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Rigidity of the Pu inequality and quadratic
isoperimetric constants of normed spaces

Paul Creutz

Abstract. Our main result gives an improved bound on the filling areas of curves
in Banach spaces which are not closed geodesics. As applications we show rigid-
ity of Pu’s classical systolic inequality and investigate the isoperimetric constants
of normed spaces. The latter has further applications concerning the regularity of
minimal surfaces in Finsler manifolds.

1. Introduction

1.1. Rigidity of the Pu inequality

Let d WS1 � S1 ! R be a metric on the circle. Then the filling area of d is defined as

Fill.d/ WD inf
g
¹Area.g/º;

where g ranges over all Riemannian metrics g on the disc D2 such that the boundary
distance function bdg W S1 � S1 ! R satisfies bdg � d . We call a Riemannian metric g
on D2 a minimal filling if its area equals the filling area of its boundary distance function.
These definitions can be generalized to higher dimensions and more general surfaces. In
any case it is usually difficult to find criteria which imply that a given metric is a minimal
filling. Compare [5,9,12,13,23,27,30] for some positive results of this type. One concrete
example of a minimal filling is the round metric on the hemisphere H 2. Hence

Fill.dS1/ D 2�;

where dS1 denotes the angular metric on S1. As has been noted in [23], the latter is
equivalent to Pu’s sharp systolic inequality for the projective plane, see [43]. One of our
main results is the rigidity of the Pu inequality in the following sense.

Theorem 1.1. Let d be a metric on S1 such that d � dS1 and d ¤ dS1 . Then

Fill.d/ < 2�:
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Theorem 1.1 might seem non surprising at first glance. However, it contrasts the non-
rigidity of the Besicovitch inequality, [8], which has been noted in [14]. The reason for
this non-rigidity is that not all metrics on S1 arise as boundary distance functions of
Riemannian metrics on the disc. Indeed it seems a challenging problem to describe the
ones that do arise this way. Only in the more flexible Finsler setting some understanding
has been provided in [14].

More generally we study filling areas of curves in a Banach space X . Here a subtle
issue becomes important. Namely that of defining the area of two dimensional subsets
of X , or equivalently of X -valued maps from the disc. One possibility is to consider the
standard Hausdorff 2-measure H2

X and define the Busemann area functional Ab by setting

(1.1) Ab.f / WD

Z
X

card
�
f �1.y/

�
dH2

X .y/:

for Lipschitz discs f WD2 ! X . However, depending on the context, other definitions
sometimes appear to be more natural, see e.g. [2]. The most popular ones are the Benson–
Gromov mass* area functional Am�, commonly used in geometric measure theory due
to its strong convexity properties, and the Holmes–Thompson area functional Aht, which
has certain desirable properties from the point of view of Finsler geometry. There is a
natural list of common properties that all relevant examples share, and one calls an object
satisfying all of them an area functional (in the sense of convex geometry), see Section 2.2
below. All area functionals agree up to a universal multiplicative constant, and thus in
many contexts the concrete choice of area functional does not play a major role. However,
for the quantitative type of questions that we are studying in this article, it is important at
several points. Thus in the following we will fix an abstract area functional A and specify
further when it becomes necessary.

The filling area FillA.
/ of a closed curve 
 in X is defined as the infimum of A.f /,
where f ranges over all Lipschitz discs spanning 
 . The main result of [16] states: if

 W .S1; dS1/! X is 1-Lipschitz, then 
 extends to a 1-Lipschitz map GWH 2 ! X . We
refine this result as follows.

Theorem 1.2. If 
 is 1-Lipschitz but not an isometric embedding, thenG is area decreas-
ing in the sense that A.G/ < 2� . In particular, FillA.
/ < 2� .

It follows from [28] that Theorem 1.1 is in fact a special case of Theorem 1.2. Roughly
speaking, it corresponds to choosingX D `1 and ADAir as Ivanov’s inscribed Rieman-
nian area functional. Some other applications of Theorem 1.2 are discussed in Sections 1.2
and 1.3 below. Beyond these, Theorem 1.2 seems also amenable to future applications in
cut and paste arguments in the context of systolic inequalities and similar problems.

1.2. Quadratic isoperimetric spectra

The isoperimetric profile, or (geometric) Dehn function ıA
X W .0;1/! Œ0;1�, of a metric

space X is defined by

ıA
X .r/ WD sup




®
FillA.
/

¯
;

where 
 ranges over all closed Lipschitz curves in X such that `.
/ � r . If X is simply
connected and satisfies some weak geometric assumptions, then the asymptotic growth of
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the geometric Dehn function is the same as that of the combinatorial Dehn function of a
group acting geometrically on X , see [24, 40]. The latter is a well-studied quasi-isometry
invariant in geometric group theory. The isoperimetric spectrum IP is defined as the set
of those ˛ in Œ1;1/ such that there is is a finitely presentable group with asymptotic
growth' r˛ . By [24] and [10], its closure is given as

(1.2) IP D ¹1º [ Œ2;1/:

The gap in (1.2) extends into the case of quadratic growth by the following result of
Wenger, [51]: if X is a proper geodesic metric space such that

(1.3) lim sup
r!1

ıbX .r/

r2
<

1

4�
;

then X is Gromov hyperbolic, and hence the asymptotic of its Dehn function is in fact
even linear. Note that here we denote ıbX WD ıAb

X and that in the following we will use
this type of notational simplifications without further mentioning. This result is sharp as
the Dehn function of the Euclidean space Rn is given by 1

4�
� r2, independently of A, see

Example 4.4. The implications of a non-strict inequality in (1.3) have been investigated
in [52].

In the present paper we study the following finer non-coarse quantity:

CA.X/ WD sup
r2.0;1/

ıA
X .r/

r2
2 Œ0;1�:

We call CA.X/ the A-quadratic isoperimetric constant of X . Its investigation may be
motivated by the following remarkable result due to Lytchak–Wenger, [39]: A proper
geodesic metric space X is CAT.0/ if and only if

C b.X/ 2
°
0;

1

4�

±
:

Compare also the proof of Theorem 5.4 in [40] for the gap between 0 and 1
4�

.
The A-quadratic isoperimetric spectrum QISA.M/ of a class of metric spaces M is

the set of A-quadratic isoperimetric constants of its elements. Improving Theorem 1.2
in [16], we are able to give a full description of the quadratic isoperimetric spectrum of
the class of all Banach spaces.

Theorem 1.3. Let Ban be the class of Banach spaces. Then

(1.4) QISb.Ban/ D ¹0º [
h 1
4�
;
1

2�

i
:

For Ban, the quadratic isoperimetric spectrum is the same for the most reasonable
choices of area functional A, and is given by (1.4). However, for the class Bann of
normed spaces of fixed finite dimension n, the quadratic isoperimetric spectrum very much
depends on the choice of area functional. For n D 2, the spectra of the aforementioned
functionals may be determined from classical results in convex geometry as:

A D Aht A D Ab A D Am� A D Air

QISA.Ban2/ D
®
1
4�

¯ �
1
4�
; �
32

� �
1
4�
; 1
8

� �
1
4�
; 1
8

�
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See Example 4.8. In particular, every two dimensional normed space satisfies the Euc-
lidean isoperimetric inequality with respect to Aht, while it satisfies the Euclidean isoperi-
metric inequality with respect to Ab only if it is Euclidean. The following result clarifies
the behaviour between dimensions 2 and1.

Theorem 1.4. Let n � 2 and let A be an area functional such that A �Aht. Then the A-
quadratic isoperimetric spectrum of Bann is a compact interval Œ 1

4�
; rA
n �, where rA

n <
1
2�

is nondecreasing in n and converges to 1
2�

as n!1.

The assumption A � Aht is satisfied for A D Ab;Aht;Am�;Air, see Section 2.2.
Explicit values of the optimal constants rA

n beyond the aforementioned case nD 2 remain
open. It is natural to think of our setting as the isoperimetric problem in dimension one.
In the case n D 2 we benefit of the coincidence of dimension one and codimension one.
The latter is the mostly studied situation, and it is essentially solved in finite dimensional
normed spaces as well as many other classes of spaces, see for example [3, 21, 32, 41, 45].
Beyond dimension one and codimension one, isoperimetric inequalities have been ob-
tained in [4, 23, 50]. However, sharp constants are only known in the Euclidean space and
very few other situations, see [1, 46].

1.3. Minimal surfaces in Finsler manifolds

Let X be a proper metric space which satisfies a local quadratic isoperimetric inequal-
ity and let � be a rectifiable Jordan curve in X . Set ƒ.�; X/ to be the set of those
Sobolev discs u 2 W 1;2.D2; X/ for which the trace ujS1 gives a monotone paramet-
rization of � . The following solution of the Plateau problem has been given by Lytchak–
Wenger in [36, 37]: if ƒ.�; X/ ¤ ;, then there is u 2 ƒ.�; X/ of least parametrized
Hausdorff measure which moreover may be chosen infinitesimally isotropic. Such u will
be called a solution of the Plateau problem. Variants of the metric space valued Plateau
problem have been solved for collections of Jordan curves, surfaces of higher genus and
self-intersecting curves in [17, 18, 22].

For a solution u of Plateau’s problem, a factorization u D Nu ı P with the following
properties has been investigated in [38]:
• Zu is a geodesic metric space homeomorphic to D2,
• P WD2 ! Zu is monotone,
• and NuWD2 ! X is 1-Lipschitz.

An analytically more well-behaved variation of this factorization has been discussed
in [20]. A branch point of u is a point in D2 where u is not a local embedding. In
general the set of branch points may be large and the map P may be non-injective, see
Example 11.3 in [38]. However, Question 11:4 in [38] asks: Can the set of branch points
of a solution of the Plateau problem be large if the isoperimetric constant C is smaller
than 1

2�
? Can the map P be non-injective in this case? By Theorem 1.4, a positive answer

to this question would apply in the case that X is a finite dimensional normed space or a
compact Finsler manifold. This would be desirable as up to now the set of branch points
of solutions of the Plateau problem in Finsler manifolds can only be controlled under
restrictive assumptions on X and � , see Theorem 1.6 in [42].
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Remark 1.5. Since this article first appeared as a preprint, I have shown in [19] together
with Matthew Romney that no such control on the set of branch points is possible when
only assuming the strict bound on the quadratic isoperimetric constant. However, the
counterexample ambient spaces constructed in [19] are in other senses geometrically quite
degenerate. Hence there is still a reasonable chance that the results of this article can be an
ingredient in a proof showing a control on the set of branch points in Finsler manifolds.

The quadratic isoperimetric constant of X also controls the Hölder regularity of solu-
tions of the Plateau problem and more general X -valued (quasi-)harmonic discs, see
[35, 36]. In particular, Theorem 1.4 may be applied to improve the ˛-Hölder regular-
ity of solutions of the Plateau problem in Finsler manifolds calculated in Theorem 1.4
of [16] beyond the threshold case to ˛ > �=8. Similar calculations lead to concrete uni-
form Hölder constants for minimal surfaces in Finsler manifolds in the settings of [35],
[22], [17] and [18].

1.4. Outline of proof and byproducts

In this subsection we shortly discuss the main ideas entering in the proofs of Theorems 1.2
and 1.4. We start with the proof of Theorem 1.2. For sake of simplicity we restrict here to
the case thatX is finite dimensional. Let p 2H 2 be a point of differentiability ofG and let
v 2 TpH

2 and q; Nq 2 S1 be the endpoints of the great arc passing through p in direction v.
If kdpG.v/k D jvj, then there is ƒ 2 X� satisfying kƒk D 1 and ƒ.dpG.v// D jvj.
A somewhat analytical argument involving the optimal transport going on in the proof of
the main result of [16] then shows that

.ƒ ı 
/. Nq/ � .ƒ ı 
/.q/ D �;

and hence 
 restricted to ¹q; Nqº is isometric. By assumption this cannot hold for all q,
and in particular G must be infinitesimally shrinking at p in some direction. If A is the
Busemann or the Holmes–Thompson area functional, then this implies the claim since
both these area functionals are strictly monotone. The proof for general Banach spaces
and area functionals that we perform below is conceptually similar but more technical.

To prove Theorem 1.4 we endow Bann with the Banach–Mazur distance. ThenCA.X/

is continuous in X and hence the quadratic isoperimetric spectrum of Bann is a compact
interval ŒlAn ; r

A
n �. It then follows from [26] and [11] that lht

n D l
ht
2 D

1
4�

. Hence if A �Aht

then lAn D
1
4�

. In order to show

(1.5) rA
n <

1

2�
;

we prove the existence of extremal curves in the following sense.

Lemma 1.6. Let X be a finite dimensional normed space of dimension � 2. Then there is
a bi-Lipschitz embedding 
 WS1 ! X satisfying

FillA.
/ D CA.X/ � `.
/2:

Note that at least for A D Aht counterintuitively these extremal curves can be planar
only if C ht.X/ D 1

4�
. The concrete shape of such curves remains mysterious except for



P. Creutz 710

very particular cases, see Example 4.4. To prove (1.5), we choose X 2 Bann such that
CA.X/ D rA

n and within X an A-extremal curve 
 . Without loss of generality we may
assume that `.
/ D 2� and 
 is 1-Lipschitz. Inequality (1.5) is then implied by The-
orem 1.2 and the following lemma.

Lemma 1.7. Let X be a finite dimensional normed space. Then there is no isometric
embedding of .S1; dS1/ into X .

The proof of Lemma 1.7 relies on an explicit description of geodesics in X in terms of
the structure of its unit ball that we give below. From this characterization it follows that
if 
 is an isometric embedding, then the derivative 
 0W S1 ! X would be a measurable
function which is ‘too’ discontinuous.

Non surprisingly, it is a hard task to give lower bounds on the filling areas of curves.
Our main tool at hand is a generalization of the Pu inequality due to Sergei Ivanov, which
implies: if 
 W .S1; dS1/! X is an isometric embedding, then

(1.6) Fillht.
/ � 2�;

see [28,29]. Lemma 1.7 seemingly indicates that (1.6) cannot be applied. However, we can
still embed isometrically large finite portions of S1 into Rn1. Such embeddings together
with a homotopy argument invoking (1.6) imply

(1.7) rA
n � r

ht
n � C

ht.Rn1/ �
�
1 �

4

n

� 1

2�
�

Note that the lower bound (1.7) leading to the asymptotic behaviour of rA
n is explicit,

while the upper bound (1.5) is obtained by contradiction.

1.5. Organization

In Section 2 we recall some basic facts and set up notation. First, in Section 2.1, we state a
characterization of the John ellipse that will be needed in the proof of Theorem 1.2. Then,
in Section 2.2 we recall the notion of area functionals and discuss different examples and
comparison results between them. Finally, in Section 2.3 we discuss some basic homotopy
arguments and their applications. Section 3 is dedicated to the proofs of Theorem 1.1
and 1.2. In Section 3.1 we recall the construction of the extension map G from [16] and
to this end also the relevant optimal transport theory. In the subsequent Section 3.2 we
show a somewhat technical lemma on the dependence of certain optimal transport plans
on the base point. This lemma will be needed in Section 3.3, where we proof a crucial
proposition that allows us to relate global properties of the curve 
 to the infinitesimal
behaviour of the corresponding extension map G. Finally, in Section 3.4 we are then
able to give the proofs of Theorems 1.1 and 1.2. In the remaining Section 4 we perform
the proof of Theorem 1.4. First, in Sections 4.1 and 4.2, we prove Lemma 1.7 and 1.6
respectively. Then in Section 4.3 we discuss the quadratic isoperimetric spectra of Bann
for general area functionals. Finally, we complete the proofs of Theorems 1.3 and 1.4 in
Section 4.4 by discussing lower bounds such as (1.7).



Quadratic isoperimetric constants of normed spaces 711

2. Preliminaries

2.1. The John ellipse

Let B be a compact, convex, centrally symmetric subset of R2 which contains the origin
in its interior. Then the John ellipsoid theorem states that there is a unique ellipse E of
maximal volume contained in B . This ellipse is called the John ellipse and satisfies E �
B �

p
2 �E. We will need the following characterization.

Lemma 2.1. Let .X; j�j/ be an Euclidean plane and let k�k be a norm on X which satis-
fies k�k � j�j. Denote by E the unit ball of j�j and by B the unit ball of k�k. Then E is the
John ellipse of B if and only if there exist v0; v1; v2 2 X such that jvi j D kvik D 1 and

(2.1) hvi ; viC1i � 0; i D 0; 1; 2;

where we define v3 D �.v0/ WD �v0 as the antipodal point of v0.

Note that Lemma 2.1 implies that if E is the John ellipse of B , then there are vectors
v;w 2 X with

jvj D jwj D kvk D kvk D 1

such that the angle between v and w lies in the interval Œ�=6; �=2�.

Proof of Lemma 2.1. We may assume without loss of generality that X D R2 and that j�j
is the standard Euclidean norm. Then D2 is the John ellipse of B if and only if there are
v0; v1; v2 2 R2 such that jvi j D kvik D 1 and �0; �1; �2 � 0 for which

(2.2) I2 D �0 � v0 ˝ v0 C �1 � v1 ˝ v1 C �2 � v2 ˝ v2;

see [25]. Here I2 2 GL2 denotes the identity matrix. We show that the latter condition
is equivalent to (2.1). In either case we may assume v0 D .1; 0/ and furthermore that
v0; v1; v2 are cyclically ordered, contained in the upper half plane and pairwise distinct.
Set a0 WD dS1.v1; v2/, a1 WD dS1.v2; �.v0// and a2 WD dS1.v0; v1/. Then (2.2) becomes

I2 D �0 �

�
1 0

0 0

�
C �1 �

�
cos2.a2/ 1

2
sin.2a2/

1
2

sin.2a2/ sin2.a2/

�
C �2 �

�
cos2.a1/ �12 sin.2a1/

�
1
2

sin.2a1/ sin2.a1/

�
:

Note that a0; a2 2 .0; �/ and a1 2 Œ0; �/. Thus if a1 … ¹0; �=2º then solving this system
of equations gives

�i D
sin.2ai /

sin.2a1/ sin2.a2/C sin.2a2/ sin2.a1/

for i D 0; 1; 2. Note here that our assumptions on the vectors v0; v1; v2 imply that at most
one of the terms sin.2ai / can be nonpositive. Hence in the case a1 … ¹0; �=2º all the �i
are nonnegative if and only if (2.1) holds.

If a1 D �=2 and hence v2 D .0; 1/, then certainly condition (2.1) is satisfied, and the
same is true for (2.2) upon choosing �0 D �2 D 1 and �1 D 0. Finally, assume a1 D 0 and
hence v2 D .�1; 0/. Then both conditions (2.1) and (2.2) respectively imply v1 D .0; 1/
and hence that the respective other one is satisfied.
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2.2. Area functionals

The aim of this subsection is to shortly discuss area functionals in the sense of convex
geometry. We will follow the approach of [37] based on Jacobians. The reader is referred
to [3, 7, 28] for other equivalent viewpoints.

Let † be the set of seminorms on R2 and let †0 be the set of norms on R2.

Definition 2.2. A Jacobian is a map JW†! Œ0;1/ fulfilling the following properties:
(1) (Normalization) J.j�j/ D 1 for j�j the standard Euclidean norm on R2.
(2) (Monotonicity) J.s/ � J.s0/ whenever s � s0.
(3) (Transformation law) J.s ı T / D j detT j J.s/ for T 2M2.R/.

Example 2.3. It follows readily that J.s/ D 0 if and only if s is degenerate. So it suffices
to define the following examples of Jacobians on a norm k�k 2 †0 with unit ball B .

(1) The Busemann Jacobian Jb is defined by

Jb�
k�k
�
WD

�

L2.B/
;

where L2 denotes the standard Lebesgue measure on R2.
(2) The Holmes–Thompson Jacobian Jht is defined by

Jht�
k�k
�
WD

L2.B�/

�
;

where B� WD ¹v 2 R2j hv;wi � 1I 8w 2 Bº is the polar body of B .
(3) The Benson–Gromov mass* Jacobian is defined by

Jm�
�
k�k
�
WD sup

P

4

L2.P /
;

where P ranges over all parallelograms containing B .
(4) Ivanov’s inscribed Riemannian Jacobian Jir is defined by

(2.3) Jir�
k�k
�
WD

�

L2.E/
;

where E is the John ellipse of B . Dually, the circumscribed Riemannian Jacobian Jcr is
defined by taking E in (2.3) as a ellipse of least area containing B .

Remark 2.4. The presented Jacobians satisfy the following comparison results.
(1) From the Blaschke–Santaló inequality and the definitions we deduce that

(2.4) Jcr�
k�k
�
� Jht�

k�k
�
� Jb�

k�k
�
� Jir�

k�k
�
;

where each of the inequalities is strict if and only if k�k is not Euclidean.
(2) Dually one can see that

(2.5) Jir�
k�k
�
�
4

�
Jb�
k�k
�
�
�

2
Jht�
k�k
�
� 2 � Jcr�

k�k
�
;
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where equality is attained if and only if B is a parallelogram. The middle part is the
Mahler–Reisner inequality, see [48]. The other two follow from [37] and duality.

(3) More generally, Jir is maximal among all Jacobians, and Jcr is minimal. For a
Jacobian J we define

qJ
WD inf
k�k2†0

J
�
k�k
�

Jir�
k�k
� 2 h1

2
; 1
i
:

By (2.5) we have qir D 1, qht D 2=� , qb D �=4 and qcr D 1=2. From Lemma 2.1 one may
deduce that qm� D

p
3=2 is attained if B is a regular hexagon.

(4) For the Holmes–Thompson and the mass* area functionals we have

(2.6)
2

�
Jm�

�
k�k
�
� Jht�

k�k
�
� Jm�

�
k�k
�
;

where equality on the left is attained if and only if B is a parallelogram, and equality on
the right is attained if and only if k�k is Euclidean. This follows from [3] and the previous
observations.

In the following, let U � R2 be open, let X be a metric space, and let f WU ! X be
a Lipschitz map. At almost every p 2 U , the metric differential mdp f is well defined as
a seminorm on R2 via

.mdp f /.v/ WD lim
t!0

d.f .p C tv/; f .p//

jt j
�

Indeed the metric differential transforms nicely with respect to coordinate changes and
thus one can define metric differentials also in the case that S is a smooth 2-dimensional
manifold and gWS ! X is a Lipschitz map, compare e.g. [22], p. 93. For a Jacobian J, we
define the corresponding area functional AJ by setting

(2.7) AJ.f / WD

Z
U

J.mdpf / dL2.p/:

For Ab , equation (2.7) is consistent with equation (1.1) by a variant of the area formula,
see [31].

The definition of Jacobians is cooked up as to obtain the following natural list of
properties for the arising area functionals.

Lemma 2.5. (1) .Normalization/ If X is a Riemannian manifold, then A.f / D Ab.f /.
(2) .Monotonicity/ If gWX ! Y is L-Lipschitz, then A.g ı f / � L2 �A.f /.
(3) .Coordinate invariance/ If V � R2 is a open and 'WV ! U is bi-Lipschitz, then

A.f ı '/ D A.f /.

Remark 2.6. By the coordinate invariance, one can naturally extend area functionals to
assign areas to Lipschitz maps f WM !X , whereM is a smooth 2-dimensional manifold.
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2.3. Homotopy arguments

In this section we fix an area functional A and a metric space X .
For a Lipschitz curve 
 WS1 ! X , we define its A-filling area by

FillA.
/ WD inf
®
A.f / j f W ND2

! X Lipschitz; fjS1 D 

¯
:

The crucial observation for homotopy arguments is: if hW S1 � Œ0; 1�! X is a Lipschitz
map, then

jFillA.
0/ � FillA.
1/j � A.h/;

where 
i D h.�; i/. The following lemma allows to restrict to curves which are paramet-
rized by constant-speed in most situations.

Lemma 2.7. Let 
0; 
1W S1 ! X be Lipschitz curves and reparametrizations of each
other. Then

FillA.
1/ D FillA.
2/:

Proof. By Lemma 3:6 in [40], there exists a Lipschitz homotopy h between 
0 and 
1
such that A.h/ D 0.

The following simple but useful lemma will be applied various times.

Lemma 2.8. Let X be a geodesic metric space, 
0; 
1WS1 ! X closed Lipschitz curves
and �0; : : : ; �m 2 S1 cyclically ordered points. Then

jFillA.
0/ � FillA.
1/j � C
mX
kD0

.l0k C l
1
k C dk C dkC1/

2;

where C WD CA.X/, dk WD d.
0.�k/; 
1.�k// and l i
k
WD `.
i jŒ�k ;�kC1�/.

Proof. We define the Lipschitz homotopy hW S1 � Œ0; 1� ! X between 
0 and 
1 by
setting h.�k ; �/ to be a geodesic connecting 
0.�k/ to 
1.�k/ and filling the remaining
squares by application of the quadratic isoperimetric inequality.

For L � 0, let �L.X/ be the set of closed L-Lipschitz curves in X endowed with the
maximum metric

d1.
0; 
1/ WD max
�2S1

d.
0.�/; 
1.�//:

Corollary 2.9. If X is geodesic and C WD CA.X/ < 1, then FillAW �L.X/ ! R is
continuous.

Proof. Let " WD d1.
0; 
1/ � �L. Choosingm WD d�L="e equidistant points on S1 and
applying Lemma 2.8 gives

jFillA.
0/ � FillA.
1/j � Cm
�4�L
m
C 2"

�2
� 72�CL � ":

Compare also the proof of Lemma 18 in [47].
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3. Proofs of Theorems 1.1 and 1.2

3.1. The extension map

The following extension theorem has been obtained in [16].

Theorem 3.1. LetX be a Banach space and let 
 WS1!X be 1-Lipschitz. Then 
 extends
to a 1-Lipschitz map GWH 2 ! X .

Remember here that H 2 denotes the upper hemisphere endowed with the round met-
ric. Because we will work with the explicit definition of the extension map G, we now
recall its construction, which relies on optimal transport theory.

Let .X;d/ be a complete metric space. Denote by P .X/ the set of separably supported
Borel probability measures on X and by P1.X/ the set of those � 2 P .X/ satisfyingZ

X

d.x; y/ d�.y/ <1

for some x 2X . For a continuous map f WX! Y , denote by f�WP .X/!P .Y / the push
forward map given by f��.A/D �.f �1.A//. For �; � 2 P .X/, we callK 2 P .X �X/

a coupling from � to � if �1�K D � and �2�K D �. Denote the set of couplings from �

to � by ….�; �/. The metric space obtained by endowing P1.X/ with the distance

dW .�; �/ WD inf
K2….�;�/

Z
X�X

d.x; y/ dK.x; y/

will be called the Wasserstein-1-space over X and will also shortly be denoted by P1.X/.
A measurable map T WX ! X will be called an optimal transport plan from � to � if
T�� D � and

dW .�; �/ D

Z
X

d.x; T .x// d�.x/:

The proof of Theorem 3.1 relies on four things. First, for every complete metric space
there is a canonical isometric embedding ı of X into P1.X/ given by mapping x 2 X
to the Dirac measure ıx . Secondly, if X is a Banach space, then there is a 1-Lipschitz
retraction bWP1.X/! X given by

b.�/ WD

Z
X

x d�.x/:

The third is that if f WX ! Y is 1-Lipschitz then also the push forward map f�WP1.X/!
P1.Y / is 1-Lipschitz. The last but most important observation is the following.

Proposition 3.2. There is an isometric embedding �WH 2! P1.S
1/ extending the Dirac

embedding ıWS1 ! P1.S
1/.

Theorem 3.1 follows from these observations by setting GWH 2 ! X to be given by

G WD b ı 
� ı �:

To construct the embedding �, it is important to understand optimal transport plans in
dimension one. For intervals we have the following simple description, cf. [49].
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Lemma 3.3. Let I � R be a closed interval and let �; � 2 P1.I / be absolutely continu-
ous measures with strictly increasing distribution functions F�; F� W I ! Œ0; 1�. Then an
optimal transport map from � to � is given by T D F �1� ı F� and

(3.1) dW .�; �/ D

Z
I

jF�.s/ � F�.s/j ds D
Z 1

0

jF �1� .t/ � F �1� .t/j dt:

We are however mainly interested in understanding the Wasserstein distance on S1.
This problem has been solved by Cabrelli–Molter in [15], and we shortly discuss their
approach here.

For a point � 2 S1 and absolutely continuous� 2P 1.S1/, we denote by�� the meas-
ure on Œ0; 2�� which corresponds to � under the orientation preserving ‘identification’ of
Œ0; 2�� and S1 mapping 0 to �. Then for �; � 2 P1.S

1/, the inequality

dW .�; �/ � dW .�
� ; ��/

is immediate. For�;� 2P1.S
1/, we call � 2S1 an equilibrated cutpoint for .�;�/ if there

is a Borel partition Œ0; 2�/ D A P[B such that jAj D jBj, F�� � F�� on A and F�� � F��
on B . This definition is justified by the following theorem.

Theorem 3.4 ([15]). Let �; � 2 P1.S
1/ be absolutely continuous measures. Then there

exists an equilibrated cutpoint � for .�; �/, and for every such � one has

dW .�; �/ D dW .�
� ; ��/:

So calculating the Wasserstein distance between distributions on S1 amounts to find-
ing an equilibrated cutpoint and then calculating the integral (3.1).

The construction of the map� in Proposition 3.2 goes as follows. For fixed p2H 2nS1,
let

dpWS
1
! R;  7! dS2.p;  /

be the distance function to p. Let bp 2 S1 be such that dS2.p; bp/ D dS2.p; S1/ and

kp WD cos.dS2.p; bp//:

Let hpWS1 ! R be given by

hp. / WD
1

2
.d 00p . //

C
C
1 � kp

2�
;

and let �p be the measure on S1 which is absolutely continuous with density hp . The
most technical part in the proof that �WH 2 ! P1.S

1/ defines an isometric embedding
amounts to the following lemma, compare Sections 3:2 and 3:3 in [16].

Lemma 3.5. Let �W Œ0; ��!H 2 be a great arc not contained in S1 and set �WD�.0/2S1.

• If r; s 2 .0; �/, then � is a balanced cutpoint for .��.s/; ��.r//.

• If furthermore r � s��=2, then a corresponding Borel partition is given byAD Œ0;�/
and B D Œ�; 2��.

Note that in the statement of Lemma 3.5 we implicitly assume that the great arc � is
parametrized by arc-length and that in the following we will always make this implicit
assumption on great arcs and great circles.
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3.2. Variation of optimal transport plans

For the proof of Theorem 1.2 we will need the following technical observation concerning
the dependence of the optimal transport plan from �p to �q on the points p; q 2 H 2.

Lemma 3.6. Let �W Œ0; ��!H 2 be a great arc not contained in S1 and let 0 < r < �=2.
Set p WD �.r/, v WD �0.r/ and � WD �.0/. Then there is a C 1-map T D T .s; /W .0;�=2/�
S1 ! S1 such that, for every fixed s,

(1) the map T .s; �/ is an optimal transport plan from ��.r/ to ��.s/,

(2) @T
@s
.s; �/ is positive almost everywhere on the interval Œ�;�.�/� and negative almost

everywhere on Œ�.�/; ��.

Here as usual we denote by � the antipodal map of S1.

Proof. Set �s WD ��.s/, ds WD d�.s/, ks WD k�.s/, hs WD h�.s/, bs WD b�.s/.
Identify S1 and Œ0; 2�� such that � corresponds to 0. We set D WD .0; �=2/ � Œ0; 2��

and define the analytic function d WD ! R by d.s;  / WD ds. /: Furthermore, we define
F WD ! Œ0; 1� by

F.s;  / D Fs. / WD �s.Œ0;  // D

Z  

0

hs.'/ d':

Then by Lemma 3.3, Theorem 3.4 and Lemma 3.5, an optimal transport map T s from �r
to �s is given by

T s. / D F �1s .Fr . //:

Furthermore, if s � t , then T s. / � T t . / for  2 Œ0; �� and T s. / � T t . / for  2
Œ�; 2��. We define the map T WD ! Œ0; 2�� by T .s;  / WD T s. /.

Let � be the angle between the great arc � and the circle S1 in the point �. Then by
the spherical sine theorem we have that

k.s/ WD ks D

q
1 � sin2.s/ sin2.�/

is an analytic function with nonzero derivative on .0; �=2/. We have bs 2 .��=2; �=2/
and hence by Lemma 3:1 in [16], for  2 Œ0; 2�� that d 00s . / � 0 when

bs C
�

2
�  � bs C

3�

2
;

and d 00s . / � 0 otherwise. Thus by the fundamental theorem of calculus and the first
variation formula,

F.s; /D
1

2
�

8̂<̂
:

@d
@ 
.s;  /� cos.�/C  1�ks

�
; 0 �  � bs C

�
2
;

@d
@ 

�
s; bsC

�
2

�
� cos.�/C  1�ks

�
; bs C

�
2
�  � bs C

3�
2
;

@d
@ 
.s;  /C2 @d

@ 

�
s; bsC

�
2

�
� cos.�/C 1�ks

�
; bs C

3�
2
�  � 2�:

By Lemma 3:1 in [16],

@2d

.@ /2

�
s; bs C

�

2

�
D 0;
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implying that @F =@s is well defined and continuous on D . Also

@F

@ 
.s;  / D hs. /

is continuous on D and hence F 2 C 1.D/. By the first variation formula,

@d

@ 

�
s; bs C

�

2

�
D ks :

So for fixed parameter s, the function @F
@s
.s; �/W Œ0; 2��! R is piecewise analytic on the

intervals
�
0;bsC�=2

�
; ŒbsC�=2;bsC3�=2�; ŒbsC3�=2;2��, and on ŒbsC�=2;bsC3�=2�

it is given by

@F

@s
.s;  / D

1

2
�
@k

@s
.s/ �

�
1 �

 

�

�
;

which is zero only for s D � . In particular @F
@s
.s; �/ has only finitely many zeros.

For fixed s, the map Fs W Œ0; 2��! Œ0; 1� defines a C 1-diffeomorphism and hence by
the implicit function theorem,

@

@s

�
F �1s .v/

�
D

�1
@F
@ 
.s; F �1s .v//

�
@F

@s

�
s; F �1s .v/

�
:

Hence T is differentiable in s and

@T

@s
.s;  / D �

@F
@s
.s; T s. //

hs.T s. //

is continuous on D . In particular @T
@s
.s; /D 0 if and only if @F

@s
.s; T s. //D 0, implying

that @T
@s
.s; �/ has only finitely many zeros. To complete the proof that T is C 1, it suffices

to note that

@T

@ 
.s;  / D

�hr . /

hs.T s. //

is continuous on D .

3.3. Local versus global

A key observation for the proof of Theorem 1.2 is the following proposition. It will allow
us to conclude that if the curve 
 is 1-Lipschitz but not isometric then also, at almost every
point, the extension map G must be infinitesimally shrinking in certain directions.

Proposition 3.7. Let �W Œ0; �� ! H 2 be a great arc not contained in S1 and let r ¤
0;�=2;� . Set p WD �.r/, v WD �0.r/ and � WD �.0/. If p is a point of metric differentiability
of G and .mdp G/.v/ D 1, then

k
.�/ � 
.�.�//k D �;

where � WS1 ! S1 is the antipodal map.
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Proof. Set �s WD ��.s/ and let T be as in Lemma 3.6. Then

(3.2) .G ı �/.s/ D

Z
S1

. / d�s. / D

Z
S1

.T .s;  // d�r . /:

By assumption there is a sequence sn & r such that

(3.3) 1 �
1

n
�
k.G ı �/.sn/ � .G ı �/.r/k

sn � r
�

Choose ƒn 2 X� such that kƒnk D 1 and

(3.4) ƒn
�
.G ı �/.sn/ � .G ı �/.r/

�
D k.G ı �/.sn/ � .G ı �/.r/k:

Then by (3.2), (3.3), (3.4) and the fundamental theorem of calculus for Lipschitz functions,
we obtain

1 �
1

n
�

1

sn � r
ƒn

� Z
S1

.T .sn;  // � 
. / d�r . /

�
D

1

sn � r

Z
S1

Z sn

r

.ƒn ı 
/
0.T .s;  // �

@T

@s
.s;  / ds d�r . /:

In particular there is tn 2 Œr; sn� such that

(3.5) 1 �
1

n
�

Z
S1
.ƒn ı 
/

0
�
T .tn;  /

�„ ƒ‚ …
DWfn. /

�
@T

@s
.tn;  /„ ƒ‚ …

DWgn. /

d�r . /:

Then as jfnj � 1 and gn converges uniformly,

(3.6)
Z
S1
fn � gn d�r �

Z
S1
jgnj d�r

n!1
�!

Z
S1

ˇ̌̌@T
@s
.r;  /

ˇ̌̌
„ ƒ‚ …
DWg. /

d�r . /:

As � is an isometric embedding and T .s; �/ an optimal transport plan,

(3.7)
Z
S1
g. / d�r . / D

Z
S1

lim
s&r

jT .s;  / �  j

s � r
d�r . / D lim

s&r

dW .�s; �r /

s � r
D 1:

By (3.5), (3.6) and (3.7), fn � gn ! g in �r -measure. So up to passing to a subsequence,
fn � gn ! g holds �r -almost everywhere and hence also H1-almost everywhere. Hence
by Lemma 3.6, fn ! 1 almost everywhere on Œ�; �.�/�. As the diffeomorphisms T .tn; �/
and their inverses are of uniformly bounded C 1 norm, .ƒn ı 
/0 ! 1 in H1-measure
on Œ�; �.�/� and hence, up to again passing to a further subsequence, the convergence
holds almost everywhere on Œ�; �.�/�. So by the fundamental theorem of calculus and the
dominated convergence theorem,

k
.�/ � 
.�.�//k � ƒn
�

.�.�// � 
.�/

�
D

Z �.�/

�

.ƒn ı 
/
0. / d 

n!1
�! �;

which completes the proof.
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3.4. Proofs of Theorems 1.1 and 1.2

We now restate and then proof Theorem 1.2.

Theorem 1.2. Let X be a Banach space and let A be an area functional. Furthermore let

 W .S1; dS1/! X be a 1-Lipschitz curve and letGWH 2! X be its 1-Lipschitz extension.
If 
 is not an isometric embedding, then A.G/ < 2� and hence FillA.
/ < 2� .

Proof. So assume that 
 is not an isometric embedding. By its maximality it suffices
to prove Theorem 1.2 for the inscribed Riemannian area functional Air. For p 2 H 2,
let j�jp be the standard norm on TpH 2 and let Ep be its unit ball. If p is a point of metric
differentiability ofG, then we denote byBp � TpH 2 the unit ball of the seminorm mdpG.
As mdpG � j�jp , it suffices to prove that the set of points p 2 H 2 for which Ep is not the
John ellipse of Bp has positive measure.

As 
 is not an isometric embedding, there exist �0 2 S1 and an open interval I � S1

containing �0 such that, for all � 2 I ,

(3.8) k
.�/ � 
.�.�//k < �;

where again � W S1 ! S1 denotes the antipodal map. We may assume that `.I / < �=4

and will denote A WD S1 n .I [ �.I //. For p 2 H 2 and � 2 S1, let ��;p be a great arc
passing through p which starts at � and let v.�; p/ 2 TpH 2 be the direction of ��;p in p.
If p 2H 2 n S1, then v.�; p/ defines a diffeomorphism between S1 and the unit vectors in
the tangent space at p.

Define ˛WA � A �
�
H 2 n A

�
! Œ0; �� by setting ˛.�;  ; p/ to be the angle between

v.�; p/ and v. ; p/. Then ˛ defines a continuous function and

˛.A � A � ¹�0º/ � ¹0; �º:

Thus the continuity of ˛ and the compactness ofA imply that there is 0<ı<�=4 such that

˛.�;  ; p/ …
h�
6
;
�

2

i
whenever �; 2 A and p 2 H 2 satisfies dS2.p; �0/ < ı.

We claim that Ep is not the John ellipse of Bp at every point p 2 H 2 n S1 of metric
differentiability of G such that dS2.p; �0/ < ı. Since these points form a set of positive
measure, this implies Theorem 1.2. To prove the claim, we let p 2 H 2 n S1 be a point of
metric differentiability such that dS2.p; �0/ < ı. If � 2 S1 is such that

.mdpG/.v.�; p// D 1;

then by Proposition 3.7 either

k
.�/ � 
.�.�//k D � or dS1.�; �0/ 2
h�
2
� ı;

�

2
C ı

i
:

By (3.8) and our assumptions that `.I / <�=4 and ı <�=4, in both cases we may conclude
that � 2 A. Thus our choice of ı implies that if w1;w2 2 TpH 2 are unit vectors satisfying

mdpG.w1/ D mdpG.w2/ D 1;
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then the angle betweenw1 andw2 does not lie in the interval Œ�=6;�=2�. Hence the remark
subsequent to the statement of Lemma 2.1 allows us to conclude that Ep is not the John
ellipse of Bp .

Now, as promised in the introduction, Theorem 1.1 follows as a corollary.

Proof of Theorem 1.1. Let d be a metric on S1 such that d � dS1 and d ¤ dS1 . We need to
show that Fill.d/ < 2� . Denote by X D L1.H1

S1
/ the Banach space of H1

S1
-measurable

functions f WS1 ! R such that

kf k1 WD esssup jf j <1:

Then there is an isometric embedding �W .S1; d /! X which is given by

.�.�//. / D d.�;  /;

see also Section 4.4 below. By our assumption on d , we have that the curve � is 1-Lipschitz
with respect to dS1 , but not an isometric embedding. Hence Theorem 1.2 implies Fillir.�/
< 2� . This completes the proof since by Corollary 5.7.1 in [28] one has

(3.9) Fill.d/ D Fillir.�/:

Note that in the statement of Corollary 5.7.1 in [28], both when filling metrics and when
filling curves, the infima are taken over arbitrary compact surfaces which bound S1 and
not only over disc type ones. However, the proof therein goes by showing the equality
of the infima separately for each fixed topological type of filling, see the proof of The-
orem 5:6 right above the statement of Corollary 5:7 in [28]. In particular, the proof of
Corollary 5:7:1 in [28] indeed shows (3.9).

4. Quadratic isoperimetric spectra

4.1. Geodesics in finite dimensional normed spaces

In this subsection we fix a finite dimensional normed space .X;k�k/. The following lemma
characterizes geodesics in X in terms of the shape of the unit ball.

Lemma 4.1. Let 
 W Œa; b�! X be a 1-Lipschitz curve connecting the points p and q. Set
v WD q � p and letƒ 2X� be such that kƒk D 1 andƒ.v/D kvk. Then 
 is an isometric
embedding if and only if ƒ.
 0.t// D 1 for almost every t 2 Œa; b�.

Proof. When applying the fundamental theorem of calculus to the 1-Lipschitz function
ƒ ı 
 W Œa; b�! R, we get

kvk D ƒ.v/ D .ƒ ı 
/.b/ � .ƒ ı 
/.a/ D

Z b

a

ƒ.
 0.t// dt � b � a:

So 
 is an isometric embedding if and only if kvk D b � a, if and only if ƒ.
 0.t// D 1
almost everywhere in Œa; b�.

The next aim is to prove Lemma 1.7 from the introduction.

Lemma 1.7. There is no isometric embedding of .S1; dS1/ into X .
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For the proof we remind the reader that a metric space valued function f WRm! Y is
called approximately continuous at x 2 Rm if, for every " > 0,

lim
r#0

Lm
�
¹y 2 Br .x/ W d.f .y/; f .x// � "º

�
Lm.Br .x//

D 0:

If Y is a separable metric space, then a Borel measurable function f WRm! Y is approx-
imately continuous almost everywhere, see [34].

Proof of Lemma 1.7. Let �;  2 S1 be antipodal points such that k
.�/ � 
. /k D � .
Let v and ƒ be chosen as in Lemma 4.1 for p WD 
.�/ and q WD 
. /. Then it fol-
lows that 
 is the composition of a shortest path 
1 connecting p to q and a shortest
path 
2 connecting q to p. By Lemma 4.1, we have ƒ.
 01.t// D 1 almost everywhere and
ƒ.
 02.t// D �1 almost everywhere. In particular, the measurable function 
 0W S1 ! X

cannot be approximately continuous neither at � nor at  . As X is separable, this implies
the claim.

Remark 4.2. Clearly Lemma 1.7 fails for general Banach spaces. Beyond the Kuratowski
embedding of S1 into `1, it is also easy to write down an isometric embedding of S1

intoL1. Note however that the proof of Lemma 1.7 goes through as soon asX is a Banach
space which has the Radon–Nikodym property such as `1, cf. [6], Chapter 5.

4.2. Extremal curves

In this subsection we fix an area functional A and a finite dimensional normed space
.X; k�k/ of dimension at least two.

Recall that a closed Jordan curve 
 in X is said to satisfy a chord-arc condition with
constant �� 1 if for every distinct v;w 2 im.
/, the shorter of the two arcs of 
 between v
and w has length bounded above by � � kv � wk. A Jordan curve is bi-Lipschitz to S1 if
and only if it satisfies a chord-arc condition with some constant � � 1. Next we prove the
following quantitative version of Lemma 1.6.

Lemma 4.3. There is a non-constant curve 
 WS1 ! X such that

FillA.
/ D CA.X/ � `.
/2:

Every such curve 
 is a Jordan curve and satisfies a chord-arc condition with the constant
� D
p
2C 1.

Proof. First we note that C WD CA.X/ 2 .0;1/. Indeed Theorem 1:2 in [16] implies
CA.X/ � 1

2�
. Furthermore, Theorems 4:4:1 and 4:4:2 in [48] together with the remark

after the statement of Theorem 3 in [11] give that C ht.X/ � 1
4�

. Hence (2.5) and the
minimality of Acr imply

C � C cr.X/ �
�

4
C ht.X/ �

1

16
�

For a closed and nonconstant Lipschitz curve 
 in X we define

I.
/ WD
FillA.
/
`.
/2

�
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By definition there exists a sequence of closed nonconstant Lipschitz curves 
n such
that I.
n/% C . Note that I.
/ remains unchanged when translating 
 by a vector v 2 X
or rescaling 
 by a positive real c 2 .0;1/. Thus we may assume that `.
n/ D 1 and
that the image of the 
n is contained in the unit ball B for all n. Furthermore, thanks to
Lemma 2.7, we know that the filling area of a Lipschitz curve does not depend on its para-
metrization and therefore we may assume that the curves 
n are parametrized by constant
speed and hence that they are 1-Lipschitz. We may even suppose that the sequence 
n
converges uniformly to a closed Lipschitz curve 
 thanks to the Arzelà–Ascoli theorem.
A normed vector space is geodesic and we have observed that C <1. Therefore Corol-
lary 2.9 grants us with the continuity of the filling area map, which implies

I.
n/ D FillA.
n/! C D FillA.
/:

By lower semi-continuity of length, `.
/ � 1 and hence I.
/ D C .
Let 
 be such that I.
/D C and assume 
 is not Jordan or does not satisfy a chord-arc

condition with constant �. Then there exist �1; �2 2 S1 such that the following holds: if
l1 � l2 are the lengths of the two arcs of 
 connecting 
.�1/ to 
.�2/, then � � d < l1,
where d WD k
.�1/ � 
.�2/k.

Then by l1 � l2 and the particular choice of � we have

.l1 C d/
2
C .l2 C d/

2 < l21 C l
2
2 C

� 4
�
C

2

�2

�
l1l2 � .l1 C l2/

2
D `.
/2:

Applying Lemma 2.8, where we take 
0WD
 and 
1 as the curve identically constant 
.�1/
gives

FillA.
/ � C ..l1 C d/2 C .l2 C d/2/ < C � `.
/2:

This contradicts the extremality of 
 .

We call a unit-speed curve 
 WS1 ! X an A-extremal curve if I.
/ D C .

Example 4.4. The particular shape of such extremal curves 
 is only known in the fol-
lowing two situations.

(1) If X D Rn is Euclidean then, up to Euclidean motions, the extremal curves are
given by the standard embedding of S1 into R2. In particular, all such curves
are planar and C.X/ D 1

4�
independently of A. This follows from Reshetnyak’s

majorization theorem, [44], and the existence of a 1-Lipschitz retraction ofX onto
any of its linear subspaces.

(2) If X is a 2-dimensional normed space, then there is also less ambiguity in the
choice of area functional A. This is because all metric differentials mdp f of a
Lipschitz map f WD2 ! X are either degenerate or give rise to normed spaces
isometric to X . In particular, the shape of extremal curves does not depend on A

and for area functionals A and NA one has

(4.1) C
NA.X/ D

J NA.X/
JA.X/

� CA.X/:
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Maybe somewhat surprisingly, the extremal curves 
 do not correspond to the
boundary contour of the unit ball B but rather to the boundary contour of the dual
unit ball B� under a suitable identification of X and X�, see Section 4.4 in [48].

Although in these two examples the choice of A is immaterial for the shape of 
 , it
is very likely that this phenomenon is far from being true for a generic finite dimensional
normed space X .

Remark 4.5. Lemma 1.6 does not hold for general Banach spaces X . Namely, by The-
orem 1.2, if CA.X/D 1

2�
and 
 is an A-extremal curve inX , then 
 must be an isometric

embedding of S1. However, C ht.`1/ D 1
2�

by Remark 4.11 below, and `1 does not admit
such an isometric embedding by Remark 4.2.

4.3. Quadratic isoperimetric spectra

To prove Theorem 1.4, we fix n � 2 and endow Bann with the Banach–Mazur dis-
tance dBM. It is given for X; Y 2 Bann by

dBM.X; Y / WD inf
®

log.kT k � kT �1k/ j T WX ! Y linear isomorphism
¯
:

Endowed with the Banach–Mazur distance, Bann becomes a compact connected semi-
metric space, see for example [48].

Lemma 4.6. CA.�/WBann ! R is continuous.

Proof. Let T WX ! Y be such that log.kT k � kT �1k/ < ". Then for every 
 WS1! X and
f W ND2 ! X Lipschitz one has

(4.2) e�" `.
/ � `.T ı 
/ � e" `.
/ and e�2" A.f / � A.T ı f / � e2" A.f /:

From (4.2) it follows that

j log.CA.X// � log.CA.Y //j < 8":

So log.CA.�// is continuous on Bann and hence so is CA.�/.

At this point we prove the following variant of Theorem 1.4, which holds without
assumptions on the area functional A.

Theorem 4.7. QISA.Bann/ is a compact interval ŒlAn ; r
A
n �, where

1

16
� lAn �

1

4�
� rA

n <
1

2�

and rA
n is nondecreasing in n.

Proof. The quadratic isoperimetric spectrum QISA.Bann/ is the image of the compact
connected space Bann under the continuous map CA.�/, and hence a compact interval
ŒlAn ; r

A
n �. By Example 4.4, we have lAn �

1
4�
� rA

n . The inequality lAn � 1=16 is implied
by the discussion at the beginning of the proof of Lemma 4.3.
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Fix X 2 Bann such that CA.X/ D rA
n and an A-extremal curve 
 within X . By

Lemma 1.7, 
 cannot be an isometric embedding and hence Theorem 1.2 implies

rA
n D C

A.
/ <
1

2�
�

To see that rA
n is nondecreasing it suffices to note that CA.X �R/� CA.X/. This is true

because X is a 1-Lipschitz retract of X �R.

We call X 2 Bann an A-extremal space if CA.X/ D rA
n .

Example 4.8. Theorems 4.4.1 and 4.4.2 in [48] imply that anyX 2 Ban2 is Aht extremal.
By comparison to Aht and equations (4.1), (2.5) and (2.6), the A-quadratic isoperimetric
spectra of Ban2 for A D Aht;Ab;Am�;Air are given as stated in Section 1.2. Except
for Aht, the (up to isometry) unique extremal space in all these situations is R21. By (2.5)
we can also add

QIScr.Ban2/ D
h 1
16
;
1

4�

i
to the list, where by (2.4) the unique extremal space is the Euclidean plane.

For n � 3, the question which spaces are extremal remains completely open.

4.4. Lower bounds

To complete the proof of Theorem 1.4, by Theorem 4.7 it suffices to show that rht
n con-

verges to 1
2�

as n ! 1. More precisely, we will prove (1.7). Remember that every
separable metric space X admits an isometric embedding � into the space l1 of bounded
sequences endowed with the supremum norm. If X is compact, this Kuratowski embed-
ding �WX ! `1 is given by choosing a countable dense subset ¹x1; x2; x3; : : : º of X and
setting

�.x/ WD .d.x; x1/; d.x; x2/; d.x; x3/; : : : /:

Let Sn WD ¹�1; : : : ; �nº � S1 be a cyclically ordered subset of equidistant points. The
Kuratowski embedding gives an isometric embedding of Sn into Rn1. Hence the proof
of (1.7), and thus the proof of Theorem 1.4, is completed by the following lemma.

Lemma 4.9. Let X be a geodesic metric space, let m � 2 and let eW Sm ! X be an
isometric embedding. Then

C ht.X/ �
�
1 �

4

m

� 1

2�
�

Proof. We may extend e to a 1-Lipschitz curve 
 W S1 ! X by defining 
 to equal a
geodesic connecting e.�i / to e.�iC1/ on Œ�i ; �iC1�. Let �W S1 ! l1 be the Kuratowski
embedding. As l1 is an injective metric space, there is a 1-Lipschitz map f WX ! l1

such that

f .
.�i // D f .e.�i // D �.�i /
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for all i D 1; : : : ;m, see for example [33]. Then, since C ht.`1/ � 1
2�

, Lemma 2.8 implies

(4.3) jFillht.f ı 
/ � Fillht.�/j �
m

2�

�`.f ı 
/
m

C
`.�/

m

�2
D

m

2�

�
2
2�

m

�2
D
8�

m
�

If g is a Lipschitz disc inX that bounds 
 , then f ı g is a Lipschitz disc in `1 that bounds
f ı 
 and satisfies Aht.f ı g/ � Aht.g/. From this observation together with (4.3) we
deduce

Fillht.
/ � Fillht.f ı 
/ � Fillht.�/ �
8�

m
D

�
1 �

4

m

�
2�:

As `.
/ D 2� , this implies the claim.

Remark 4.10. There are two observations that allow to push the lower bound on the
constants rA

n a bit further if one desires.
(1) The Kuratowski embedding of S2n into R2n1 carries more information than neces-

sary. In fact one can forget about half of the coordinates and even obtain an isometric
embedding of S2n into Rn1. This leads to

(4.4) rht
n � C

ht.Rn1/ �
�
1 �

2

n

� 1

2�
�

(2) If X is a polyhedral normed space such as Rn1, then by (2.4) and (2.6) one has
CA.X/ > C ht.X/ for A D Ab;Air;Am�. In particular, for all these area functionals
the inequality (4.4) is even strict. Similarly one can obtain explicit upper bounds on the
constants CA.X/ for A D Ab;Aht;Acr and fixed polyhedral finite dimensional normed
space X by comparing to Air instead of Aht.

Remark 4.11. There is also an isometric embedding j of Sn into Rn1 D L
1.Sn/ which is

given by

.j.�//. / D

´
�=n; if .�;  ; �.�// is cyclically ordered and  ¤ �.�/;
0; otherwise.

In particular, C ht.Rn1/ �
�
1 � 4

n

�
1
2�

and C ht.`1/ D 1
2�

.

We finish our paper with the proof of Theorem 1.3. More generally, we show that

(4.5) QISA.Ban/ D ¹0º [
h 1
4�
;
1

2�

i
as soon as A � Aht.

Proof of (4.5). Let X be a Banach space of dimension � 2. Theorem 1.2 in [16] implies
that CA.X/ � 1

2�
. Now let V � X be a 2-dimensional linear subspace. Then Theor-

ems 4.4.1 and 4.4.2 in [48] imply C ht.V / D 1
4�

. Thus our assumption A � Aht and the
remark after the statement of Theorem 3 in [11] give that

CA.X/ � C ht.X/ � C ht.V / D
1

4�
�

By Theorem 1.4 the interval
�
1
4�
; 1
2�

�
is contained in QISA.Ban/. Thus the proof is com-

pleted by noting that CA.R/ D 0 and that by Remark 4.11 CA.`1/ D 1
2�

.
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