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Numerical evidence towards a positive answer
to Morrey’s problem

André Guerra and Rita Teixeira da Costa

Abstract. We report on numerical experiments suggesting that rank-one convexity
implies quasiconvexity in the planar case. We give a simple heuristic explanation of
our findings.

1. Introduction

An important problem in the vectorial calculus of variations is to characterize the integ-
rands f WRm�n ! R for which the functional

F Œu� �

ˆ
�

f .Du.x// dx; where uW� � Rn ! Rm and m; n � 2;

is lower semicontinuous with respect to the weak topology in an appropriate Sobolev
space; this is the natural condition for existence of minimizers through the direct method.

In his seminal work [28], Morrey recognized that the weak lower semicontinuity of F

is essentially equivalent to a weak notion of convexity, called quasiconvexity, on f . Des-
pite many efforts in the last five decades, an explicit description of quasiconvex functions
remains elusive: for instance, there are fourth-order polynomials whose quasiconvexity
has been neither proved nor disproved. Such a description would be relevant not only in
the calculus of variations but also in other areas of analysis [17, 22, 27, 39].

Quasiconvexity has been mostly studied in relation with polyconvexity [2] and rank-
one convexity; these are respectively stronger and weaker notions that are much easier
to tackle [6]. We will focus on the relation between quasiconvexity and rank-one con-
vexity. It is useful to consider certain classes of measures that can be seen as being dual
to these notions: gradient Young measures and laminates are, respectively, the probability
measures that satisfy Jensen’s inequality with respect to quasiconvex and rank-one convex
functions; see [31] for more details.

The following remains one of the main open problems in the calculus of variations.

Question 1.1. Are rank-one convex functions quasiconvex? Equivalently, let � be a com-
pactly supported gradient Young measure in Rm�n; is � a laminate?
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Quesion 1.1 is usually referred to as Morrey’s problem. It seems that Morrey himself
was not sure about what the answer to Question 1.1 should be [28, 29]. A fundamental
example of Šverák [37] shows that the answer is negative if m � 3 and n � 2, and more
recently, Grabovsky [13] obtained a different example when m D 8 and n D 2. Šverák’s
example is a polynomial of degree four; Grabovsky’s example, although analytically more
complicated, has the advantage of being 2-homogeneous and invariant under the right-
action of SO.2/. Question 1.1 remains open in the case of low-dimensional targets, i.e.,
when m D 2 and n � 2. There is some partial evidence suggesting that the answer might
be positive in this case, see e.g. the landmark results of [11, 16, 24, 30]. However, and
despite remarkable progress, it is by no means clear that the answer should be positive
even in low dimensions.

Since the analytic study of quasiconvexity remains incredibly challenging, it is nat-
ural to look for numerical evidence instead. In earlier attempts to do so in [7, 8, 14], the
strategy is to fix a rank-one convex function f and look for deformations uWRn ! Rm

such that f does not satisfy Jensen’s inequality with respect to Du. A major shortfall in
this approach is that explicit rank-one convex non-polyconvex functions are rare and the
available examples are relatively simple and have many symmetries.

In the present note, we take a far more general approach: our candidate rank-one func-
tions are the rank-one envelopes of random functions. This approach enables us to cover
a significantly larger portion of the space of rank-one convex functions. To be concrete, in
line with the ideas from [37], we fix a Lipschitz deformation uWTn! Rm whose gradient
has finite image. We check if Jensen’s inequality with respect to Du is falsified by the
rank-one convex envelopes of functions of the form

f .A/ D

´
g.A/; A 2 ŒDu�;
2; otherwise,

where ŒDu� denotes the essential range of Du 2 L1.�;Rm�n/ and gW ŒDu�! Œ�1; 1� is
any function. Note that for a deformation such that ŒDu� is finite the task of looking for
counterexamples is a finite-dimensional problem. As a small technical remark we note that
it is important that f only takes finite, although large, values; it is easy to build examples
of rank-one convex non-quasiconvex functions if the valueC1 is allowed [3].

We consider random deformations given by the sum of N plane waves for N 2
¹3; 4; 5º, see Section 3 for further details. The cases N D 1; 2 are not interesting and
for N � 6 we already have that #ŒDu� � 64, so the space of functions gW ŒDu�! Œ�1; 1�

becomes very high-dimensional. Considering such deformations is not very restrictive:
in fact, arbitrary deformations can be approximated by sums of plane waves. Moreover,
James’s interpretation of Šverák’s example shows that, when m D 3, there is already a
counterexample for N D 3.

Our findings can be summarised as follows. When m � 3, our approach finds many
potential counterexamples, similar to the ones in [37]. WhenmD 2, and despite sampling
thousands of different deformations, none were found. This suggests that, when m D 2,
rank-one convexity and quasiconvexity may be equivalent. We also observe that on aver-
age it is easier to check that a given deformation does not yield a counterexample to
Question 1.1 as N increases.
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We provide a basic heuristic explanation of our findings: for plane wave expansions,
the rank-one geometry of the set ŒDu� is drastically different in the cases m D 3 and
m D 2 and, in the latter, the geometry becomes much richer as N increases. Our consid-
erations are inspired by the very interesting results of Sebestyén–Székelyhidi [36], where
the authors tap into this structure to prove that no counterexamples arise when m D 2 and
N D 3, see also [34].

We conclude this introduction by discussing the algorithm we use to look for counter-
examples to Question 1.1. By homogenization, the gradient of a Lipschitz deformation
uW Tn ! Rm generates a gradient Young measure, which has finite support if ŒDu� is
finite; thus our goal is to determine whether this measure is a laminate. Hence, we are
naturally led to consider:

Question 1.2 ([23]). Is there an effective algorithm to decide whether a given probability
measure supported on a finite subset of Rm�n is a laminate?

Deciding whether a given measure is a laminate is difficult, as in principle one has
to test Jensen’s inequality with all rank-one convex functions [33]. One possible way of
circumventing this issue is to consider just the extremal rank-one convex functions [15];
however, the general structure of these functions remains unclear. A different approach is
to use a discretized version of the Kohn–Strang algorithm [25] and in Section 2 we show
that this yields a partially satisfying answer to Question 1.2. We rely on the convergence of
approximations to the rank-one convex envelope, which were proved in [5, 9, 10, 32], see
also [40] for particular examples. We remark that the related problem of calculating the
rank-one convex hull of a set still remains poorly understood, see [1] and the references
therein.

2. Deciding whether a measure is a laminate

In this section we discuss Question 1.2: throughout, � is a fixed probability measure with
support on a finite set K � Rm�n. In this section we use a discretized version of the
Kohn–Strang algorithm to show the following.

Proposition 2.1. Let � be a probability measure supported in a finite set of points in
Rm�n. The problem of deciding whether � is a laminate is semidecidable, i.e., there is an
algorithm which terminates in finite time with a positive answer if � is a laminate.

To prove this, we will resort to Pedregal’s theorem [33]: � is a laminate if and only if

(2.1) f rc.�/ � h�; f i; � � h�; idi

for all continuous f WRm�n ! R, where f rc denotes the rank-one convex envelope of f .

Lemma 2.2. If � is not a laminate there is gWK ! Œ�1; 1� such that, for 0 < ı <

c.K; n;m/ small enough, the continuous function fı WRm�n ! Œ�1; 2�, defined by

(2.2) fı.A/ �

´
g.A0/C

2�g.A0/
ı
jA � A0j if jA � A0j � ı for some A0 2 K;

2 otherwise;

satisfies f rc
ı
.�/ > h�; f rc

ı
i.
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Although this is not needed, note that limı!0 fı D f0 � g1K C 2 � 1Rm�nnK point-
wise.

Proof. Since � is not a laminate, there is QgWRm�n ! R rank-one convex and such that
g.�/ > h�;gi; by scaling, we can assume that Qg.Œ�2; 2�mn/� Œ�1; 1�: Since Qg is rank-one
convex it is locally Lipschitz and, see [4],

Lip. Qg; Œ�1; 1�mn/ � min¹m; nº osc. Qg; Œ�2; 2�mn/ � 2min¹m; nº:

Let us take g D QgjK , ı � 1
2

min¹jX1 �X2j W X1; X2 2 Kº so that fı is well-defined and,
in addition, we require that ı < .2min¹m; nº/�1. Thus, for A 2 Bı.A0/ and A0 2 K,

Qg.A/ � Qg.A0/C 2min¹m; nºjA � A0j � Qg.A0/C
1

ı
jA � A0j � fı.A/:

This shows that fı � Qg; since g is rank-one convex, also f rc
ı
� Qg and so

f rc
ı .�/ � Qg.�/ > h�; gi D h�; f

rc
ı i:

The proof is finished.

Lemma 2.2 shows that in order to decide whether � is a laminate one has to explore
the finite-dimensional space of functions gWK ! Œ�1; 1�. In order to compute an approx-
imation of f rc

ı
we use a discrete version of the Kohn–Strang algorithm [25].

Algorithm 2.3. We fix ı > 0 small enough so that we do not need to worry about it; thus
we drop the subscript ı. By translation invariance we can assume that � D 0. Then:

1. Fix an odd integer L, consider the grid GL �
1
L

Zmn \ Œ�1; 1�mn, and choose a
finite set of directions D consisting of rank-one matrices which are in GL.

2. Set f rc;0
L;D
WD f and, for A 2 GL,

f
rc;iC1
L;D

.A/ D min
X2DWA˙X2GL

°f rc;i
L;D

.ACX/C f
rc;i
L;D

.A �X/

2
; f

rc;i
L;D

.A/
±
:

We terminate the algorithm if either the maximum difference between iterates sta-
bilizes or f rc;i

L;D
satisfies Jensen’s inequality with respect to �.

Let f rc;i be the i -th Kohn–Strang iterate, i.e., f rc;i is defined inductively by f rc;0D f

and

f rc;i .A/ D inf
°
�f rc;i�1.X/C .1 � �/f rc;i�1.Y / W

�X C .1 � �/Y D A;

rank.X � Y / D 1

±
;

where � runs over .0;1/. Clearly, forA 2 GL, f rc;i .A/� f
rc;i
L;D

.A/� f .A/; and so if f rc;i
L;D

satisfies Jensen’s inequality with respect to �, fı satisfies (2.1). Conversely, we have:

Proposition 2.3. Let f rc
L;D
� limi!1 f

rc;i
L;D

. Then f rc
L;D

converges uniformly to f rc
ı

as
L!1 and as the largest angle between any rank-one matrix and its best approximation
in D goes to zero.

For a proof see [32]. Note that we take 0 < ı < c.m;n;K/ and that fı is continuous, so
their results apply. It is clear that combining Lemma 2.2 with Proposition 2.3, we deduce
Proposition 2.1.
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3. Gradient Young measures versus laminates

In this section we adress Question 1.1. Recall that a function f WRm�n ! R is said to be
quasiconvex if, for all A 2 Rm�n,

(3.1) f .A/ �

ˆ
Tn

f .AC D'.x// dx for all ' 2 C1.Tn;Rm/:

Equivalently, f is quasiconvex if and only if f .�/ � h�; f i, where � is any compactly
supported gradient Young measure [20, 31].

We want to test the inequality (3.1) with deformations of the form

(3.2) '.x/ D

NX
iD1

ais.x � ni C ci /;

whereN 2N, ai 2Rm; ni 2Zn are vectors, ci 2R are phases and s is the 1-periodic saw-
tooth function, defined for t 2 Œ0; 1� by s.t/D t1Œ0;1=2�.t/C .1� t /1Œ1=2;1�.t/. The idea of
approximating an arbitrary deformation with a simplified deformation with the form (3.2)
is known in the applied harmonic analysis literature as a ridgelet expansion [35]. We
remark as a somewhat inconvenient fact that orthonormal ridgelet bases in L2, just like
Fourier series, are never unconditional bases in Lp for p ¤ 2, although we do not prove
this here.

The advantage of an expansion as in (3.2) is that, with h � s0 being the Haar wavelet,

D'.x/ D
NX
iD1

h.x � ni C ci / ai ˝ ni I

hence the gradient D' takes values in a finite set. In our context, considering plane-wave
expansions as in (3.2) is a classical idea, and we are motivated by James’ interpretation of
Šverák’s example [31], see also [27], §31, and [34, 36]. Moreover, ' generates a homo-
geneous gradient Young measure �, which takes the form

(3.3) � D
X

"2¹�1;1ºN

�" ıX" ;

where we define the weights �" and the matrices X" as

(3.4) �" � j¹x 2 T2
W h.x � ni C ci / D "i ; i D 1; : : : ; N ºj; X" �

NX
iD1

"iai ˝ ni :

Note that �" depends on ni but not on ai . Furthermore, the measure � has barycentre zero.
For the sake of conciseness, we introduce the following definition.

Definition 3.1. For N 2 N, we say that f WRm�n ! R is N -wave quasiconvex at zero if

f .0/ �
X

"2¹�1;1ºN

�"f .X"/

for all .ai ; ni ; ci / 2 Rm � Zn �R, where �" and X" are defined by (3.4). Moreover, f is
N -wave quasiconvex if, for any A 2 Rm�n, the function f .� �A/ is N -wave quasiconvex
at zero.
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It seems that variants of this notion were studied in [19] for N D 3; 4. By periodicity,
in Definition 3.1 we can assume that c1 D � � � D cI D 0 where I D min¹n;N º. We have:

Proposition 3.2. f is quasiconvex if and only if it is N -wave quasiconvex for all N .

Proof. We prove that if f is N -wave quasiconvex at zero it is quasiconvex at zero, as the
converse is clear. We rely on the following standard fact: for ' 2 C1.Tn;Rm/ there is
a sequence 'j of the form (3.2) which converges to ' strongly in W 1;1.Tn;Rm/. For
a quantitative version of this fact when m D 1 see e.g. [12], although there the authors
take several different functions si , for i D 1; : : : N , instead of a fixed sawtooth function;
regardless, any si can be approximated by scaled and translated copies of s. The general
case m > 1 follows by straightforward arguments and we omit it.

Let �j be the gradient Young measure generated by the deformation 'j ; by assumption,

f .0/ D f .�j / � h�j ; f i D

ˆ
Tn

f .D'j / dx:

Since 'j ! ' inW 1;1.Tn;Rm/, we see that f .0/�
´

Tn f .D'/dx: Thus f is quasicon-
vex at zero.

The following theorem gathers several results from the literature.

Theorem 3.3. N -wave quasiconvexity has the following properties :
(a) 1-wave quasiconvexity is equivalent to rank-one convexity ;
(b) 2-wave quasiconvexity is equivalent to rank-one convexity ;
(c) if m � 3 and n � 2, then 3-wave quasiconvexity is different from rank-one con-

vexity and is a nonlocal property ;
(d) if m D n D 2, then 3-wave quasiconvexity is implied by rank-one convexity.

Proof. (a) follows straightforwardly, (b) follows by Lemma 2.1 in [36], (c) follows from
the example in [37] together with an adaptation of the arguments in [26] and (d) is the
main result of [36].

4. Counting rank-one connections

The behaviour of gradients of maps changes dramatically from the higher dimensional to
the planar case [11, 18, 24]. One of the basic explanations for this difference is that the
relative size of the cone

ƒ � ¹A 2 Rm�2 W rankA � 1º

is much larger when m D 2 than when m � 3: for instance, it separates the matrix space
into two components in the former case.

The previous insight is also relevant towards the goal of understanding the behaviour
of the particular deformations of Section 3. In fact, the proof of Theorem 3.3 (d) in [36]
also explores the fact that ƒ is large: using arguments somewhat in the spirit of [38], the
abundance of rank-one connections is used to build complicated laminates supported in
the 3-cube ¹X"º"2¹�1;1º3 . In view of Proposition 3.2 it is natural to ponder what can be
said for a general N > 3.
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In this section our goal is to roughly quantify the number of rank-one connections
between points in the lamination hull of the N -cube. Our observations are merely heur-
istic, i.e., we do not provide any proofs, and they are the consequence of analysing thou-
sands of computer-generated random configurations.

For a given choice of matrices X" as in (3.4), let us write

KN � ¹X" W " 2 ¹�1; 1º
N
º � Rm�2; QN � Œ�1; 1�

N
� RN :

We can visualise KN as the vertices of the N -cube QN by considering the map X" 7! ".
Note, however, that for N > 2m the map " 7! X" cannot be an embedding.

Let us denote by K lc;i
N the usual i -th lamination convex hull of KN , see [31] for the

definition. Since the edges of the cube correspond to rank-one segments, it is clear that,
under the above identification, K lc;i

N contains the i -skeleton of QN : for instance, K lc;1
N

contains the edges of the cube, K lc;2
N contains the faces, and so on.

We say that X" and X"0 are neighbours if " and "0 are adjacent vertices in QN . Gen-
erically, each vertex X" is rank-one connected only to its N neighbours and thus K lc;1

N

is in fact the 1-skeleton of the N -cube, i.e., it consists of the vertices and the edges
EN � K

lc;1
N nKN ; note that each edge is an open segment parallel to a rank-one line.

We now want to compare K lc;2
N with the 2-skeleton of the N -cube. We call a rank-

one connection trivial if it exists in the 2-skeleton of the N -cube. A vertex is trivially
connected to the N edges that have that vertex as one of their endpoints. An edge, which
we write in the form ¹."1; : : : ; "i�1; t; "iC1; : : : ; "N / W t 2 Œ0; 1�º, is trivially connected to
the N � 1 edges that arise by flipping the sign of one of the "j , for j ¤ i .

Associated to a fixed deformation, we consider two vectors, one with length 2N and
the other with length N2N�1. In each of these vectors, the i -th entry represents the num-
ber of non-trivial edges to which the i -th vertex, respectively the i -th edge, is rank-one
connected. We calculate the mean deviation of each of these vectors. Finally, sampling
randomly thousands of deformations, we get approximate values for the average number
of connections, see Tables 1 and 2.

m D 2 m D 3

N D 3 0.95 (0.47) 0 (0)
N D 4 4.79 (1.57) 0 (0)
N D 5 15.59 (3.65) 0 (0)
N D 6 41.70 (8.31) 0 (0)

Table 1. Average number (and average mean deviation) of the number of
non-trivial edges to which a vertex is rank-one connected.

Remark 4.1. We would like to make a few points concerning Tables 1 and 2:
(a) The values obtained should be understood in a probabilistic sense: it is not true

that, when m D 3, there are never non-trivial connections. In fact, if we random-
ise vectors ai 2 .Z\ Œ�L;L�/3; ni 2 .Z\ Œ�L;L�/2 with L a small number, say
L D 5, then we find non-trivial rank-one connections in many of the correspond-
ing configurations.
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m D 2 m D 3

N D 3 2.90 (0.63) 0 (0)
N D 4 12.50 (2.39) 0 (0)
N D 5 36.78 (7.06) 0 (0)
N D 6 92.17 (18.28) 0 (0)

Table 2. Average number (and average mean deviation) of the number of
non-trivial edges to which an edge is rank-one connected.

(b) The low average mean deviations in the tables show that the connections are not
concentrated in a few vertices or edges; see also Figure 1.

(c) WhenmD 2, an increase in N also increases the number of connections dramat-
ically. Thus, although the setKN becomes exponentially more complicated as N
increases, the geometry of its rank-one lines also becomes much richer.

Remark 4.2. Rank-one lines are very fragile: even if sometimes rank-one connections
exist, they are easily destroyed by small perturbations [21]. It is therefore more appropri-
ate to consider the rank-one convex hull, which is often much larger than the lamination
convex hull, albeit it is also much more difficult to calculate.

What we find the most remarkable about Tables 1 and 2 is not the fact that there are
almost no rank-one connections whenmD 3 but rather that there are so many connections
when m D 2. Thus, in low-dimensions, simple lamination seems to be a viable option to
produce very complex gradients. We believe that Tables 1 and 2 can be taken as partial
evidence towards a positive answer to Question 1.1 when m D n D 2.

(a) Non-trivial vertex-edge connections. (b) Non-trivial edge-edge connections.

Figure 1. Depiction of a “typical” configuration when N D 3 and m D 2, with
an average of 1 vertex-edge connection per vertex and 3 edge-edge connections
per edge. Each line denotes the existence of at least one point in the edge which
is rank-one connected.
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5. Numerical search for counterexamples to Morrey’s problem

In this section we report on numerical experiments which bring together Sections 2 and 3.
Our goal was to find numerical evidence towards a resolution of Question 1.1.

We set n D 2 and run the following algorithm:

Algorithm 5.1. Fix L; N 2 N, with L odd and sufficiently large, and a threshold  2
Œ0; 1�. Set GL �

1
L

Z2m \ Œ�1; 1�2m and choose a finite set of directions D consisting of
rank-one matrices which are in GL. Then:

1. Randomly generate a set of directions, .ni /NiD1 in .Œ�L; L� \ Z/2. Check that ni
and nj are linearly independent for i ¤ j ; if not, repeat the previous instruction.

2. For each .ni /NiD1, randomly generate a set of phases, .ci /NiD1 2R. The set .ni ; ci /NiD1
determines the weights, .�"/", at each point in the support of the measure, see (3.4).

3. Randomly generate a set of vectors .ai /NiD1 in . 1
L

Z\ Œ�1; 1�/m. Check that ai ¤ 0
for all i and that the matrices X" where the measure is supported, defined in (3.4)
in terms of .ai ; ni /NiD1, are in GL; if not, repeat the previous instruction.

Repeat Step 1 a number Mn of times; for each of those, repeat Step 2 Mc times;
and for each .ni ; ci /NiD1, generate Ma different sets .ai /NiD1 by 3. We thus obtain M� �

Mn �Mc �Ma sets .ai ; ni ; ci /NiD1 2 Zm � Z2 � R, each of which defines a measure �
supported on GL, see (3.3). Then, for each such �, we execute the following:

4. Randomly generate vectors in g 2 Œ�1; 1�2
N

and, for each such vector, define a
function f as in (2.2).

5. Apply the Kohn–Strang algorithm, as described in Algorithm 2.3, to calculate the
approximation f rc

L;D
.0/ of f rc.0/.

6. Check whether f rc
L;D

.0/ � h�; gi >  . If so, pick another measure of those gen-
erated in Steps 1–3 and go back to Step 4. If not, and if this step has not been
performed more than Mg times, using the same measure �, go back to Step 4.

The measure � is suspicious if it seems that Jensen’s inequality fails, i.e., if at least
one g generated in Step 4 is such that f rc

L;D
.0/ � h�; gi > 0. Suspicious measures are

further examined:
7. For each suspicious pair .�; g/, make the changes .L;D/ 7! .L0;D 0/, where L0 D
2L� 1 and #D � #D 0, and rerun Step 5. Repeat the previous instruction as needed.

Remark 5.1. Note that the the parameter  ensures that, in Step 4, one keeps looking
for g’s until one finds a sufficiently suspicious measure; we typically took  D 0:1 and we
note that in Šverak’s example f rc.0/� h�; f i � 1=4. In fact, suppose that 0 < f rc

L;D
.0/�

h�; gi � 1; when refining the approximation of f rc.0/ as in Step 7 it is likely that one
finds fL0;D 0.0/ � h�; gi < 0 and indeed this has often happened in our calculations.

We implemented Steps 1 and 2 of Algorithm 5.1, which determine the weights in the
measure (3.3), in Mathematica, as it is well suited to computing �" as given by (3.4).
We note that, due to the complexity of this computation, we were unable to apply our
algorithm to look for counterexamples with N � 6. Moreover, for N D 3, it follows from
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the work of Sebestyén–Székelyhidi [36] that the admissible weights form a line segment
in R8, so it is enough to look for counterexamples at the endpoints. Only for N D 4; 5 do
we, a priori, actually require Nn �Nc to be large in order to have a good sampling of the
parameter space.

The bulk of Algorithm 5.1, i.e., Steps 3–7, was implemented in the C programming
language. Our implementation is quite fast formD 2: for instance with LD 25, #D D 64

andMg D 50, it typically takes around 3 minutes to perform Steps 4–5, even when Step 5
is performed the maximum number of times. For m > 2, the algorithm has a very large
computational cost: for instance, with LD 19 and #D D 168, it typically takes around 13
hours to perform Steps 4–5 a number Mg D 50 times. We remark that in this case the
number of points in the grid is approximately 47 � 106.

5.1. The case m D 2

FormD 2we considered deformations given by sums ofN plane waves withN D 3; 4; 5.
For N D 3, we verified numerically the analytical result of [36]. Using a gridsize of

L D 25, we selected a total of 210 measures and randomised 50 different functions g,
which were rank-one convexified using #D D 64 rank-one directions, see Table 3. About
5% of the pairs .�; g/ were found to be suspicious, though none above the threshold
 D 0:1. Upon rescaling the grid to L0 D 49 and increasing the set of rank-one directions
to #D 0 D 256, all but one of these pairs was shown to satisfy Jensen’s inequality; the
remaining potential counterexample was ruled out by rescaling the grid again to L0 D 97
and increasing #D 0 D 784.

It is for N D 4; 5, where Question 1.1 is open, that our results are most interesting. As
the structure of the weights in these cases is unknown, we consider a much larger set of
measures, around 1000, in our numerical tests; we have also increased the maximum num-
ber of functions g to test to 100� 2N , see Table 3. We have found that, when compared to
a run for N D 3 with the same L and D , in the case N D 4; 5 there is a drastic decrease
in the percentage of suspicious measures initially flagged by Algorithm 5.1: when using a
gridsize ofLD 25 and #D D 64 rank-one directions, for example, only 0.06% of the pairs
.�; g/ are found suspicious when N D 4 and none are flagged in this way when N D 5.
From the point of view of our algorithm, Jensen’s inequality is clearly easier to verify
as N increases, at least within the range of N we test, which could be explained by the
increase in size of the 2nd lamination convex hull, c.f. Section 4. None of the pairs .�; g/
flagged as suspicious was found to be a counterexample after rescaling the grid toL0 D 49
and increasing the set of rank-one directions to #D 0 D 256. We also tested configurations
generated randomly in finer grids, having obtained identical results to the case L D 25.

To summarize: after testing thousands of randomly generated measures and hundreds
of randomly generated functions, we have not found any counterexamples to Question 1.1.

5.2. The case m D 3

FormD 3 and N D 3, let us consider directions .n1; n2; n3/ which are non-degenerate in
the sense that, for some choice of phases, there is " 2 ¹�1; 1º3 with �" ¤ 1=8. It follows
from the example in [37] that, with probability one, any such measure is a counterexample
to Question 1.1. Due to the high computational cost of Algorithm 5.1 for m D 3, which
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N Mn Mc Ma M� Mg
3 7 1 30 210 50
4 7 7 20 980 160
5 7 7 20 980 320

Table 3. Parameter space sampled in numerical experiments with m D 2.

severely limits our ability to explore the parameter space, we decided to focus only on
N D 3 and attempt to recover these analytic results.

With a grid of size L D 19 and #D D 168, over the course of two weeks, we tested
around 30 measures corresponding to 3-wave deformations. All but one measure was
found to be suspicious and around 90% of the measures were found to be sufficiently sus-
picious, in the sense that there was one rank-one convexified function for which Jensen’s
inequality failed by a margin superior to the threshold of  D 0:1. We were unable to
verify how many of our candidate counterexamples would survive after rescaling the grid
(Step 7 of Algorithm 5.1), as those computations would take around a month per meas-
ure. However, these results are in agreement with what is known analytically for N D 3,
further validating our implementation of Algorithm 5.1.

5.3. The case m > 3

It is interesting to consider Grabovsky’s example [13] of a rank-one convex, non quasicon-
vex function GWR8�2 ! R. G is quasiconvex at zero, although not at the point IdH2 �

e1 ˝ e1 C e5 ˝ e2. However, the paper [13] does not give an explicit deformation falsi-
fying the quasiconvexity inequality (3.1); the deformation is only obtained indirectly
through the variational principle for the effective tensor in periodic homogenization.

It would be interesting to find an explicit deformation falsifying the quasiconvex-
ity inequality with respect to G and, in particular, to find the smallest value of N for
which G is no longer N -wave quasiconvex. In an attempt to do so, we randomly gen-
erated deformations according to steps 1–3 of Algorithm 5.1. After testing hundreds of
such deformations, and finding no counter-example to Jensen’s inequality, we are led to
suppose that G is N -wave quasiconvex for N � 5. As mentioned above, the case N � 6
is very computationally demanding.

We also note that there is a curious similarity between the plane-wave expansions of
Section 3 and [13], equation (2.18).
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