Cotlar’s inequality, one deduces that there
exists some function hWE ! Œ0; 1� such that

�.E/ � C

ˆ
h d�; kT .h�/kL1.RnC1/ � 1; kT �.h�/kL1.RnC1/ � 1:

See Theorem 4.6 and Lemma 4.7 from [23] for the analogous arguments in the case of
analytic capacity, and also Lemma 4.2 from [15] for the precise vectorial version of the
dualization of the weak .1; 1/ estimates required in our situation, for example. So we have

z‚;C.E/ �

ˆ
h d� � �.E/ � S2:

Example 5.6. From the preceding theorem we deduce that any subset of positive meas-
ure HnC1

p of a regular Lip.1; 1=2/ graph is non-removable. In particular, any subset of
positive measure HnC1

p of a non-horizontal hyperplane (i.e., not parallel to Rn � ¹0º) is
non-removable.

Remark that any horizontal plane has parabolic Hausdorff dimension n, and thus any
subset of a horizontal plane is removable.

1For the application of the arguments in [23], notice that the Besicovitch covering theorem with respect to
parabolic balls is valid. Alternatively, see Theorem 5.1 from [18].
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6. The existence of removable sets with positive measure H nC1
p

We need the following result, which is of independent interest.

Theorem 6.1. Let E � RnC1 be a compact set such that HnC1
p .E/ < 1. Let � be a

distribution supported on E such that

krxW � �k1 � 1 and k@
1=2
t W � �k�;p � 1:

Then � is a signed measure which is absolutely continuous with respect to HnC1
p jE

and there exists a Borel function f WE ! R such that � D f HnC1
p jE and that satisfies

kf kL1.HnC1
p jE /

. 1.

This theorem is an immediate consequence of Lemma 3.2 and the following result.

Lemma 6.2. Let E � RnC1 be a compact set such that HnC1
p .E/ <1. Let � be a dis-

tribution supported on E which has upper parabolic 1 growth of degree nC 1. Then � is
a signed measure which is absolutely continuous with respect to HnC1

p jE and there exists
a Borel function f WE ! R such that � D f HnC1

p jE satisfying kf kL1.HnC1
p jE /

. 1.

Proof. First we will show that � is a signed measure. By the Riesz representation theorem,
it is enough to show that, for any C1 function  with compact support,

(6.1) jh�;  ij � C.E/ k k1;

where C.E/ is some constant depending on E.
To prove (6.1), we fix " > 0 and we consider a family of open parabolic cubes Qi ,

i 2 I", such that
� E �

S
i2I"

Qi ,
� `.Qi / � " for all i 2 I", and
�
P
i2I"

`.Qi /
nC1 � C HnC1

p .E/C ".
Since E is compact, we can assume that I" is finite. By standard arguments, we can

find a family of non-negative functions 'i , i 2 I", such that
� each 'i is supported on 2Qi and c'i is admissible for 2Qi , for some absolute

constant c > 0,
�
P
i2I"

'i D 1 on
S
i2I"

Qi , and in particular on E.
Indeed, to construct the family of functions 'i we can cover each cube Qi by a

bounded number (depending on n) dyadic parabolic cubes R1i ; : : : ; R
m
i with side length

`.R
j
i / � `.Qi /=8 and then apply the usual Harvey–Polking lemma ([4], Lemma 3.1) to

the family of cubes ¹Ri;j º.
We write

jh�;  ij �
X
i2I"

jh�; 'i ij:

For each i 2 I", consider the function

�i D
'i  

k k1 C `.Qi / krx k1 C `.Qi /2 k@t k1 C `.Qi /2 k� k1
�
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We claim that c �i is admissible for 2Qi , for some absolute constant c > 0. To check this,
just note that 'i  is supported on 2Qi and satisfies

krx.'i  /k1 � krx'ik1 k k1 C k'ik1 krx k1 .
1

`.Qi /
k k1 C krx k1:

Hence,

krx�ik1 .
1

`.Qi /
�

Analogously,

k@t .'i  /k1 � k@t'ik1 k k1 C k'ik1 k@t k1 .
1

`.Qi /2
k k1 C k@t k1;

and so
k@t�ik1 .

1

`.Qi /2
�

Also,

k�.'i  /k1 � k�'ik1 k k1 C 2 krx'ik1 krx k1 C k'ik1 k� k1

.
1

`.Qi /2
k k1 C

1

`.Qi /
krx k1 C k� k1;

and thus
k��ik1 .

1

`.Qi /2
�

So the claim above holds and, consequently, by the assumptions in the lemma,

jh�; �i ij . `.Qi /
nC1:

From the preceding estimate, we deduce that

jh�;  ij �
X
i2I"

jh�; 'i ij

.
X
i2I"

`.Qi /
nC1

�
k k1 C `.Qi /krx k1 C `.Qi /

2.k@t k1 C k� k1/
�
:

Since `.Qi / � " for each i , we infer that

jh�;  ij .
X
i2I"

`.Qi /
nC1

�
k k1 C " krx k1 C "

2
k@t k1 C "

2
k� k1

�
.
�
HnC1
p .E/C "

� �
k k1 C " krx k1 C "

2
k@t k1 C "

2
k� k1

�
:

Letting "! 0, we get
jh�;  ij . HnC1

p .E/ k k1;

which gives (6.1) and proves that � is a finite signed measure, as wished.
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It remains to show that there exists some Borel function f WE ! R such that � D
fHnC1

p jE , with kf kL1.HnC1
p jE /

. 1. To this end, let g be the density of � with respect
to its variation j�j, so that � D g j�j with g. Nx/ D ˙1 for j�j-a.e. Nx 2 RnC1. We will show
that

(6.2) lim sup
r!0

j�j.Bp. Nx; r//

rnC1
. 1 for j�j-a.e. Nx 2 RnC1:

This implies that j�j D Qf HnC1
p jE for some non-negative function Qf . 1. This fact is

well known if one replaces parabolic balls by Euclidean balls and the parabolic Hausdorff
measure by the usual Hausdorff measure (see Theorem 6.9 from [14]). The arguments
extend easily to the parabolic case thanks to the validity of the Besicovitch covering the-
orem with respect to parabolic balls.

So to complete the proof of the lemma it suffices to show (6.2) (since then we will have
� D g QfHnC1

p jE with jg Qf j . 1). Notice that, by the Lebesgue differentiation theorem,

lim
r!0

1

j�j.Bp. Nx; r//

ˆ
Bp. Nx;r/

jg. Ny/ � g. Nx/j d j�j. Ny/ D 0 for j�j-a.e. Nx 2 RnC1

(because of the validity of the Besicovitch covering theorem with respect to the parabolic
balls again). Let Nx 2 E be a Lebesgue point for j�j with jg. Nx/j D 1, let " > 0 to be chosen
below, and let r0 > 0 be small enough such that, for 0 < r � r0,

1

j�j.Bp. Nx; r//

ˆ
Bp. Nx;r/

jg. Ny/ � g. Nx/j d j�j. Ny/ < ":

Suppose first that

(6.3) j�j.Bp. Nx; 2r// � 2
nC3
j�j.Bp. Nx; r//;

and let ' Nx;r be some non-negative C1 function supported on Bp. Nx; 2r/ which equals 1
on Bp. Nx; r/ such that c ' Nx;r is admissible for the smallest parabolic cube Q containing
Bp. Nx; 2r/, so that ˇ̌̌ ˆ

' Nx;r d�
ˇ̌̌

. rnC1:

Now observe thatˇ̌̌ ˆ
' Nx;r d� � g. Nx/

ˆ
' Nx;r d j�j

ˇ̌̌
D

ˇ̌̌ˆ
' Nx;r . Ny/.g. Ny/ � g. Nx// d j�j. Ny/

ˇ̌̌
.
ˆ
Bp. Nx;2r/

jg. Ny/ � g. Nx/j d j�j. Ny/ � " j�j.Bp. Nx; 2r//

� " 2nC3 j�j.Bp. Nx; r// . "

ˆ
' Nx;r d�:

Thus, if " is chosen small enough, we deduce that
ˆ
' Nx;r d j�j D jg. Nx/j

ˆ
' Nx;r d j�j � 2

ˇ̌̌ ˆ
' Nx;r d�

ˇ̌̌
. rnC1:
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Therefore, using again that ' Nx;r D 1 on Bp. Nx; r/, we get

(6.4) j�j.Bp. Nx; r// . rnC1:

To get rid of the doubling assumption (6.3), notice that for j�j-a.e. Nx 2 RnC1 there
exists a sequence of balls Bp. Nx; rk/, with rk ! 0, satisfying (6.3) (we say that the balls
Bp. Nx; rk/ are j�j-doubling). Further, we may assume that rk D 2hk , for some hk 2N. The
proof of this fact is analogous to the one of Lemma 2.8 in [23]. So for such a point Nx, by
the arguments above, we know that there exists some k0 > 0 such that

j�j.Bp. Nx; rk// . rnC1
k

for k � k0,

assuming also that Nx is a j�j-Lebesgue point for the density g. Given an arbitrary r 2
.0; rk0/, let j be the smallest integer r � 2j , and let 2k be the smallest j � k such that
the ball Bp. Nx; 2k/ is j�j-doubling (i.e., (6.3) holds for this ball). Observe that 2k � rk0 .
Then, taking into account that the balls Bp. Nx; 2h/ are non-doubling for k � h < j and
applying (6.4) for r D 2k , we obtain

j�j.Bp. Nx; r// � j�j.Bp. Nx; 2
j // � 2.nC3/.j�k/ j�j.Bp. Nx; 2

k//

. 2.nC3/.j�k/ 2k.nC1/ � 2j.nC1/ � rnC1:

Hence, (6.2) holds and we are done.

Next we will construct a self-similar Cantor set E � R3 with positive and finite meas-
ure H3

p and we will show that it is removable. For simplicity we work in R3, although this
construction extends easily to RnC1, with n � 1 arbitrary. Our example is inspired by the
typical planar 1=4 Cantor set in the setting of analytic capacity (see [3] or p. 35 in [23],
for example).

We construct the Cantor set E as follows. We let E0 D Q0 D Œ0; 1�3 (i.e., Q0 is
the unit cube). Next we replace Q0 by 12 disjoint closed parabolic cubes Q1

i with side
length 12�1=3 located in the following positions: they are all contained inQ0 and eight of
them contain each one a vertex of Q0. The centers of the remaining other four cubes Q1

i

are in the plane ¹.x1; x2; t / W t D 1=2º and each one of these cubes has one of its vertical
edges contained in one of the vertical edges of Q0. In this way, the vertical projection of
the set E1 D

S12
iD1Q

1
i consists of 4 squares, and the two horizontal projections parallel

to the horizontal axes consist of 6 Euclidean rectangles each one.
We proceed inductively. In each generation k, we replace each parabolic cubeQk�1

j of
the previous generation by 12 parabolic cubesQk

i with side length 12�k=3 which are con-
tained inQk�1

j and located in the same relative position toQk�1
j as the cubesQ1

1; : : : ;Q
1
12

with respect to Q0.
Notice that in each generation k there are 12k closed parabolic cubes with side length

12�k=3. We denote by Ek the union of all these parabolic cubes from the k-th generation.
By construction, Ek � Ek�1. We let

(6.5) E D

1\
kD0

Ek :
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It is easy to check that distp.Qk
i ;Q

k
h
/& 12�k=3 for i ¤ h, and ifQk

i andQk
h

are contained
in the same parabolic cubeQk�1

j , then distp.Qk
i ;Q

k
h
/. 12�k=3. Taking into account that,

for each k � 0,
12kX
iD0

`.Qk
i /
3
D 12k � .12�k=3/3 D 1;

by standard arguments it follows that

0 < H3
p .E/ <1:

Further, H3
p jE coincides, modulo a constant factor, with the probability measure � sup-

ported on E which gives the same measure to all the cubes Qk
i of the same generation k

(i.e., �.Qk
i / D 12

�k).

Theorem 6.3. The Cantor set E defined in (6.5) is Lipschitz caloric removable.

Proof. We will suppose that E is not removable and we will reach a contradiction. By
Theorem 5.3, there exists a distribution � supported on E such that jh�; 1ij > 0 and

krxW � �kL1.RnC1/ � 1; k@
1=2
t W � �k�;p � 1:

By Theorem 6.1, � is a signed measure of the form

� D f�; with kf kL1.�/ . 1;

where � is the probability measure supported on E such that �.Qk
i / D 12

�k for all i; k.
It is easy to check that � (and thus j�j) has upper parabolic growth of degree 3. Then,
arguing as in Lemma 5.4 from [15], it follows that there exists some constant K such that

(6.6) T��. Nx/ � K for all Nx 2 RnC1.

For Nx 2 E, we denote by Qk
Nx the cube Qk

i that contains Nx. Then we consider the
auxiliary operator

zT��. Nx/ D sup
k�0

jT .�R3nQk
Nx
�/. Nx/j:

By the separation condition between the cubesQk
i , the upper parabolic growth of j�j, and

the condition (6.6), it follows easily that

(6.7) zT��. Nx/ � K
0 for all Nx 2 E,

for some fixed constant K 0.
We will contradict the last estimate. To this end, consider a Lebesgue point Nx0 2 E

(with respect to � and to parabolic cubes) of the density f D d�=d� such that f . Nx0/ > 0.
The existence of this point is guarantied by the fact that �.E/ > 0. Given " > 0 small
enough to be chosen below, consider a parabolic cube Qk

i containing Nx0 such that

1

�.Qk
i /

ˆ
Qki

jf . Ny/ � f . Nx0/j d�.y/ � ":
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Given m� 1, to be fixed below too, it is easy to check that if " is chosen small enough
(depending on m and on f . Nx0/), then the above condition ensures that every cube Qh

j

contained in Qk
i such that k � h � k Cm satisfies

(6.8)
1

2
f . Nx0/ �.Q

h
j / � �.Q

h
j / � 2f . Nx0/ �.Q

h
j /:

Notice also that, writing � D �C � ��, since f . Nx0/ > 0,

��.Qk
i / D

ˆ
Qki

f �. Ny/ d�. Ny/ �

ˆ
Qki

jf . Ny/ � f . Nx0/j d�. Ny/ � "�.Q
k
i /:

Let Nz D .z1; z2; u/ be one of the two upper leftmost corners of Qk
i (i.e., with z1

minimal and u maximal in Qk
i ). Since jT .�

Qk
Nz nQ

kCm
Nz
�. Nz/j � 2 zT��. Nz/, we have

zT��. Nz/ �
1

2
jT .�

Qk
Nz nQ

kCm
Nz
�/. Nz/j �

1

2
jT .�

Qk
Nz nQ

kCm
Nz
�C/. Nz/j �

1

2
jT .�

Qk
Nz nQ

kCm
Nz
��/. Nz/j:

Using the fact that distp.z; Qk
Nz nQ

kCm
Nz / & `.QkCm

Nz /, we get

jT .�
Qk
Nz nQ

kCm
Nz
��/. Nz/j .

��.Qk
i /

`.QkCm
Nz /3

� "
�.Qk

i /

`.QkCm
Nz /3

D "
�.Qk

i /

12�m`.Qk
i /
3

. 12m ":

To estimate jT .�
Qk
Nz nQ

kCm
Nz
�C/. Nz/j from below, recall that the first component of the

kernel K D rxW equals

K1. Nx/ D c0
�x1

t2
e�jxj

2=.4t/ �
¹t > 0º

;

for some absolute constant c0 > 0. Then, by the choice of Nz, it follows that

(6.9) K1. Nz � Ny/ � 0 for all Ny 2 Qk
Nz nQ

kCm
Nz .

We write

jT .�
Qk
Nz nQ

kCm
Nz
�C/. Nz/j �

ˆ
Qk
Nz nQ

kCm
Nz

K1. Nz � Ny/ d�
C. Ny/

D

kCm�1X
hDk

ˆ
Qh
NznQ

hC1
Nz

K1. Nz � Ny/ d�
C. Ny/:

Taking into account (6.9) and the fact that, for k � h � k Cm � 1, Qh
Nz nQ

hC1
Nz contains

a cube QhC1
j such that for all Ny D .y1; y2; s/,

0 < y1 � z1 � j Ny � Nzj � `.Q
hC1
j /; 0 < u � s � `.QhC1

j /2;

using also (6.8), we deduce

ˆ
Qh
NznQ

hC1
Nz

K1. Nz � Ny/ d�
C. Ny/ &

�C.QhC1
j /

`.QhC1
j /3

& f . Nx0/
�.QhC1

j /

`.QhC1
j /3

D f . Nx0/;
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Thus,
jT .�

Qk
Nz nQ

kCm
Nz
�C/. Nz/j & .m � 1/ f . Nx0/:

Together with the previous estimate for jT .�
Qk
Nz nQ

kCm
Nz
��/. Nz/j, this tells us that

zT��. Nz/ & .m � 1/ f .x0/ � C 12
m ";

for some fixed C > 0. It is clear that if we choose m big enough and then " small enough,
depending on m, this lower bound contradicts (6.7), as wished.
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