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Removable singularities for Lipschitz caloric functions
in time varying domains

Joan Mateu, Laura Prat and Xavier Tolsa

Abstract. In this paper we study removable singularities for regular (1, 1/2)-Lip-
schitz solutions of the heat equation in time varying domains. We introduce an asso-
ciated Lipschitz caloric capacity and we study its metric and geometric properties
and the connection with the L2 boundedness of the singular integral whose kernel is
given by the gradient of the fundamental solution of the heat equation.

1. Introduction

A compact set E C C is said to be removable for bounded analytic functions if for any
open set €2 containing E, every bounded function analytic on 2 \ E has an analytic exten-
sion to 2. In [1], Ahlfors showed that E is removable for bounded analytic functions if and
only if E has zero analytic capacity. Analytic capacity is a notion that, in a sense, meas-
ures the size of a set as a non removable singularity. In the higher dimensional setting,
one considers removable sets for Lipschitz harmonic functions: we say that a compact set
E C R™*! is removable for Lipschitz harmonic functions if, for each open set @ C R"*1,
every Lipschitz function f: 2 — R that is harmonic in 2 \ E is harmonic in the whole 2.
Nowadays, very complete results are known for removable sets for bounded analytic func-
tions in the plane (see [23] for example) and also in the higher dimensional setting for
removable sets for Lipschitz harmonic functions (see [24], [16], [17]). The Cauchy trans-
form and the Riesz transforms play a prominent role in their study.

In the present paper we study removable singularities for regular (1, 1/2)-Lipschitz
solutions of the heat equation in time varying domains. The parabolic theory in time
varying domains is an area that has experienced a lot of activity in the last years, with
fundamental contributions by Hofmann, Lewis, Murray, Nystrom, Silver, and Stromqvist
(61, [71, [8], [9], [101, [12], [13], [19].

Next we introduce some notation and definitions. Our ambient space is R”*! with a
generic point denoted as X = (x,t) € R”*! where x € R” and t € R. We let © denote the
heat operator, ® = A — d,;, where A = A is the Laplacian with respect to the x variable.
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Then, for a smooth function f depending on (x,?) € R+

O(f)=Af -0/ =0

is just the heat equation.
Given X = (x,t) and y = (y,u), with x, y € R”, t,u € R, we consider the parabolic
distance in R”*! defined by

dist, (%, 7) = max (|x — y|, [t —u['/?).

Sometimes we also write |X — |, instead of dist, (X, y). We denote by B, (X, r) a para-
bolic ball (i.e., in the distance dist,) centered at X with radius r. By a parabolic cube Q of
side length £, we mean a set of the form

Iy X oo X Iy X Tpgq,

where Iy, ..., I, are intervals in R with length ¢, and I, is another interval with
length £2. We write £(Q) = .

We say that a Borel measure p in R”*! has upper parabolic growth of degree n + 1
if there exists some constant C such that

(1.1) w(By(x,r)) < Cr"t!  forall X € R"*! r > 0.

Clearly, this is equivalent to saying that any parabolic cube Q C R"*! satisfies u(Q) <
C'L(Q)"*!. Given E C R"*!, we denote by X (E) the family of (positive) Borel meas-
ures u supported on E which have upper parabolic growth of degree n + 1 with constant
C =1in(1.1).

Throughout the paper, || - ||«,, denotes the norm of the parabolic BMO space:

Hfmm==wpf|f—MQme,
0 JQ

where the supremum is taken over all parabolic cubes Q C R"*!, dm stands for the
Lebesgue measure in R” ! and mg f is the mean of f with respect to dm. For a function
R 5 R, we set

02 f(x.1) = /M i

s —13/2

We say that a compact set E C R?*1 is Lipschitz removable for the heat equation (or
Lipschitz caloric removable) if for any open set 2 C R**!, any function f:R"*! — R
such that

(1.2) IVefllLe@ <oo and (|01 fllq.p < 00

satisfying the heat equation in € \ E, also satisfies the heat equation in the whole .
Functions satisfying (1.2) are called regular (1, 1/2)-Lipschitz in the literature (see [19],
for example). So perhaps it would be more precise to talk about regular (1, 1/2)-Lipschitz
removability. However, we have preferred the simpler terminology of Lipschitz removab-
ility for shortness.
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Our motivation to study the singularities for regular (1, 1/2)-Lipschitz functions, with
the parabolic BMO condition in the half derivative with respect to time, comes from the
results in [6], [7], [12], and [13]. In these works in connections with parabolic singular
integrals and caloric layer potential on graphs, it has become clear that the right graphs are
the ones of functions that are Lipschitz in the space variable and have half time derivative
in parabolic BMO. The results that we obtain in this paper (like the ones about localization
of singularities that we describe below) also confirm that the parabolic BMO condition on
the half time derivative is a natural assumption.

Given a set E C R"*1, we define its Lipschitz caloric capacity by

(1.3) ve(E) = sup{[(v. 1)}

the supremum taken over the distributions v in R”*! such that suppv C E, ||V W %
V| Loo(mn+1y < 1 and ||8}/2W * V||« p < 1. Here W(x,t) denotes the fundamental solution
of the heat equation in R”*1 that is,

L__o~xP/Gn it ¢t > 0,

—nze

We shall now give a brief description of the main results in the paper. In Section 3
we deal with a localization result. More concretely, for a distribution v, we localize the
potentials VW % v and 8,1 "2W % v in the L®-norm and the parabolic BMO norm respect-
ively. The localization method for the Cauchy potential v * 1/z in the plane is a basic
tool developed by A.G. Vitushkin in the theory of rational approximation in the plane.
This was later adapted in [20] for the Riesz potential v * x/|x|" in R” and used in prob-
lems of C '-harmonic approximation. These localization results have also been essential to
prove the semiadditivity of analytic capacity and of Lipschitz harmonic capacity, see [22]
and [24] respectively (see also [21] for other related capacities). In Section 4 we restrict
ourselves to the case when the distribution v in (1.3) is a positive measure (. We show
that if y has upper parabolic growth of degree n + 1 and VW * p is in L (R"*1), then
3; 2w « W 18 bounded in the parabolic BMO-norm. This fact will be very useful when
studying the capacity yg,+, whose definition is analogous to the one in (1.3) but with the
supremum restricted to positive measures.

In Section 5 we study the connection between Lipschitz caloric removability and the
capacity yg. In particular, we show that a compact set E C R**! is Lipschitz caloric
removable if and only if yg(E) = 0. We also compare the capacity yg to the parabolic
Hausdorff content J(c’)’o"’; and we prove that if £ has zero (n 4+ 1)-dimensional parabolic
Hausdorff measure, i.e., J€I’}+1 (E) = 0, then yg(E) = 0 too. In the converse direction,
we show that if E has parabolic Hausdorff dimension larger than n + 1, then yg(E) is
positive. Hence, the critical parabolic dimension for Lipschitz caloric capacity (and thus
for Lipschitz caloric removability) occurs in dimension # + 1, in accordance with the
classical case. We remark here that the parabolic Hausdorff measure J€I§’+1, the para-
bolic Hausdorff content J(’C’)’OJFI} and the parabolic Hausdorff dimension are defined as in
the Euclidean case (see [14], for instance), just replacing the Euclidean distance by the
parabolic distance introduced above. Then it turns out that R”*! has parabolic Hausdorff
dimension n + 2.
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In Section 5 we also introduce a new capacity Yg 4. We consider the convolution
operator 7" with kernel K = V, W, which is of Calderén—Zygmund type in the parabolic
space. We denote by T its dual operator. Then we set Yo+ (E) = sup i(E), where the
supremum is taken over all positive measures @ € X (E) such that

||T/,L||Loo(Rn+1) <1 and ||T*/,L||Loo(]Rn+1) <1.

We show that the capacity Jg + can be characterized in terms of the L?-norm of 7 and
that ye = Ye,+. Then we show that any subset of positive measure J(’I’}H of a regular
Lip(1, 1/2) graph has positive capacity Y@, + and is non-removable. In particular, any
subset of positive measure J{’I’}H of a non-horizontal hyperplane (i.e., not parallel to
R” x {0}) is non-removable. Let us remark that any horizontal plane has parabolic Haus-
dorff dimension 7, and thus any subset of a horizontal plane is removable.

In the last section of the paper we construct a self-similar Cantor set E C R? with
positive and finite measure #>, and we show that it is Lipschitz removable for the heat
equation. The construction extends easily to Rt with n > 1 arbitrary, but we work
in R3 for simplicity. Our example is inspired by the typical planar 1/4 Cantor set in the
setting of analytic capacity (see p. 35 in [23], for example).

By analogy with what happens with analytic capacity [2] or Lipschitz harmonic capa-
city [17], and because of the examples of regular Lip(1, 1/2) graphs and the Cantor set
mentioned above, one should expect that a set £ C R"*! is Lipschitz caloric removable
if and only if it is parabolic purely (n + 1)-unrectifiable in some sense. Remark that it
seems natural to define that set E as parabolic purely (n 4 1)-unrectifiable if it intersects
any regular Lip(1, 1/2) graph at most in a set of measure Jflf“ zero (see [19] for some
results on parabolic uniform rectifiability). A first step in this direction might consist in
proving that yg(E) > 0 if and only if Y@, +(E) > 0 (or even that both capacities are com-
parable). However, there is a big obstacle when trying to follow this approach. Namely,
the kernel K = VW is not antisymmetric and thus, if v is such that Tv = V, W % v
is in L>°(R"*1), apparently one cannot get any useful information regarding 7*v. This
prevents any direct application of the usual 7'1 or T'b theorems from Calderén—Zygmund
theory, which are essential tools in the case of analytic capacity or Lipschitz harmonic
capacity. A connected question is the following: is it true that a set is removable for the
heat equation if and only if it is removable for the adjoint heat equation A f + 9, f = 0?

Some comments about the notation used in the paper: as usual, the letter C stands for
an absolute constant which may change its value at different occurrences. The notation
A < B means that there is a positive absolute constant C such that A < CB. Also, A ~ B
is equivalentto A < B < A.

2. Some preliminary estimates

In the next lemma we will obtain upper bounds for the kernels W(x, t), Vs W(x, t),
3, W(x.1) and 8}/ W(x.1).

Lemma 2.1. Forany X = (x,t), x € R? andt € R, the following holds:

1

_ 1 _
(@ 0=WX <= 0 [ViWX|<—F0m
|x|p |X|p
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_ 1 -
(©) WW(X)'SW’ A 19w < ||,,+2

Proof. To prove inequality (a), we use the fact that e~*! < min(1, |y|™/2), and then we

get
tn/2

1 1
W) T max(e/2, x|y IR

_ 1 .
W(x) < e min (1,
Concerning estimate (b), we have

_ 2
VW) = ¢ e W0

t>0}"
So using now that e~ < min(|y|~'/2, |y|~17"/2), we derive
(/2 /241

1 1
_|x| s |x|n+2> - max(t(n+1)/2, |x|n+1) - |)_C|z+1 .

x| .
VW@ S ey mm(

For inequality (d), we compute

c1 calx
G wpan |, X 2/0)
( n/2+1 + n/ 2+2 Xt > oy
and then we argue as above. We leave the details for the reader.
The proof of inequality (c) will take some more work. Clearly, we may assume x # 0.
First we write W(x, t) in the form

¢ (IxP\"2 _ e c 4t
= 5 (B ()

4t lx|" = \|x]?

9 W(F) =

where

1 Yy
f(s) = Sn/Ze SX{S>0}-

Notice that f is a C* function that vanishes at co. Then we have

0w = o[ 1(5)]o.

By a change of variable, it is immediate to check that
4t
()0 =52 (55)
' x| [x] | x|

1/2 . c 1/2 4¢
8, W(X,[) = Wa, f(W)

and thus

We will show below that, for any # € R,
@1 1817 f(1)] < min(L, [z 7).

Clearly, this implies that
|x|?

1 1
Tt ) ©omax(|x|n Tt |x|rl) o [x|rl Ifl,%'
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The proof of (2.1) is a straightforward but lengthy calculation. We split the integral as
follows:

ool [ VOOl SO =0l
lz1/2<ls|=2¢]

si<iel/2 s — 11372 ls —1]3/2

| f(s) = f(1)]
L] e,
s>20e] |s —1]3/2
=11+ 1+ Is.

To estimate /; we use that |s — 7| ~ || in its domain of integration, and then we get

1 1 1 1
22 I < _/ sl / o g,
1132 Jisi<iaiy2 152 1132 Jisi<inysa 121/

The second summand equals

N S v/ T RN
|£3/2 |¢|n/21 - |t|(r+1D)/2 ’

The integral in the first summand of (2.2) can be estimated as follows:

/ —1 e Vsl gg
Isl<lel/2 812

< e—l/(zm)/ L/ze—l/(zm) ds +e—1/(2'”)/ L/zds
isi<1 Is]” 1<Isl<lel/2 51"

< e—l/(ZItI)(l + |t|1/2).

Hence,

I < —L @i 412y 1

1
< <)

lt]
To deal with I,, we distinguish two cases, according to whether s has the same sign

as ¢ or not. In the first case we write s € Y, and in the second one, s € N. In the case
s € N, with [¢t|/2 < |s| <2|¢], it turns out that |s — ¢| & |¢|, and thus

/ ._/ | f(s) — f(0)]
2N = T _132
seN,ltl/2<lsl<2le] |5 — 1]

1 / Ly 1 L -
< e Vislds 4 e s,
11372 Jysi<ale) 15|/ 172 Jis<aie 1o

Observe that this last expression is very similar to the right-hand side of (2.2). Then, by
almost the same arguments we deduce that

1
|t|(n+1)/2

ds

1
L.y < min (1, m).
To deal with the case when the sign of s is the same as the one of 7 (i.e., s € V'), we take
into account that

|f(s) = fOI < sup [f')]s—1l.

£€ls.]
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Since in this case |¢|/2 < |&| < 2]t|, it is immediate to check that for this & we have

1 -
Ifl(g)| s |t|n/—z+le 1/(4|t|).

Thus,
|/ ()= f ()] - 1 —1/(4lt]) ls—1]
e P

Ly 2=/ <
sev.jt)/2<lsi<2lr| 1S —1[3/2 |¢|n/2+1 t)/2<lsl<ale] |8 — t]3/2

1 —1/(4\z|)/ 1 L v (1 2
<———e¢ ——ds S ——e¢ (4"|)§mln<l,—).
- |l|n/2+1 Isl<2lt| |S —t|1/2 |t|(n+l)/2 |[|

Finally, concerning /3, taking into account that |s — ¢| &~ |s| = |¢| in the domain of
integration,

—1/|s| —1/[¢] —1/|s| =1/t
EPS / : /2+ e3/2 ds 3 / e/z 3/2 ds + : /2 / df/z'
Isj>20e)  [t["/2]s] isi>2le) [2]"/2]s] [21"72 Jysi>21) Is]

It is immediate to check that none of the two summands exceeds C min(1, |¢|7!). So
gathering all the estimates above, the claim (2.1) follows. ]

3. Localization

Let 9: R*T1 — R be a C? function. We say that ¢ is admissible for a parabolic cube Q if
it is supported on Q and satisfies

1 1
(3.1) Vitlloo < —— and [|A¢|leo + [|0:¢]lcc < —— -
190l = gy 00 180leo + Wivllee < 55

The main objective of this section is to show the following localization result.
Theorem 3.1. Let v be a distribution in R" ! such that
IVaW 5 vloo <1 and [19;*W % v < 1.
Let ¢ be a C? function admissible for a parabolic cube Q C R"*1. Then
IVxW % @)oo S 1 and 33" W 5 ()]s < 1.

We say that a distribution v in R”*! has upper parabolic growth of degree n + 1 if
there exists some constant C such that, given any parabolic cube Q and any function C?2
function ¢ admissible for Q, it holds

(v, )| < CE(Q)"*".

It is immediate to check that this definition is coherent with the one in (1.1) for positive
measures. If we want to be precise about the precise constant involved in the definition,
we will say that v has upper parabolic C-growth of degree n + 1.

Before proving Theorem 3.1, we need several lemmas. The first one shows that every
distribution v satisfying the hypotheses of Theorem 3.1 has upper parabolic growth of
degree n + 1.
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Lemma 3.2. Let v be a distribution in R"*! such that
IVeW 5 vlloo <1 and [|9;*W % v, <1
Then v has upper parabolic C -growth of degree n + 1, where C is some absolute constant.

Proof. Let ¢ be a C? function admissible for a parabolic cube Q. Since W is the funda-
mental solution of ®, we can write

(. @) = [{v. @@ x W)| < [(W x v, Ag)| + (W xv,0:9)| = I1 + I.

To estimate /; we use that | Vy¢l|leco < 1/£(Q) and ||V W % v| s <

I = (Vi W 5 v, Vi) < ||V W % v||oo/|ngo|dm <o)t

For I, we consider the function g = 9,9 *; k, with k(t) = |¢|71/2 and %, being the
convolution on the ¢ variable. Taking the Fourier transform on the variable 7, we get ;¢ =
¢ 8;/2g, for a suitable absolute constant ¢ # 0. Write Q = Q1 x Io, with 01 C R” being
a cube of side length £(Q) and Ip C R an interval of length £(Q)?. Because of the zero
mean of d,¢ (integrating with respect to t), it is easy to check that |g(x, #)| decays at most
like |¢|*/2 at infinity. Indeed, for t ¢ 21¢, denoting by s¢ the center of I,

(B2 [gx.0)| = )/ |tsf(:|12 S' = ‘/IQ 3s§0(x,s)(|t —1s|1/2 - |t_S1Q|1/2)dS‘

L(Ig) / {(Ig)
< o) ds0(x, )| ds < ——22__.
~ |[—SQ|3/2 ]Q| S(p(x S)| N |t—sQ|3/2

Together with the fact that suppg C Q1 x R, this implies that g € L'(R"*1). Further, it
is easy to check that f gdm = 0, for example with the help of the Fourier transform in ¢.
= 9l/2

Using the zero average property of g, writing f W % v, we have

L= |(Wxv.cd%g) = |{fcg) = )c/(f—mgf)gdm
< /2Q |f —mo fllg|dx dt +/W\2Q |f =mofllgldm

= I + .

Since for ¢t € 41,

|0:0(x,5)] 1/2 1
IS ————ds < |0 21 < —
10c, 1) /IQ s < el elU0) 5 5o

we have In1 < || f [« €(Q)"T2L(Q)~1 < £(Q)" 1.
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For I,,, we split the domain of integration in annuli. Write 4; = 2:Q \ 2~ Q for
i > 1. Remark that for a parabolic cube O = Q; x I, we denote

200 =210, x 2% 1y,

so that 2/ 0 is a parabolic cube too (notice that if Q is centered at the origin and we
consider the parabolic dilation 8§y (x, 1) = (Ax, A%t), A > 0, we have 2 0 = 8, (Q)).
Then, using the decay of g given by (3.2), we get

(3.3)

o (0 | L
22 ~ Z E(le)S (Aiﬂsuppg |f _leQf| dm + /Aiﬂsuppg |m2[Qf me|dm)

To estimate the first integral on the right-hand side, recall that supp g C Q1 x R. Using
Holder’s inequality with some exponent g € (0, 00) to be chosen in a moment and the fact
that f € BMO,, (together with John—Nirenberg), then we get

1/ i ,
| Aremagsidm = ([ 1f —mugsitdn) " misuppgn2 @)V
A;iNsupp g 210
<L) 00y £(210)?) 1 = €21 Q)M DT g ()M

For the last integral on the right-hand side of (3.3), we write
| g s —mofldm < im@ @ Nsuppe) < i(0)" 62 Q)%
A;Nsupp g

Therefore,

I S Z g(;QQ))a (L1 Q)M DF2 ()M 1 iL(Q)" €21 0)?).
i=1

Choosing ¢ > n, we get
I S Q)" "

Before going to the next lemma, recall that a function f(x,?) defined in R"*! is
Lip 1/2 (or Holder 1/2) in the ¢ variable if

”f”Lipl/z’t = sup |f()€,l) _ f(xv u)| < oo

xeR7, t,ueR |t —u|l/2

It is known that functions f with V, f € L®(R"*!) and 8,1/2]" € BMO, (R"*1) are
Lip 1/2 in z. More precisely,

1/2
1 iprya, S 1V S llzooqasny + 10;7 £ lle.p.
/

See Lemma 1 in [5] and Theorem 7.4 in [7].
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Lemma 3.3. Let v be a distribution in R" 1 such that
IVxW % v|oo <1 and ||W % V”Lipl/z,, <.
Then, if ¢ is a C? function admissible for some parabolic cube Q C R"™1, we have
[ViW s (9v) oo < 1.

Proof. Notice that for f and g in C? we have O(fg) = gOf + fOg + 2V, fV.g.
Therefore, since W is the fundamental solution of ®, for any constant ¢ we can write

(B4 Ble(Wxv—c) =W xv—c)+ O (W xv—c)+2Vip: - (VW xv)
=ov+Op(Wxv—c)+2Vyip- (VW xv).
Therefore,
VW x (¢v)
(3.5) = Vi(eW xv—c)) = VW % (Op(W xv—c)) =2V W x (Vx@(Vi W % v)).
To estimate the L°° norm of (3.5), write O = Q0 x I, where Q1 C R” is a cube of side
length £(Q) and Ip C R an interval of length £(Q)? and choose ¢ = W x v(xg,10), with
(xg,tp) being the center of the parabolic cube Q. Since W * v is a Lipschitz function on
the x variable and Lip 1/2 on the ¢ variable, for X = (x,7) € Q we can write
(3.6) [W s v(x,t) =W xv(xg,tg)| < |W xv(x,t) = W xv(xg,1)]
+ W xv(xg,t) =W xv(xg,t9)|

<UQ) + LOHV? £(0).

Using this estimate together with |V, W % v||s < 1 and the fact that ¢ is admissible for Q,
we get

V(oW kv —c))lloo = [IVax@lloo[W xv =W kv(x0.10) oo + [@llool| V2 W * Voo < 1.

We claim now that if g is a function supported on Q and such that ||g e < £(Q)7',
then ||V W % g|loo < 1. Once the claim is proved, to estimate the L°°-norm of the second
and third terms in (3.5), take g = O@@(W * v — ¢) (recall that we have chosen ¢ = W %
V(xg,tp)) and g = Vyp(ViW % v) respectively. Notice that in the first case the bound
lglloo < £(Q)~! is obtained by using (3.6) and the fact that ¢ is admissible for Q, while
in the second case, one uses the admissibility of ¢ together with |V W % v|o < 1. So
the claim applies to both terms, and we therefore obtain ||V, W * (¢v)|eo < 1.

To prove the claim, notice that for y = (y,s),

1 1 1 1

= < _
Pl (max(|yl.st/2)ntt T [y|rt/2 5374

Take a function g supported on Q and such that ||gle < £(Q)~!. For X € 2Q, using
Lemma 2.1 we have

_ dm(y)
VW % g(®)] < gl /—
* *Jo|x—yptt

_ 1 dy / ds  _ Q)" Q" _
S U0) Jo, =y i, =P Y T Q)

1.
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and if X € (2Q)°, then |X — 7|2t > £(Q)"*!. Therefore

dm(y) (o)
V * < < =1
VW * g(3)] < ||g||oo/ T S W) (o
Hence |V W * g|lo S 1. This finishes the proof of the claim and the lemma. ]

Lemma 3.4. Let v be a distribution in R* 1 such that

[ViW sk vlloo =1 and [|[W *v|Lip,,, <1.
Then, if ¢ is a C? function admissible for some parabolic cube Q C R"T1, we have

W (ev)llLip,,,, < 1.
Proof. For any constant ¢, from the identity (3.4) we can write
(B.7) Wxov=pWxv—c)=2W x (VyoV (W xv)) =W x (W xv —)O¢p).
Set x = (x,t) and X = (x,r), withx € R” and #,r € R. Then
W (pv) (%) = W * (pv) (%) = (X)W * v(¥) — ) — p(X)(W * v(F) — )
+ (= 2W 5 (Ve V(W % 0))(X) 4 2W % (Vi V(W % 1)) (X))

+ (— Wx(Wxv—c)Op)(xX)+ W (W *xv—c) @(p)(fc))
=A+ B+ C.
We start with the term A. If X, X ¢ Q, then A = 0. Otherwise, let us assume that x € Q and
take c = W x v(Xg), where X is the center of Q. Choose a point X’ such that X’ = ¥ when

X € Q, and otherwise take X’ € 2Q of the form X’ = (x, r’) satisfying |X' — X| < |X — X|.
Observe that in any case we have

Q) (W * v(X) = ¢) = p(X) (W * v(¥') —¢))

and
|x —)Z’|p < min (CZ(Q), |x —)?|p).

Then we have
|A] < o(E") — o) W * v(X') —c| + [pX)| [W * v(X') = W * v(X)]

=1
E(Q)z

To estimate the terms B and C we need the following result.

Q) + I =12 < =)V < |r —1)V/2,

Lemma 3.5. Let g be a function supported on a parabolic cube Q and such that ||g||co <
1/€(Q). Then |W * g||Lip, ,, < 1.
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Using Lemma 3.5 we can finish the proof of Lemma 3.4. To estimate B choose g =
V@(VW % v). Then clearly ||g oo < 1/£(Q) and thus |B| < |t — r|'/2. For the term C,
set g = (W xv—c)Op, withc = W xv(Xg), Xg = (xg.t0) being the center of Q.
Then, forall y = (y,s) € O,

(W xv(y) =W xv(xg)| < |[W xv(y,s) — W xv(xg,s)|
+ W xv(xg,s) =W xv(xg,tg)]
<UDV W vl + |s — 102 IW * vlLip, ,, S Q).

Consequently [|glloo < £(Q)[10¢ lloo < £(Q)7". u

Proof of Lemma 3.5. Set X = (x,t) and X = (x,r), where x € R” and ¢, € R. Then

1 _lx=zP?
W xg(x,t)=Cy, // me 4= g(z,u) X <t}dz du

1 1 |x — z|?
:Cn//(t—u)l/z |x —z|n—1 f( t—u )g(z’u)dZdu’

where f(s) = s(”_l)/ze_s)({s - o)
So, taking O = Q1 x Ig, with O; C R” being a cube of side length £(Q) and /g C R
an interval of length £(Q)?, we have

W g(x) =W x g(X)]

Ix —z|? Ix — z|?
E(Q)//Q|X—Z|" 1’(; )12 (xt_i )_( _lu)1/2f<);_i ))dzdu

’du

< —
E(Q) 0, IX—ZI”‘I/ ’Il—ul”2 Ir—ull/2

— 7|2 _ -2
+ 503 Jo oo oy el ) - (G

= A+ B,

where in the last inequality we have used that || f'||ec < 1. Now,

A< /
[t—u|<2|t—r|

= A1 + Ay,

AIS/ d—ul/z“r‘/ d—ul/25|l—r|l/2
lt—u|<2lt—r| |t — U] Ir—u|<3lt—r| |7 — U]

t—r
Azs/ |—3|/2du5|t—r|1/2.
lt—ul>2)i—r| |t —ul

1 1 )
It —ul/2  |r —u|l/2

1 1 ’ /
- +
[t —ulV/2  |r—u|l/? [t—u|>2]t—r|
with

and
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Finally, to estimate B we will use that for |t — u| > 2|t —r]|,

(=) - (D) < -2 1

r — r—u
|t —r|
<|x—z 3

|t — ul

||f’||oo,1,

. . —z|2 —z|2
where [ is the interval [% %

account that || f||cc < 1. Then,

B<_| / ! U ud
< — udz
Q) Ji—uj<2it—r| Jzeo, |x =z |t —u|1/2

]. In the case |t — u| < 2|t — r|, we just take into

1 / 1 1 lx —z2lt—r|, ,
+ I/ Noo,r dudz
UQ) Jit—um2lt—r| Jzeg, Ix — 2"~V |t —ulV/2 |t —ul? =
= B, + B;.
The term B is clearly bounded by C|r — r|'/2. To estimate B, we use that f is a
smooth function satisfying | £/(s)| < |s|~! and that |s| ~ |x z II for all s € I. Therefore,
1 |t —r| If ul 1
B, S —— / dudz S|t —r|V?.
UO) Ji—ul>2lt—r Jze0, |x — 2" 73|t —ul3/2 |x — 2|

Lemma 3.6. Let v be a distribution in R*t such that
IVeW 5 v]oo <1 and |0} W % v]s,p < 1.

Let Q, R C R"*! be parabolic cubes such that Q C R. If ¢ is a C? function admissible
for Q, then we have

/ |8}/2W % (pv)| dm < L(R)" 2.
R

Proof. From the integration by parts formula (3.7), we infer that
AV2W x (ov) = 02 [p(W % v — )] — 2012 W % (Vi Vi W % v)
— 8}/2W * (W xv—c)0®gp).
We choose ¢ = W * v(Xg), where X is the centre of Q.
First we will estimate the L! norm on R of the last two terms. We denote g; =

Vi VxW x v and g, = (W x v — ¢) ®¢. Notice that, supp g; C Q for i = 1,2, and
also

Ig1lleo < 5o
T U0)
Also, from the respective Lip and Lip 1/2 conditions on the x and ¢ variables, it follows
W xv(x) =W xv(xg)| S€(Q) forallx € Q.
Therefore,
1

lg2lloo < IIW % v =W x 1(%0)llos,0 O¢llco < Q) 7—5 Z(Q)z =0
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Next notice that, by Lemma 2.1,

1 1 1
81/2W Y < < = .
O WS T 7R = e k2R~ k2 i

Then, writing Q = Q1 x Ig, where Q is a cube with side length £(Q) in R” and [ is
an interval of length £(Q)?, we deduce that, for any ¥ € R"*!,

1/2 1/2
19! W*gl(x>|<@/|a WG — )l dy

< 1 1 J / 1 y
K(Q) x€Q |X— |n—1/2 u€lp |t _u|3/4

_g 1/2 (p /4 _
* W0 OV =1.

Therefore,
/R ]28}/2W % (Ve Ve W 5k v) + 012W s (W v —¢) Op)|dm S L(R)"*2.
So to prove the lemma it suffices to show that
/R 10 2[p(W % v — W % v(Zg))]| dm < L(R)"*2.

To this end, we consider a C* function ¥ such that Xo = Yo < X20 with |Vx o] <
1/£(Q) and |0, ¥o| < 1/€(Q)?, and for any function F:R"*! — R consider the “smooth
mean” with respect to ¥ defined by
J Fygdm

f Yo dm

Observe that for arbitrary functions f, g:R — R, we have

0,2 90 = g0 8,21 0) + £0) 820 + / e

Myg (F) =

) (g(s) —g®) ,

|s —1]3/2

Applying this with /' = ¢(x,-) and g = W x v(x,:) — W x v(Xp), we get
8,1/2[<p(W xv—W xv(Xg))](x.1)
= (W xv(x,1) = W xv(Xp)) 8}/2<p(x, 1)+ @(x,1) 8}/2W * (X, 1)
N / (o(x,5) —@(x,1)) (W * v(x,5) — W x v(x,1)) J

|s —¢]3/2

= (W xv(x,1) — W xv(Xp)) 3120 (x, 1)
+ o(x,1) (8}/2W * V(X 1) — My, 02w * v))
N / ((p(x,s) — (p(x,t)) (W *V(x,s5) — W x v(x,t)) J

ls —¢]3/2

+ @0, 1) My (32 W % v)
= A(X) + B(X) + C(¥) + D(%).
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To estimate A(X), observe first that 8} / Zgo(x, t) vanishes unless x € Q;. In the case
x € Q1,t € 21 g, by the smoothness of ¢ we have

lp(x,s) —o(x,1)]
|s —t]3/2

10} 20(x, 1) < ds

< / Is — 1] ds+/ L gy< ]
T Q) Jary Is — )32 R\21p |s =132 7 £(Q)

In the case x € Q1,t & 21g, we have

1/2 lo(x,5)| ~ 1 &
10;"“p(x,0)| < / |s—t|3/2 ds ~ |t—tQ|3/2 loCx, s)lds < |t—lQ|3/2’

where X9 = (xg,p). So in any case,
0oy
L(Q)? + |t — o]/
Then, using the Lip and Lip 1/2 conditions on x and ¢ of W * v, we infer that, for x € Q1,

L) Q)+t —10]'?)
U(Q)* + |t — 1o/

101 %p(x,1)| <

l[AX)| <

Therefore,

e €(0)* (L(Q) + |t —19]'/?)
A dx < d
/R ADdx 2 /er1 /It—tgsze(R)2 Q)3+ |t —1g]3/? !

S0 (1+10g 1)) <RI,

To estimate the L' norm of the term B we just use the fact that 8}/ 2W % v is in the

parabolic BMO space and that
o 12 W % v) —mo (32 W % v)| S 119,72 W  vllsp < 1.
Then,
/R |B(x)|d% = /R p(F) (3} W % v(X) — my, (3, W *v))| d 5
< /Q 012 W % v(Z) — myy 0)2W % v)| dT < €(0)"? < L(R)"+2.
We are now left with C(x) + D(x). First we split
C) = / ((p(x,s) — (p(x,t)) (W *v(x,s) — W xv(x, l))

|s —t]3/2

=/ +/ o= C1(F) + Ca(R).
ls—t|<£(0)? ls—t]>£(0)?

ds
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To estimate C; (X) we use the smoothness of ¢ and the Lip 1/2 condition of W * v in ¢:

L0) 2|s —t]|s —¢t]|V/?
|IC1(X)]| / ()" Is |3|i | ds <1,
|s—t]<£(Q)? s —1]3/

so that [ |C1(X)|dX < £(R)" 2.
Concerning C,(X), we have

_ W xv(x,s) — W xv(x,t)
e = [ D o ds
ls—]>£(Q)? ls —1]

/ W xv(x,s)— W xv(x,t)
Is—t]>£(0)? |s — 13/

ds o(x,t)
= C2,1(X) — C22(X).

Using again the Lip 1/2 condition of W * v in ¢, and the fact that |p(x, )| < x 1> We
obtain

1
1Can ()] < / o(x.5)ds <
> s—tl(0)2 15 — 1] 0(0)?

and so [ [C2,1(X)|dx S L(R)"T2.
By the estimates above, we have

/so(x,s)ds <1,

/ 10,2 W % (pv)| dm < €R)"? + / | — C22(%) + D(F)| d X,
R R

where
W xv(x,s)— W xv(x,t)

Crp(X) = / dso(x,t)
ls—t]>£(0)? ls —1]3/2

and
D(F) = myy (0} W % v) p(x,1).

So to conclude the prove of the lemma it suffices to show that, for all x € Q,

w ,8)— W ot
(3.8) ml/fQ(atl/ZW ) _/ * v(x,s) ' 2* v(x,1) ds| < 1.
s—t|>£(0)2 ls — 1|3/

To this end we first turn our attention to the term my,, (8}/ W ox V). As above, for any
¥y = (y,u) € R**! we split

W % ,8)— W % ,
W x v(7) =/ v0.5) s LY
Is—u|<t(Q)? |s — u]

W xv(y,s)— W xv(y,u
+/ (.s) i 0.1
Is—u|>£(Q)? s —ul

=: F1(y) + F2(9).
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Observe that the kernel

W % v(y’s) — W x U(yvu)
Ky (s.u) = X5 -y <0y |s —ul3/2

is antisymmetric, and thus

1
myoFi = JJ] K0 w0t s dy au

- —m///ms,u) Yo (y.s)dudy ds

1
" 2|voll // Ky (s,u) (Yo (v, u) — Yo (y,s)) dudy ds.

Hence, by the smoothness of 1o and the Lip 1/2 condition of W x v in ¢,

1 W xv(y,s) — W xv(y,u)| B
T I o e oy 1) — Yo (r.9)|

1 /// ls —ul'/2 |u—s|
— _ dudyds S 1.
10 Nfis-u=ecor, Ts—uP? t@p Y

y€201,ucdly

|m1/fQF1|

A

To prove (3.8), it remains to show that

(3.9) ‘ P / W xv(x,s)— W xv(x,t)
. m 2 —
ve ls—t|>£(0)2 ls —1]3/2

ds‘ <1 forallx e Q.
Clearly, it suffices to prove that forall x € Q and y € 20,

B W xv(x,s)— W xv(x,t _ _
B - [ @)= W20 4| = | R - B 1.
ls—t]>£(Q)2 |s — 1]

We denote A; = {s € R : |s —t| > £(Q)?}, and analogously A, . Then we split

W xv(y,s)— W xv(y,u)|

|Fa(5)-Fo ()] < / | i ds
+/ |W*v(x,s)—zl/2>k v(x,t)lds
A\ Ay |s —1]%/
/ Wxv(x,s)—Wxv(x,t) Wxv(y,s)—W xv(y,u)
+ ‘ — ds
A4, s —2]3/2 |s —ul3/2

=L+ 5L+ 1

Using the Lip 1/2 condition of W * v in ¢ and the fact that |s — u| ~ £(Q)? in A4, \ A;
and |s —t| ~ £(Q)? in A, \ Ay, it is immediate to check that

L+, <1,
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Concerning I3, by the triangle inequality,
I < / 1 1
P Jauna s =P Js —upl?

+/ |W>|<v(x,s)—W*v(x,l)—W*v(y,s)—I—W*v(y,u)|ds
AunA4, |s —ul3/2

‘ |W *v(x,s)— W * v(x,t)|ds

= I3+ I5;.
To estimate /3,; we take into account that

‘ 1 1 < |t —u|
|s—t|3/2 |s—u|3/2 ~ |s—t|5/2

in the domain of integration and we use the Lip 1/2 condition on W x v:
t —
I, s/ '—”_Lj'z s — ]2 ds < 1.
s—t>£(0)2 |s — 1%/
Finally we deal with I3 »:
W xv(x,s) — W xv(y,s)|+ |Wxv(y,u) — W xv(x,1)|

I3 < 372 ds.

ls—t1>£(Q)> |s —1]

By the Lipschitz in x and Lip 1/2 in ¢ conditions of W * v, we derive
[W xv(x,s) =W xv(y,s)| + |[W xv(y,u) — W xv(x,t)| S L(Q).

13’2§/| Mds<1

s—t]>0()2 Is =132~
Together with the preceding estimates for /1, I, /3,1, this shows that

|Fo(7) — F2(¥)| <1 forall¥ € Q,and j € 20,

Therefore,

which proves (3.9) and concludes the proof of the lemma. ]

Lemma 3.7. Let Q C R"*! be a parabolic cube and let v be a distribution supported in
R 1\ 40 with upper parabolic 1-growth of degree n + 1 and such that

IVxW s v|oo <1 and ||W % V||Lip1/2,, < 1.
Then,
/Q 1012 W % v —mg0)*W )| dm < £(Q)" 2.
Proof. Let Q C R"*1 be a fixed parabolic cube. To prove the lemma, it is enough to show
that
(3.10) 10 W % v) (@) = @, W * v ()] £ 1
for X, y € R"*! in the following two cases:

e Case l: X,y € Q of the form x = (x,1), y = (y,1).
e Case2: X,y € Q of the form x = (x,1), y = (x,u).
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Proof of (3.10) in Case 1. We split

|8}/2W xv(x,1)— 8}/2W xv(y,1)|
Wxv(x,s) =W xv(x,1) ds — W xv(y,s) =W xv(y,1)
|s —¢3/2 |s —¢]3/2
</ [W xv(x,s) — W xv(x,t)]
" Jis—tl=a0(0y? |s —1]3/2
+/ W s v(y,s) — W xv(y,1)|
ls—1]<4£(Q)? |s —2]3/2
+/ [Wxv(x,s) — Wxv(x,t)— Wk v(y,s)+W*v(y,t)|ds
ls—1[>4£(Q)? |s —1[3/2
=: A, + A, + B.

ds

ds

ds

We will estimate the term A; now. For s, ¢ such that |s — ¢| < 4£(Q)?, we write
W skv(x,s) =W xv(x,t)| < |s—t]||0: W * V| 0,30-

We claim that

1
(.11 [0:W % vlleo3o S 5+
T )
Once claim (3.11) is proved, we get that
|s —1]

0o

[W xv(x,s) — W xv(x,t)| S

Plugging this into the integral that defines A;, we obtain
_¢ 2(0)2)1/2
s /R T s L
js—t<at(oy? £(Q) |s — 1]/ Q)

By exactly the same arguments, just writing y in place of x above, we deduce also that

Ay < 1.
Concerning the term B, we write
W x ,8)— W % ,
b | W ve9) = W 209l
ls—t|>4£(0)? s — 2|3/
Wxv(x,t)— W xv(y,t
v/ LATICAI AT
|s—t]>4£(0)2 ls —1]

Then,
W s v(x,s) =W xv(y,s)| < [VaW *v]oo [x — y| £ Q).

The same estimate holds replacing (x, s) and (y, s) by (x,¢) and (y, ¢). Hence,
14 14
B3 / (Qz/z ds < (Qz)l/z ~
ls—t]>4£(Q)? | — 1] (t(2)%)
So, once claim (3.11) is proved, (3.10) holds in Case 1.
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To show (3.11), we split R”*1 \ 40 into parabolic annuli 4 = 2710 \ 2¥Q and
consider C? functions Xx-> supported on %Ak which equal 1 on A, vanish on (%Ak)c and
satisfy

Y Te=1 inR"1\40
k>3

and

1 1
IVidilloo S s IVETilloo + 10: X lloo S = -
k 2%4(0) k Tk (2k£(0))?

Then, for each z = (z,v) € 30,

B % v(2)] < Y13 W * (Tv) ()]

k>3
Claim (3.11) will be proved if we show that for each k > 2,

27k
(3.12) 10: W (D] S 57
’ g “o)
Write
10: W x () (@] = (v, X3 0 W(E =) = (v, ¥ie) .

the last equality being a definition of .

To estimate (3.12), we want to use the upper parabolic growth of v. Therefore we
have to study the admissibility conditions (3.1) of i for each k. This means we have to
estimate the norms ||V ¥k |lco and ||AVk |loo + |0 Vi || co. Write

(3.13) Vit = Vi )i 0W(Z =) + Vx0: W(Z =) X

The estimate of the L°-norm of the first term in (3.13) comes from [|Vy}; o <
(2%¢(Q))~" and Lemma 2.1, together with the fact that for ¥ € Q and Z € Ay we have

1 1
% — §|;+2 ~ (2k£(Q))nt2 )

(3.14) [0:W(x —2)| <

For the second term in (3.13) we have to compute V3, W. Arguing as in the proof of
Lemma 2.1 one can show that

1 1
max(t D2 | pr3y B

(3.15) [Vxd: W(X)| <
Putting these estimates together we get

1
ViV lloo < W

To estimate || Ay ||oo Write

(3.16) AV = AT WE =) + 2V 7, Vad WE =) + 7,00, W(E — ).
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Following the proof of Lemma 2.1 one can deduce that

1 1

)| < ~ .
(3.17) |AdW(X)| < max (O, [x ) R

Hence, using the estimates |A), [0 < (2k0(0))72, Vi X lloo < k(o)™ (3.15)
and (3.17), one obtains

1
[AVklloo < U0y

To estimate ||0; V¥ || oo Write

Yk =00, WE—) +IW(E - 7T,

The first term above is estimated by using [|0; X} [lco < (2%¢(Q))™2 and (3.14). For the
second term we argue as in the proof of Lemma 2.1 and obtain

1 1
E -2 T @R

|2W (% —2)| <

for x € Q and z € Ag. Therefore

J9eillo £ g
e = k()
Hence, by Lemma 3.2,
= N 1 k n+2 kL))t _ 27k
@ * ) = Grgegyr 0 QU I S (e s = G

which concludes the proof of claim (3.11) and of (3.10) in Case 1.
Proof of (3.10) in Case 2. As in Case 1 we write

|8}/2W xv(x, 1) — Bi/ZW *v(x,u)|

‘/W*v(x,s)—W*v(x,t)d /W*v(x,s)—W*v(x,u)d
= S — N
|s —t]3/2 |s —ul3/2
w ) —W N
S/ W xv(x,s) 3/2* v(x )|ds
|s—t]<4£(Q)2 ls —¢]

w ) =W ,
+/ [W xv(x,s) *v(x,u)| s
Is—t|<4£(0)?

ls — ul3/?
+/ W xv(x,s) —W=xv(x,t) W=xv(x,s)—W xv(x,u)
Is—t]>4£(Q)?
=: A} + A4, + B

ds

|s —t]3/2 ls —ul3/?

The terms A and A, can be estimated exactly in the same way as the terms A; and A5 in
Case 1, so that
A+ 4, <1



J. Mateu, L. Prat and X. Tolsa 568

Concerning B’ we have

Wxv(x,s) —Wxv(x,t) Wxv(x,s)—W xv(x,u)

B < / ‘a’s
ls—t|>4£(Q)? |s —2[3/2 s —ul3/2
1 1 )
< — W xv(x,s)— W xv(x,t)|ds
/|s—z|>4e(Q)2 s =232 |s —ul3/? | |
1
+/ —3/2|W*v(x,t)—W*v(x,u)|ds.
|s—t|>4£(Q)? |s — ul
Taking into account that, for |s — 7| > 4£(Q)?,
_ 2
) 1 B 1 ‘ < [t — ul < Q)
|s —t]3/2  |s —ul3/2 |s —1]5/2 7~ |s —t]5/2
and that [|W * v||Lip, ,, < 1, we deduce
£(0)? 1
B/S/ L)S/z“—ﬂl/zds-i-/ —3/2|t—u|1/2ds51.
ls—>4£(0)? |$ — ] ls—t]>4£(0)2 |s — ul
[

We will also need the following (easy) technical result.

Lemma 3.8. Let v be a distribution in R* T\ which has upper parabolic 1-growth of
degree n + 1. Let ¢ be a C? function admissible for some parabolic cube Q. Then ¢v has
upper C -parabolic growth of degree n + 1, for some absolute constant C > 0

Proof. Let ¥ be a C? function admissible for some parabolic cube R. In the case £(Q) <
£(R), let S = Q, and otherwise let S = R. It is easy to check that co is admissible
for S, for some absolute constant ¢ > 0, and thus

{pv, )| = (v, @¥)| S LS)"H < LR)"H. u
The next lemma, together with Lemma 3.3, completes the proof of Theorem 3.1.

Lemma 3.9. Let v be a distribution in R"*! such that
IVeW 5 vloo <1 and [0} W 5 v]sp < 1.
Then, if ¢ is a C? function admissible for a parabolic cube Q, we have
1020 % (pv)lap < 1.

Proof. Let R C R™*! be some parabolic cube. We have to show that there exists some
constant cg (to be chosen below) such that

/wWW*ww—QMmsam”?
R
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To this end, we consider a C2 function 5('5 R which equals 1 on 5R, vanishes in 6 R¢, and
satisfies

~ 1 >~ - 1
[ViXsglloo < m and ||V Ysglloo + 10: Xsglloo S W

We also denote ¥ pc = 1 — ¥5p- Then we split
/ 012 W * (gv) — cr| dm
R

5/R|8}/2W*(75R¢V)|dm+/R|8}/2W*()?SRCgov)—cR|dm =1 + L.

To estimate /5 we intend to apply Lemma 3.7. Notice that supp( s g.@v) C SR. We
claim that

(3.18) IVaW % (Xspe9V)lloo S 1 and  [W s (¥se9v)llLip,p, S 1.
To check this, just write
Wk (Xsgepv) = Wk (9v) — Wk (Z5pev).
Since ¢ is admissible for Q, we have
(3.19) [ViW s (pv)loo S 1 and [[W s (¢v)|lLip,/,, < 1.

Also, in case that £(R) < £(Q), it is easy to check that there exists some absolute con-
stant ¢ > 0 such that ¢y, p¢ is admissible for SR. On the other hand, if £(R) > £(Q),
then ¢ ;¢ is admissible for Q, for some absolute constant ¢ > 0. So in any case, by
Lemmas 3.3 and 3.4,

(Vi W % ()?51(90‘))”00 <1 and |W (ingov)”Lipl/z’, <L

Hence, (3.18) follows from (3.19) and the preceding estimates.

On the other hand, by Lemma 3.2, v has upper parabolic growth of degree n + 1, and
since ¢ Y5, is admissible either for SR or for Q, ¥ p¢v also has upper parabolic C-
growth for some absolute constant C, by Lemma 3.8. Then, from Lemma 3.7, choosing

CR = mR(G}/ZW * (¥sge®V)), we deduce that
I, SER)"2.

To estimate /1, we may assume that Q N 6R # &, since otherwise 5, ¢ = 0. Next
we distinguish two cases. First we assume that £(R) < £(Q), so that ¢ Y5 ¢ is admissible
for 5R. Then, from Lemma 3.6 we derive

I < / 02 W % (Fgpov)| dm < E(R)" 2.
5R

In the case £(R) > £(Q), the fact that Q N 6R # & implies that Q C 8R, and c Y ¢ is
admissible for Q, for some ¢ & 1. Then again from Lemma 3.6 we infer that

I < / 10121 (7 pov)| dim < L(R)™2.
8R

Together with the estimate obtained for /5, this proves the lemma. [
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4. The case when v is a positive measure

The main goal of this section will be to prove the following result.

Lemma 4.1. Let i be a measure in R"! which has upper parabolic growth of degree
n + 1 with constant 1 such that

[ViW s pifloo < 1.

Then
192 W % wllap S 1.

For that we need the following lemma.

Lemma 4.2. Let i1 be a measure in R"! which has upper parabolic growth of degree
n + 1 with constant 1. Then,

||W * :u'”Lipl/ZJ ,S 1

Proof. Letx = (x,t), X = (x,u), and X¢g = %()E + X). Then, writing y = (y, s), we split

W ()= W u(3)] < / W(x— yot —5)— Wix — you— )| du(3)

|7 —%Xolp=2[%X—%Ip

+/ W = yot =)= W(x — you — )| du(@)
|J7_3_50‘p<2‘)_c_£‘p

=11+ I».
To shorten notation, we write d := |X — £|, = |t — u|'/?. Then we have
sy [ o sup [0 It — ul duP).
k=17 2d=sli—%olp<2*tld geli—5.5-7]
Since
G L ifEeF— 7.k ) 17— Folp ~ 2¥d,

£ T @Ry
we deduce that

1/2

< k+1
I] S Z I’L(Bp(x()’z d))

|t —ul
(2kd)n+2 [t —ul <

< =|t—u
= —u

k>1

Next we deal with /5. Writing Bg = B, (Xo,2d), we have

Iy = Wk (X g, i) (X) + Wk () g, 1) (X).

Observe now that

_ 1 _
0= W (0@ % [ e du()
J7€Bo |x_y|p

du(d) <d = |t —ul'/2.

<

/ 1
" Jiz—jl<4a |X =V}
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The last estimate follows by splitting the integral into parabolic annuli and using the para-
bolic growth of order n + 1 of u, for example. The same estimate holds replacing x by X.
Then gathering all the estimates above, the lemma follows. ]

Proof of Lemma 4.1. Let Q C R"*! be a fixed parabolic cube. We have to show that there
exists some constant cg (to be chosen below) such that

/Q 10,2 W % 1 — coldm < £(Q)" 2.

To this end, we consider a C2 function 1s 0 which equals 1 on 5Q, vanishes in 6Q¢, and
satisfies

1
2~ ~
and ||V} XSQ”oo + ||81X5Q||oo S @

1
Q)
We also denote )?SQC =1- )?SQ. Then we split

IVaFsolloo <

[ 1012w s = colam = [ p}2w x (Fogmldm
0 0
+/ |8,1/2W>!<()"(5QL-/L)—CQ|dm =1 + I,.
0
To deal with the integral /1, we just write

1 1
W (Tagmld s [ o x Fegmdm = | (rgm)ds
/Q ' >0 o lxPmt|x[2 15 so lyI" My 2 e

Taking into account that, for y = (y, u),

1 - 1 1
PP T P

and writing Q = Q1 x Io, where O is a cube with side length £(Q) in R” and /g is an
interval of length £(Q)?, we deduce that for X = (x,1) € 60,

1 1 1
e — X — d —d
PG *(XQ’")(’“)s/yte i /uelg T
S L)V (OHV* = ().
Thus,
/Q 012 W 5 (7, i) dm < £(0) 1(60) S (0.

Next we will estimate the integral /5, taking cp := Bll/zW * (j(“SQL,/L) (xp), where Xg
is the center of Q. We follow the same scheme as in the proof of Lemma 3.7. To show
that I, < £(Q)" "2, it suffices to prove

1912 W o (Tsge () = 8 W + (Fsgem)(Ro)| < 1.
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In turn, to prove this it is enough to show that

@.1) 1012 W 5 (Ts0e tE) = ;2 W 5 (T50em) (D] S 1

for X,y € R"*! in the following two cases:
e Case l: X,y € Q of the form x = (x,?), y = (y,1).
e Case?2: X,y € Q of the form x = (x,t), y = (x,u).

Proof of (4.1) in Case 1. Let ¢ = )?SQC. We split

10} W * () (x, 1) — ;2 W % () (v, 1))
‘/W * (o) (x,8) =W * (pu)(x, t) /W* (o) (y,8)—W * (pu) (v, t)

|s —1]3/2 |s —1]3/2
/ W * (pu)(x,5) — W * () (x, f)l
ls—t|<4£(0)? ls —1[3/2
(W x () (y,s) — W * (¢u)(y, t)I
+/|s 1|<4£(0)? |s — 132
+/ Wk (pu)(x,8) =W pu)(x, 1) =W (pp)(y,s) + W (pu)(y, t)l
ls—t]>4£(0)2 s —2[3/2

=:A4;+ A, + B.
First we will estimate the term A;. For s,¢ such that |s — ¢| < 4€(Q)2, we write

W s (pu)(x,5) = Wk (pu)(x. 1) < |s — 1] [3: W * (pp) [ o0,30-
Observe now that for each z = (z,v) € 30,
_ 1 _ 1
0.W * (¢ (3)] < /SQC o 0 5 gy

by splitting the last domain of integration into parabolic annuli and using the growth con-
dition of order n 4 1 of w. Thus,

s —1]

W x (p)(x.8) = W (pp) (x.1)] < 70

Plugging this into the integral that defines A4, we obtain

|s —¢] < W)= 2)1/2
A ——d
e /|s—t54e(Q)2 Q) |s —1]3/2 § 3 Q)

By exactly the same arguments, just writing y in place of x above, we deduce also that

=1

Ay S 1.

~



Removable singularities for Lipschitz caloric functions in time varying domains 573

Concerning the term B, we write

B 5/ W () (x, 8) = W (i) (x, ) = W (@10) (3. 9) + W (@) (0. 0]
|s—t|>4£(Q)2 |s — t|3/2
- / W x (@) (x.5) = W * (@) (3 5)|
|s—t|>4£(Q)?

ls —¢]3/2

W () (x.1) = W s (o) (. 1)|
ds.
" /s—z|>4e(Q)2 |s —2]3/2 ’

By Lemma 3.3, it follows that ||V, W * ()]l < 1, and thus
[ViW s (@)oo < IVxW * plloo + [V W * (1) [0 < 1.
Therefore,

(W s () (x,5) = Wk () (v, )| < [[Va W (dp) [loo [x — y| S £(Q).

The same estimate holds replacing (x, s) and (y, s) by (x,¢) and (y, t). Hence,

) «0)
B /|s_t>ag>z s—2 U o <

So (4.1) holds in this case.

Proof of (4.1) in Case 2. As in Case 1, we write

1012 W 5 (o) (x, 1) — 8; W * ($p) (x, 10|
‘ / Wox @) s) =W * @u)xt) | / W x (u)(x.5) = W x (p)(x.w)

- |s —¢]3/2 s —ul3/2
</ |W*(¢M)(x,S)—W*(¢M)(XJ)Id
— S
|s—]<4£(Q)? s —1[3/2
+/ W (pu)(x,s) — W (pu)(x, u)| s
ls—t]<4£(0)> s —ul3/2
i ‘/ W o (pp)(x,s) — W (pp)(x, 1) 4
N
ls—t|>4£(0)2 |s —t]3/2
_/ Wox (@u)(x.s) = W x (@) (x.u)
ls—t|>4£(0)? |s —ul3/2

=: A] + 4, + B

The terms A} and A}, can be estimated exactly in the same way as the terms A; and A5 in
Case 1, so that
AL+ A4, S 1.
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Concerning B’, we have

B < / W o () (x,s) — W s () (x, 1)
— Jis—11>40(0)?

<
|s—t|>4£(Q)2

+/| LW @) — W )| ds

s—t>40(0)2 |s —ul3/?

|s —t]3/2
Wk (@u)(x,5) = W sk (pp)(x, u) ‘ ds
|s —ul3/2

1 1
ST T e | |V G0 = W 0| ds

Taking into account that, for |s — ¢| > 4£(Q)?,

) 1 1
|s —t3/2 |s —ul3/2

i —ul _ £(Q)

s—t|3/2 "~ |s —t]5/2

E
|
and that, by Lemma 4.2, W * (¢u)(x, -) is Lip 1/2 in the variable ¢, we deduce that

2
B/s/ &b—ﬂl/zds—i—/ ;n—ml/zdsgl.
ls—t|>4£(0)2 s —1>/2 ls—t|>4£(0)2 |s —ul3/?

5. Capacities and removable singularities

Given a bounded set E C R"t! we define

(6.1 ve(E) = sup (v, 1)],

where the supremum is taken over all distributions v supported on E such that
(5.2) IVaW % vl poonsy <1 and 8} >W % v, < 1.

We call yg(FE) the Lipschitz caloric capacity of E. On the other hand, we define the
Lipschitz caloric capacity + of E, denoted by yg,.+(E), in the same way as in (5.1),
but with the supremum restricted to all positive measures v supported on E satisfying
also (5.2). Obviously,

ve.+(E) < yo(E).

Given A > 0, we consider the parabolic dilation
Sa(x, 1) = (Ax, A%1).
It is immediate to check that

ve(BA(E)) = A" ye(E),  ye,+(8i(E)) = A" ! yeo 1 (E).
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Lemma 5.1. For every Borel set E C R+
vo.+(E) < yve(E) S XL (E).

and
dimg p(E)>n+1 = ye(EF)>0.

In the lemma, dim g, ,, stands for the parabolic Hausdorff dimension.

Proof. The inequality yg, 4 (E) < ye(E) is trivial, and the arguments for the other state-

ments are standard. Indeed, to prove yg(E) < ](’g’o“LI} (E) first notice that we can assume E

to be compact. Let v be a distribution supported on E such that
(5.3) IVaW s v poe@nity <1 and  [[8°W s vup <1,
and let {A; ;<7 be a collection of sets in R”*! which cover E and such that

> " diam, (4;)" ! < 29655 (E).

iel
Foreachi € I,let B; be an open parabolic ball centered in A; with r(B;) = diam, (4;), so
that E C | J;¢; Bi. By the compactness of E we can assume / to be finite. By means of a

parabolic version of the Harvey—Polking lemma (Lemma 3.1 in [4]), we can construct C*°
functions ¢;, i € I, satisfying:

e suppg; C 2B, foreachi € I,
* IVagilloo £ 1/r(Bi). IVigilloo + 19:¢illoc < 1/7(B;i)?,
* Dier @i =1lin{U;c Bi,

Hence, by Lemma 3.2,

(001 = | Yo 30 r (B =3 diamy (A1) < HLE(E).
iel iel iel
Since this holds for any distribution v supported on E satisfying (5.3), we deduce that
vo(E) < XL (E).

To prove the second assertion in the lemma, let £ C R"*! be a Borel set satisfying
dimg,,(E) = s > n + 1. We may assume E to be bounded. We may apply a parabolic
version of the well-known Frostman lemma, which can be proved by arguments analogous
to classical ones replacing the usual dyadic lattice in R"*! by the parabolic lattice D,
defined as follows. For any k € Z we consider the family of parabolic cubes D, x of the
form

{(e,t) e R i;27% <y < (i + 1D27F and in1272% <t < (ing1 + 1)27%F),

where 1 < j <mandiy,...,i,,Ii,+] are arbitrary integers. Then we let

Dy = Dpi-
keZ
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Arguing as in the proof of the Frostman lemma in Theorem 8.8 of [14] or The-
orem 1.23 of [23], from the fact that dim g ,(E) = s > n + 1 it follows that there exists
some non-zero positive measure p supported on E satisfying (B, (x, r)) < r® for all
x € R"*! and all r > 0. Then, by Lemma 2.1 we deduce that, for all X € R"*1,

1
Vi s )l 5 [ e () S diam(E) )
X—=DYip

Now, from Lemma 4.1 it follows that

1/2
102 2W s ullw.p < 0.

Therefore,

w(E)

72 > 0. |
max (||VxW * || poomntry, |0, "W % /1,”*,1,)

ve(E) >

We say that a compact set E C R"*! is Lipschitz removable for the heat equation (or
Lipschitz caloric removable) if for any open set 2 C R**!, any function f:R"*! — R
such that

(5.4) IV f Lo < oo and (3} fllse,p < 00

satisfying the heat equation in €2 \ E, also satisfies the heat equation in the whole of €.

Remark 5.2. Functions satisfying (5.4) are called regular (1, 1/2)-Lipschitz in the liter-
ature (see [19], for example). So perhaps it would be more precise to talk about regular
(1, 1/2)-Lipschitz removability or about regular (1, 1/2)-Lipschitz caloric capacity. How-
ever, we have preferred the simpler terminology of Lipschitz removability and Lipschitz
caloric capacity for shortness.

Theorem 5.3. A compact set E C R*™1 is Lipschitz caloric removable if and only if
ye(E) = 0.

Proof. 1t is clear that if E is Lipschitz caloric removable, then yg(E) = 0. Conversely,
suppose that E C R”*1 is not Lipschitz caloric removable. So there exists some open set
Q c R"*! and some function f:R”*! — R satisfying

1/2
Ve fllzoo@) <00, 1187 f lg.p < 00,

and O(f) =01in Q \ E but ©(f) # 0 in Q (in the distributional sense). So there exists
some (open) parabolic cube Q C 2 such that 4Q C 2 and ©(f) # 0in Q. Let y be a
non-negative C* function which equals 1 in 2Q and vanishes in 3Q¢, and let f = yf.

It is immediate to check that f is Lipschitz in R**! and 8}/ 2 f € BMO,,. Consider the

distribution v = O( f ). Since v does not vanish identically in Q, there exists some C*°
function ¢ supported on Q such that (v, ) > 0. Now take g = W * (¢v). By Theorem 3.1,

IViglloo <00 and [|3}/%g]lx,, < o0,
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and thus, since supp(¢v) C Q N E,
ye(E) = yo(Q N E)

{pv,1) _ (v, @)
max (| Veg|loo, 1022 19;"?

v

%

gllep)  max ([Veglloo [9%¢]x0)

From the preceding lemmas, it is clear that, for any compact set E C R"+1,
o ifdimy ,(E) > n + 1, then E is not Lipschitz caloric removable,

o if J€£+1(E) = 0 (and so, in particular, if dimpg,,(E) < n + 1), then E is Lipschitz
caloric removable.

Thus the critical parabolic Hausdorff dimension for Lipschitz caloric removability (and
for yg)isn + 1.
Next we consider the operator

Tv =V, W xv,

defined over distributions v in R?*!. When y is a finite measure, one can easily check
that Ty (X) is defined for m-a.e. X € R**1 by the integral

TR = [ VW = 5) du().
For ¢ > 0, we also consider the truncated operator
T = [ VW= ) du(h).
|x—y|>¢

1
loc

T;Lf =T(f ), T;L,sf =Te(f ).

whenever the integral makes sense, and for a function f € L; (u), we write

We also denote

Tiep(x) = sup [Tep ()], Tepf(x) = sup [ Te(f W)l

We say that T, is bounded in L2 () if the operators T},  are bounded in L?(w) uniformly
one > 0.

Remark that T is a singular integral operator with Calderén—Zygmund kernel in the
parabolic space. More precisely:

Lemma 5.4. The kernel K = VW of T satisfies the following:

- 1 -
(@) |[K(x)| = |x'|T+1 forall x # 0.
p

1
HAE and 9 K(x)| < |x_|T+3 Sforall x # 0.
P P
(c) Forall x,x" € R" such that | —X|p, < |%]p/2, X #0,

(b) [VxK(X)| <

_ 3 X — |,
K(x) — K(F)| < =—2.
|K(X) — K(x)] FRE



J. Mateu, L. Prat and X. Tolsa 578

Proof. The estimate in (a) already appears in Lemma 2.1. The estimates in (b) follow
by calculations analogous to the ones in that lemma. Finally, (c) is an easy consequence
of (b). Indeed, given X, X’ € R"*1 such that |x — %'|, < |X|/2, write

x=(x01, X=.1t), 2=1.
Then
|K(¥) — K(X)| < |K(X) — K®)| + [K(&®) — K(&')]|
<lx=x'| sup |ViK((y.0)|+ |t —¢'| sup |9, K((X.s))]

ye[x,x'] s€lt,t’]
|x —x'| |t —17| |x — &'
S T mEE S S m
|x|p |x|p |x|p

Recall that given E C R"*!, we denote by X (E) the family of (positive) Borel meas-
ures w supported on E which have upper parabolic growth of degree n + 1 with constant 1,
that is,

w(Bp(X,r)) < Pl forall x € R"L, r > 0.

Given E C R, we define

5.5 7o+ (E) = sup u(E).

where the supremum is taken over all measures & € X (E) such that
(5.6) ITillpoorn+1y <1 and |7 ]| poomn+1y < 1.
Here T* is dual of T. That is,

TR = [ KG -5 du()
In the next theorem, among other things, we characterize Y@, 4 (E) in terms of the

measures in ¥ (E) such that 7}, is bounded in L? ().
Theorem 5.5. The following holds, for any set E C R"*1:

Vo,+(E) S vo,+(E) ~ sup {i(E) : p € T(E), ||Ti|| Lo n+ry < 1}.
Also,
Vo,+(E) ~sup {u(E) : € Z(E), ITullL2y—r2¢0 < 1}-

All the implicit constants in the above estimates are independent of E.
Proof. Denote

Sy = sup {W(E) : p € T(E), | T poomntry < 1},
Sy =sup {u(E) : € Z(E), ITull2qy—r2¢0 < 1}-

Notice first the trivial fact that ¥g +(E) < S;. The fact that S; = ye,+(E) is an
immediate consequence of the definition of yg 4+ and Lemma 3.2. The converse estimate

follows from the fact that if ||74||zec(gn+1) < 1 and w has upper parabolic growth of

degree n + 1 with constant 1, then ||8}/2W * U]l«,p <1, by Lemma 4.1.
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The arguments to show that yg, +(E) ~ S, are standard. Indeed, let u € X(E) be
such that Y, +(E) < 2u(E) and [|Ti| peomn+1y < 1, [ T*ft|| foown+1y < 1. By a Cotlar
type inequality analogous to the one in Lemma 5.4 of [15], say, one deduces that

(5.7 [Teptllzooquy <1 and [T pllpeoqey < 1,

uniformly on ¢ > 0.

To obtain the boundedness of the operator 7, in L?() we will use the T'h theorem
of Hytonen and Martikainen [11], Theorem 2.3, for non-doubling measures in geometric-
ally doubling spaces. Remark that the parabolic space is geometrically doubling (with the
distance dist,) and thus we can apply that theorem 7' theorem, with the choice b = 1.
Taking into account the conditions (5.7), to ensure that 7}, is bounded in L?(u), by The-
orem 2.3 in [11] it is enough to check that the weak boundedness property is satisfied for
balls with thin boundaries. That is, for some fixed 4 > 0,

(5.8) [{Tu.exs, xB) < Cu(2B),

for any parabolic ball B C R”*! with A-thin boundary, uniformly on & > 0. A parabolic
ball of radius r(B) is said to have A-thin boundary if

(5.9) w{x ¢ disty(x,0B) <tr(B)} < Atpu(2B) foralltr € (0,1),

See Lemma 9.43 in [23] regarding the abundance of such balls, if one chooses A appro-
priately (just depending on n).

To prove (5.8), let us consider a C*° function ¢ with compact support in 2B such that
¢ = 1 on B and write

(Toexs. 28)] < /B el dis + /B e — x8)] dp.

Since || Tit|| Loomn+1y < 1, by Lemma 4.1 and Theorem 3.1, || T'(¢u) || oo (mn+1y < 1, which
in turn implies that || 7% (¢u)| oo rn+1) < 1 uniformly on & > 0. So we deduce that first
integral on the right side is bounded by Cu(B). To get a bound of the second integral we
will use that B has a thin boundary and the property (a) in Lemma 5.4. The estimates are
very standard, but we write the details for the convenience of the reader:

d
| sto = xmldp = /B\B / - “(y,,)ﬂ dpa(x)
du(y)

=X / . / Tt ).
150/ (x¢Budisty (x:0B)~r (B)/27} /B lx—ylp

Given j and x ¢ B such that dist,(x, dB) ~ r(B)/2/, since u € X(E) one has

dp(y) dpu(y)
d —d
[0 < Y [ e )

k=—1 [x— J’|p~"(B)/2k

< i 1(B(x,27%r(B))

<Jj+2.
(r(B)Z*k)"Jrl )+

k=—1
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Therefore, by (5.9),

[ Thsto = amldu < Y0 +2) ks disty(x,08) = 27/ r(B))
j=1

N Y]
Jj=0

n(2B) < u(2B).

Consequently, the weak boundedness property (5.8) holds and so 7}, is bounded in L2 (1),
with | Ty ll2)—12(w) < 1. This gives that

S2 X Ve,+(E).

To prove the converse estimate, let i € X (E) be such that || Ty, |2y —»r2(0) < 1 and
S» <2u(E). From the L?(p) boundedness of 7}, one deduces that 7" and 7* are bounded
from the space of finite signed measures M (R”*1) to L1:°°(y1). That is, there exists some
constant C > 0 such that for any measure v € M(R"*1), any & > 0, and any A > 0,

v
p({x e R"™ | Tu(x)| > 1)) < C ”)t_”’
and the same replacing 7, by T.,*. The proof of this fact is analogous to the one of The-
orem 2.16 in [23]". Then, by a well-known dualization of these estimates (essentially due
to Davie and @ksendal) and an application of Cotlar’s inequality, one deduces that there
exists some function i: E — [0, 1] such that

WE)=C /hduﬁ ITh Wllzee@nery < 1. N7 (h )l peo@a+ry < 1.

See Theorem 4.6 and Lemma 4.7 from [23] for the analogous arguments in the case of
analytic capacity, and also Lemma 4.2 from [15] for the precise vectorial version of the
dualization of the weak (1, 1) estimates required in our situation, for example. So we have

o+ (E) = / hdp ~ p(E) ~ S, .

Example 5.6. From the preceding theorem we deduce that any subset of positive meas-
ure J{’l’,’“ of a regular Lip(1, 1/2) graph is non-removable. In particular, any subset of
positive measure J(’IZ‘“ of a non-horizontal hyperplane (i.e., not parallel to R” x {0}) is
non-removable.

Remark that any horizontal plane has parabolic Hausdorff dimension n, and thus any
subset of a horizontal plane is removable.

!For the application of the arguments in [23], notice that the Besicovitch covering theorem with respect to
parabolic balls is valid. Alternatively, see Theorem 5.1 from [18].
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6. The existence of removable sets with positive measure J(’I;’“

We need the following result, which is of independent interest.

Theorem 6.1. Let E C R"*! be a compact set such that J(’;H(E) < o0. Let v be a
distribution supported on E such that

IVeW 5 v]oo <1 and |9} W % v]sp < 1.

Then v is a signed measure which is absolutely continuous with respect to J€;+1| E
and there exists a Borel function f: E — R such thatv = f Jf;”rl |E and that satisfies
||f||Loo(3e1;'+1|E) S L

This theorem is an immediate consequence of Lemma 3.2 and the following result.

Lemma 6.2. Let E C R""! be a compact set such that Jf;’“ (E) < o0. Let v be a dis-
tribution supported on E which has upper parabolic 1 growth of degree n + 1. Then v is
a signed measure which is absolutely continuous with respect to J{’I’}H |E and there exists
a Borel function f: E — R such thatv = f J€I§’+1|E satisfying ||f||LOQ(J€;l+1|E) <1

Proof. First we will show that v is a signed measure. By the Riesz representation theorem,
it is enough to show that, for any C*° function v with compact support,

(6.1) [ )| = CE) [V lloo-

where C(E) is some constant depending on E.
To prove (6.1), we fix ¢ > 0 and we consider a family of open parabolic cubes Q;,
i € I, such that

c EC Uie]s Qi,
e {(Q;) <eforalli € I, and
* Dier, LO)"T < CHTUE) + e
Since E is compact, we can assume that /. is finite. By standard arguments, we can
find a family of non-negative functions ¢;, i € I, such that

 each ¢; is supported on 2Q; and cg; is admissible for 2Q;, for some absolute constant
c >0,
* D ier, @i = lonl{J;c; Qi,andin particular on E.

Indeed, to construct the family of functions ¢; we can cover each cube Q; by a
bounded number (depending on n) dyadic parabolic cubes Ril, ..., R with side length
¢(R]) < £(Q;)/8 and then apply the usual Harvey—Polking lemma ([4], Lemma 3.1) to
the family of cubes {R; ;}.

We write
) <) 1@yl
iel,
For each i € I, consider the function
iy

T Wloe + €00 V¥ lloo + €02 [8: ¥ Tloo + €012 [AV oo
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We claim that ¢ 5; is admissible for 2Q;, for some absolute constant ¢ > 0. To check this,
just note that ¢; ¥ is supported on 2Q; and satisfies

1
Vi (@i ¥)lloo < [IVx@illoo ¥ 1leo + @i lloo V¥ lloo 00y + Vet [l oo-
Hence,
1
[Vanilloo S 775+
£(01)
Analogously,
[19¢ (@i Y)lloo = 119¢¢illoo ¥ lloo + @i lloo 10 ¥ lloo < Z(Q W02 [V oo + 10: ¥ lloos
and so 1
ditlilloo S o
l9milloe 5 5572
Also,
[A(@: Y)lloo = IIAfﬂilloo Voo +2 “Vx‘/)i“oo [Vx¥lloo + @i lloo [AY [loo
Vy A ,
S 7057 Wl + 35 1V e + 189 s
and thus .
An: < .
180l 5 557

So the claim above holds and, consequently, by the assumptions in the lemma,
(v, mi)| S €Qi)" "
From the preceding estimate, we deduce that

v ) < Y v i)

iel,

DU T (I lloo + L@DIVsY lloo + £ 10: ¥ oo + 1AV [l00))-

ielg

Since £(Q;) < ¢ for each i, we infer that

WIS Y U (I lloo + & Va¥ lloo + &7 13:¥ lloo + &% AV l|oo)

iel,
SITHE) ) (Voo + € 1VxV lloo + €2 10:V [loo + £ 1AV [loo)-

Letting ¢ — 0, we get

(v )| < Hy THE) 1Y oo,

which gives (6.1) and proves that v is a finite signed measure, as wished.
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It remains to show that there exists some Borel function f: E — R such that v =
fJ€1’1+1 |E, with ||f||Loo(3€;+1‘E) < 1. To this end, let g be the density of v with respect

to its variation |v|, so that v = g |v| with g(¥) = %1 for |v]-a.e. ¥ € R"*!. We will show
that

[V|(Bp(x.7))

(6.2) lim sup T

r—0

<1 for|v|-ae. X € R**1,

This implies that |v| = f 5‘(’;’*1 | for some non-negative function f < 1. This fact is
well known if one replaces parabolic balls by Euclidean balls and the parabolic Hausdorff
measure by the usual Hausdorff measure (see Theorem 6.9 from [14]). The arguments
extend easily to the parabolic case thanks to the validity of the Besicovitch covering the-
orem with respect to parabolic balls.

So to complete the proof of the lemma it suffices to show (6.2) (since then we will have
v =g fH)*! g with [g f| < 1). Notice that, by the Lebesgue differentiation theorem,

1

lim ———— lg(7) — g(X)|d|v|(F) =0 for |v]-a.e. X € R" !
r=0 |[v[(Bp(x,7)) JB,z.r)

(because of the validity of the Besicovitch covering theorem with respect to the parabolic
balls again). Let X € E be a Lebesgue point for |v| with |g(X)| = 1, let ¢ > 0 to be chosen
below, and let ro > 0 be small enough such that, for 0 < r < ry,

1

_r e
[v|(Bp(%.7)) Bp(i,r)lg(y) g@|d () <e

Suppose first that
(6.3) [v[(Bp(%,2r)) < 23 [|(Bp(X, 1)),
and let ¢z be some non-negative C*° function supported on B, (X, 2r) which equals 1

on B, (X, r) such that c ¢z, is admissible for the smallest parabolic cube Q containing
Bp(x,2r), so that

’/‘pi,rdv‘ < rrtl

Now observe that
| [osrav—e [ osrdil] =| [ 0,56 - e@) i)
p / lg(¥) —g(X)|d|v[(y) < e|v[(Bp(X,2r))
By(x,2r
< g2tt3 W(Bp(X,1)) < 8/(,0;” dv.
Thus, if € is chosen small enough, we deduce that

[osravi=1e@1 [ osravi=2| [ oz av] <.
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Therefore, using again that ¢z, = 1 on B, (X, r), we get
(6.4) v(Bp(X.7)) < r" L.

To get rid of the doubling assumption (6.3), notice that for |v|-a.e. X € R"*! there
exists a sequence of balls B, (X, ry), with ry — 0, satisfying (6.3) (we say that the balls
By (x,ry) are |v|-doubling). Further, we may assume that ry = 2" for some hy € N. The
proof of this fact is analogous to the one of Lemma 2.8 in [23]. So for such a point X, by
the arguments above, we know that there exists some k¢ > 0 such that

W(Bp(X, 7)) S rl';"’1 for k > ko,

assuming also that X is a |v|-Lebesgue point for the density g. Given an arbitrary r €
(0, 7x,), let j be the smallest integer r < 27 and let 2% be the smallest j = k such that
the ball B, (X, Zk) is |v|-doubling (i.e., (6.3) holds for this ball). Observe that 2k < Tko-
Then, taking into account that the balls B, (X, Zh) are non-doubling for k < h < j and
applying (6.4) for r = 2%, we obtain

[V|(By(%,7)) < [v[(Bp(x,27)) < 20TIU=0) 1y (B, (%, 2F))
< 2(n+3)(1—k) 2k(ﬂ+1) S 2](""1‘1) ~ rn+1.

Hence, (6.2) holds and we are done. ]

Next we will construct a self-similar Cantor set E C R3 with positive and finite meas-
ure J(’I;” and we will show that it is removable. For simplicity we work in R3, although this
construction extends easily to R”*!, with n > 1 arbitrary. Our example is inspired by the
typical planar 1/4 Cantor set in the setting of analytic capacity (see [3] or p. 35 in [23],
for example).

We construct the Cantor set E as follows. We let Eg = Q% = [0, 1] (i.e., Qg is
the unit cube). Next we replace Q° by 12 disjoint closed parabolic cubes Qi1 with side
length 1271/3 located in the following positions: they are all contained in Q° and eight of
them contain each one a vertex of Q. The centers of the remaining other four cubes Q 11
are in the plane {(x1, x2,¢) : t = 1/2} and each one of these cubes has one of its vertical
edges contained in one of the vertical edges of Q0. In this way, the vertical projection of
the set £ = Ul] il Qil consists of 4 squares, and the two horizontal projections parallel
to the horizontal axes consist of 6 Euclidean rectangles each one.

We proceed inductively. In each generation k, we replace each parabolic cube Q f ~Lof
the previous generation by 12 parabolic cubes Qf‘ with side length 127%/3 which are con-
tained in Q ;‘ ~1 and located in the same relative position to Q j‘ ~lasthecubes 01,...,01,
with respect to Q.

Notice that in each generation k there are 12¥ closed parabolic cubes with side length
127%/3_ We denote by Ej the union of all these parabolic cubes from the k-th generation.
By construction, Ey C Ej_;. We let

(6.5) E= () Ek.
k=0
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It is easy to check that distp(Qf.‘, Qﬁ) > 127%/3 fori # h, and if Qf.‘ and Q’}f are contained
in the same parabolic cube Qj.‘ ~1 then dist, (Ql’.‘, (0] ft ) < 127K/3, Taking into account that,

foreach k > 0,
12k

D Q) =128 (127FB) =1,

i=0

by standard arguments it follows that
3
0 < H#,(E) <oo.

Further, J€;| £ coincides, modulo a constant factor, with the probability measure p sup-
ported on E which gives the same measure to all the cubes Qf‘ of the same generation k

(e, p(Qf) = 1275).
Theorem 6.3. The Cantor set E defined in (6.5) is Lipschitz caloric removable.

Proof. We will suppose that E is not removable and we will reach a contradiction. By
Theorem 5.3, there exists a distribution v supported on E such that |{v, 1)| > 0 and

VW s vl poo@nety < 1, [10)2W v, < 1.
By Theorem 6.1, v is a signed measure of the form

v=fu, with | fllreo <1,

where p is the probability measure supported on E such that u(Q {‘) = 12"% forall i, k.
It is easy to check that u (and thus |v|) has upper parabolic growth of degree 3. Then,
arguing as in Lemma 5.4 from [15], it follows that there exists some constant K such that

(6.6) Tow(x) < K forall ¥ € R*1.

For X € E, we denote by Q)’% the cube Q{‘ that contains x. Then we consider the
auxiliary operator

Tev(®) = sup | T (g, oe V) (F)]-
k>0 x

By the separation condition between the cubes Qf-‘ , the upper parabolic growth of |v|, and
the condition (6.6), it follows easily that

(6.7) T.v(x) <K' forallX € E,

for some fixed constant K.

We will contradict the last estimate. To this end, consider a Lebesgue point x¢ € E
(with respect to p and to parabolic cubes) of the density f = dv/du such that f(Xg) > 0.
The existence of this point is guarantied by the fact that v(E) > 0. Given & > 0 small
enough to be chosen below, consider a parabolic cube Ql’-‘ containing X such that

1
1(0%)

[, 110~ fGoldn = o
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Given m > 1, to be fixed below too, it is easy to check that if ¢ is chosen small enough
(depending on m and on f(X¢)), then the above condition ensures that every cube th

contained in Q{‘ such that k < h < k 4 m satisfies

1
(6.8) 5/ (%o 1(0") < v(Q") < 2f (o) u(OM).

Notice also that, writing v = v+ — v, since f(Xg) > 0,
(@) = [ rGane) < [ 176) - 1ol d() < e b
Qi Qi

Let Z = (z1, z2, u) be one of the two upper leftmost corners of Qf‘ (i.e., with z;

minimal and ¥ maximal in Qf.‘). Since |T()(Q1_c emV(Z2)] <2 T*U(E), we have

\Q
-1 1 1 o
T (2) = 5 |T(XQ§\Q/E€+mV)(Z)| z 5 |T(XQ/Z€\Q§+’"V )(Z)| - 5 |T(XQ§\Q§+'"V )(Z)|

Using the fact that dist, (z, Q’Z‘ \ Qé“”) > E(Q’;er), we get

v=(Q%) 1(0F) (%)

<eg =& < 12Me.
£(QEtm)3

(O™ 12mi(Qf)? T
To estimate |7 (y 0k\ gk+m v1)(Z)| from below, recall that the first component of the
kernel K = V, W equals

|T(XQ1§\Q1§<+MV_)(Z)| =

_ —X1  _|y2
Ki(8) = o e SR P

for some absolute constant ¢y > 0. Then, by the choice of z, it follows that
(6.9) Ki(Z—7)>0 forallj € 0F\ Qktm.

We write

TgmoenHO = [ KiE=7)dv ()

k\Q{H—

z z

k+m—1

= Ki(zZ=y)dvT ().
payd /Q?\Q’;“

Taking into account (6.9) and the fact that, fork <h <k +m —1, Q;’ \ Q;"H contains
a cube QJ}.’Jrl such that for all y = (y1, y2, 5),

0<yi—zn~|J—Z~ Q. 0<u—s~LQ]hH?
using also (6.8), we deduce

AR(okany

K(Q]}-H_I)S

u(QIt

z f()_CO)K(Q}.’—“P
j

Ly g F1E= D)2 = /(o).
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Thus,
IT(X gt itV G 2 (m = 1) f(Xo).

Together with the previous estimate for |7 (x 0k\ gk+m v7)(2)|, this tells us that

Tov(Z) 2 (m—1) f(xo) — C 12™ e,

for some fixed C > 0. It is clear that if we choose m big enough and then ¢ small enough,
depending on m, this lower bound contradicts (6.7), as wished. ]
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