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Scattering for critical radial Neumann waves
outside a ball

Thomas Duyckaerts and David Lafontaine

Abstract. We show that the solutions of the three-dimensional critical defocusing
nonlinear wave equation with Neumann boundary conditions outside a ball and radial
initial data scatter. This is to our knowledge the first result of scattering for a nonlin-
ear wave equation with Neumann boundary conditions. Our proof uses the scheme
of concentration-compactness/rigidity introduced by Kenig and Merle, extending
it to our setup, together with the so-called channels of energy method to rule out
compact-flow solutions. We also obtain, for the focusing equation, the same exact
scattering/blow-up dichotomy below the energy of the ground-state as in R3.

1. Introduction

This work concerns the energy-critical wave equation outside an obstacle of R3 with Neu-
mann boundary condition:

@2t u ��uC �u
5
D 0 in �;(1.1)

@nu D 0 in @�;(1.2)

Eu�tD0 D .u0; u1/ 2 PH
1.�/ � L2.�/;(1.3)

where�DR3 nK,K is a compact subset of R3 with smooth boundary, @nu is the normal
derivative of u on the boundary @� of �, Eu denotes .u; @tu/, and � 2 ¹˙1º. In our main
result we will treat the case where K is the unit ball of R3 and the initial data .u0; u1/ is
assumed to be radial.

Problem (1.1)–(1.3) is locally well-posed (see [11]). The energy

E.Eu.t// D
1

2

Z
�

jru.t; x/j2dx C
1

2

Z
�

j@tu.t; x/j
2dx C

�

6

Z
�

u6.t; x/ dx

is conserved. When �D 1 (defocusing case), the energy yields a uniform bound of the norm
of the solution in PH 1 � L2 and solutions are expected to be global and to scatter to linear
solutions (see definition below). When � D �1 (focusing case), one can easily construct,
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using the differential equation u00 D u5 and finite-speed of propagation, solutions with
initial data in PH 1 � L2 that blow up in finite time.

We first consider the defocusing case � D 1. When there is no obstacle (� D R3),
global existence was obtained for smooth radial data by Struwe [46], and extended to
smooth non-radial data by Grillakis [24]. Global existence for data in the energy space
was then proved by Shatah and Struwe [42]. Bahouri and Shatah [4] have shown that
any solution u to the defocusing equation scatters to a linear solution, i.e., there exists a
solution uL of the free wave equation

(1.4) @2t uL ��uL D 0

on R �R3 such that
lim

t!C1
kEu.t/ � EuL.t/k PH�L2 D 0:

The scattering is proved as a consequence of the fact that the L6 norm of the solution
goes to 0, which is obtained by multipliers techniques involving integration by parts on
the wave cone ¹jxj � jt jº.

The equation (1.1) with Dirichlet boundary condition:

(1.5) u�@� D 0; Eu�tD0 D .u0; u1/ 2 PH
1
0 .�/ � L

2.�/;

where PH 1
0 .�/ D ¹f 2 H

1.�/ W f�@� D 0º, was studied in several articles. The global
well-posedness is proved in [10]. The local well-posedness follows from a local-in-time
Strichartz estimate, which is a direct consequence of a spectral projector estimate of Smith
and Sogge [45]. The global well-posedness is obtained by the same arguments as in the
case without obstacle, observing that the boundary term appearing in the integration by
parts can be dealt with a commutator estimate.

The asymptotic behaviour of equations (1.1) and (1.4) with Dirichlet boundary con-
ditions (1.5) is not known in general, and depends on geometrical assumptions on the
obstacle. When K is non-trapping, for the linear equation (1.4), Morawetz, Ralston and
Strauss [38] proved the exponential decay of the local energy in odd dimensions, poly-
nomial in even dimensions, for compactly supported initial data. A related estimate is the
integrability of the local energy, introduced in [8],

(1.6) k.�u; �@tu/kL2.R;H1�L2/ .� k.u0; u1/k PH1�L2 ;

where � is an arbitrary smooth compactly supported function. In odd space dimensions,
the exponential decay of the local energy was first used in [44] to show global-in-time
Strichartz estimates. This result was then extended independently to all space dimensions
in [8] and [35]. The general argument of Burq [8] shows that (1.6), together with the
local-in-time Strichartz estimates, imply global Strichartz estimates. When the obstacleK
is moreover assumed to be star-shaped, the same computation as in the article of Bahouri
and Shatah [4] yields that any solution scatters to a linear solution. The only difference
with the case without obstacle is that boundary terms appear in the integration by parts.
The key point is that when � is star-shaped and u satisfies Dirichlet boundary conditions,
these boundary terms come with a good sign, so that the proof is still valid in this case.
This argument can be extended to illuminated obstacles, that are generalisations of star-
shaped obstacles, as done in [1], [2], adapting the multiplier so that the boundary term has
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the right sign, and in [31], showing that it decays to zero. However, the case of a general
non-trapping obstacle seems at the moment out of hand due to the rigidity of the Morawetz
multiplier arguments used for now.

Much less is known in the case of Neumann boundary conditions (defined precisely
in Section 2.2 below). Note that these boundary conditions are more challenging than the
Dirichlet boundary conditions, as they do not make sense in the energy space. Also, the
strong Huygens principle is lost in this case (see Proposition 2.4).

Local-in-time Strichartz inequalities for the linear wave equation with Neumann boun-
dary condition were obtained by Blair, Smith and Sogge [5], and global existence for
equation (1.1)–(1.2), with � D 1, by Burq and Planchon [11]. Exponential decay of the
local energy in the three-dimensional case was shown by [37]. Combined with the local-
in-time Strichartz estimates [5], this should lead to global in time Strichartz estimates
by the arguments of [44]. We give a direct proof of (1.6) (see Proposition 2.6) when the
obstacle is the unit ball and the solution is radial, which implies global Strichartz estimates
by the main result of [8].

The asymptotic behaviour of the solutions of the nonlinear equation (1.1)–(1.3) was
to our knowledge not previously investigated. Assuming the global Strichartz estimates
for the linear wave equation, the proof of scattering in [4] does not work anymore since
the boundary terms appearing in the integration by parts do not seem to have any specific
signs and cannot be controlled.

The main result of this article is that the scattering to a linear solution holds for the
defocusing wave equation with Neumann boundary conditions, when K is the unit ball
of R3 and .u0; u1/ is radially symmetric. We thus consider the equation

@2t u ��uC u
5
D 0 in R3 n B.0; 1/;(1.7)

@r u D 0 for r D 1;(1.8)
Eu�tD0 D .u0; u1/ 2 H .Bc/;(1.9)

where B.0; 1/ is the unit ball of R3 and H .Bc/ is the space of radial functions in . PH 1 �

L2/.R3 n B.0; 1//, and the corresponding linear wave equation

(1.10) @2t uL ��uL D 0 in R3 n B.0; 1/;

with the boundary condition (1.8).

Theorem 1.1. Let u be a solution of (1.7) with Neumann boundary condition (1.8) and
initial data (1.9). Then u is global and there exists a solution uL of (1.10), (1.8), with
initial data in H .Bc/, such that

lim
t!C1

kEu.t/ � EuL.t/kH.Bc/ D 0:

Our proof uses and extends the by now standard compactness/rigidity scheme intro-
duced by Kenig and Merle in [27], [28] to study the focusing energy-critical Schrödinger
and wave equations on RN . The compactness step consists in constructing, in a contradic-
tion argument, a global nonzero solution uc of (1.7), (1.8) such that ¹Euc.t/ W t 2 Rº has
compact closure in H .Bc/. The essential tool of this construction is a profile decom-
position (in the spirit of the one introduced by Bahouri and Gérard [3] on the whole
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space), describing the defect of compactness of the Strichartz inequality kuLkL5.R;L10/ .
k.u0; u1/kH.Bc/ for solutions of (1.10), (1.8). We construct this profile decomposition,
which is new for the wave equation with Neumann boundary conditions, in Section 4.
In this decomposition, the linear wave equation on the whole space appears as a limiting
equation for dilating profiles, as shown in Section 3. The knowledge of the fact that any
solution of the defocusing equation on the whole space scatters is essential to rule out
these profiles and obtain the critical solution uc , constructed in Section 5.

The second step of the proof (the rigidity argument), carried out in Section 6, con-
sists in ruling out the existence of the critical solution. Since no monotonicity formula is
available due to the Neumann boundary condition, we use the channels of energy method
introduced in [12], [13] to classify solutions of the focusing energy-critical wave equation
on R3. Using this method, we prove that uc must be independent of time, a contradiction
with the well-known fact that there is no stationary solution of (1.7) with boundary condi-
tions (1.8) in PH 1. This idea was first used in the context of the supercritical wave equation
in [14].

Our method also gives scattering for solutions of the focusing wave equation:

(1.11) @2t u ��u � u
5
D 0 in R3 n B.0; 1/;

with Neumann boundary condition (1.8) below a natural energy threshold. Let W be the
ground state of the equation on R3:

W D .1C jxj2=3/�1=2;

and recall that W is (up to scaling and sign change) the unique radial, stationary solution
of ��W DW 5, see [41], [21]. Denote by ER3.W; 0/ the energy of the solution .W; 0/ on
the whole space R3:

ER3.W; 0/ WD
1

2

Z
R3

jrW j2 �
1

6

Z
R3

W 6:

Then we have the following.

Theorem 1.2. Let u be a solution of (1.11), (1.8) with initial data (1.9). Assume

E.u0; u1/ < ER3.W; 0/;

Z
R3nB.0;1/

jru0.x/j
2dx <

Z
R3

jrW.x/j2dx:

Then u is global,Z
R3nB.0;1/

jru.t; x/j2dx <

Z
R3

jrW.x/j2dx for all t 2 R;

and u scatters to a linear solution.

Finally, we have exactly the same dichotomy as in R3 for the solutions below the
energy threshold ER3.W; 0/. Indeed, with the same proof as in [28], one obtains:

Theorem 1.3. Let u be a solution of (1.11), (1.8) with initial data (1.9). Assume

E.u0; u1/ < ER3.W; 0/;

Z
R3nB.0;1/

jru0j
2dx >

Z
R3

jrW j2dx:

Then u blows up in finite time.
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Noting that by variational arguments (see Proposition 7.1), using that W is a maxim-
izer to the critical Sobolev inequilality on R3, one cannot have E.u0; u1/ < ER3.W; 0/

and
R
¹jxj>1ºjru0j

2 D
R

R3 jrW j
2, we see that Theorems 1.2 and 1.3 describe all solutions

of (1.11), (1.8) such that E.u0; u1/ < ER3.W; 0/. Let us also mention that Theorems 1.2
and 1.3 cannot be generalized to non-symmetric solutions or other domains than the exter-
ior of a ball, see Section 7.4.

We finally give a few more references related to this problem. The linear wave equation
outside an obstacle was initiated by Morawetz in [36], and considered in the 60s and 70s
by Lax and Phillips, Morawetz, Ralston and Strauss, and many other contributors; for an
extensive discussion, see, for example [38], and references therein.

For resolvent estimates in general non-trapping geometries, leading, in particular,
to (1.6), see [7] and references therein. For a general discussion about local energy decay
estimates, one can look at the recent paper [6].

A profile decomposition for the wave equation outside a convex obstacle with Dirichlet
boundary condition was constructed in [19].

The focusing nonlinear wave equation with a superquintic nonlinearity outside the unit
ball of R3 with Dirichlet boundary conditions was considered in [17].

The nonlinear Schrödinger equation outside a non-trapping obstacle with Dirichlet
boundary conditions was first considered in [9]. The scattering for the three-dimensional
defocusing cubic Schrödinger equation outside a star-shaped obstacle was shown by Plan-
chon and Vega in [39] and, for the analogous equation in two space dimensions, in [40].
The energy-critical case outside a strictly convex obstacle in three dimensions was treated
in [29]. A scattering result for a nonlinear Schrödinger equation in a model case of weakly
trapping geometry can be found in [32]. To our knowledge, there is no work on the non-
linear Schrödinger equation outside an obstacle with Neumann boundary conditions.

Notations

We will use the following notations:
• If u is a function of time and space, Eu is understood to be .u; @tu/.
• Conversely, if Eu 2 H .Bc/, u is understood to be the first component of Eu.
• B.0; R/ is the ball centered in 0 of radius R, B D B.0; 1/, and Bc WD R3nB.0; 1/ is

the domain we are interested in.
• SR3 and SN are the linear flow of the wave equation, respectively, in R3 and in Bc

with Neumann boundary condition. If .u0; u1/ is the initial data, we will denote by
SN .t/.u0; u1/ or .SN .u0; u1//.t/ the solution of (1.8), (1.9), (1.10) at time t , and
by .SN .u0; u1//.t; r/ the solution at time t , with location x D jr j. We use similar
notations for SR3 , and the flows SN and SR3 defined below. The arrowed versions ESR3

and ESN denote the flows together with their first temporal derivative.
• SR3 and SN are the corresponding nonlinear flows for the defocusing energy critical

wave equation (1.1).
• We will make the following convention: if .u0; u1/ 2 H .R3/, SN .t/.u0; u1/ and
SN .t/.u0; u1/ will denote the flows applied to the restriction of .u0; u1/ to Bc .
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• Throughout the paper, we often deal with solutions of linear and nonlinear equations
both in Bc with Neumann boundary conditions and in R3. In such situations, the letter
u has been chosen for the Neumann solutions, whereas v stands for R3 solutions.

• LpLq WD Lp.R; Lq.Bc//.
• PH 1.Bc/ is the space of radial functions f 2 L6.Bc/ such that jrf j 2 L2.Bc/.
• H .Bc/ is the space of radial functions in PH 1.Bc/ � L2.Bc/.
• Finally, H .R3/ is the space of radial functions in PH 1.R3/ � L2.R3/.

2. Preliminaries

2.1. The functional setting

Definition 2.1. We define the extension operator P from PH 1.Bc/ to PH 1
rad.R

3/ by

Pu.r/ WD

´
u.r/; r � 1;

u.1/; r < 1;

which is well defined since, by the radial Sobolev embedding, for u 2 PH 1.Bc/, the func-
tion r 7! u.r/ is continuous on Œ1;1/. Similarly, we define the extension operator EP from
H .Bc/ to H .R3/ by

EP .f; g/.r/ WD

´
.f .r/; g.r//; r � 1;

.f .1/; 0/; r < 1:

Lemma 2.2. For u 2 PH 1.Bc/, we have

(2.1)
Z 1
1

u.r/2dr � 4

Z 1
1

u0.r/2 r2dr;

in particular, for any compact K � Bc ,

(2.2) kukL2.K/ . kuk PH1 :

Moreover,

(2.3) ju.1/j . kuk PH1.Bc/:

Proof. Integrating by parts, we get

(2.4) 2

Z 1
1

r u.r/u0.r/ dr D �

Z 1
1

u.r/2 dr � u.1/2:

Note that the integration by parts is justified by approximating u by smooth compactly
supported functions. Thus,Z 1

1

u.r/2dr � �2

Z 1
1

r u.r/u0.r/ dr;

and (2.1) follows by the Cauchy–Schwarz inequality. The estimate (2.2) follows imme-
diately. Bounding the left-hand side of (2.4) by the Cauchy–Schwarz inequality, and
using (2.1), we obtain (2.3).
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Remark 2.3. With the same proof, one can generalize (2.3) to ju.r/j . kuk PH1.Bc/. This
implies readily that a radial solution of the defocusing critical wave equation with Neu-
mann boundary condition (1.7), (1.8) is uniformly bounded, thus global (giving a short
proof of the result of [11] in the radial case). Similarly, any radial solution of the focusing
equation (1.11), (1.8) that is bounded in H .Bc/, is global.

2.2. Linear estimates

We first define precisely the wave equation with Neumann boundary conditions (see,
e.g., [25] for a general study of wave equations with boundary conditions).

We recall that the Neumann Laplace operator�N is a self-adjoint operator onL2.Bc/
with domain

D.�N / D
®
u 2 H 2.Bc/ W @Nu�@�D0 D 0

¯
:

Consider the operator AN on H 1.Bc/ � L2.Bc/, with

D.AN / D H
2.Bc/ �H 1.Bc/; AN .u0; u1/ D .u1; �Nu0/:

Then AN is closed and densely-defined, and thus generates a contraction semi-group. The
solution u.t; r/D .SN .u0; u1//.t; r/ of the linear wave equation with Neumann boundary
condition is defined as .u; @tu/ D etAN .u0; u1/. If .u0; u1/ 2 D.A3

N /, then u is C 2 and
satisfies the linear wave equation with Neumann boundary condition in the classical sense.

In the present radial case, we can derive an explicit formula for the linear flow:

Proposition 2.4 (The linear group). For any .u0; u1/ 2H .Bc/, we have, for almost every
r � 1 and t 2R, also for every r � 1 and t 2R if we have additionally .u0;u1/ 2C 1�C 0,

(2.5) .SN .u0; u1//.t; r/ D
1

r
.'C.r � t /C '�.r C t //;

where, denoting .�0; �1/ WD .ru0; ru1/, for s � 1,

(2.6) 'C.s/ D
1

2
�0.s/ �

1

2

Z s

1

�1.�/ d�; '�.s/ D
1

2
�0.s/C

1

2

Z s

1

�1.�/ d�;

and, for s 2 .�1; 1�,

'C.s/ D

Z 2�s

1

esC��2.�00.�/C �1.�// d� �
1

2
�0.2 � s/(2.7)

�
1

2

Z 2�s

1

�1.�/ d� C e
s�1�0.1/;

'�.s/ D

Z 2�s

1

esC��2.�00.�/ � �1.�// d� �
1

2
�0.2 � s/(2.8)

C
1

2

Z 2�s

1

�1.�/ d� C e
s�1�0.1/:
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Moreover, for f 2 L1.R; L2.R3; Bc// radial, we have, for t � 0 and r � t < 1,Z t

0

.SN .0; f .�///.t � �; r/ d�(2.9)

D
1

r

Z 1�rCt

0

�Z 2�rCt��

1

er�tC�C��2�f .�; �/ d� C

Z rCt��

2�rCt��

�f .�; �/ d�

�
d�

C
1

2r

Z t

1�rCt

Z rCt��

r�tC�

�f .�; �/ d� d�:

Proof. Observe that, arguing by density, it suffices to consider .u0; u1/ 2 D.A3
N /, for

which @r .SN .u0;u1//.1; t/D 0 for all t . Let us denote �.t; r/D rSN .u0;u1/.t; r/. Then �
is the solution of the one dimensional problem

@2t � � @
2
r � D 0;(2.10)

@r � � ��rD1 D 0 for all t ¤ 0;(2.11)

��tD0 D .ru0; ru1/:(2.12)

By (2.10), �.r/ D 'C.r � t /C '�.r C t /. The boundary condition (2.11) gives

(2.13) '0C.1 � t /C '
0
�.1C t / D 'C.1 � t /C '�.1C t / for all t;

and the initial condition (2.12) gives (2.6). Then integrating (2.13) for t � 0 gives (2.7),
and integrating it for t � 0 gives (2.8). The identity (2.9) is then a straightforward compu-
tation.

As a first consequence of Proposition 2.4, we prove that any radial solution of the
linear wave equation on Bc with Neumann boundary conditions is asymptotically close
to a solution of the linear wave equation on R3.

Proposition 2.5. Let .u0; u1/ 2 H .Bc/. Then

(2.14) lim
t!1




 1
jxj

SN .t/.u0; u1/




L2.Bc/

D 0;

and there exists .v0; v1/ 2 H .R3/ such that

(2.15) lim
t!C1



 ESN .t/.u0; u1/ � ESR3.t/.v0; v1/




H.Bc/
D 0:

Proof. The proof is divided into two steps.

Step 1. We first prove (2.14). By a straightforward density argument and the conservation
of the energy, we can assume that .u0; u1/ is smooth and compactly supported. We let 'C
and '� be as in Proposition 2.4, and

N'C.s/ D 'C.s/C
1

2

Z C1
1

�1.�/ d�; N'�.s/ D '�.s/ �
1

2

Z C1
1

�1.�/ d�:

By (2.5),

(2.16) .SN .u0; u1//.t; r/ D
1

r
. N'C.r � t /C N'�.r C t //:
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We claim that there exists C > 0 (depending on u) such that

(2.17) j N'C.s/j C j N'�.s/j � Ce
s1s�C :

Note that (2.16) and (2.17) imply easily (2.14). Using that �0, �00 and �1 are bounded and
compactly supported, the bound of N'C in (2.17) follows from the fact that if s � 1,

N'C.s/ D
1

2
�0.s/C

1

2

Z C1
s

�1.�/ d�;

and if s < 1,

N'C.s/D

Z 2�s

1

esC��2.�00.�/C �1.�//d� �
1

2
�0.2� s/C

1

2

Z C1
2�s

�1.�/d� C e
s�1�0.1/:

The proof of the bound of N'� in (2.16) is very similar and we omit it.

Step 2. We next prove that there exists .v0; v1/ 2H .R3/ such that (2.15) holds. We recall
(see, e.g., Theorem 2.1 of [15]) that for any G 2 L2.R/, there exists a radial solution
v.t/ D SR3.t/.v0; v1/ of the linear wave equation on R3 such that

lim
t!1

Z C1
0

jr@tv.t; r/ �G.r � t /j
2dr D 0;(2.18)

lim
t!1

Z C1
0

jr@rv.t; r/CG.r � t /j
2dr D 0:(2.19)

Let u.t; r/D .SN .u0; u1//.t; r/ and let 'C.s/ be as in Proposition 2.4. We will prove that
'0C 2 L

2.R/ and that

lim
t!1

Z C1
1

jr@tu.t; r/C '
0
C.r � t /j

2dr D 0;(2.20)

lim
t!1

Z C1
1

jr@ru.t; r/ � '
0
C.r � t /j

2dr D 0:(2.21)

Letting .v0; v1/ be such that (2.18) and (2.19) are satisfied with G D �'0C, we see that
(2.20) and (2.21) imply the desired conclusion (2.15).

By the definition of 'C, we have

'0C.s/ D

´
1
2
�00.s/ �

1
2
�1.s/ if s � 1;

�
1
2
�00.2 � s/ �

1
2
�1.2 � s/C e

s�1u0.1/ if s � 1;

where .�0; �1/D .ru0; ru1/. Since �00 and �1 are in L2.Œ1;C1//, we obtain '0C 2 L
2.R/.

The same proof yields '0� 2 L
2.R/. By Proposition 2.4,

@tu.t; r/ D
1

r
.�'0C.r � t /C '

0
�.r C t //;

and thus Z C1
1

jr@tu.t; r/C '
0
C.r � t /j

2dr D

Z C1
1

j'0�.t C r/j
2dr

r!1
����! 0:



T. Duyckaerts and D. Lafontaine 668

Similarly,

@ru.t; r/ D
1

r
.'0C.r � t /C '

0
�.r C t // �

1

r
u.t; r/;

and thus, using (2.14),Z C1
1

jr@ru.t; r/ � '
0
C.r � t /j

2dr

� 2

Z C1
1

j'0�.t C r/j
2dr C 2

Z C1
1

ju.t; r/j2 dr
r!1
����! 0:

This concludes the proof.

Another consequence of Proposition 2.4 is the local decay of energy.

Proposition 2.6 (Local energy decay). Let � 2 C1c . For any .u0; u1/ 2 H .Bc/,

k.�u; �@tu/kL2.R;H.Bc// .� k.u0; u1/kH.Bc/;

where u D SN .u0; u1/.

Proof. Let �.t; r/ WD ru.t; r/ and let R > 0 be arbitrary. Note thatZ R

1

r2..@ru/
2
C u2 C .@tu/

2/ dr .R
Z R

1

..@r�/
2
C �2 C .@t�/

2/ dr;

thus, to obtain the proposition, it is sufficient to show that

(2.22)
Z 1
�1

Z R

1

..@r�/
2
C �2 C .@t�/

2/ dr dt .R ku0k2PH1.Bc/
C ku1k

2
L2
:

To this end, observe that, by conservation of energy,

(2.23)
Z R�1

�RC1

Z R

1

..@r�/
2
C �2 C .@t�/

2/ dr dt .R ku0k2PH1.Bc/
C ku1k

2
L2
;

where we used (2.2) to bound the u2 term. Thus, it suffices to bound the integrals
R
t�R�1

and
R
t��RC1. We will deal with the first one; the proof of the bound for the second one is

similar. Thus, let us suppose that t �R� 1. In particular, t � r � 1, so , by Proposition 2.4,
for such t ’s, for all r 2 Œ1; R�, � reads

�.t; r/ D

Z 2�rCt

1

er�tC��2.�00.�/C �1.�// d� C
1

2

Z rCt

2�rCt

�1.�/ d�

C
1

2
�0.r C t / �

1

2
�0.2 � r C t /C e

r�t�1�0.1/:

Thus, we have, for t � R � 1 and 1 � r � R,

.@r�.t; r//
2
C .@t�/

2
C �2(2.24)

.R
�Z 2�rCt

1

e��t .�00.�/C �1.�// d�

�2
C

�Z rCt

2�rCt

.�00.�/C �1.�// d�

�2
C �00.2 � r C t /

2
C �00.r C t /

2
C �1.r C t /

2
C �1.2 � r C t /

2
C e�2t�0.1/

2:
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By the Cauchy–Schwarz inequality,�Z 2�rCt

1

e��t .�00.�/C �1.�// d�

�2
�

�Z 2�rCt

1

e��t d�

��Z 2�rCt

1

e��t .�00.�/C �1.�//
2 d�

�
.R

Z 2�rCt

1

e��t .�00.�/
2
C �1.�/

2/ d�;

and therefore, Z 1
R�1

Z R

1

�Z 2�rCt

1

e��t .�00.�/C �1.�// d�

�2
d� dr dt

.R
Z 1
R�1

Z R

1

Z 2�rCt

1

e��t .�00.�/
2
C �1.�/

2/ d� dr dt

.R
Z 1
R�1

Z 1
1

e��t .�00.�/
2
C �1.�/

2/1��2Ct d� dt

D

Z 1
1

�Z 1
R�1

e��t1��2Ct dt

�
.�00.�/

2
C �1.�/

2/ d�

�

Z 1
1

�Z 1
��2

e��t dt

�
.�00.�/

2
C �1.�/

2/ d�

.
Z 1
1

.�00.�/
2
C �1.�/

2/ d�

. ku0k2PH1.Bc/
C ku1k

2
L2
;

where we used (2.1) and the Cauchy–Schwarz inequality to obtain the last bound. AsR rCt
2�rCt

d� .R 1; the term coming from the second term in the first line of (2.24) is handled
in the same way. Moreover,Z 1

R�1

Z R

1

�00.2 � r C t /
2dr dt D

Z R

1

Z 1
R�1

�00.2 � r C t /
2dt dr

� R

Z 1
1

�00.s/
2ds .R ku0k2PH1.Bc/

;

and all the terms of the second line of (2.24) are dealt with similarly. Finally, the fact that,
by (2.3),

�0.1/
2
D u0.1/

2 . ku0k2PH1.Bc/

permits to handle the term coming from the third line of (2.24). We just showed thatZ C1
R�1

Z R

1

.@r�/
2
C .@t�/

2
C �2dr dt .R ku0k2PH1.Bc/

C ku1k
2
L2
:

Dealing with the part
R �RC1
�1

in the same way and using (2.23), the estimate (2.22) on �
and hence the proposition follow.

The integrability of the local energy allows us to obtain the following crucial global
Strichartz estimates for the Neumann flow.
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Proposition 2.7 (Strichartz estimates for Neumann flow). For any couple .p; q/ verifying

(2.25)
1

p
C
3

q
D
1

2
;

3

p
C
2

q
� 1; 2 < p � 1; q <1;

there exists a constantC>0 such that for all .u0;u1/2H .Bc/ and f 2L1.R; L2rad.r�1//,
if u verifies

@2t u ��Nu D f in Bc ; @nu D 0 on @B.0; 1/; Eu�tD0 D .u0; u1/;

then, for all T > 0,

kukLp.Œ�T;T �;Lq.r�1// � C.k.u0; u1/kH.Bc/ C kf kL1.Œ�T;T �;L2.r�1///:

Proof. The main result of [8] shows that the local energy decay of Proposition 2.6 com-
bined with local in time Strichartz estimates imply global in time ones. Such local estim-
ates where shown by [5] for the above range of couples .p; q/, hence the proposition
follows.

Let us also recall the Strichartz estimates in R3.

Proposition 2.8 (Strichartz estimates in R3, [22], [23], [26], [34]). For any couple .p; q/
verifying

(2.26)
1

p
C
3

q
D
1

2
;

1

p
C
1

q
�
1

2
; 2 < p � 1; q <1;

there exists a constant C > 0 such that for all .u0; u1/2H .R3/ and f 2 L1.R;L2.R3//,
if v verifies

@2t v ��v D f; Ev�tD0 D .v0; v1/;

then, for all T > 0,

kvkLp.Œ�T;T �;Lq.R3// � C.k.v0; v1/kH.R3/ C kf kL1.Œ�T;T �;L2.R3///:

Remark 2.9. Observe the loss in the range of admissible couples (2.25) in Proposition 2.7
compared to the free case (2.26). This is because we used the local-in-time Strichartz
estimates of [5], valid in a general geometrical setup. It is likely that the above Strichartz
estimates, outside a ball, could be extended to the full range of couples (2.26), using for
the local-in-time estimates a construction similar to the one done in [43] for Dirichlet
boundary conditions. However, the range of exponents (2.25) is sufficient for our analysis
and we do not pursue this question here.

As a last consequence of the explicit formula for the linear group given by Proposi-
tion 2.4, we have the following.

Lemma 2.10. Let .u0; u1/ 2 .C 1 � C 0/ \H .Bc/.

(1) We have
SN . �/.u0; u1/ 2 C

0.R � Bc/ \ C 1.¹t ˙ r ¤ 1º/;

with
@r .SN .u0; u1//.1; t/ D 0 for all t ¤ 0:
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(2) If, in addition, f 2 L1.R; L2.Bc// is radial and continuous and u is defined by

u.t/ WD SN .t/.u0; u1/C

Z t

0

SN .t � �/.0; f .�// d�;

then u 2 C 0.R � Bc/ \ C 1.¹t ˙ r ¤ 1º/ and

@ru.1; t/ D 0 for all t ¤ 0:

Proof. The explicit formulas (2.5)–(2.8) give the first part of the lemma, and (2.9) then
gives the second part for t > 0. The case t < 0 is given by a similar computation.

2.3. Perturbative theory

Definition 2.11. We say that a solution u of the nonlinear wave equation (1.7) with Neu-
mann boundary conditions (1.8) scatters in the future when there exists a solution uL of
the linear wave equation (1.10) with Neumann boundary conditions (1.8) such that

lim
t!C1

kEu.t/ � EuL.t/kH.Bc/ D 0:

We define similarly scattering in the past. We say that the solution scatters when it scatters
both in the future and in the past.

In a classical way, we have the following.

Proposition 2.12. Let .u0; u1/ 2 H .Bc/ and u.t/ D SN .t/.Eu0/. Then

(2.27) u 2 L5.Œ0;C1/; L10/ H) u scatters in the future:

A similar property holds in the past. Moreover, there exists �0 > 0 such that, for any
.u0; u1/ 2 H .Bc/,

(2.28) k.u0; u1/kH.Bc/ � �0 H) SN . �/.u0; u1/ 2 L
5L10;

and SN . �/.u0; u1/ scatters. In addition, for any .u0; u1/ 2H .Bc/, there exists a solution
U˙ 2 L5.R˙; L10/ of (1.7)–(1.8) such that

(2.29) k EU˙.t/ � ESN .t/.u0; u1/kH.Bc/ ! 0 as t !˙1:

Sketch of proof. Observe that .5; 10/ is Strichartz-admissible in the sense of Proposi-
tion 2.7. The properties (2.27) and (2.28) are then classical consequences of the global
in time Strichartz estimates. Finally, (2.29) can be proved by a fixed point argument using
the Strichartz estimates.

Proposition 2.13 (Perturbation). For anyM > 0, there exists �.M/ > 0 such that, for any
0 < � � �.M/, and all .u0; u1/; . Qu0; Qu1/ 2 H .Bc/, e 2 L1L2 and u 2 L5L10 verifying

kukL5L10 �M; kSN . �/..u0; u1/ � . Qu0; Qu1//kL5L10 � �; kekL1L2 � �;
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if u; Qu are solutions of8̂<̂
:
@2t u ��Nu D �u

5 in B.0; 1/c ;

Eu�tD0 D .u0; u1/;

@nu D 0 on @B.0; 1/;

8̂<̂
:
@2t Qu ��N Qu D �Qu

5
C e in B.0; 1/c ;

EQu�tD0 D . Qu0; Qu1/;

@n Qu D 0 on @B.0; 1/;

then Qu 2 L5L10 and we have
ku � QukL5L10 . �:

In addition, the same statement holds for the corresponding equations in R3.

Proof. The proof is classical and similar to Proposition 4.7 of [18]; we give it for com-
pleteness. Let us denote w D u � Qu. Then w is solution of

@2tw ��Nw D �u
5
C Qu5 � e; Ew�tD0 D .u0; u1/ � . Qu0; Qu1/:

Let T > 0. By the Strichartz inequality for the Neumann flow (Proposition 2.7) applied
to w, we get, with an implicit constant independent of T ,

ku � QukL5.�T;T /L10 . k Qu5 � u5kL1.�T;T /L2 C kekL1L2
C kSN . �/..u0; u1/ � . Qu0; Qu1//kL5L10

. kju � Quj.juj4 C ju � Quj4/kL1..�T;T /L2/ C kekL1L2
C kSN . �/..u0; u1/ � . Qu0; Qu1//kL5L10

� C

�Z T

�T

ku � QukL10kuk
4
L10
C ku � Quk5

L5..�T;T /;L10/

C kekL1L2 C kSN . �/..u0; u1/ � . Qu0; Qu1//kL5L10

�
:

We apply the Grönwall-type lemma of [18] (Lemma 8.1), with

' D ku � QukL10 ; 
 D 5; f D Ckuk4
L10
; ˇ D 1;

� D C
�
ku � Quk5

L5..�T;T /;L10/
C kekL1L2 C kSN . �/..u0; u1/ � . Qu0; Qu1//kL5L10

�
:

We obtain, for all T > 0,

ku � QukL5..�T;T /;L10/ �
�
kekL1L2 C kSN . �/..u0; u1/ � . Qu0; Qu1//kL5L10

C ku � Quk5
L5..�T;T /;L10/

�
�ˆ.CM 4/;

whereˆ.s/D 2�.3C 2s/, with � being the Gamma function. Let CM WD 6ˆ.CM 4/ and
let �.M/ > 0 be sufficiently small so that, for any � � �.M/,

�5C 5M � � H) � � 1=C
5=4
M :

Then, given T > 0 so that ku � QukL5..�T;T /;L10/ � CM �, we have

ku � QukL5..�T;T /;L10/ � ˆ.CM
4/.2� C C 5M �

5/;

and thus ku � QukL5..�T;T /;L10/ � 3ˆ.CM 4/� � 1
2
CM �. It easily follows that we can

make T goes to infinity, thus ku � QukL5.R;L10/ �
1
2
CM � and the lemma follows. The

same proof works for the problem in R3 using the corresponding Strichartz estimates.
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3. Comparison between Neumann and R3 evolutions for dilating
profiles

Let us introduce the following notation for the scaling associated to the equation

Definition 3.1. For � > 0, �� denotes the rescaling on PH 1.R3/, given by

��.f / D
1

�1=2
f
�
�

�

�
;

and on H .R3/, given by

��.f; g/ WD

�
1

�1=2
f
�
�

�

�
;
1

�3=2
g
�
�

�

��
:

The aim of this section is to show that a dilating profile (�!1) does not see the
obstacle, in the sense that for such profiles, the associated Neumann and R3 evolutions
are asymptotically the same.

Lemma 3.2 (Comparison of linear evolutions for dilating profiles). Let E 2 H .R3/, let
f 2 L1.R; L2.R3// be radial, let .�n/n�1 be a sequence of positive real numbers such
that �n ! C1, let .tn/n�1 be a sequence of times, let v be the solution in the sense of
Duhamel of

@2t v ��v D f in R3; Ev�tD0 D E ;

and let vn WD ��nv. Finally, let

fn WD
1

�
5=2
n

f
�
� � tn

�n
;
�

�n

�
and let un be the solution in the sense of Duhamel of

@2t un ��un D fn in Bc ; @run D 0 for r D 1; Eun�tD�tn D Evn�tD�tn :

Then, as n goes to infinity,

(3.1) sup
t2R
kun.t/ � vn.t/kH.Bc/ ! 0

and

(3.2) kun � vnkL5L10 ! 0:

Proof. Observe that, by interpolation, it suffices to obtain (3.1). Indeed, if (3.1) holds, by
Sobolev embedding, we have kun � vnkL1L6 ! 0, and then (3.2) follows by Hölder’s
inequality, the Minkowski inequality, the Strichartz estimates for both flows (Proposi-
tions 2.7 and 2.8) and the conservation of energy. Moreover, arguing by density, we can
assume that E and f are smooth and compactly supported. We will argue in three steps:

(1) tn D 0 for all n and f D 0,

(2) tn D 0 for all n and E D E0,
(3) general case.
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Step 1: tn D 0 and f D 0. We have, using the equations satisfied by un and vn,

d

dt

�1
2

Z
Bc
jr.un � vn/j

2
C
1

2

Z
Bc
j@t .un � vn/j

2
�

(3.3)

D �

Z
@Bc

@r .un � vn/@t .un � vn/

D

Z
@Bc

@rvn@t .un � vn/ D 4�@rvn.t; 1/@t .un � vn/.t; 1/:

We now claim that, for large n,

j@tvn.t; 1/j C j@rvn.t; 1/j .
1

�
3=2
n

1Œ�C�n;C�n�;(3.4)

j@tun.t; 1/j .
1

�
3=2
n

C
e�jt j

�
1=2
n

;(3.5)

where the constant C > 0 and the implicit constants depend on E'. Observe that integrating
(3.3), (3.4) and (3.5) give (3.1).

Let us first show (3.4). Observe that

vn.t; x/ D
1

�
1=2
n

v
� t
�n
;
x

�n

�
;

where v WDSR3.t/ E . As E 2C1c , Ev is bounded in any Sobolev spaceH � .R3/�H ��1.R3/
for � � 1. As a consequence,

(3.6) j@tvn.t; 1/j C j@rvn.t; 1/j .
1

�
3=2
n

�

Furthermore, by the strong Huygens principle, v is supported in ¹jt j � jxj C C º, and thus

(3.7) vn.t; 1/ D 0 for jt j � 1C C�n:

Together with (3.6), (3.7) gives (3.4).
We now show (3.5). By Proposition 2.4, we have, for t � 0,

(3.8) @tun.t; 1/ D �'
0
C;n.1 � t /C '

0
�;n.1C t /;

where, denoting E D . 0;  1/,

(3.9) '0�;n.s/ D
1

2

� 1

�
3=2
n

 00

� s
�n

�
C

1

�
3=2
n

 01

� s
�n

��
and

'0C;n.s/ D �
1

2

� 1

�
3=2
n

 00

�2 � s
�n

�
C

1

�
3=2
n

 01

�2 � s
�n

��
(3.10)

C
1

�
3=2
n

Z 2�s

1

esC��2
�
 00

� �
�n

�
C  01

� �
�n

��
d� C es�1

1

�
1=2
n

 0

� 1
�n

�
:

This last identity (3.10), with (3.8) and (3.9), gives (3.5) for t � 0. The argument for t � 0
is similar and step 1 follows.
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Step 2: tn D 0 and E D E0. As in the first step, we have

d

dt

�1
2

Z
Bc
jr.un � vn/j

2
C
1

2

Z
Bc
j@t .un � vn/j

2
�

(3.11)

D 4�@rvn.t; 1/@t .un � vn/.t; 1/:

Let us show that

j@tvn.t; 1/j C j@rvn.t; 1/j .
1

�
3=2
n

1Œ�C�n;C�n�;(3.12)

j@tun.t; 1/j .
1

�
7=2
n

t2;(3.13)

which, together with (3.11), implies (3.1).
We first show (3.12). We have

vn.t; x/ D
1

�
1=2
n

v
� t
�n
;
x

�n

�
;

where v WD SR3.t/ E . As @tv and @rv are bounded,

(3.14) j@tvn.t; 1/j C j@rvn.t; 1/j .
1

�
3=2
n

:

In addition, as we assumed f to be compactly supported in time and space,

vn.t; 1/ D 0 for jt j � 1C C�n;

which, with (3.14), gives (3.12).
In order to prove (3.13), we will need the following.

Claim. Let f 2 C 0.R � Bc/ be radial and bounded, that is, for all .t; x/ 2 R � Bc ,
jf .t; x/j �M , and let w be the solution of

@2tw ��w D f in Bc ; @rw D 0 for r D 1; Ew�tD0 D
E0:

Then we have
jw.t; x/j �

1

2
Mt2 for all .t; x/ 2 R � Bc :

To obtain (3.13) from the claim, we apply it to w WD @tun, observing that as un is
a regular solution, @tun is in C 0.R; D.��N //, and thus satisfies Neumann boundary
conditions. Let us now prove the claim to achieve the proof of step 2. Let

z.t; r/ WD
1

2
Mt2 � w.t; r/:

By the formulas of Proposition 2.4, we see that if u1 is positive for t � 0, then so is
SN .0;u1/.t; r/. Thus, by the Duhamel formula, as .@2t ��/z � 0, we have z � 0 for t � 0,
from which, we obtain w � 1

2
Mt2 for t � 0. Considering Qz.; r/ WD 1

2
Mt2 C w.t; r/, we

obtain as well�w � 1
2
Mt2 for t � 0. The negative times are obtained in a similar fashion.
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Step 3: general case. By the two first steps, we obtain the case tn D 0. Now, let wn be
the solution of the Neumann problem with initial condition at t D 0

@2twn ��wn D fn in Bc ; @rwn D 0 for r D 1; Ewn�tD0 D Evn�tD0:

By the case tn D 0, we have, as n!1,

(3.15) sup
t2R
kwn � vnkH.Bc/ ! 0

and, in particular, since by definition un.�tn/ D vn.�tn/,

(3.16) kwn.�tn/ � un.�tn/kH.Bc/ ! 0:

From (3.16), as wn � un is solution of the homogeneous linear wave equation with Neu-
mann boundary conditions in Bc , it follows from conservation of energy that

(3.17) sup
t2R
kwn � unkH.Bc/ D kwn.�tn/ � un.�tn/kH.Bc/ ! 0:

The result (3.1) follows from (3.15) and (3.17).

The following lemma will play a key role in the comparison between the R3 and
Neumann dynamics in the nonlinear profile decomposition introduced in Section 5 (see,
in particular, (5.9)).

Lemma 3.3 (Comparison of nonlinear evolutions for dilating profiles). Assume that V 2
L5.R; L10.R3// is a solution of the critical defocusing nonlinear wave equation in R3,
(i.e., (1.1) with�DR3 and �D 1), .�n/n is a sequence of positive real numbers such that
�n !C1, and .tn/n 2 RN . We denote

Vn.t; x/ WD
1

�
1=2
n

V
� t � tn
�n

;
x

�n

�
D SR3.t/��n

�
EV
�
�tn

�n

��
and let Un be the solution of the nonlinear Neumann problem

@2tUn ��Un C U
5
n D 0 in Bc ; @rUn D 0 for r D 1; EUn�tD0 D

EVn�tD0:

Then
lim sup
n2N

kUnkL5L10<1

and, as n!1,

sup
t2R
k EUn.t/ � EVn.t/kH.Bc/ C kUn � VnkL5L10 ! 0:

Remark 3.4. The conclusion of the proposition implies

lim
n!1




ESR3.t/��n

�
EV
�
�tn

�n

��
� ESN .t/��n

�
EV
�
�tn

�n

��



H.Bc/

D 0:
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Proof. Observe that, by energy estimates, it suffices to show kUn �VnkL5L10! 0. LetZn
be the solution of the nonlinear Neumann problem

@2tZn ��Zn C V
5
n D 0 in Bc ; @rZn D 0 for r D 1; EZn�tD0 D

EUn�tD0:

By Lemma 3.2 applied to Zn. � C tn/ and Vn. � C tn/, we get

(3.18) kZn � VnkL5L10 ! 0:

Let T > 0 and observe that8̂<̂
:
@2t .Zn � Un/C�.Zn � Un/ D U

5
n � V

5
n in Bc ;

@r .Zn � Un/ D 0 for r D 1;
EZn � EUn�tD0 D

E0;

and therefore, we have, by the global Strichartz estimates for the Neumann flow (Propos-
ition 2.7), together with the Hölder and Minkowski inequalities, with an implicit constant
which is independent of T > 0,

kZn � UnkL5.�T;T /L10 . kU 5n � V
5
n kL1.�T;T /L2(3.19)

.
Z T

�T

�
kVn.t/k

4
L10
kUn.t/ � Vn.t/kL10 C kUn.t/ � Vn.t/k

5
L10

�
dt

.
Z T

�T

�
kVn.t/k

4
L10
kZn.t/ � Un.t/kL10 C kZn.t/ � Un.t/k

5
L10

�
dt C �n.T /;

where we decomposed Un.t/ � Vn.t/ D Un.t/ �Zn.t/CZn.t/ � Vn.t/ in the last line,
and

�n.T / D

Z T

�T

�
kVn.t/ �Zn.t/k

5
L10
C kVn.t/k

4
L10
kVn.t/ �Zn.t/kL10

�
dt:

By Hölder’s inequality and (3.18),

�0n WD sup
T>0

�n.T /(3.20)

� kVn �Znk
5
L5.R;L10/ C kV k

4
L5.R;L10.R3//

kVn �ZnkL5.R;L10/ ! 0:

By (3.19), we have, with an implicit constant independent of T ,

kZn � UnkL5.�T;T /L10 .
Z T

�T

kVn.t/k
4
L10
kZn.t/ � Un.t/kL10 dt(3.21)

C �0n C kZn � Unk
5
L5.�T;T /L10

:

Now, kVnk4L10 2 L
5=4.R/ and kkVnk4L10kL5=4.R/ D kV k

4
L5L10

. Thus, by (3.21), using the
Gronwall-type lemma of [18] (Lemma 8.1), for all T > 0, with C > 0 independent of
T > 0, we get

(3.22) kZn � UnkL5.�T;T /L10 � C.�
0
n C kZn � Unk

5
L5.�T;T /L10

/:
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Let � > 0 be small enough so that 2C�5 � 1
2
�, and let n be large enough so that �0n � �

5.
From (3.22), it follows that if T is such that kZn � UnkL5.�T;T /L10 � �, then we have

kZn � UnkL5.�T;T /L10 �
1

2
�:

We can therefore send T to infinity to obtain

kZn � UnkL5.R;L10/ ! 0;

and the lemma follows using (3.18).

4. Linear profile decomposition

We recall that, by convention, if .u0; u1/ 2 H .R3/, SN .t/.u0; u1/ (resp. SN .t/.u0; u1/)
denotes the flow of the linear (resp. nonlinear) wave equation with Neumann boundary
condition applied to the restriction of .u0; u1/ to Bc . The aim of this section is to show
the following result.

Proposition 4.1 (Linear profile decomposition). Let . E�n/n�1 be a bounded sequence
in H .Bc/. Then, up to a subsequence, there exists sequences of real parameters .tj;n/j;n�1,
.�j;n/j;n�1 and a sequence . E j /j�1 of elements of H .R3/ such that

(4.1) j ¤ k H) lim
n!C1

jtj;n � tk;nj

�j;n
C

ˇ̌̌
log

�j;n

�k;n

ˇ̌̌
D C1;

and there exists a partition .Jcomp; Jdiff/ of N such that

j 2 Jcomp H) �j;n D 1 for all n;(4.2)

j 2 Jdiff H) �j;n
n!1
����! C1:(4.3)

Moreover,

tj;n=�j;n !˙1 for all j or tj;n D 0 for all n;(4.4)

E�n D

JX
jD1

ESN .�tj;n/��j;n
E j C EwJn for all J � 1;(4.5)

where the remainder enjoys the decay

(4.6) lim
J!C1

lim sup
n!C1

kSN . �/ Ew
J
n kL5L10 D 0:

In addition, this decomposition verifies the Pythagorean expansion

(4.7) k E�nk
2
H.Bc/ D

X
j2Jcomp
1�j�J

k E j k2H.Bc/ C

X
j2Jdiff
1�j�J

k E j k2
H.R3/

C k EwJn k
2
H.Bc/ C on.1/

for all J , as well as the L6 version of it:

(4.8) k�nk
6
L6
D

JX
jD1

kSN .�tj;n/��j;n
E j k6

L6
CkwJn k

6
L6
C on.1/ for all J:
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Recall from (2.1) the definition of the extension operator P . Proposition 4.1 will be a
consequence of the following.

Lemma 4.2. Let .fn/n�1 be a bounded sequence in PH 1.Bc/ such that for all sequence
of real numbers .�n/n�1 verifying

lim
n
�n D C1 or �n D 1 for all n;

we have, as n goes to infinity,

�1=2n P .fn/.�n �/ * 0 in PH 1.R3/:

Then, up to a subsequence, as n goes to infinity,

kfnkL6.Bc/ ! 0:

Proof. As .P .fn//n�1 is a bounded sequence in PH 1
rad.R

3/, we may apply the elliptic
profile decomposition of [20] and, up to a subsequence,

P .fn/ D

JX
jD1

1

�
1=2
j;n

'j

�
�

�j;n

�
C wJn ;

with
lim

J!C1
lim sup
n!C1

kwJn kL6 D 0:

Remark that
'j D weak lim

n!1
�
1=2
j;n P .fn/.�j;n �/ in PH 1.R3/:

Thus, for all j such that lim infn �j;n > 0, we have 'j D 0 by hypothesis. Indeed, in this
case, extracting subsequences, we can assume that �j;n has a limit �1 2 .0;1/[ ¹C1º.
If this limit is finite, we may furthermore assume, rescaling 'j if necessary, that �j;n D 1
for all n.

On the other hand, if j is such that �j;n ! 0 as n!1, observe that

�
1=2
j;n P .fn/.�j;n �/ D �

1=2
j;n fn.1/ on ¹r � 1=�j;nº:

By Lemma 2.2,
jfn.1/j . kfnk PH1.Bc/;

which is bounded independently of n, and we deduce that �1=2j;nP .fn/.�n �/ goes to zero
as n goes to infinity, uniformly on every compact of R3, and thus in the sense of distribu-
tions as well. By the uniqueness of the limit, we conclude that 'j D 0. Therefore, 'j D 0
for all j and the lemma follows.

Before showing Proposition 4.1, let us observe that

Lemma 4.3. Let . ERn/n be a sequence in H .R3/. For j D 1; 2, let .tj;n/n 2 RN , and let
.�j;n/n 2 .R�C/

N be such that

(4.9) lim
n!1

�j;n D C1 or �j;n D 1 for all n:
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(1) If there exists M such that

jt1;n � t2;nj C
ˇ̌̌
log

�1;n

�2;n

ˇ̌̌
�M for all n;

then, up to a subsequence, weakly in H .R3/,

ERn * 0 H) ��1�2;n
EP . ESN .t1;n � t2;n/��1;n

ERn/ * 0:

(2) If
jt1;n � t2;nj

�1;n
C

ˇ̌̌
log

�1;n

�2;n

ˇ̌̌
!C1;

then, for all E 2 H .R3/, up to a subsequence, weakly in H .R3/,

��1�2;n
EP . ESN .t1;n � t2;n/��1;n

E / * 0:

Proof. Let us show the first point. Up to the extraction of a subsequence, we have

t1;n � t2;n ! � 2 R;

and, additionally, either

.�1;n; �2;n/! .C1;C1/ or .�1;n; �2;n/ D .1; 1/ for all n:

In the first situation, Lemma 3.2 allows us to replace SN by SR3 , for which the result is
known. In the second situation, we have, for any test function E� 2 H .Bc/,

��1�1;n
EP . ESN .t2;n � t1;n/��2;n

E�/! EP . ESN .��/E�/

strongly in H .Bc/, and the first point follows.
Let us now deal with the second point. We are in one of the three following situations:
(i) �1;n !1,
(ii) for all n, �2;n!1, �1;n D 1 and there existsM > 0 such that jt1;n � t2;nj �M ,
(iii) for all n, �1;n D 1 and jt1;n � t2;nj ! 1.
In the situation (i), we can use again Lemma 3.2 to replace SN by SR3 and the result

follows.
In the situation (ii), up to a subsequence, EP . ESN .t1;n � t2;n/��1;n E / is converging

strongly in H .R3/:
EP . ESN .t1;n � t2;n/��1;n

E /! E�:

By a density argument, we can assume that E� is smooth and compactly supported. Then,
by the definition of the scaling � ,

��1�2;n
E�.r/! 0 for all r ¤ 0;

and the result follows.
In the situation (iii), we use this time Proposition 2.5 to compare the solution to a

solution in R3, for which the result is known.
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We are now in position to prove the main result of this section.

Proof of Proposition 4.1. We will first construct the profiles and the parameters by induc-
tion, so that the expansion (4.5) holds together with the orthogonality of the parameters
(4.1), (4.2), (4.3), and the Pythagorean expansion (4.7), (4.8). Then, we will show the
decay of the remainder (4.6).

For Ę D . Ęn/n a bounded sequence in H .Bc/, let us denote by ƒ. Ę/ the set of all
E 2 H .R3/ such that there exist an extraction ¹nkºk and sequences .�nk /k 2 .0;1/

N

and .tnk /k 2 RN such that

lim
k!1

�nk D1 or �nk D 1 for all k;

E D weak lim
k!1

�
��1�nk

EP . ESN .tnk / Ęnk /
�

in H .R3/:

We denote

(4.10) �. Ę/ WD sup
E 2ƒ. Ę/

k E kH.R3/;

and observe that, by the definition of EP and E ,

(4.11) k E kH.R3/ D k
E kH.Bc/ if E is associated with �nk D 1:

Extraction of the first profile. If �.. E�n/n�1/ D 0, then the decomposition holds. Other-
wise, there exists E 1 2H .R3/ and .�1;n/n�1 2 .R�C/

N , .t1;n/n�1 2RN , with �1;n!C1
or �1;n D 1 for all n, such that, up to an extraction,

(4.12) E 1 D weak lim
n!1

��1�1;n
EP . ESN .t1;n/ E�n/ in H .R3/

and
1

2
�..Eun/n�1/ � k E 

1
kH.R3/:

Let us denote

(4.13) Ew1n WD
E�n � ESN .�t1;n/��1;n

E 1:

Observe that, if t1;n=�1;n has a finite limit N�1, we can harmlessly assume that t1;n D 0 for
all n. Indeed, if �1;n D 1 for all n, we see by (4.12) that

EP . ESN .�N�1/. E 
1// D weak lim

n!1

EP . E�n/:

If �1;n !C1, we have, by (4.12) and Lemma 3.2,

E 1 D weak lim
n!1

��1�1;n.
ESR3.t1;n/ E�n/ D weak lim

n!1
. ESR3.t1;n=�1;n/�

�1
�1;n
E�n/

D weak lim
n!1

. ESR3. N�1/�
�1
�1;n
E�n/:

In both cases, we see that we can assume t1;n D 0 by modifying the limiting profile E 1.
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Now, by the definition of Ew1n (see (4.13)) and the weak convergence (4.12), we have˝
ESN .�t1;n/��1;n

E 1; Ew1n
˛
H.Bc/

D
˝
��1;n

E 1; ESN .t1;n/ E�n � ��1;n
E 1
˛
H.Bc/

(4.14)

D
˝
��1;n

E 1; EP . ESN .t1;n/ E�n/ � ��1;n
E 1
˛
H.R3/

D
˝
E 1; ��1�1;n

EP . ESN .t1;n/ E�n/� E 
1
˛
H.R3/

n!1
����! 0

and therefore

(4.15) k E�nk
2
H.Bc/ D k

ESN .�t1;n/��1;n
E 1k2H.Bc/ C kw

1
nk
2
H.Bc/ C on.1/:

But, by conservation of energy,

(4.16) k ESN .�t1;n/��1;n
E 1k2H.Bc/ D k��1;n

E 1k2H.Bc/:

Now, remark that if �1;n !1, then, as n goes to infinity, we have

k��1;n
E 1k2H.B.0;1// ! 0;

and thus, as ��1;n is an isometry on H .R3/,

k��1;n
E 1k2H.Bc/ D k��1;n

E 1k2
H.R3/

C on.1/(4.17)

D k E 1k2
H.R3/

C on.1/ as �1;n !1:

Therefore, combining (4.17) with (4.15) and (4.16), the decomposition (4.5) with the
Pythagorean expansion (4.7) holds at rank J D 1.

Let us now show the L6 Pythagorean expansion (4.8).

First case: t1;n D 0. Let

fn WD
ˇ̌̌ Z
j�nj

6
� j��1;n 

1
j
6
� jw1nj

6
ˇ̌̌
;

and observe that, as for any z; w 2 R,ˇ̌
jz C wj6 � jzj6 � jwj6

ˇ̌
. jzj jwj.jzj4 C jwj4/;

we have, by (4.13),

fn .
Z
j��1;n

E 1j jw1njgn; gn WD
ˇ̌
��1;n

E 1
ˇ̌4
C jw1nj

4:

On the other hand, by Sobolev embedding, conservation of energy and scale invariance,

k��1;n 
1
kL6 . k��1;n E 

1
kH.Bc/ � k��1;n

E 1kH.R3/ D k 
1
kH.R3/:

Together with (4.13) and Sobolev embedding, it follows that supnkgnkL3=2 <1, and we
get, by Hölder’s inequality,

fn .
� Z

Bc
j��1;n 

1
j
3
jw1nj

3
�1=3(4.18)

�

� Z
R3

j��1;n 
1
j
3
j Qw1nj

3
�1=3
D

� Z
R3

j 1j3 j���11;n
Qw1nj

3
�1=3

;
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where EQw1n WD EP E�n � ��1;n E 
1 extends the definition of Ew1n to R3 in the present case

t1;n D 0. Now, observe that, by (4.12) and (4.13), ���11;n
EQw1n * 0 weakly in H .R3/. By

Rellich’s theorem, for any compact K � R3, ���11;n Qw
1
n strongly converges to 0 in L4.K/.

It follows that j���11;n Qw
1
nj
3 converges strongly to 0 in L4=3.K/. By Sobolev embedding,

j���11;n
Qw1nj

3 is bounded in L2.R3/, thus has a weakly convergent subsequence in L2.R3/.
By uniqueness of the limit in the sense of distributions, this weak limit is zero and (4.8)
follows from (4.18).

Second case: t1;n=�1;n !˙1. In this case, we have

kSN .�t1;n=�1;n/ E 
1
kL6

n!1
����! 0;

which can be proved easily from the corresponding property for the free flow SR3 , and
Proposition 2.5. The L6 Pythagorean expansion (4.8) follows immediately.

Extraction of the subsequent profiles. Let us show how to extract the second profile, the
extraction of the J th from the .J � 1/th being the same for arbitrary J � 2. If �. Ew1n/D 0,
then we are done, otherwise, there exist E 2 2H .R3/ and sequences .�2;n/n�1 2 .R�C/

N ,
.t2;n/n�1 2 RN , with �2;n !C1 or �2;n D 1, such that

(4.19) E 2 D weak lim ��1�2;n
EP . ESN .t2;n/ Ew

1
n/ in H .R3/

and
1

2
�.. Ew1n/n�1/ � k

E 2kH.R3/:

We take

Ew2n WD Ew
1
n �
ESN .�t2;n/��2;n

E 2(4.20)

D Eun � ESN .�t2;n/��2;n
E 2 � ESN .�t1;n/��1;n

E 1:

Let us first show the orthogonality condition (4.1). Denoting

Er1n WD �
�1
�1;n
EP . ESN .t1;n/ Ew

1
n/ D �

�1
�1;n
EP . ESN .t1;n/Eun/ � ���11;n

EP��1;n
E 1;

by (4.12) and (4.13), we have

Er1n * 0 weakly in H .R3/;

and, in addition, by (4.19),

��1�2;n
EP . ESN .t2;n � t1;n/��1;n Er

1
n/ *

E 2 ¤ 0:

Therefore, by Lemma 4.3, the orthogonality condition (4.1) for .j; k/ D .1; 2/ follows.
To show the Pythagorean expansion (4.7), using the arguments of the case J D 1, it

suffices to show that the newly arising mixed term goes to zero, namely, that˝
ESN .�t2;n/��2;n

E 2; ESN .�t1;n/��1;n
E 1
˛
H.Bc/

n!1
����! 0:
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Noting that the left-hand side of the previous line equals˝
E 2; ��1�2;n

EP . ESN .t2;n � t1;n/��1;n
E 1/

˛
H.Bc/

;

the result follows by the orthogonality condition, together with Lemma 4.3.
Finally, (4.19) and (4.20) imply, by the exact same arguments as in the extraction of

the first profile, that

kw1nk
6
L6
D kSN .�t2;n/��2;n

E 2k6
L6
C kw2nk

6
L6
C on.1/;

from which the L6 Pythagorean expansion (4.8) follows using the decomposition proved
at the previous rank, which reads

k�nk
6
L6
D kSN .�t1;n/��1;n

E 1k6
L6
C kw1nk

6
L6
C on.1/:

Labeling. We define Jdiff and Jcomp as follows: if �j;n D 1 for all n, then j 2 Jcomp,
otherwise, j 2 Jdiff.

Decay of the remainder. In order to obtain (4.6), it suffices to show that

(4.21) lim
J!C1

lim sup
n!C1

kSN . �/ Ew
J
n kL1L6 D 0:

Indeed, if (4.21) holds, the Strichartz estimates of Proposition 2.7 together with Hölder’s
inequality, conservation of energy, and the fact that, by the Pythagorean expansion (4.7),

lim sup
n!C1

k EwJn kH.Bc/ � lim sup
n!C1

k E�nkH.Bc/ for all J

yield (4.6).
Let us show (4.21). To this end, observe that, by the Pythagorean expansion (4.7),

JX
jD1; j2Jcomp

k E j k2H.Bc/ C

JX
jD1; j2Jdiff

k E j k2
H.R3/

� lim sup
n�1

k E�nk
2
H.Bc/ for all J;

and thus both series in j are convergent. Since, by (4.11), the profiles are constructed in
such a way that

�.. Ewjn/n�1/ � 2

´
k E j kH.R3/ if j 2 Jdiff;

k E j kH.Bc/ if j 2 Jcomp; j ¤ 0;

it follows that

(4.22) �.. EwJn /n�1/
J!1
����! 0:

Arguing by contradiction, the L1L6 decay of SN . �/ EwJn follows by Lemma 4.2. Indeed,
if the decay of the remainder (4.21) does not hold, by a diagonal argument, there exists
�0 > 0 and sequences Jk !C1, nk !C1, and tk such that

�.. EwJknk /k/ D 0 and kSN .tk/ Ew
Jk
nk
kL6.Bc/ � �0 for all k:
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Using Lemma 4.2, it follows that there exists E 2 H .R3/, E ¤ 0, and a sequence .�k/k ,
with

lim
k
�k D1 or �k D 1 for all k;

such that, after extraction,

��1�k
EP . ESN .tk/ Ew

Jk
nk
/ * E weakly in H .R3/.

This contradicts the definition (4.10) of � and completes the proof of the proposition.

5. Construction of a compact flow solution

Let us define the critical energy Ec by

(5.1) Ec WD sup
®
E > 0 W E.Eu/ � E for all Eu 2 H .Bc/ H) SN . �/Eu 2 L

5L10
¯
;

where, for Eu 2 H .Bc/, E is as before the conserved energy

E.Eu/ WD
1

2
kEuk2H.Bc/ C

1

6
kuk6

L6
:

Observe thatEc > 0 by Proposition 2.12. The aim of this section is to show the following.

Theorem 5.1. IfEc <C1, then there exists Euc 2H .Bc/, Euc ¤ E0, such that the nonlinear
flow ¹ESN .t/Euc W t 2 Rº has a compact closure in H .Bc/.

Proof. If Ec < C1, let Eun0 be a minimising sequence for Ec , in the sense that

(5.2) E.Eun0/ � Ec ; lim
n!1

E.Eun0/ D Ec ; SN . �/Eu
n
0 … L

5L10:

Translating un D SN . �/Eu
n
0 in time if necessary, we may assume

(5.3) lim
n!1
kunkL5..0;C1/;L10/ D lim

n!1
kunkL5..�1;0/;L10/ D C1;

where, by convention, kunkL5..�1;0/;L10/ D C1 if un … L5..�1; 0/; L10/, and sim-
ilarly for L5..0;1/; L10/. As Eun0 is bounded in H .Bc/, we can, up to a subsequence,
decompose it into profiles according to Proposition 4.1:

(5.4) Eun0 D

JX
jD1

ESN .�tj;n/��j;n
E j C EwJn :

To each profile . E j ; .�j;n/n�1; .tj;n/n�1/, we associate a family of nonlinear Neumann
profiles .U jn /n�1 and, additionally, for j 2 Jdiff, a free nonlinear profile V j and its rescaled
family .V jn /n�1, in the following way.

If j 2 Jcomp, i.e., �j;n D 1, let U j be the only solution of the critical nonlinear wave
equation with Neumann boundary conditions (1.7)–(1.8), given by Proposition 2.12, such
that

(5.5) lim
n!1



 EU j .�tj;n/ � ESN .�tj;n/ E j

H.Bc/
D 0;
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and we set

(5.6) U jn .t/ WD U
j .t � tj;n/:

Notice that, if �tj;n !˙1, U j 2 L5.R˙; L10.Bc//, by construction.
If j 2 Jdiff; i.e., �j;n !1, then, by Lemma 3.2,

lim
n!1



 ESN .�tj;n/��j;n E j � ESR3.�tj;n/��j;n
E j




H.Bc/
D 0:

Furthermore, by denoting V jL .t/ WD SR3.t/ j .t/, we have

SR3.t � tj;n/��j;n 
j
D

1

�
1=2
j;n

V
j
L

� t � tj;n
�j;n

;
x

�j;n

�
:

We define the free nonlinear profile V j as the unique solution of the critical nonlinear
wave equation on R3 such that if tj;n D 0 for all n, then we have EV j .0/ D  j , and if
limn!1�tj;n=�j;n D ˙1, then limt!˙1k EV

j .t/ � EV
j
L .t/kH.Bc/ D 0. In other words,

(5.7) lim
n!˙1



 EV j .�tj;n=�j;n/ � EV jL .�tj;n=�j;n/

H.Bc/
D 0:

Furthermore, we set

V jn .t/ WD
1

�
1=2
j;n

V j
� t � tj;n
�j;n

�
;

and we then define the associated family of nonlinear Neumann profiles as

(5.8) U jn .t/ WD SN .t/. EV
j
n .0// D SN .t/

�
��j;n

�
EV j
�
�tj;n

�j;n

���
:

Observe that, as a solution of a defocusing nonlinear wave equation in R3, for which the
scattering is well known, we have V j 2 L5L10.R3/. Furthermore, as EU jn .0/ D EV

j
n .0/,

Lemma 3.3 (used with tn D tj;n) yields

sup
n
kU jn kL5.R;L10.Bc// <1 for all j 2 Jdiff

and

(5.9) sup
t
k EV jn .t/ �

EU jn .t/kH.Bc/ C kV
j
n � U

j
n kL5tL

10
x

n!1
����! 0 for all j 2 Jdiff:

Let us assume from now on, by contradiction, that the decomposition (5.4) has strictly
more than one non trivial profile, i.e.,

(5.10) J > 1:

Then, by the Pythagorean expansion (4.7), together with its L6 version (4.8),

lim sup
n!1

E.SN .�tj;n/ E 
j / < Ec for all j 2 Jcomp:
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Hence, by (5.5), E.U j / < EC , and U j 2 L5L10.Bc/ by the definition of the critical
energy. Summing up, we have

(5.11)

´
U j 2 L5.R; L10.Bc// for all j 2 Jcomp;

V j 2 L5.R; L10.Bc// for all j 2 Jdiff:

Let un WD SN Eu
n
0 . We will show the following nonlinear profile decomposition.

Proposition 5.2. We have

un.t/ D
X

1�j�J

U jn .t/CR
J
n .t/(5.12)

D

X
j2Jcomp
1�j�J

U jn .t/C
X
j2Jdiff
1�j�J

V jn .t/C
QRJn .t/ for all J;

where
lim
J!1

lim sup
n!1

kRJn kL5L10 D lim
J!1

lim sup
n!1

k QRJn kL5L10 D 0:

To this end, let

(5.13) QuJn WD

JX
jD1

U jn C z
J
n ;

where

(5.14) zJn .t/ WD SN .t/ Ew
J
n

verifies, by the decay of the remainder of the linear profile decomposition,

(5.15) lim
J!1

lim sup
n!1

kzJn kL5L10 D 0:

Observe that QuJn is solution in Bc of the following nonlinear wave equation with Neu-
mann boundary conditions:

(5.16) .@2t ��N / Qu
J
n C . Qu

J
n /
5
D eJn ; with eJn WD . Qu

J
n /
5
�

JX
jD1

.U jn /
5:

Lemma 5.3. We have

(5.17) lim
J!1

lim sup
n!1

keJn kL1L2 D 0

and

(5.18) EQuJn�tD0 D Eun C Ę
J
n ; lim

J!1
lim sup
n!1

kSN . �/˛
J
n kL5L10 D 0:

Proof. We will first show (5.17). We have

(5.19) jeJn j .J
X

1�j¤k�J

jU jn j
4
jU kn j C jz

J
n j
5
C jzJn j

JX
jD1

jU jn j
4:
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Let us begin with the mixed terms jU jn j4 jU kn j. We start with the case j; k 2 Jdiff. Notice
that

jU jn j
4
jU kn j � jV

j
n j
4
jV kn j C jU

j
n j
4
jV kn � U

k
n j C jV

j
n j
4
jV kn � U

k
n j
4;

thus, by Hölder’s inequality, we get

kjU jn j
4
jU kn jkL1L2 � kjV

j
n j
4
jV kn jkL1L2 C kU

j
n k

4
L5L10

kV kn � U
k
n kL5L10(5.20)

C kV jn kL5L10kV
k
n � U

k
n k

4
L5L10

:

On the one hand, as V jn and V kn are rescaled solutions of the defocusing critical nonlinear
wave equation in R3 associated with orthogonal parameters, it is well known that, as n
goes to infinity (see, for example, [3]),

(5.21) kjV jn j
4
jV kn jkL1L2 ! 0:

On the other hand, as
sup
n
kU jn kL5L10 C kV

j
n kL5L10 <1;

it follows from (5.9) that

(5.22) kU jn k
4
L5L10

kV kn � U
k
n kL5L10 C kV

j
n kL5L10kV

k
n � U

k
n k

4
L5L10

! 0

as n goes to infinity, and thus (5.20), combined with (5.21) and (5.22), gives

(5.23) kjU jn j
4
jU kn jkL1L2 ! 0 for j; k 2 Jdiff:

Let us now assume that j 2 Jcomp and k 2 Jdiff. We have, in the same way as before,

(5.24) kjU jn j
4
jU kn jkL1L2 � kjU

j
n j
4
jV kn jkL1L2 C kU

j
n k

4
L5L10

kV kn � U
k
n kL5L10 :

On the one hand, we already saw that for k 2 Jdiff,

(5.25) kU jn k
4
L5L10

kV kn � U
k
n kL5L10

n!1
����! 0:

On the other hand, by Hölder’s inequality and change of variables,

kjU jn j
4
jV kn jkL1L2 � kU

j
n k

3
L5L10

kV kn U
j
n kL5=2L5

D kU j k3
L5L10

1p
�k;n

� Z � Z
r�1

U j .t � tj;n; x/
5V k

� t � tk;n
�k;n

;
x

�k;n

�5
dx
�1=2

dt
�2=5

D kU j k3
L5L10

1p
�k;n

� Z � Z
r�1

U j .s; y/5V k
�s C tj;n � tk;n

�k;n
;
y

�k;n

�5
dy
�1=2

ds
�2=5

:

As the above expression is uniformly continuous in V k 2 L5L10, we can assume that V k

is continuous and compactly supported. Then we get

(5.26) kjU jn j
4
jV kn jkL1L2 .

1p
�k;n

! 0;
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and thus, by (5.24), (5.25) and (5.26),

(5.27) kjU jn j
4
jU kn jkL1L2 ! 0 for j 2 Jcomp; k 2 Jdiff:

In a similar fashion, we obtain

(5.28) kjU jn j
4
jU kn jkL1L2 ! 0 for k 2 Jcomp; j 2 Jdiff:

To conclude with the mixed term jU jn j4 jU kn j, let us deal with the case j; k 2 Jcomp. Then

(5.29) kjU jn j
4
jU kn jkL1L2 D

Z � Z
r�1

U j .t � tj;n; x/
8U k.t � tk;n; x/

2 dx
�1=2

dt:

By the orthogonality of the parameters,

(5.30) jtj;n � tk;nj ! C1;

but, by the change of variable s D t � tj;n, we obtain, from (5.29),

kjU jn j
4
jU kn jkL1L2 D

Z � Z
r�1

U j .s; x/8U k.s C tj;n � tk;n; x/
2 dx

�1=2
ds:

Again, as this expression is uniformly continuous in .U j ; U k/ 2 L5L10, we may assume
that both are continuous and compactly supported. But for such functions, the above
expression vanishes for n large enough by (5.30). Thus, we have

(5.31) kjU jn j
4
jU kn jkL1L2 ! 0 for j; k 2 Jcomp:

We dealt with all the cases (5.23), (5.27), (5.28), (5.31) and showed that

(5.32)




 X
1�j¤k�J

jU jn j
4
jU kn j






L1L2

! 0 for all J:

Finally, by the decay of the remainder (5.15),

(5.33) lim
J!1

lim sup
n!1

kjzJn j
5
kL1L2 D lim

J!1
lim sup
n!1

kzJn k
5
L5L10

D 0

and, moreover, by the Minkowski and Hölder inequalities,

(5.34)




jzJn j JX

jD1

jU jn j
4






L1L2

� kzJn kL5L10

JX
jD1

kU jn k
4
L5L10

:

By (5.15),

(5.35) lim
J!1

lim sup
n!1





jzJn j JX
jD1

jU jn j
4






L1L2

D 0:

Combining (5.32), (5.33), (5.34) and (5.35), we thus proved the L1L2 decay of the error
term eJn , that is, (5.17).
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Let us now show (5.18). By the definition of QuJn (5.13), of the remainder (5.14) and of
the modified profiles (5.8), (5.6), we have

(5.36) EQujn.0/ D
X

j2Jcomp
j�J

EU j .�tj;n/C
X
j2Jdiff
j�J

��j;n

�
EV j
�
�tj;n

�j;n

��
C EwJn :

As a consequence of the definition (5.5) of U j for j 2 Jcomp, we have, in H .Bc/, as n
goes to infinity,

(5.37) EU j .�tj;n/ D ESN .�tj;n/ E 
j
C on.1/ for all j 2 Jcomp:

Let us deal now with the first component of the diffusive profiles, the derivative com-
ponent being handled in the same fashion. For j 2 Jdiff, by the definition (5.7), this first
component verifies, in PH 1,

��j;n

�
V j
�
�tj;n

�j;n

��
D

1

�
1=2
j;n

V j
�
�tj;n

�j;n
;
�

�j;n

�
(5.38)

D
1

�
1=2
j;n

V
j
L

�
�tj;n

�j;n
;
�

�j;n

�
C on.1/ D SN .�tj;n/��j;n

E j C on.1/;

where at the last line we have used Lemma 3.2. This last expansion (5.38), together with
the similar one for the derivative component, (5.36), (5.37), the linear profile decomposi-
tion (5.4) and the Strichartz estimates for the Neumann flow (Proposition 2.7) gives (5.18),
and completes the proof of the lemma.

The proof of the nonlinear profile decomposition follows.

Proof of Proposition 5.2. By (5.16), together with (5.17) and (5.18), the perturbative res-
ult of Proposition 2.13 gives, together with (5.15),

un D Qu
J
n C

QRJn ;

with
lim
J!1

lim sup
n!1

k QRJn kL5L10 D 0:

But (5.9) enables us to replace all the U jn by V jn for j 2 Jdiff in the definition (5.13) of uJn
and ends the proof of the nonlinear profile decomposition.

We are now in position to end the proof of the theorem. Indeed, by Proposition 5.2
together with (5.11), un is in L5L10 for n large enough, and (5.2) is contradicted. There-
fore, the assumption (5.10) cannot hold, that is, J D 1 and there is only one non-trivial
profile in the decomposition (5.2):

(5.39) Eun0 D SN .�t1;n/��1;n
E 1 C Ewn; kSN . �/ EwnkL5L10 ! 0:

Let us show that it is the time-compact (t1;n D 0), scaling-compact (�1;n D 1) one.
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As noticed before, as the scattering in the free space R3 is well known, we have
V j 2 L5L10 for any j 2 Jdiff. Therefore, if 1 2 Jdiff, the same proof as before yields
the decomposition

(5.40) un.t/ D
1

�
1=2
1;n

V 1
� t � t1;n
�1;n

;
�

�1;n

�
CRn.t/;

with

(5.41) lim sup
n!1

kRnkL5L10 D 0;

proving that un 2 L5L10, a contradiction. Thus, 1 2 Jcomp, i.e., �1;n D 1.
It remains to eliminate the case t1;n !˙1. Recall that

(5.42) kunkL5..�1;0/L10/ !1; kunkL5..0;C1/L10/ !1:

Let us for example assume, by contradiction, that t1;n !C1. This implies

lim
n!1
kSN . � � t1;n/ E 

1
kL5..�1;0/L10/ D 0;

and, by the small data well-posedness theory, for large n, we obtain un2L5..�1;0/;L10/
with

lim
n!1
kunkL5..�1;0/;L10/ D 0;

contradicting (5.42). The case t1;n ! �1 is eliminated in the same way.
Therefore,

Eun0 D
E 1 C Ewn; kSN . �/ EwnkL5L10 ! 0:

Now notice that, by the Pythagorean expansion (4.7), together with its L6 version (4.8),
E. E 1/ � Ec , and therefore

E. E 1/ D Ec ;

otherwise, by (5.40) and the definition ofEc , un scatters. This implies, by the Pythagorean
expansion again, together with (5.2),

k EwnkH.Bc/ ! 0:

We take Euc to be this profile:
Euc WD E 

1:

By the conservation of energy, we have E.ESN .t/Euc/ D Ec for any t , and the same argu-
ment applied to

ESN .tn/Euc

for any sequence .tn/n�1 2 RN shows that the flow ¹t 2 R; ESN .t/Eucº has a compact clos-
ure in H .Bc/. Indeed, this sequence satisfies the same assumptions as Eu0n at the beginning
of the proof, and will therefore have a convergent subsequence in H .Bc/ as well. Finally,
observe that E.Euc/ D Ec > 0 ensures, in particular, that Euc ¤ E0.
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6. Rigidity

In this section we prove the following.

Theorem 6.1. Let .u0; u1/ 2 H .Bc/ be radial, and let u.t/ D SN .t/.u0; u1/ be a solu-
tion of the energy critical defocusing wave equation outside the unit ball with Neumann
boundary conditions (1.7)–(1.9). Assume that u is global and that

K D ¹Eu.t/ W t 2 Rº

has compact closure in H .Bc/. Then u D 0.

The proof follows the lines of the proof of [13].

6.1. Preliminaries

We will use the following asymptotic energy property for the wave equation on R3.

Proposition 6.2. LetR> 0. Let .v0; v1/ 2H .R3/ and let vD SR3.v0; v1/ be the solution
of the linear wave equation on R3 with initial data .v0; v1/. ThenX

˙

lim
t!˙1

Z C1
RCjt j

j@t;r .rv.t; r//j
2 dx D

Z C1
R

.@r .rv0//
2
C r2v21 dr:

We omit the easy proof, which relies on the equation .@2t � @
2
r /u.t; r/ D 0. We note

that by integration by parts,

(6.1)
Z C1
R

.@t;r .ru0//
2 dr CRu20.R/ D

Z C1
R

.@t;r .u0//
2 r2 dr:

Proposition 6.3. There exists z > 0 and a radial C1 function Z D Z.jxj/ on ¹x 2 R3 W
jxj > zº such that

�Z D Z5 for r > z;(6.2) ˇ̌̌
r Z0.r/C

1

r

ˇ̌̌
C

ˇ̌̌
Z.r/ �

1

r

ˇ̌̌
�
C

r3
;(6.3)

lim
r!�C

jZ.r/j D C1;(6.4)

Z0.r/ ¤ 0 for r > z:(6.5)

Proof. The existence of z and Z satisfying (6.2), (6.3) and (6.4) is proved in Proposi-
tion 4.1 of [16] and we omit it.

To prove (6.5), we argue by contradiction. Assume that Z0.R/ D 0 for some R > z.
Multiplying equation (6.2) by Z, integrating by parts for r > R and using the boundary
condition Z0.R/ D 0, we obtainZ

¹jx>Rº

jrZj2 dx C

Z
¹jx>Rº

jZj6 dx D 0:

This proves that Z.r/ D 0 for almost every r > R, contradicting (6.3).



Scattering for critical Neumann waves 693

Remark 6.4. Let ` 2 R n ¹0º and

Z` D
1

`
Z
� r
`2

�
:

Then (6.2), (6.4) and (6.5) hold with Z replaced by Z` and z by `2 z, and there exists a
constant C` such that

(6.6)
ˇ̌̌
r Z0`.r/C

`

r

ˇ̌̌
C

ˇ̌̌
Z`.r/ �

`

r

ˇ̌̌
�
C`

r3
:

6.2. Proof of Theorem 6.1

Step 1. Let .u0; u1/ 2 H .Bc/ be as in Theorem 6.1. Let " > 0 be a small parameter to
be specified. Throughout the proof we fix R" > 1 such that

(6.7)
Z C1
R"

..@ru0/
2
C u21/r

2 dr � ":

In this step, we prove

(6.8)
Z C1
R

.@r .ru0//
2
C r2u21 dr � CR

5u100 .R/ for all R � R":

Let R � R". We define the radial functions v0 2 PH 1.R3/, v1 2 L2.R3/ as follows:

(6.9)

´
.v0; v1/.r/ D .u0; u1/.r/ if r > R;
.v0; v1/.r/ D .u0.R/; 0/ if r 2 .0; R/:

We let v.t/ D SR3.t/.v0; v1/ be the solution to the quintic wave equation on R3 with
initial data .v0; v1/, and let vL.r/ D SR3.v0; v1/ be the corresponding solution to the free
wave equation. We note that by the finite speed of propagation

v.t; r/ D u.t; r/; r > RC jt j:

By the small data theory, since " is small,

(6.10) sup
t2R
kEv.t/ � EvL.t/k PH1�L2 � Ck.v0; v1/k

5
PH1�L2

:

By Proposition 6.2,

(6.11)
X
˙

lim
t!˙1

Z C1
RCjt j

j@t;r .rvL.t; r//j
2 dr D

Z C1
R

.@r .ru0//
2
C u21 dr:

By (6.10) and the finite speed of propagation,ˇ̌̌̌ Z C1
RCjt j

j@t;r .rvL.t; r// � @t;r .ru.t; r//j
2 dr

ˇ̌̌̌
� C

�Z C1
R

..@ru0/
2
C u21/r

2dr

�5
:
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Combining with (6.11) and using that, by the compactness of the closure of K in H .Bc/,

lim
t!˙1

Z C1
RCjt j

j@t;r .ru.t; r//j
2 dr D 0;

we deduce Z C1
R

.@r .ru0//
2
C u21 dr � C

�Z C1
R

.@ru0/
2
C u21/r

2dr

�5
:

Combining with the integration by parts formula (6.1) and the smallness of ", we deduce
inequality (6.8).

Step 2. In this step we prove that there exists ` 2 R and C > 0 such that for large R,

(6.12)
ˇ̌̌
u0.r/ �

`

r

ˇ̌̌
�
C

r3
;

Z C1
r

�2u1.�/ d� �
C

r5
:

First fix R and R0 such that R" � R � R0 � 2R. Letting �0.r/ D ru0.r/, we have, using
the Cauchy–Schwarz inequality and then step 1,

(6.13) j�0.R/ � �0.R
0/j �

Z R0

R

j@r�0.r/j dr �
p
R

sZ R0

R

.@r�0/
2dr �

1

R2
�50.R/:

Since, by the definition (6.7) of R" and the integration by parts formula (6.1), one has

(6.14)
1

R
�20.R/ � ";

we deduce, from (6.13),

(6.15) j�0.R/ � �0.R
0/j � "2 �0.R/:

We apply this inequality between 2kR and 2kC1R for k 2 N and a fixed R � R". This
yields

j�0.2
kC1R/ � �0.2

kR/j . "2j�0.2
kR/j

and thus
j�0.2

kC1R/j � .1C C"2/j�0.2
kR/j:

We deduce, by an easy induction,

j�0.2
kR/j � .1C C"2/kj�0.R/j:

Combining with (6.13), we obtain

(6.16) j�0.2
kR/ � �0.2

kC1R/j . .1C C"2/5kj�0.R/j
5 1

22kR2
�

Choosing " small, so that .1 C C"2/5 < 4, we see that
P
j�0.2

kR/ � �0.2
kC1R/j con-

verges, and thus that �0.2kR/ has a limit `.R/ as k!1. Summing (6.16) over all k � k0,
we obtain

(6.17) j�0.2
k0R/ � `.R/j .

1

R2
1

.1C c"/k0
j�0.R/j

5;
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for some constant c" > 0. Combining with (6.13), we see that

lim
r!1

�0.r/ D `.R/;

and, in particular, the limit `.R/ does not depend on R. We will simply denote it by `.
By (6.17) at k0 D 1, since �0 is bounded,

(6.18) j�0.R/ � `j .�0
1

R2
;

which yields the first inequality in (6.12).Combining with step 1, we obtain the second
inequality in (6.12).

Step 3. In this step, we assume ` D 0 and prove that .u0; u1/ � .0; 0/. Indeed, by (6.15),
if R � R" and k 2 N,

j�0.2
kC1R/j � .1 � C"2/j�0.2

kR/j:

Hence, by induction on k,

j�0.2
kR/j � .1 � C"2/kj�0.R/j:

Since, by the preceding step and the assumption R D 0, j�0.2kR/j . 1=2kR
2
, we deduce,

choosing " small enough and letting k !1, that �0.R/ D 0. Combining with (6.8), we
deduce

R � R" H)

Z C1
R

.@r�0/
2
C u21.r/ dr D 0;

that is, u0.r/ and u1.r/ are 0 for almost every r � R". Going back to the definition of R",
we see that we can choose any R" > 1, which concludes this step.

Step 4. We next assume ` ¤ 0. Let Z` be as in Remark 6.4. In this step we prove that
.u0 �Z`; u1/ has a bounded support. Let f D u �Z`. Then

(6.19)

8̂̂<̂
:̂
@2t f ��f D D`.f / WD

5X
kD1

�
5

k

�
Z5�k` f k ;

Ef�tD0 D .f0; f1/ WD .u0 �Z`; u1/:

For " > 0 small, we fix R0" � 1 such thatZ C1
R0"

.j@rf0.r/j
2
C jf1.r/j

2/r2dr � "2;(6.20) Z
R

�Z C1
R0"Cjt j

Z10` .r/r
2dr

�1=2
dt � "5:(6.21)

Let fL be the solution of @2t fL D�fL, with EfL�tD0 D . Qf0; Qf1/; where . Qf0; Qf1/ coincides
with .f0; f1/ for r > R0" and is defined as in (6.9). Using (6.19) and the assumptions (6.20)
and (6.21) on R0", we obtain

(6.22) sup
t2R



1¹jxj>jt jCR0"ºjrt;x.
Qf .t/ � QfL.t//j




L2

. "4k. Qf0; Qf1/k PH1�L2 :
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Let R � R0". Since, by Proposition 6.2,X
˙

lim
t!˙1

Z C1
R

.@t;r .r QfL.t; r///
2dr &

Z C1
R

..@r .r Qf //
2
C r2 Qf 21 / dr

and X
˙

lim
t!˙1

Z C1
R

.@t;r .r Qf .t; r///
2dr D 0;

we deduce, from (6.22),

"8
Z C1
R

..@rf0/
2
C f 21 /r

2dr &
Z C1
R

..@r .rf0//
2
C r2f 21 / dr;

and thus

(6.23) "8Rf 20 .R/ &
Z 1
R

..@r .rf0//
2
C r2f 21 / dr:

Letting g0 D rf0, we deduce by the Cauchy–Schwarz inequality that for R � R0", k 2 N,

jg0.2
kC1R/ � g0.2

kR/j .
Z 2kC1R

2kR

j@rg0j dr . "4jg0.2
kR/j:

This yields by an easy induction jg0.2kR/j � .1� C"4/kjg0.R/j, where C > 0 is a con-
stant which is independent of ". Since, by step 2,

C

.2kR/2
� jg0.2

kR/j;

we obtain, choosing " small enough, that g0.R/ D 0 for large R. Combining with (6.23),
we deduce that .f0.r/; f1.r// D 0 a.e. for large R, concluding this step.

Step 5. In this step, we still assume ` ¤ 0 and deduce a contradiction. We let

� D inf
°
R > c W

Z C1
R

..@rf0/
2
C f 21 /r

2dr D 0
±

and we shall prove that � D max.1; z`2/, i.e., that u0.r/ D Z`.r/ almost everywhere for
r > max.1; z`2/. If z`2 � 1, we deduce

lim
r!z`2

ju0.r/j D C1;

a contradiction with the radial Sobolev embedding theorem. If z`2 � 1, we obtain u0.r/D
Z`.r/ for all r > 1. Translating the solution in time, the same proof yields that for all t in
the domain of definition of u,

(6.24) u.t; r/ D Z`.r/;
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a contradiction with the Neumann boundary condition, as given by Lemma 2.10. Note that
by finite speed of propagation, the limit ` in (6.24) is independent of t .

To prove that � D max.1; z`2/, we argue by contradiction, assuming � > max.1; z`2/.
By the preceding step and the finite speed of propagation, the essential support of f is
included in ¹r � �C jt jº. Thus, f is a solution of´

@2t f ��f D 1¹jxj��Cjt jºD`.f /;

Ef�tD0 D .f0; f1/ WD .u0 �Z`; u1/;

Fix R00" 2 .1; �/ such thatZ C1
R00"

.j@rf0.r/j
2
C jf1.r/j

2/r2 dr � "2;Z
R

�Z �Cjt j

R00"Cjt j

Z10` .r/r
2 dr

�1=2
dt � "5:

The same argument as in the preceding step, replacing R0" by R00" , yields that .f0; f1/ D 0
for almost every r > R00" , which contradicts the definition of �. The proof is complete.

We are now in position to conclude.

Proof of Theorem 1.1. By contradiction, assume that Ec , as defined by (5.1), is finite.
Then Theorem 5.1 shows that there exists a solution Euc to (1.7)–(1.9) such that ¹Euc.t/ W
t 2Rº has a compact closure in H .Bc/, but by Theorem 6.1, such a solution cannot exist.
Thus, Ec D C1, and by Proposition 2.12, all the solutions of (1.7)–(1.9) scatter.

7. Focusing case

In this section we sketch the proofs of Theorems 1.2 and 1.3. Section 7.1 is dedicated to
the proof of a trapping property for solutions below the energy of the R3 ground state W
that is important in the proof of both of these results. Section 7.2 concerns Theorem 1.2
and Section 7.3, Theorem 1.3. Finally, in Section 7.4, we comment on the assumptions of
these two theorems, and prove that the exact analogue of Theorem 1.2 is not true when
R3 n B.0; 1/ is replaced by a more general domain.

7.1. Trapping by the energy

Recall that
W.x/ D

1

.1C jxj2=3/1=2

is the ground state of the focusing critical wave equation on R3. If .f; g/ 2 H .R3/, we
denote

ER3.f; g/ D
1

2

Z
R3

jrf j2 C
1

2

Z
R3

jgj2 �
1

6

Z
R3

jf j6:
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Proposition 7.1. Let u be a solution of (1.11) with Neumann boundary condition (1.8)
and initial data (1.9). Let I be its maximal interval of existence. Assume E.u0; u1/ <

ER3.W; 0/. Then the sign of
R
Bc
jru.t/j2 �

R
R3 jrW j

2 is independent of t 2 I , and there
exists ı > 0, depending only on E.u0; u1/, such that

(7.1)
ˇ̌̌ Z
Bc
jru.t; x/j2dx �

Z
R3

jrW.x/j2dx
ˇ̌̌
� ı for all t 2 I:

Proof. For .f;g/ 2H , we denote by . Qf ; Ng/ WD EP .f;g/, the extension of .f;g/ to H .R3/
by .f .1/; 0/, as defined in definition 2.1. Observe that . Qf ; Ng/ verifiesZ

R3

jr Qf j2 D

Z
Bc
jrf j2

Z
R3

Qf 6 �

Z
Bc
f 6;

Z
R3

j Ngj2 D

Z
Bc
jgj2

and

(7.2) ER3. Qf ; Ng/ � E.f; g/:

Let u satisfy the assumptions of Proposition 7.1. Then, by conservation of the energy
and (7.2),

ER3. Qu.t/; @tu.t// � E.u0; u1/ < ER3.W; 0/ for all t 2 I:

The conclusion of the proposition then follows from the variational properties of the
ground-state W on R3, see, e.g., Lemma 3.4 of [27].

7.2. Scattering

Note that by Proposition 7.1 and the radial Sobolev inequality (see Remark 2.3), any solu-
tion of (1.11), (1.8)–(1.9) that satisfies E.u0; u1/ < ER3.W; 0/,

R
Bc
jru0j

2 <
R

R3 jrW j
2

is global.
Using Proposition 7.1, the proof of Theorem 1.2 follows exactly the same lines as the

proof of Theorem 1.1.
Recall that according to [28], any solution of the quintic focusing wave equation on R3

with initial data .v0; v1/ 2 . PH 1 � L2/.R3/ such thatZ
R3

jrv0j
2 <

Z
R3

jrW j2 and ER3.v0; v1/ < ER3.W; 0/

scatters to a linear solution.
Arguing by contradiction and using the arguments of Sections 3, 4 and 5, we see that

it is sufficient to prove the following.

Theorem 7.2. Let .u0; u1/ 2 H .Bc/ be radial, and let u.t/ be a solution of the energy
critical focusing wave equation outside the unit ball with Neumann boundary conditions
(1.11), (1.8)–(1.9). Assume that u is global and that

K D ¹Eu.t/ W t 2 Rº

has compact closure in H .Bc/. Then u � 0.
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Note that it would be sufficient to prove Theorem 7.2 with the additional assumptions
E.u0; u1/ < ER3.W; 0/,

R
Bc
jru0j

2 <
R

R3 jrW j
2, but these assumptions are not needed

to obtain the conclusion of the theorem.
The proof of Theorem 7.2 is the same as the proof of the Theorem 6.1 in Section 6,

except that in steps 4 and 5 the solution Z` of the elliptic equation �Z` D Z5` must be
replaced by the solution W` of the elliptic equation ��W` D W 5

`
, where

(7.3) W`.x/ D

p
3

`
W
�3x
`2

�
D

p
3

`.1C 3jxj2

`4
/1=2

;

so that ˇ̌̌
W`.x/ �

`

jxj

ˇ̌̌
.

1

jxj3
; jxj � 1:

Also, sinceW`.x/ is defined for all x 2R3, whereasZ`.x/ is only defined for r > z`2, we
must replace max.1; z`2/ everywhere in these two steps of the proof by 1. The key point to
obtain the contradiction is that @rW`.1/ ¤ 0 for any ` ¤ 0, i.e., thatW` is not a stationary
solution of the focusing wave equation on Bc with Neumann boundary condition, which
can be easily checked on the explicit formula (7.3).

7.3. Blow-up

Using Proposition 7.1, the proof of Theorem 1.3 is very close to the proof of its analogue
on the whole space R3, see Theorem 3.7 and the proof of Theorem 1.1 (ii) in Section 7
of [28]. Let us mention that this argument is inspired by the work of H. A. Levine [33].

Let us first assume that u0 2 H 1.Bc/ D PH 1.Bc/ \ L2.Bc/. Using the equation sat-
isfied by u, one sees that u.t/ 2 L2.Bc/ for all t and, denoting y.t/ D

R
Bc
u2.t; x/dx,

that
y0.t/ D 2

Z
Bc
u@tu; y00.t/ D 2

Z
Bc
u6 � 2

Z
Bc
jruj2 C

Z
Bc
.@tu/

2:

Note that we have used the boundary condition @nu�@Bc D 0, which implies
R
Bc
u�u D

�
R
Bc
jruj2.

Recall that ER3.W; 0/ D 1
3

R
R3 jrW j

2. As in the proof of Theorem 3.7 of [28], one
can write, for t in the domain of existence of u,

y00.t/ D �12E.u0; u1/C 4

Z
Bc
jruj2 C 8

Z
Bc
.@tu/

2

D 8

Z
Bc
.@tu/

2
C 4

Z
Bc
jruj2 � 4

Z
R3

jrW j2 C 12ER3.W; 0/ � 12E.u0; u1/

� 8

Z
Bc
.@tu/

2
C ı0;

where ı0 D 12ER3.W; 0/ � 12E.u0; u1/ > 0 and we have used, by Proposition 7.1, thatR
Bc
jru.t/j2 >

R
R3 jrW j

2 for all t .
The end of the proof that u blows up in finite time is exactly as the end of the proof of

Theorem 3.7, p. 165, of [28] and we omit it.
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To treat the general case u0 2 PH 1.Bc/, one should use a localized version of
R
Bc
u2.t/.

These bring out new terms in the preceding computation, that can be controlled using finite
speed of propagation. We refer to p. 205–206 of [28] for the details.

7.4. Comments on the assumptions

Consider the nonlinear focusing wave equation (1.1) with � D �1, and Neumann bound-
ary condition (1.2) in a general open domain � of R3. We claim that the analogue of
Theorem 1.2 does not hold in general. Indeed, first consider the case of a half-plane:

� D ¹.x1; x2; x3/ 2 R2 W x1 > 0º:

Letw be the restriction ofW to�. Thenw is a solution of��w Dw5. SinceW is radial,
w satisfies in addition the Neumann boundary condition (1.2). This yields a non-scattering
solution w of (1.1), (1.2) such thatZ

�

jrwj2 D
1

2

Z
R3

jrW j2; E. Ew.0// D
1

2
ER3.W; 0/;

which proves that one cannot generalise Theorem 1.2 in this setting. Similarly, for " > 0,
the solutionw" of (1.1), (1.2) with initial data ..1C "/w;0/ blows up in finite time by [28].
This solution satisfiesZ

�

jrwj2 D
.1C "/2

2

Z
R3

jrW j2; E. Ew.0// <
1

2
ER3.W; 0/;

which shows that the assumptions E.u0; u1/ < ER3.W; 0/,
R
�
jru0j

2 <
R

R3 jrW j
2 is not

sufficient to ensure global existence on the half-plane.
We now give a similar example when � is an exterior domain. Assume that � D

R3 nK, whereK is bounded subset of R3 with a smooth boundary @K D @� containing a
portion of a plane. Without loss of generality, we can assume (translating and rescaling�):

¹0º � Œ�1;C1�2 � @�; B.0; 1/ \ ¹x1 > 0º � �:

According to [30], for all " > 0, there exists a radial solution z of the focusing critical
wave equation on R3, blowing-up in finite time T > 0 and such that

lim sup
t!T

Z
R3

ˇ̌̌
r

�
z.t; x/ �

1

t
W
� x
t2

��ˇ̌̌2
C .@tz.t; x//

2 dx � "; E.Ez.0// � E.W; 0/C ":

Using finite speed of propagation, time translating and rescaling the solution, we can
assume that the support of Ez.t/ is included in B.0; 1/ for all t 2 Œ0; T /. The restriction u
of z to x1 > 0 is then a solution of (1.1), (1.2), (1.3) that satisfies

E.u0; u1/ �
1

2
ER3.W; 0/C "; lim sup

t!T

Z
�

jru.t/j2C

Z
�

.@tu.t//
2
�
1

2

Z
R3

jrW j2C ";

proving that a generalization of Theorem 1.2 is hopeless in this setting also.
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In view of this example, we conjecture that Theorem 1.3 cannot be either general-
ised to other geometries, and that the radiality assumptions in Theorems 1.2 and 1.3 are
also necessary. More precisely, a natural conjecture is that the energy threshold to ensure
energy trapping and a blow-up scattering/dichotomy in the case of Neumann boundary
conditions is exactly 1

2
ER3.W; 0/. This is of course the case when� is a half-plane, since

one can then use the result on R3 after extending the solution by symmetry to the whole
space.
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