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Minimizing cones
for fractional capillarity problems

Serena Dipierro, Francesco Maggi and Enrico Valdinoci

Abstract. We consider a fractional version of Gauß capillarity energy. A suitable
extension problem is introduced to derive a boundary monotonicity formula for local
minimizers of this fractional capillarity energy. As a consequence, blow-up limits
of local minimizers are shown to subsequentially converge to minimizing cones.
Finally, we show that in the planar case there is only one possible fractional min-
imizing cone, the one determined by the fractional version of Young’s law.

1. Introduction

In this article we consider local minimizers in the fractional capillarity model introduced
in [9], analyze their blow-up limits at boundary points, show, by means of a new mono-
tonicity formula, that these blow-up limits are cones, and give a complete characterization
of such cones in the planar case.

In the classical capillarity model of Gauß, see [8], one studies equilibrium configura-
tions of liquid dropletsE in a container!�Rn, n� 2, by looking at (volume-constrained)
local minimizers of the (dimensionally re-normalized) surface tension energy

Hn�1.! \ @E/C �Hn�1.@! \ @E/ ;

where � 2 .�1; 1/ is the (constant) relative adhesion coefficient determined by the phys-
ical properties of the liquid and of the walls of the container. In the model introduced
in [9], see (1.1) below, the liquid-air surface energy term Hn�1.! \ @E/ is replaced by
the nonlocal interaction between points x 2 E and y 2 ! n E; while the liquid-solid sur-
face energy term Hn�1.@! \ @E/ is replaced by the nonlocal interaction between points
x 2 E and y 62 !. These nonlocal interactions are measured by the singular fractional ker-
nel jx � yj�.nCs/, s 2 .0;1/: as s! 1�, they are increasingly concentrated, respectively, at
points x and y near ! \ @E and @! \ @E. For this reason, the fractional capillarity model
provides a nonlocal approximation of the Gauß capillarity model in the limit s ! 1�.
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This happens also at the level of the classical equilibrium conditions expressed by the
constancy of the mean curvature of ! \ @E and by the contact angle condition between the
liquid-air interface and the walls of the container, valid along @! \ ! \ @E, and known
as Young’s law. The validity of a fractional Young law (see (1.10) below) for sufficiently
regular local minimizers of the fractional capillarity energy has been proved in [9], while
its precise asymptotics in the limits s ! 1� and s ! 0C have been presented in [5]. The
existence of minimizers in the fractional capillarity model is also addressed in [9]. It is
an open problem to understand if these minimizers are regular up to the boundary of the
container !, and thus to confirm the validity of the fractional Young law in a pointwise
sense. In this paper we take two important steps in what is a general and well-established
strategy for attacking similar questions in geometric variational problems.

Our first result (given in Corollary 1.3) is that blow-up limits of local minimizers sub-
sequentially converge to cones (which, in turn, are also local minimizers). This result relies
on a new monotonicity formula for the fractional capillarity energy (see Theorem 1.2) and
on an equivalence result with a suitable “capillarity adaptation” of the Caffarelli–Silvestre
extension problem (given in Proposition 1.1).

Our second result (stated in Theorem 1.4) is a classification theorem for fractional
minimizing cones in the half-plane: more precisely, we will show that the only possible
fractional minimizing cones in ambient dimension 2 are angular sectors satisfying the
fractional version of Young’s law.

While the first result about the blow-up limits (as well as the extension theorem and the
monotonicity formula used in its proof) is valid in any dimension, the second result about
classification of cones is only proved in dimension 2, due to suitable energy estimates
that would not be valid in higher dimensions. It is an interesting open problem, which
is also open for interior singularities for arbitrary values of s 2 .0; 1/, to understand if
similar rigidity results for minimizing cones are valid in higher dimensions. The other
main open problem is that of obtaining a boundary regularity criterion comparable to the
one available in the interior [1], and analogous to the ones developed in the classical case
to validate Young’s law, see [3, 4] and the references therein.

The precise mathematical setting in which we work is the following. Given s 2 .0; 1/
and two disjoint sets A;B � Rn, we define the fractional interaction between A and B as

Is.A;B/ WD

“
A�B

dx dy

jx � yjnCs
�

Then, givenE � ! �Rn and � 2 .�1;1/, we define the fractional capillarity energy ofE
in ! as

(1.1) Cs;� .E; !/ WD Is.E;E
c!/C �Is.E; !

c/:

Here above and in the rest of this paper, we use the superscript “c” to denote the comple-
mentary set in Rn. Also, given two setsA,B �Rn we use the short notationAB WDA\B
(in this way, the notation Ec! is short for .Rn n E/ \ !). Furthermore, the Lebesgue
measure of a set F � Rn will be denoted by jF j.

We consider the half-space

H WD ¹x D .x1; : : : ; xn/ 2 Rn such that xn > 0º;
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and, given R > 0, we denote by BR � Rn the n-dimensional Euclidean ball of radius R
centered at the origin. In this article, we are interested in local minimizers of the fractional
capillarity energy in H . Briefly, we say that E � H is a local minimizer in H if, for
every R > 0, we have that Is.EBR; E

cBR/ < C1 and

Is.EBR; E
cH/C Is.EB

c
R; E

cBRH/C �Is.EBR;H
c/

� Is.FBR; F
cH/C Is.FB

c
R; F

cBRH/C �Is.FBR;H
c/;

(1.2)

for every F �H such that F nBR D E nBR. In particular, blow-up limits of minimizers
in the fractional capillarity problem in bounded domains with smooth boundary are local
minimizers in H , see Theorem A.2 in [9].

In order to exploit extension methods (see e.g. [2]), for any .x; t/ 2 RnC1C WD Rn �
.0;C1/, it is convenient to introduce the fractional Poisson kernel

Ps.x; t/ WD Cn;s
t s

.jxj2 C t2/.nCs/=2
;

where Cn;s > 0 is a normalizing constant (which, from now on, will be omitted) such thatZ
Rn

Ps.x; t/ dx D 1; for all t > 0:

Given u 2 L1.Rn/, we also denote the s-extension of u by

Eu.x; t/ WD
Z

Rn

u.y/Ps.x � y; t/ dy; for all .x; t/ 2 RnC1C :

The relevance of this notion of s-extension for our problem lies in the fact that the property
of E being a local minimizer in H for the fractional capillarity energy Cs;� is equivalent
to the property of Eu being a local minimizer of a Dirichlet-type energy Fs;� that we are
now going to introduce. Indeed, let X D .x; t/ 2 RnC1C . As customary, given E � Rn,
we denote by �E WR

n ! ¹0; 1º the characteristic function of E. If u D �E , we also
write EE WD E�E . In addition, given � � RnC1 with ! WD � \ ¹t D 0º and �C WD
� \RnC1C , and U WRnC1 ! R with u.x/ WD U.x; 0/, we define the energy

(1.3) Fs;� .U;�/ WD

Z
�C
t1�sjrU.X/j2 dX C .� � 1/

“
!�H c

u.x/

jx � yjnCs
dx dy:

Given K � RnC1 and � > 0, we also set

(1.4) K� WD ¹X 2 RnC1 such that dist.X;K/ < �º:

Then, we have the following extension result.

Proposition 1.1. Let E � H be such that Is.EBR; E
cBR/ < C1 for every R > 0. The

following statements are equivalent :
(i) E is a local minimizer in H .
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(ii) For all R > 0 and all bounded, Lipschitz domains � � RnC1 with

(1.5) � \ ¹t D 0º D BR;

we have that

(1.6) Fs;� .EE ; �/ � Fs;� .U;�/

for all U WRnC1C !R such that U.x;0/D �F .x/ for all x 2Rn, for some F �H ,
with FBcR�� D EBcR�� , and U.X/ D EE .X/ for all X 2 .@�/� \ RnC1C , for
some � 2 .0; R/.

The previous result can be seen as the natural counterpart, in the setting of fractional
capillarity problems, of several extension theorems for the fractional Laplacian, for frac-
tional minimal surfaces and, more generally, for nonlocal free boundary problems, see
e.g. [1, 2, 6, 10, 13, 14]. Among the many applications of the powerful tool provided
by extension results is the possibility of obtaining convenient monotonicity formulae:
actually, to the best of our knowledge, all the monotonicity formulae involving nonlocal
operators rely on identifying appropriate local extension problems methods.

In the setting considered in this paper, we will exploit Proposition 1.1 to obtain a
monotonicity formula that we now describe in detail. We denote by BR � RnC1 the
.nC 1/-dimensional Euclidean ball of radius R. For E � ! and r > 0, we define

ˆE .r/ WD r
s�nFs;� .EE ;Br /:

We observe that the above function is scale invariant, in the sense that

(1.7) ˆE .r/ D ˆEr=�.�/;

where

(1.8) Er WD
E

r
D

°x
r
; x 2 E

±
:

In this setting, we have the following monotonicity formula.

Theorem 1.2. Assume that E � H is a local minimizer for the fractional capillarity
energy in H . Then, the function .0;C1/ 3 r 7! ˆE .r/ is monotone nondecreasing.

More precisely, for every r > 0 we have that

(1.9) ˆ0E .r/ � r
s�n

Z
.@Br /\¹t>0º

t1�s jr�EE .X/j2 dHn
X :

Furthermore, we have that ˆE is constant if and only if E is a cone, i.e., �E D E for
all � > 0.

As a consequence of Theorem 1.2, we have that suitable blow-up limits of local min-
imizers of the fractional capillarity problem are cones:

Corollary 1.3. Let ! � Rn be a bounded open set with C 1-boundary. Let E � ! be a
minimizer of the capillarity functional in (1.1) among sets of prescribed volume contained
in !.
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Assume that 0 2 ! \ .@E/. Then for every vanishing sequence rj there exists .a not
relabeled/ subsequence and a set E0 � Rn, such that, in the notation of (1.8), we have
that �Erj ! �E0 in L1loc.R

n/. In addition, E0 is a cone.

The existence of the minimizers in Corollary 1.3 (and, in fact, of a more general class
of minimizers) is warranted by Proposition 1.1 in [9]. As a matter of fact, Corollary 1.3
is also valid for the “almost minimizers”, as introduced in Definition 1.5 of [9], with the
same proof that we present here.

In the setting of Corollary 1.3, it is natural to consider locally minimizing cones in H
(i.e., sets that are locally minimizing in H and that possess a conical structure). Inter-
estingly, in dimension 2, we can completely characterize locally minimizing cones in H ,
according to the following result.

Theorem 1.4. Let n D 2 and let E be a locally minimizing cone in H D ¹x2 > 0º.
Then, E is made of only one component and, up to a rigid motion, we have that

E D ¹x D .x1; x2/ 2 H such that x1 > x2 cos#º;

with # 2 .0; �/ implicitly defined by the formula

1C � D
.sin#/s M.#; s/
M.�=2; s/

;

where M.#; s/ WD 2

“
.0;#/�.0;C1/

r

.r2 C 2r cos t C 1/.2Cs/=2
dt dr:

(1.10)

Notice that (1.10) expresses the fractional Young law mentioned earlier in this intro-
duction, which, in the limit as s ! 1� converges to the contact angle prescription given
by the classical Young law. For a detailed asymptotic description of this, see [5].

To prove Theorem 1.4, we use a “translation method” introduced in [11] to prove
the regularity of fractional minimizing surfaces in the plane. In our context, however, the
cone is going to have a singularity at the origin, hence the notion of “regularity” has to be
weaken to a suitable notion of “monotonicity”, taking inspiration by some work in [12].

The rest of this paper is devoted to the proof of the results that we have presented
above. More specifically, Section 2 contains some preliminary observations relating the
nonlocal surface tension energy introduced in [9] and the nonlocal perimeter functional
introduced in [1]. Then, the proof of Proposition 1.1 will be given in Section 3, and the one
of Theorem 1.2 in Section 4. Section 5 contains the proof of Corollary 1.3, and Section 6
the one of Theorem 1.4.

2. Capillarity and fractional perimeters

In this section, we point out some useful relations between the capillarity functional given
in (1.1) and other fractional energies of geometric type. First of all, we observe that the
energy functional in (1.1) can be related to the fractional perimeter introduced in [1].
Indeed, writing, for any given F , ! � Rn,

Pers.F; !/ WD Is.F!; F
c!/C Is.F!; F

c!c/C Is.F!
c ; F c!/;
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for every E � ! we have that

Cs;� .E; !/ D Pers.E; !/C .� � 1/ Is.E; !
c/:

It is also useful to define, for all F � H and all R > 0,

(2.1) Pers;� .F; BR/ WD Pers.F; BRH/C .� � 1/ Is.FBR;H
c/:

In this setting, we can state the local minimality condition in (1.2) in terms of the fractional
perimeter as follows:

Lemma 2.1. A set E � H is a local minimizer in H if and only if, for every R > 0, we
have that Pers.E;BRH/ < C1 and

Pers;� .E;BR/ � Pers;� .F; BR/

for every F � H such that F n BR D E n BR.

Proof. If F � H ,

Pers.F; BRH/C .� � 1/ Is.FBR;H
c/

D Is.FBRH;F
cBRH/C Is.FBRH;F

cBcRH/C Is.FBRH;F
cH c/

C Is.FB
c
RH;F

cBRH/C Is.FH
c ; F cBRH/C .� � 1/ Is.FBR;H

c/

D Is.FBR; F
cBRH/C Is.FBR; F

cBcRH/C Is.FBR;H
c/

C Is.FB
c
R; F

cBRH/C .� � 1/ Is.FBR;H
c/

D Is.FBR; F
cH/C Is.FB

c
R; F

cBRH/C �Is.FBR;H
c/:

From this, (1.2) and (2.1), the desired result plainly follows.

3. Extension problems and proof of Proposition 1.1

In this section, we analyze the equivalent extension problem stated in Proposition 1.1 and
give a proof of it.

Proof of Proposition 1.1. First of all, we observe that, by (1.3) and (2.1), if V WRnC1C !R
is such that V.x; 0/ D �L.x/, with L � H , and � � RnC1 satisfies (1.5),

Pers;� .L;BR/ � Fs;� .V;�/

D Pers.L;BRH/C .� � 1/ Is.LBR;H
c/

�

Z
�C
t1�sjrV.X/j2 dX � .� � 1/

“
BR�H c

�L.x/

jx � yjnCs
dx dy

D Pers.L;BRH/ �
Z
�C
t1�sjrV.X/j2 dX:

(3.1)
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We also remark that, if F � H , then

Pers.F; BR/ � Pers.F; BRH/
D Is.FBR; F

c/CIs.FB
c
R; F

cBR/�Is.FBRH;F
c/�Is.F.BRH/

c ; F cBRH/

D Is.FBRH;F
c/C Is.FB

c
R; F

cBR/ � Is.FBRH;F
c/ � Is.FB

c
R; F

cBRH/

D Is.FB
c
R; F

cBRH/C Is.FB
c
R; F

cBRH
c/ � Is.FB

c
R; F

cBRH/

D Is.FB
c
R; F

cBRH
c/ D Is.FB

c
R; BRH

c/:(3.2)

We will also exploit Lemma 7.2 of [1], according to which (up to normalizing constants
that we omit), givenL,M ,!�Rn with Pers.L;!/, Pers.M;!/<C1 andL Q!c DM Q!c ,
for Q! b !, then

(3.3) inf
Z
�C
t1�s

�
jrV.X/j2 � jrEM .X/j2

�
dX D Pers.L; !/ � Pers.M;!/;

where the infimum is taken among all bounded Lipschitz domains � � RnC1 with � \
¹t D 0º b ! and among all functions V WRnC1C ! R such that V � EM is compactly
supported in �, and V.x; 0/ D �L.x/.

Now, assume that E is a local minimizer in H , and let R, �, �, U and F be as in the
assumptions of Proposition 1.1 (ii). In the notation of (1.4), we consider the set

Q� WD
°
X 2 � such that dist.X; @�/ �

�

2

±
D � n .@�/�=2:

By the assumptions of Proposition 1.1 (ii), we know that U � EE is compactly supported
in Q�. Moreover Q�\ ¹t D 0ºb�\ ¹t D 0º DBR. Therefore, we can exploit (3.3) with�
there replaced by Q� and ! chosen to be BR, thus obtainingZ

�C
t1�s

�
jrU.X/j2 � jrEE .X/j2

�
dX D

Z
Q�C
t1�s

�
jrU.X/j2 � jrEE .X/j2

�
dX

� Pers.F; BR/ � Pers.E;BR/:

This and (3.1) give that

Fs;� .EE ; �/�Fs;� .U;�/ D Pers;� .E;BR/�Pers.E;BRH/C
Z
�C
t1�sjrEE .X/j2dX

� Pers;� .F; BR/CPers.F; BRH/ �
Z
�C
t1�sjrU.X/j2dX

� Pers;� .E;BR/ � Pers;� .F; BR/C Pers.F; BRH/
� Pers.E;BRH/ � Pers.F; BR/C Pers.E;BR/:

Consequently, recalling (3.2) and the fact that E and F coincide outside BR,

Fs;� .EE ; �/ � Fs;� .U;�/

� Pers;� .E;BR/ � Pers;� .F; BR/ � Is.FB
c
R; BRH

c/C Is.EB
c
R; BRH

c/

D Pers;� .E;BR/ � Pers;� .F; BR/:

The locally minimizing property of E and Lemma 2.1 thereby imply that Fs;� .EE ; �/ �
Fs;� .U;�/ � 0, that is (1.6), as desired.
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Let us now suppose that, viceversa, the claim in (1.6) holds true. Our objective is now
to check that E is a local minimizer. To this end, let F �H such that F nBR D E nBR.
Also, fixed ı > 0, recalling (3.3), we take a bounded Lipschitz domain �.ı/ � RnC1

with �.ı/ \ ¹t D 0º b BRC1 and a function V .ı/WRnC1C ! R such that V .ı/ � EE is
compactly supported in �.ı/, and V .ı/.x; 0/ D �F .x/, with �.ı/ and V .ı/ attaining the
infimum in (3.3) with ! WD BRC1 up to an error ı, that is,Z

.�.ı//C
t1�s

�
jrV .ı/.X/j2 � jrEE .X/j2

�
dX � ı(3.4)

� Pers.F; BRC1/ � Pers.E;BRC1/:

Let
�0 WD sup

x2�.ı/\¹tD0º

jxj and � WD max¹R; �0º:

By construction, we have that �0 2 Œ0;RC 1/, and thus � 2 ŒR;RC 1/. Let also�.ı;�/ WD
�.ı/ [B�. Then, we have that

(3.5) �.ı;�/ \ ¹t D 0º D B�:

Furthermore, since V .ı/ D EE in �.ı;�/ n�.ı/, we have thatZ
.�.ı;�//C

t1�s
�
jrV .ı/.X/j2 � jrEE .X/j2

�
dX

D

Z
.�.ı//C

t1�s
�
jrV .ı/.X/j2 � jrEE .X/j2

�
dX:

Therefore, recalling (3.4),Z
.�.ı;�//C

t1�s
�
jrV .ı/.X/j2 � jrEE .X/j2

�
dX � ı(3.6)

� Pers.F; BRC1/ � Pers.E;BRC1/:

Moreover, in view of (3.5), we are in the position of using (1.6) (with� replaced by�.ı;�/

and R replaced by �). In this way, we find that

Fs;� .EE ; �.ı;�// � Fs;� .V
.ı/; �.ı;�//:

Consequently, exploiting (1.3), (3.5) and (3.6),

Pers.E;BRC1/ � Pers.F; BRC1/

�

Z
.�.ı;�//C

t1�s
�
jrEE .X/j2 � jrV .ı/.X/j2

�
dX C ı

D Fs;� .EE ; �.ı;�// � Fs;� .V
.ı/; �.ı;�//

� .� � 1/

“
B��H c

�E .x/

jx � yjnCs
dx dy C .� � 1/

“
B��H c

�F .x/

jx � yjnCs
dx dy C ı

� �.� � 1/
�“

BR�H c

�E .x/

jx � yjnCs
dx dy �

“
BR�H c

�F .x/

jx � yjnCs
dx dy

�
C ı

D �.� � 1/
�
Is.EBR;H

c/ � Is.FBR;H
c/
�
C ı:
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Hence, since�
Pers.E;BRC1/ � Pers.F; BRC1/

�
�
�
Pers.E;BR/ � Pers.F; BR/

�
D Is.EBRC1B

c
R; E

cBcRC1/C Is.EB
c
R; E

cBRC1B
c
R/

� Is.FBRC1B
c
R; F

cBcRC1/ � Is.FB
c
R; F

cBRC1B
c
R/

D 0;

we find that

Pers.E;BR/ � Pers.F; BR/ � �.� � 1/
�
Is.EBR;H

c/ � Is.FBR;H
c/
�
C ı:

Then, by (2.1) and (3.2),

Pers;� .E;BR/ � Pers;� .F; BR/

D Pers.E;BRH/ � Pers.F; BRH/C .� � 1/
�
Is.EBR;H

c/ � Is.FBR;H
c/
�

� ı C Pers.E;BRH/ � Pers.E;BR/C Pers.F; BR/ � Pers.F; BRH/
D ı � Is.EB

c
R; BRH

c/C Is.FB
c
R; BRH

c/ D ı:

Sending ı& 0, we thereby conclude that Pers;� .E;BR/� Pers;� .F;BR/. This, combined
with Lemma 2.1, gives that E is a locally minimizer, as desired.

4. Monotonicity formula and proof of Theorem 1.2

The goal of this section is proving Theorem 1.2.

Proof of Theorem 1.2. Let

CE WD
°
x 2 Rn n ¹0º such that

x

jxj
2 E

±
:

Given " > 0, we define

E."/ WD
��
.1 � "/E

�
\ B1�"

�
[
�
CE \

�
B1 n B1�"

��
[ .E n B1/ ;

see Figure 1, and

U".X/ WD

8̂̂<̂
:̂

EE
�
X
1�"

�
if X 2 BC1�";

EE
�
X
jX j

�
if X 2 BC1 nBC1�";

EE .X/ if X 2 RnC1C nB1:

We remark that

U".x; 0/ D

8̂<̂
:
�E
�
x
1�"

�
if x 2 B1�";

�E
�
x
jxj

�
if x 2 B1 n B1�";

�E .x/ if x 2 Rn n B1;

9>=>; D �E ."/.x/:
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E E."/

11 � "0
@H

Figure 1. The construction used in the proof of Theorem 1.2. The parts of the boundary of E."/ due
to CE \ .B1 n B1�"/ are depicted by bold lines.

We also claim that

(4.1) E."/ � H:

Indeed, let x 2 E."/. If x 2 B1�", we have that x 2 .1 � "/E, and thus x=.1 � "/ 2 E.
Since E � H , we deduce that xn=.1 � "/ � 0, and consequently xn � 0, which gives
that x 2 H in this case.

If instead x 2 B1 n B1�", we have that x 2 CE , and hence x=jxj 2 E. In this case,
since E � H , we find that xn=jxj � 0, and again x 2 H . Finally, if x 2 Bc1 , we have
that x 2 E � H , which completes the proof of (4.1).

We also observe that U" D EE outside B1. Then, in view of (4.1), we can fix � > 0
and exploit Proposition 1.1 with

� WD B1C�; R WD 1C �; U WD U" and F WD E."/:

In this way, we conclude that

0 � Fs;� .U";B1C�/ � Fs;� .EE ;B1C�/

D

Z
BC1C�

t1�s
�
jrU".X/j

2
� jrEE .X/j2

�
dX

C .� � 1/
�“

B1C��H c

�E ."/.x/

jx � yjnCs
dx dy �

“
B1C��H c

�E .x/

jx � yjnCs
dx dy

�
D

Z
BC1

t1�s
�
jrU".X/j

2
� jrEE .X/j2

�
dX

C .� � 1/
�
Is.B1E

."/;H c/ � Is.B1E;H
c/
�
:

(4.2)

We set
G.r/ WD rs�n

Z
BCr

t1�sjrEE .X/j2 dX;
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and, using the change of variable Y D .y; �/ WD X=.1 � "/, we observe thatZ
BC1

t1�sjrU".X/j
2 dX

D
1

.1 � "/2

Z
BC1�"

t1�s
ˇ̌̌
rEE

� X

1 � "

�ˇ̌̌2
dX

C

Z
BC1 nB

C
1�"

t1�s

jX j2

�ˇ̌̌
rEE

� X
jX j

�ˇ̌̌2
�

ˇ̌̌ X
jX j
� rEE

� X
jX j

�ˇ̌̌2�
dX

D .1 � "/n�s
Z

BC1

�1�sjrEE .Y /j2 dY

C "

Z
.@B1/\¹t>0º

t1�s
�
jrEE .X/j2 � jX � rEE .X/j2

�
dHn

X C o."/

D .1 � "/n�sG.1/C "

Z
.@B1/\¹t>0º

t1�sjr�EE .X/j2 dHn
X C o."/;

where r� denotes the tangential gradient along @B1.
Similarly,Z

BC1

t1�sjrEE .X/j2 dX

D

Z
BC1�"

t1�sjrEE .X/j2 dX C "
Z
.@B1/\¹t>0º

t1�sjrEE .X/j2 dHn
X C o."/

D .1 � "/n�s G.1 � "/C "

Z
.@B1/\¹t>0º

t1�sjrEE .X/j2 dHn
X C o."/;

and accordingly,

Z
BC1

t1�s
�
jrU".X/j

2
� jrEE .X/j2

�
dX

D .1 � "/n�sG.1/ � .1 � "/n�sG.1 � "/

C "
� Z

.@B1/\¹t>0º

t1�sjr�EE .X/j2 dHn
X �

Z
.@B1/\¹t>0º

t1�sjrEE .X/j2 dHn
X

�
Co."/

D .1 � .n � s/"/ .G.1/ �G.1 � "// � "

Z
.@B1/\¹t>0º

t1�sjr�EE .X/j2 dHn
X C o."/;

(4.3)

where r� denotes the (exterior) normal gradient along @B1.
Furthermore, setting

J.r/ WD rs�nIs.BrE;H
c/;
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using the substitutions Nx WD x=.1 � "/ and Ny WD y=.1 � "/, and noticing that CE \ .@B1/
D E \ .@B1/, we have that

Is.B1E
."/;H c/ � Is.B1E;H

c/

D Is
�
B1�"

�
.1 � "/E

�
;H c

�
� Is.B1�"E;H

c/

C Is.B1B
c
1�"CE ;H

c/ � Is.B1B
c
1�"E;H

c/

D

“
B1�"..1�"/E/�H c

dx dy

jx � yjnCs
� .1 � "/n�sJ.1 � "/

C "
�“

.@B1/�H c

�CE .x/ dHn�1
x dy

jx � yjnCs
�

“
.@B1/�H c

�E .x/ dHn�1
x dy

jx � yjnCs

�
C o."/

D .1 � "/n�s
“
B1E�H c

d Nx d Ny

j Nx � NyjnCs
� .1 � "/n�sJ.1 � "/C o."/

D .1 � "/n�s
�
J.1/ � J.1 � "/

�
C o."/

D .1 � .n � s/"/ .J.1/ � J.1 � "//C o."/:

Then, plugging this information and (4.3) into (4.2), and noticing that ˆE .r/ D G.r/C
.� � 1/J.r/, we conclude that

0 � .1 � .n � s/"/ .G.1/ �G.1 � "// � "

Z
.@B1/\¹t>0º

t1�sjr�EE .X/j2 dHn
X

C .� � 1/ .1 � .n � s/"/ .J.1/ � J.1 � "//C o."/

D .1 � .n � s/"/ .ˆE .1/ �ˆE .1 � "//

� "

Z
.@B1/\¹t>0º

t1�s jr�EE .X/j2 dHn
X C o."/

D "ˆ0E .1/ � "

Z
.@B1/\¹t>0º

t1�s jr�EE .X/j2 dHn
X C o."/:

Therefore, dividing by " and sending "& 0, we see that

(4.4) ˆ0E .1/ �

Z
.@B1/\¹t>0º

t1�s jr�EE .X/j2 dHn
X :

On the other hand, in light of (1.7), we know that

(4.5) ˆE�.r/ D ˆE�r=�.�/;

for all r , �, � > 0, and thus, choosing � WD �r ,

ˆE�.r/ D ˆE .�r/:

As a consequence, taking � WD R and r WD 1C h, and � WD R and r WD 1, we see that, for
all R > 0,

ˆ0E .R/ D lim
h!0

ˆE .R.1C h// �ˆE .R/

Rh
D lim
h!0

ˆER.1C h/ �ˆER.1/

Rh
D
ˆ0ER.1/

R
�
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Combining this and (4.4) (used here on the set ER), we obtain that

ˆ0E .R/ �
1

R

Z
.@B1/\¹t>0º

t1�s jr�EER.X/j
2 dHn

X

D R

Z
.@B1/\¹t>0º

t1�s jr�EE .RX/j2 dHn
X

D Rs�n
Z
.@BR/\¹t>0º

t1�s jr�EE .X/j2 dHn
X ;

that is (1.9), as desired.
Now, if E is a cone, from (1.7) we have that ˆE .r/ D ˆE .�/ for any r , � > 0, and

therefore ˆE is constant.
Viceversa, if ˆE is constant, we deduce from (1.9) thatZ

.@Br /\¹t>0º

t1�s jr�EE .X/j2 dHn
X D 0

for all r > 0, and therefore X � rEE .X/ D 0 for all X 2 RnC1C . By Euler’s formula, this
gives that EE is homogeneous of degree zero, and consequently, for any � > 0,

�E .�x/ D EE .�x; 0/ D EE .x; 0/ D �E .x/;

and hence E is a cone.

5. Homogeneous structure of the blow-up limits and proof of
Corollary 1.3

In this section, we analyze the structure of the blow-up limit of local minimizers and we
prove Corollary 1.3. To this end, we need the forthcoming auxiliary result which can be
seen as the counterpart of Proposition 9.1 in [1] in our setting.

Lemma 5.1. Let E � H be a local minimizer in H . Let Ek � H be a sequence of local
minimizers in H and suppose that Ek ! E in L1loc.R

n/ as k !C1.
Then,

lim
k!C1

ˆEk .r/ D ˆE .r/ for all r > 0:

Proof. We note that

rn�sˆEk .r/ D Fs;� .EEk ;Br /

D

Z
BCr

t1�sjrEEk .X/j
2 dX C .� � 1/

“
.BrH/�H c

�Ek .x/

jx � yjnCs
dx dy:(5.1)

By the dominated convergence theorem, we have that

(5.2) lim
k!C1

“
.BrH/�H c

�Ek .x/

jx � yjnCs
dx dy D

“
.BrH/�H c

�E .x/

jx � yjnCs
dx dy:
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By this and (5.1) we see that, to prove the desired result, it suffices to show that

(5.3) lim
k!C1

Z
BCr

t1�s jrEEk .X/j
2 dX D

Z
BCr

t1�s jrEE .X/j2 dX:

To this end, we use formula (7.2) in Proposition 7.1 in [1] and we write that, given r ,
ı > 0, Z

BCr

t1�s jr.EEk � EE /.X/j2 dX D
Z

BCr

t1�s jrE�Ek��E .X/j
2 dX

� Cr;ı

Z
Qr;ı

j.�Ek � �E /.x/ � .�Ek � �E /.y/j
2

jx � yjnCs
dx dy;

for some Cr;ı > 0, where

Qr;ı WD R2n n .BcrCı � B
c
rCı/:

Consequently, the claim in (5.3) is established once we show that

(5.4) lim
k!C1

Z
Qr;ı

j.�Ek � �E /.x/ � .�Ek � �E /.y/j
2

jx � yjnCs
dx dy D 0:

It is convenient to define

fk.x; y/ WD
�Ek .x/ � �Ek .y/

jx � yj.nCs/=2
and f .x; y/ WD

�E .x/ � �E .y/

jx � yj.nCs/=2
�

In this way, claim (5.4) can be written as

(5.5) lim
k!C1

kfk � f kL2.Qr;ı /
D 0:

We now use‰ as a short notation for �Qr;ı
.x;y/dxdy=jx � yjnCs and setB WDBrCı .

We point out that

kfkk
2
L2.Qr;ı /

2
D

“
Ek�E

c
k

‰D

“
.EkB/�E

c
k

‰ C

“
.EkB

c/�Ec
k

‰

D

“
.EkB/�.E

c
k
H/

‰ C

“
.EkB/�.E

c
k
H c/

‰

C

“
.EkB

c/�.Ec
k
H/

‰ C

“
.EkB

c/�.Ec
k
H c/

‰

D Is.EkB;E
c
kH/C Is.EkB;E

c
kH

c/

C Is.EkB
c ; EckBH/C Is.EkB

c ; EckBH
c/;

(5.6)

and therefore,

kfkk
2
L2.Qr;ı /

2
� Is.EkB;E

c
kH/CIs.EkB;E

c
kBH

c/CIs.EkB
c; EckBH/C2Is.B;B

c/

� Is.EkB;E
c
kH/C Is.EkB

c ; EckBH/C 2Is.B;B
c/C Is.BH;BH

c/

D Is.EkB;E
c
kH/C Is.EkB

c ; EckBH/C Cr;ı ;
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with Cr;ı independent of k. Hence, using the local minimizing property of Ek in (1.2),
and taking Fk WD EkBc ,

kfkk
2
L2.Qr;ı /

2

� Is.FkB;F
c
kH/C Is.FkB

c ; F ckBH/C �
�
Is.FkB;H

c/ � Is.EkB;H
c/
�
C Cr;ı

� 0C Is.B
c ; B/C �

�
0 � Is.EkB;H

c/
�
C Cr;ı � 2Cr;ı :

This and Fatou’s lemma yield that

kf k2
L2.Qr;ı /

� 4Cr;ı :

Now we remark that to prove (5.5) it suffices to show that

(5.7) lim
k!C1

kfkkL2.Qr;ı /
D kf kL2.Qr;ı /

:

Indeed, suppose that (5.7) holds true and notice that fk converges to f pointwise. Let ' 2
C10 .Qr;ı/ and observe that

jfk.x; y/ '.x; y/j �
j'.x; y/j

jx � yj.nCs/=2
2 L1.Qr;ı/:

Hence, by the dominated convergence theorem,

lim
k!C1

Z
Qr;ı

fk ' D

Z
Qr;ı

f ':

By density, given " > 0, we can pick '" 2 C10 .Qr;ı/ such that k'" � f kL2.Qr;ı //
� ". In

this way, we find that

lim sup
k!C1

ˇ̌̌ Z
Qr;ı

fkf �

Z
Qr;ı

f 2
ˇ̌̌
� lim sup

k!C1

ˇ̌̌ Z
Qr;ı

fk '" �

Z
Qr;ı

f 2
ˇ̌̌
C

Z
Qr;ı

fkjf � '"j

�

ˇ̌̌ Z
Qr;ı

f '" �

Z
Qr;ı

f 2
ˇ̌̌
C lim sup

k!C1

kfkkL2.Qr;ı //
k'" � f kL2.Qr;ı //

� lim sup
k!C1

�
kf kL2.Qr;ı //

C kfkkL2.Qr;ı //

�
k'" � f kL2.Qr;ı //

� 4"
p
Cr;ı :

Hence, since " can be taken arbitrarily small,

lim
k!C1

Z
Qr;ı

fkf D

Z
Qr;ı

f 2:

As a result, if (5.7) holds true, we obtain that

lim
k!C1

kfk � f k
2
L2.Qr;ı /

D lim
k!C1

kfkk
2
L2.Qr;ı /

C kf k2
L2.Qr;ı /

� 2

Z
Qr;ı

fkf D 0;

that is (5.5).
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In view of this observation, to complete the proof of Lemma 5.1, we are left with
proving (5.7). As a matter of fact, by Fatou’s lemma, to prove (5.7) it suffices to check
that

(5.8) lim sup
k!C1

kfkkL2.Qr;ı /
� kf kL2.Qr;ı /

;

and therefore the remaining part of this proof is devoted to show this inequality. To this
end, we let Dk be the symmetric difference of Ek and E, and we define

Gk WD .EB/ [ .EkB
c/:

The local minimizing property of Ek as stated in (1.2) yields that

Is .EkB;E
c
kH/C Is.EkB

c ; EckBH/C �Is.EkB;H
c/

� Is.GkB;G
c
kH/C Is.GkB

c ; GckBH/C �Is.GkB;H
c/

D Is.EB;G
c
kH/C Is.EkB

c ; EcBH/C �Is.EB;H
c/

D Is.EB;E
cBH/C Is.EB;E

c
kB

cH/C Is.EkB
c ; EcBH/C �Is.EB;H

c/

� Is.EB;E
cBH/C Is.EB;E

cBcH/C Is.EB
c ; EcBH/C �Is.EB;H

c/

C Is.EB;DkB
cH/C Is.DkB

c ; EcBH/

� Is.EB;E
cH/C Is.EB

c ; EcBH/C �Is.EB;H
c/C 2Is.B;DkB

c/:

By [1] (see in particular the proof of Theorem 3.3 there), we know that

lim
k!C1

Is.B;DkB
c/ D 0;

and accordingly we can write that

lim sup
k!C1

Is.EkB;E
c
kH/C Is.EkB

c ; EckBH/C �Is.EkB;H
c/

� Is.EB;E
cH/C Is.EB

c ; EcBH/C �Is.EB;H
c/:

Hence, recalling (5.2),

lim sup
k!C1

Is.EkB;E
c
kH/C Is.EkB

c ; EckBH/

� Is.EB;E
cH/C Is.EB

c ; EcBH/:

(5.9)

Besides, from (5.6),

kfkk
2
L2.Qr;ı /

2
D Is.EkB;E

c
kH/C Is.EkB;E

c
kH

c/

C Is.EkB
c ; EckBH/C Is.EkB

c ; EckBH
c/;

and a similar formula holds true by replacing fk by f and Ek by E.
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In this way, exploiting again the dominated convergence theorem, we deduce that

lim sup
k!C1

1

2

�
kfkk

2
L2.Qr;ı /

� kf k2
L2.Qr;ı /

�
D lim sup
k!C1

Is.EkB;E
c
kH/CIs.EkB;E

c
kH

c/CIs.EkB
c; EckBH/CIs.EkB

c; EckBH
c/

� Is.EB;E
cH/ � Is.EB;E

cH c/ � Is.EB
c ; EcBH/ � Is.EB

c ; EcBH c/

D lim sup
k!C1

Is.EkB;E
c
kH/C Is.EkB

c ; EckBH/ � Is.EB;E
cH/ � Is.EB

c ; EcBH/:

From this and (5.9) we obtain (5.8), as desired.

With this preliminary work, we can now complete the proof of Corollary 1.3 by
arguing as follows.

Proof of Corollary 1.3. The proof is based on a double blow-up procedure, combined with
the monotonicity formula in Theorem 1.2. The advantage of a double blow-up with respect
to a single blow-up is that the first blow-up reduces the container ! to a half-space, thus
allowing us to use Lemma 5.1 in the second blow-up.

Here are the details of the proof. First of all, we consider the sequence of sets E1=k ,
with k 2 N. By Theorem A.2 in [9], up to a subsequence, we know that �E1=k converges
in L1loc.R

n/ to �E? as k!C1, for a suitable E? contained in a half-spaceH?, with E?

locally minimizing in H?. Up to a rigid motion, we can suppose that H? D H .
Now we consider the sequence E?

1=h
, with h 2 N. Using again Theorem A.2 in [9],

up to a subsequence, we see that �E?
1=h

converges as h! C1 in L1loc.R
n/ to �E0 , for a

suitable E0 � H which is locally minimizing in H . Also, thanks to Lemma 5.1, we have
that

(5.10) lim
h!C1

ˆE?
1=h
.r/ D ˆE0.r/:

Then, Corollary 1.3 will be established once we prove the following claims:

(5.11) E0 is a cone

and

there exists an infinitesimal sequence rj > 0 such that
�Erj

converges to �E0 in L1loc.R
n/ as j !C1.

(5.12)

To prove (5.11), we exploit (4.5) with � WD 1=h and � WD �r , by writing

ˆE?
1=h
.r/ D ˆE?

� r
h

�
:

Hence, in light of (5.10),

(5.13) ˆE0.r/ D lim
h!C1

ˆE?
1=h
.r/ D lim

h!C1
ˆE?

� r
h

�
D lim
ı&0

ˆE?.ı/:
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Notice that the last limit exists, due to the monotonicity of the function proved in The-
orem 1.2. Furthermore, the identity in (5.13) says that ˆE0 is constant and then, by
Theorem 1.2, E0 must necessarily be a cone, which proves (5.11).

Now we prove (5.12). For this, let R > 0. By the convergence of E?
1=h

, we know that,
given " > 0, there exists h0.R; "/ 2 N such that, for all h � h0.R; "/,

(5.14)
Z
BR

j�E?
1=h
.x/ � �E0.x/j dx � ":

On the other hand, by the convergence of E1=k , there exists k0.R; h; "/ 2 N such that, for
all k � k0.R; h; "/, Z

BR=h

j�E1=k .x/ � �E?.x/j dx �
"

hn
�

Scaling back, and using (5.11), this gives that, for all k � k0.R; h; "/,Z
BR

j�E1=.hk/.x/ � �E?
1=h
.x/j dx � ":

Combining this with (5.14), we find that, for all k � k?.R; "/ WD k0.R; h0.R; "/; "/,Z
BR

j�E1=.h0.R;"/k/
.x/ � �E0.x/j dx

�

Z
BR

j�E1=.h0.R;"/k/
.x/ � �E?

1=h0.R;"/
.x/j dx C

Z
BR

j�E?
1=h0.R;"/

.x/ � �E0.x/j dx � 2":

This establishes (5.12), as desired.

6. Locally minimizing cones in the plane and proof of Theorem 1.4

In this section, we take n D 2, and we classify locally minimizing cones, thus proving
Theorem 1.4.

Proof of Theorem 1.4. Let ‰ 2 C10 .B9=10; Œ0; 1�/ be a radially decreasing function with
with ‰.X/ D 1 for all X 2 B1=2. Given R > 2, to be taken as large as we wish in the
following, we consider the transformation

(6.1) R3 3 X 7! Y WD X C‰
�X
R

�
e1;

where e1 WD .1;0;0/. Denoting this map by Y.X/ (see Figure 2), we see that it is invertible,
and we denote its inverse by X.Y /. We also let

(6.2) U WD EE ;

and
UCR .Y / WD U.X.Y //:
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@BR

@B.R=2/C1

.R=2/C 1

Y.S/

0

R=2 R1

@H

S

@BR

@BR=2

0

R1

Figure 2. Depicting the action of the map Y defined in (6.1) on a set S . Notice that S \BR=2 is
translated by e1, while S nBR is left unchanged. Since‰ is radially decreasing, the slices S \ @B�
corresponding to � 2 .1; R/ are translated by multiples �.�/ e1 of e1, where �.�/ decreases from
� D 1 when � D R=2, to � D 0 when � � .9=10/R.

We also denote U�R a similar function, in which ‰ is replaced by �‰. In addition, we
set u.x/ WD U.x; 0/, uCR.y/ WD U

C

R .y; 0/ and u�R.y/ WD U
�
R .y; 0/.

We use coordinatesX D .X1;X2;X3/D .x; t/2R2 � .0;C1/. We remark that Y3.X/
D X3, hence X3.Y / D Y3, and accordingly X3.y; 0/ D 0. This gives that

(6.3) uCR.y/ D U.X.y; 0// D U.x.y; 0/; 0/ D �E .x.y; 0//:

Then, in the notation of (1.3), we claim that

(6.4)
ˇ̌
Fs;� .U

C

R ;BR/C Fs;� .U
�
R ;BR/ � 2Fs;� .U;BR/

ˇ̌
�
C

Rs
;

for some C > 0. To prove this, we let

JR.U / WD

Z
BCR

t1�sjrU.X/j2 dX and TR.u/ WD

“
BR�H c

u.x/

jx � zj2Cs
dx dz:

A direct computation (see Lemma 1 in [11]) shows that

(6.5)
ˇ̌
JR.U

C

R /C JR.U
�
R / � 2JR.U /

ˇ̌
�
C

Rs
;

for some C > 0.
We introduce the following notation: from now on, we denote by } any quantity or

bounded function, possibly different from line to line, which changes sign if‰ is replaced
by �‰. We stress that it is not necessary that } has a sign itself, what matters in this
notation is that its pointwise value changes sign if ‰ is replaced by �‰.

Now, we want to use the change of variable Qy WD x.y; 0/ and Qz WD x.y; 0/ � y C z.
In this way, we have that

Qy � Qz D y � z:

We also observe that, if z 2H c , then Qz2 D x2.y; 0/� y2C z2 D z2 � 0, and thus Qz 2H c .
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Furthermore, for all i , j 2 ¹1; 2; 3º,

DXiYj .X/ D ıij C
ı1j

R
@i‰

�X
R

�
D ıij C

}

R
�

Therefore, we can write that

dy dz D
�
1C
}

R
CO

� 1
R2

��
d Qy d Qz:

We also point out that

(6.6) if y 2 BR, then x.y; 0/ 2 BR.

Indeed, if jyj � 99R=100, then

jx.y; 0/j D
ˇ̌̌
y �‰

�x.y; 0/
R

�
e1

ˇ̌̌
�
99R

100
C 1 < R;

as long as R is large enough.
If instead jyj > 99R=100, it follows that

jx.y; 0/j D
ˇ̌̌
y �‰

�x.y; 0/
R

�
e1

ˇ̌̌
� jyj � 1 >

99R

100
� 1 >

9R

10
;

and consequently ‰.x.y; 0/=R/ D 0, whence x.y; 0/ D y in this case.
These considerations prove (6.6). Hence, recalling (6.3),

TR.u
C

R/ D

“
BR�H c

uCR.y/

jy � zj2Cs
dy dz D

“
BR�H c

�E .x.y; 0//

jy � zj2Cs
dy dz

D

“
BR�H c

�E . Qy/

j Qy � Qzj2Cs

�
1C
}

R
CO

� 1
R2

��
d Qy d Qz:

Given our notation related to }, this also says that

TR.u
�
R/ D

“
BR�H c

�E . Qy/

j Qy � Qzj2Cs

�
1 �
}

R
CO

� 1
R2

��
d Qy d Qz:

As a consequence,ˇ̌
TR.u

C

R/C TR.u
�
R/ � 2TR.u/

ˇ̌
� O

� 1
R2

�“
BR�H c

�E . Qy/

j Qy � Qzj2Cs
d Qy d Qz

� O
� 1
R2

�“
BRH�H c

d Qy d Qz

j Qy � Qzj2Cs
� O

� 1
R2

�
Is.BRH; .BRH/

c/ D O
� 1
Rs

�
:

From this, (1.3) and (6.5), we obtain (6.4), up to renaming C > 0, as desired.
Moreover, from (1.6), we can write that

Fs;� .U;BR/ � Fs;� .U
�
R ;BR/:
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Using this and (6.4), we conclude that

Fs;� .U
C

R ;BR/ � Fs;� .U;BR/ � Fs;� .U
C

R ;BR/C Fs;� .U
�
R ;BR/ � 2Fs;� .U;BR/

�
C

Rs
�(6.7)

Now we claim that

U is monotone in the direction e1,
namely either U.X C �e1/ � U.X/ or U.X C �e1/ � U.X/, for every � > 0.

(6.8)

To prove this, we argue by contradiction, supposing that there exist NX 2R3C and N�1, N�2 > 0
such that

(6.9) U. NX C N�1e1/ > U. NX/ and U. NX C N�2 e1/ < U. NX/:

Since E is a cone, we have that U is homogeneous of degree zero, and therefore, letting

P WD N��11
NX and Q WD N��12

NX;

we can write (6.9) as

U.P C e1/ D U. N�
�1
1
NX C e1/ D U. NX C N�1e1/ > U. NX/ D U. N�

�1
1
NX/ D U.P /;

U.QC e1/ D U. N�
�1
2
NX C e1/ D U. NX C N�2e1/ < U. NX/ D U. N�

�1
2
NX/ D U.Q/:

(6.10)

We can suppose that

(6.11) R=2 > M WD 2C jQj C jP j;

and we set

VR.X/ WD min¹U.X/; UCR .X/º and WR.X/ WD max¹U.X/; UCR .X/º:

We remark that

(6.12) Fs;� .VR;BR/C Fs;� .WR;BR/ D Fs;� .U;BR/C Fs;� .U
C

R ;BR/:

In addition, by (1.6),
Fs;� .U;BR/ � Fs;� .VR;BR/:

Combining this and (6.12), we find that

(6.13) Fs;� .WR;BR/ � Fs;� .U
C

R ;BR/:

Now, we denote byW? the minimizer of JM .W / among all the competitorsW withW D
WR on @BCM D

�
.@BM / \ ¹t > 0º

�
[
�
BM � ¹0º

�
.

We remark that the minimization of the functional leads to the equation

(6.14) div .t1�srW?/ D 0 in BCM :

Also, the same equation is fulfilled by U , in view of (6.2).
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We claim that

(6.15) W? ¤ WR:

Indeed, suppose by contradiction that W? D WR. Then, since U � WR D W?, we deduce
by the strong maximum principle for the equation in (6.14) (see e.g. Corollary 2.3.10
in [7]) that

(6.16) either U < WR or U D WR in BCM .

On the other hand, by (6.11), we have that

Y.P / D P C‰
�P
R

�
e1 D P C e1 and Y.Q/ D QC‰

�Q
R

�
e1 D QC e1:

Consequently, by (6.10),

UCR .Y.P // D U.P / < U.P C e1/ D U.Y.P //

and UCR .Y.Q// D U.Q/ > U.QC e1/ D U.Y.Q//:

Therefore, we see that

WR.Y.P // D U.Y.P // and WR.Y.Q// D U
C

R .Y.Q// > U.Y.Q//;

and these observations say that none of the two possibilities in (6.16) can be fulfilled.
This contradiction proves (6.15). Then, from (6.15), we obtain that there exists ı0 > 0

such that
JM .W?/C ı0 � JM .WR/:

We stress that this ı0 is independent of R, because WR in BM does not depend on R,
being

WR.X/ D max¹U.X/; U.X � e1/º for all X 2 BCM ;

thanks to (6.11).
Furthermore, if we extend W? to be equal to WR outside BCM , we have that

(6.17) JR.WR/ � JR.W?/ D JM .WR/ � JM .W?/ � ı0:

Since, by constructionw?.x/ WDW?.x;0/DWR.x;0/DWwR.x/, we have that TR.w?/D

TR.wR/. This and (6.17) give that

Fs;� .WR;BR/ � Fs;� .W?;BR/ � ı0:

As a consequence, in light of (6.13),

(6.18) Fs;� .U
C

R ;BR/ � Fs;� .W?;BR/ � ı0:

On the other hand, using again (1.6),

Fs;� .U;BR/ � Fs;� .W?;BR/:
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Comparing this and (6.18), we see that

Fs;� .U
C

R ;BR/ � Fs;� .U;BR/ � ı0:

Hence, recalling (6.7),
C

Rs
� ı0:

We can now sendR!C1 and find that 0� ı0 >0. This contradiction proves the validity
of (6.8).

As a consequence of (6.8), we have that u is monotone in the direction e1, hence the
cone E is made of only one component.

From this and Theorem 1.4 in [9], one also obtains (1.10).
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