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Noncommutative partially convex rational functions

Michael Jury, Igor Klep, Mark E. Mancuso, Scott McCullough and
James Eldred Pascoe

Abstract. Motivated by classical notions of bilinear matrix inequalities (BMIs) and
partial convexity, this article investigates partial convexity for noncommutative func-
tions. It is shown that noncommutative rational functions that are partially convex
admit novel butterfly-type realizations that necessitate square roots. A strengthening
of partial convexity arising in connection with BMIs – xy-convexity – is also con-
sidered. A characterization of xy-convex polynomials is given.

1. Introduction

Convexity and its matricial analogs arise naturally in many mathematical and engineering
contexts. A function f W Œa; b�! R is convex if

f
�x C y

2

�
�
1

2
.f .x/C f .y//

for all x; y 2 Œa; b�. Convex functions have good optimization properties. For example,
local minima are global, making them highly desirable in applications. The dimension-
free or scalable matrix analog of convexity appears in many modern applications, such as
linear systems engineering [8, 45], wireless communication [31], matrix means [1, 2, 21],
perspective functions [15, 16], random matrices and free probability [20] and noncom-
mutative function theory [3, 12, 14, 27, 29]. Often in systems engineering [13], problems
have two classes of variables: known unknowns aD .a1; : : : ; ah/ and unknown unknowns
x D .x1; : : : ; xg/. Linear system problems specified by a signal flow diagram naturally
give rise to matrix inequalities p.a; x/ � 0, where p is a polynomial, or more generally
a rational function, in freely noncommuting variables. The a variables represent system
parameters whose size, which can be large, depends upon the specific problem. The x
variables represent the design variables. A key point is that p.a; x/ depends only upon
the signal flow diagram. Thus a choice of a value A for a corresponds to a specific prob-
lem governed by the given signal flow diagram and in that sense a is a known unknown.
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One then chooses the design variable X to optimize an objective and in that sense x is an
unknown unknown. Partial convexity in the unknown unknowns x is then sufficient for
reliable numerics and optimization.

A function f W .�1; 1/! R is matrix convex if

f
�X C Y

2

�
�
1

2
.f .X/C f .Y //

for all Hermitian matrices X; Y with spectrum in .�1; 1/. Matrix convex functions are
automatically real analytic and admit analytic realizations, such as the famous Kraus for-
mula [7, 37]

(1.1) f .x/ D aC bx C

Z 1

�1

x2

1C tx
d�;

where a; b 2 R and � is a finite Borel measure on Œ�1; 1�. Conversely, functions of the
form (1.1) are readily seen to be matrix convex on .�1; 1/: As an example, the Kraus for-
mula (1.1) in conjunction with the asymptotics at infinity shows that x2 is matrix convex,
but x4 is not.

In the noncommutative multivariable setting one considers noncommutative (nc) poly-
nomials, rational functions and their generalizations. An nc polynomial is a linear com-
bination of words in the freely noncommuting letters x D .x1; : : : ; xg/. For example,

(1.2) p.x/ D x1x2 � 17x2x1 C 4

is an nc (or free) polynomial. Noncommutative polynomials are naturally evaluated at
tuples of matrices of any size. For instance, to evaluate p.x/ from (1.2) on

X1 D

�
1 2

3 4

�
; X2 D

�
�1 �1

�1 �1

�
;

we substitute Xi for the variable xi , that is,

p.X1; X2/ D X1X2 � 17X2X1 C 4I2 D

�
69 99

61 99

�
:

More generally, an nc rational function is a syntactically valid expression involving x,
C, � , ./�1 and scalars. Thus

r.x/ D 1C .x1 � x2.x1x2 � x2x1/
�1/�1

is an example of an nc rational function. It is evaluated at a tuple X D .X1; X2/ of n � n
matrices for which X1X2 �X2X1 is invertible and in turn X1 �X2.X1X2 �X2X1/�1 is
invertible in the natural way to output an n � n matrix r.X/: An nc rational function r is
symmetric if r.X/ D r.X/� for all Hermitian tuples X in its domain.

Matrix convexity for multivariate nc functions is now well understood. Analogs of the
Kraus representation, the so-called butterfly realizations, were obtained in [29] for rational
functions and in [38] for more general nc functions. There is a paucity of matrix convex
polynomials: as first observed in [27], they are of degree at most two.

A main result of this paper, Theorem 1.2, is an analog of the Kraus representation for
partially convex nc rational functions. Specialized to polynomials, our results extend and
generalize results of [23]. Moreover, we also investigate the stronger notion of xy-con-
vexity, modeled on the theory of bilinear matrix inequalities (BMIs) [35].
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1.1. Main results

For positive integers k and n, let Sk
n D Sk

n.C/ denote the k-tuples of n � n Hermitian
matrices over C: A subset D D .Dn/n of Sk is a sequence of sets such that Dn � Sk

n:

This subset is free, or a free set, if it is closed under direct sums and unitary conjugation:
if Y 2 Dm; X 2 Dn; and U is an n � n unitary matrix, then

X ˚ Y WD
�
X1 ˚ Y1; : : : ; Xk ˚ Yk

�
D

��
X1 0

0 Y1

�
; : : : ;

�
Xk 0

0 Yk

��
2 DnCm;

U �XU WD .U �X1U; : : : ; U
�XkU/ 2 Dn:

It is open if each Dn is open. (In general, adjectives such as open and connected apply
term-wise to D .)

Since we are dividing our freely noncommuting variables into two classes, namely
a D .a1; : : : ; ah/ and x D .x1; : : : ; xg/, where g and h are positive integers, we take
k D hC g and let Sk D Sh � Sg D .Sh

n � Sg
n/n: We express elements of Sk

n as .A; X/;
where A 2 Sh and X 2 Sg:

The symmetric version (see Proposition 4.3 in [29]) of the well-known Schützen-
berger [44] state space similarity theorem implies that a symmetric nc rational function
r.a; x/ that is regular at the origin (has 0 in its domain) admits a symmetric realization

(1.3) r.a; x/ D c�
�
J �

gX
iD1

Tixi �

hX
jD1

Sjaj

��1
c;

where, for some positive integer e, the e�e matrix J is a signature matrix (J 2DI; J �DJ ),
the e � e matrices Sj ; Ti are Hermitian and c 2 Ce: In the case e is the smallest such pos-
itive integer, the resulting realization is a symmetric minimal realization (SMR) of size e.
Any two SMRs that determine the same rational function are similar as explained in more
detail in Subsection 2.1. In particular, the definitions and results here stated in terms of
an SMR do not depend upon the choice of SMR. The results of [33, 47] justify defining
the domain of r as

(1.4) dom r D
°
.A;X/ 2 Sh

� Sg
W det

�
J ˝ I �

gX
iD1

Ti ˝Xi �

hX
jD1

Sj ˝ Aj

�
¤ 0

±
:

In particular, the domain of a rational function is a free open set. Let C .<a; x /> denote the
set of rational functions in the variables a and x:

1.1.1. The domain of partial convexity. An nc rational function r is matrix convex in x
or partially convex on D if

r
�
A;
X C Y

2

�
�
1

2
.r.A;X/C r.A; Y //

whenever .A; X/; .A; Y /; .A; XCY
2
/ 2 D . Sublevel sets of such functions have matrix

convexity properties, which we do not discuss here save to note that these sublevel sets
are very important in real and convex algebraic geometry, polynomial optimization, and
the rapidly emerging subject of noncommutative function theory [5, 11, 17, 18, 22, 24, 26,
28, 34, 39, 40, 42, 43].
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Our first main theorem gives an effective easily computable criterion to determine
where r is convex in x: To state this result, let VT denote the inclusion of the span of the
ranges of the Tj into Ce and let

(1.5) RT .a; x/ D V
�
T

�
J �

gX
iD1

Tixi �

hX
jD1

Sjaj

��1
VT :

Finally, let

(1.6) domC r WD ¹.A;X/ 2 dom r W RT .A;X/ � 0º:

Given D � Sh � Sg and A 2 Sh
k
;

(1.7) D ŒA� D ¹X 2 Sg
k
W .A;X/ 2 Dº:

A free set D is convex (resp. open) in x if D ŒA� is convex (resp. open) for each A 2 Sh.
Theorem 1.1 below, which is proved as Theorem 2.6, says that domC r deserves the
moniker, the domain of partial convexity of r: Generally, a free set D is a domain of
partial convexity for r if D is open in x; convex in x; and r is convex in x on D : It is a
full domain of partial convexity if in addition D contains a free open set U with U1 ¤ ;:

Theorem 1.1. The set domC r is a domain of partial convexity for r:
Conversely, if D � dom r is a full domain of partial convexity for r; then D � domC r

and domC r is also a full domain of partial convexity for r:

1.1.2. The root butterfly realization: a certificate of partial convexity. Our second
main theorem, the root butterfly realization, gives an algebraic certificate for partial con-
vexity near points in the domain of r of the form .A; 0/: This realization differs from
existing realizations in that it contains a square root that appears difficult to avoid. A free
set D is a vertebral set if .A;X/ 2 D implies .A; 0/ 2 D : We denote the positive (semi-
definite) square root of a positive (semidefinite) matrix P by

p
P : A vertebral free set D

is a vertebral domain of convexity for r provided D is open in x; convex in x; and if r is
convex in x on D : If in addition D contains a free open set U with U1 ¤ ;; then D is a
full vertebral domain of convexity.

The vertebral domain of r is the set

domver r D ¹.A;X/ 2 dom r W .A; 0/ 2 dom rº:

Let
domCver r D ¹.A;X/ 2 domC r W .A; 0/ 2 domC rº

Theorem 1.2 gives a realization tailored to partial convexity that provides an algebraic
certificate of convexity in x for an r 2 C .<a; x />: Given a subset D � Sh � Sg; let

(1.8) �a.D/ D ¹A 2 Sh
W .A;X/ 2 D for some X 2 Sg

º:

Theorem 1.2 (Wurzelschmetterlingrealisierung). Suppose r 2C .<a;x /> is an nc rational
function with the SMR as in (1.3). Then

(1) domCver r is a vertebral domain of convexity for r I

(2) if D is a full vertebral domain of convexity for r; then D � domCver r , and domCver r

is also a full vertebral domain of convexity for r I
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(3) there exist a positive integer k, a tuple bT 2 Mk.C/
g; and a symmetric rational

function w.a/ 2 C .<a />k�k defined on �a.domver r/ such that

domCver r D
°
.A;X/2 domver r Ww.A/� 0; I�

p
w.A/

h gX
iD1

bT i˝Xiipw.A/� 0±I
(4) there exist a rational function `.a; x/ 2 C .<a; x />k�1; defined on domver r and

linear in xI and a symmetric rational function ff .a; x/ 2 C .<a; x />; defined on
domver r and affine linear in x, such that r admits the following realization, valid
on domCver r :

r D `.a;x/�
p
w.a/

�
I �

Xp
w.a/bT ixipw.a/��1pw.a/ `.a;x/C ff .a;x/:

As a corollary we obtain the following simple representation for polynomials that are
convex in x. We use Cha; xi to denote the set of noncommutative polynomials in .a; x/.

Corollary 1.3 ([23], Proposition 3.1). Suppose D is a free set that is open in x; convex
in x and contains a free open set U such that U1 ¤ ;: A polynomial p.a; x/ is convex
in x on D if and only if there exist `.a; x/ 2 Cha; xi that is linear in x, and a symmetric
w.a/ 2 Chai that is positive semidefinite on �a.D/ such that

p D `.a; x/�w.a/`.a; x/C ff .a; x/;

where ff .a; x/ 2 Cha; xi is affine linear in x and symmetric. In particular, if p is convex
in x on D ; then p is convex in x on �a.D/ � Sg:

1.1.3. xy-convexity and BMIs. In this subsection we preview our results on xy-convex-
ity and BMIs. Like partial convexity, here we have two classes of variables. Unlike partial
convexity, the roles of the classes of variables appear symmetrically in xy-convexity. With
that in mind, we switch notation somewhat and consider freely noncommuting letters
x1; : : : ; xg; y1; : : : ; yh:

An expression of the form

L.x; y/ D A0 C

gX
jD1

Ajxj C

hX
kD1

Bkyk C

g;hX
p;qD1

Cpq xpyq C

g;hX
p;qD1

Dpqyqxp;

where Aj ; Bk ; Cpq; Dpq are all matrices of the same size, is an xy-pencil. In the case
Aj ; Bk are Hermitian and Dpq D C �qp; L is a Hermitian xy-pencil. If A0 D I , then L
is monic. For a monic Hermitian xy-pencil L, the inequality L.X; Y / � 0 for .X; Y / 2
Sg � Sh is a bilinear matrix inequality (BMI) [19, 35, 46]. Domains D defined by BMIs
are convex in the x and y variables separately.

We say a function f of two freely noncommuting variables is xy-convex on a free
set D if f .V �.X;Y /V /� V �f .X;Y /V for all isometries V , and allX;Y 2D satisfying
V �.XY /V D .V �XV /.V �Y V /. Such a pair ..X; Y /; V / is called an xy-pair. Sublevel
sets of xy-convex functions are delineated by (perhaps infinitely many) BMIs, as proved
in [32].
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Symmetric polynomials in two freely noncommuting variables x and y (so gD 1D h)
that are xy-convex essentially arise from BMIs. Here xy-convex means globally; that is,
on all of S1 � S1:

Theorem 1.4. Suppose p is a symmetric polynomial in the two freely noncommuting
variables x; y: If p is xy-convex, then there exist a Hermitian xy-pencil � 2 Chx; yi,
a positive integer k and an xy-pencil ƒ 2 Chx; yik�1 such that

p D �.x; y/Cƒ.x; y/�ƒ.x; y/:

The converse is easily seen to be true.

The notions of partial convexity and xy-convexity are two instantiations of �-con-
vexity [32]. Let D � Sh � Sg be a given free open set that is also closed with respect to
restrictions to reducing subspaces; that is, if .A;X/ 2D and V is an isometry whose range
reduces each Aj and Xk , then V �.A; X/V 2 D : The set D is convex in x, or partially
convex, if for eachA2Sh

k
the slice D ŒA� (see (1.7)) is convex. Likewise, D is a2-convex if

for each .A;X/2Dn and isometry V WCm!Cn such that V �A2V D .V �AV /2 it follows
that V �.A; X/V 2 D . In [32] it is shown that D is convex in x if and only if it is a2-
convex. A straightforward variation on the proof of that result establishes Proposition 1.5
below. A rational function r 2 C .<a; x /> is a2-convex on D if, whenever .A;X/ 2D and
V WCm ! Cn is an isometry such that V �A2j V D .V

�AjV /
2 and V �.A; X/V 2 D , we

have that
V �r.A;X/V � r.V �.A;X/V /:

Proposition 1.5. If D � Sh � Sg is a free set that is closed with respect to reducing
subspaces and a2-convex, then an r 2 C .<a; x /> is a2-convex on D if and only if it is
convex in x on D :

2. Partial convexity for nc rational function

In this section we consider partial convexity of nc rational functions and establish Theor-
ems 1.1 and 1.2, as well as Corollary 1.3.

2.1. Preliminaries

Proposition 2.1 below is a version of the well-known state space similarity theorem due to
Schützenberger [44]; see also [4] or Proposition 4.3 in [29].

Proposition 2.1. If

q.x/ D a�
�
J �

mX
jD1

Ajxj

��1
a and q.x/ D b�

�
K �

mX
jD1

Bjxj

��1
b

are two SMRs for the same rational function, then there is a unique matrix S such that
S�KS D J; SJAj D KBjS for 1 � j � m and SJa D Kb:
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A bit of algebra reveals that S�BS D A: Thus K �
P
Bjxj D S

�.J �
P
Ajxj /S

and it follows that the definitions of dom r and domC r are independent of the choice
of SMR.

Just as in the commutative case, it is well known that convexity properties of a free
rational functions can be characterized by positivity of a Hessian. See for instance [30].
The x-partial Hessian of an SMR as in equation (1.3) is the rational function in 2gC h
freely noncommuting variables,

rxx.a; x/Œh� D 2c
�R.a; x/

�X
i

Tihi

�
R.a; x/

�X
i

Tihi

�
R.a; x/c

D 2
h
c�R.a; x/

�X
i

Tihi

�i
RT .a; x/

h�X
i

Tihi

�
R.a; x/c

i
;

(2.1)

where R is the resolvent

(2.2) R.a; x/ WD
�
J �

X
Tjxj �

X
Skak

��1
;

ƒT Œh� D
Pg
jD1 Tjhj , and RT .a; x/ D V �T R.a; x/VT is defined as in (1.5). Compare

with equation (5.3) in [29], where the full Hessian of a SMR is computed in detail.
The x-partial Hessian is naturally evaluated at a tuple .A;X;H/ 2 Sh � Sg � Sg, where
.A;X/ 2 dom r with output a symmetric k � k matrix.

Proposition 2.2 is the partial convexity analog of the characterization of convexity in
terms of Hessians in [30]. The proof is a straightforward modification of the one in [30],
so is only sketched below.

Proposition 2.2. The rational function r is convex in x on a nonempty, open in x; and
convex in x set S � dom r \ .Sh

k
�Sg

k
/ if and only if rxx.A;X/ŒH�� 0 for all .A;X/ 2 S

and H 2 Sg
k
:

Sketch of proof. The rational function r is convex in x on S if and only if, for eachA 2 Sh
k

and each positive linear functional �W Sk ! R, the function fA;�W S ! R defined by
fA;�.X/ D � ı r.A; X/ is convex. On the other hand, fA;� is convex if and only if its
Hessian is positive; that is,

0 � f 00A;�.X/ŒH� D � ı rxx.A;X/ŒH� for all H .

Thus fA;� is convex for each A and positive � if and only if rxx.A;X/ŒH� � 0:

2.2. domC r is open in x and convex in x

In this section we show that domC r is both open in x and convex in x: Let positive
integers m and n; a matrix D 2 Sn and a matrix B 2 Mm;n.C/ be given. Let V WCm !

Cm ˚Cn denote the inclusion

Vx D

�
x

0

�
2 Cm

˚Cn:

Define LWSm ! SmCn by

L.X/ D
�

X B

B� D

�
:
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Let

� D ¹X 2 Sn.C/ W detL.X/ ¤ 0º and �C D ¹X 2 � W V �L.X/�1V � 0º:

Lemma 2.3. The set �C is open, convex, and a connected component of �:

Before proving Lemma 2.3, we first establish the following result.

Lemma 2.4. There exist a subspace H � Cm and a self-adjoint operator F on H such
that, with W equal the inclusion of H into Cm;

(1) X 2 � if and only if W �XW � F is invertible ; and

(2) X 2 �C if and only if W �XW � F � 0:

Proof. The proof is straightforward in the case that D is invertible. Indeed, under the
assumption thatD is invertible, a standard Schur complement result saysL.X/ is invertible
if and only if the Schur complement of D;

S.X/ D X � BD�1B�;

is invertible and further, in that case,

V �L.X/�1V D S.X/�1:

Thus the result holds with H D Cm and F D BD�1B�:
The result also holds trivially if�D ; by choosing H D ¹0º: Thus, for the remainder

of this proof, assume D is not invertible and � ¤ ;: In particular, kerD \ kerB ¤ ¹0º:
With respect to the orthogonal direct sum Cn D kerD ˚ kerD?;

D D

�
0 0

0 D0

�
and L.X/ D

0@ X B1 B2
B�1 0 0

B�2 0 D0

1A ;
with D0 invertible. It follows that B1W kerD ! Cm is one-to-one, as otherwise L.X/ is
never invertible, violating the assumption � ¤ ;:

With respect to the orthogonal decomposition Cm D rngB1 ˚ rngB?1 ;

B1 D

�
B1;1
0

�
W kerD ! Cm:

In particular, B1;1 is invertible. In these coordinates (Cm D rngB1 ˚ rngB?1 and Cn D

kerD ˚ kerD?),

L.X/ D

0BB@
X1;1 X1;2 B1;1 B1;2
X�1;2 X2;2 0 B2;2
B�1;1 0 0 0

B�1;2 B�2;2 0 D0

1CCA :
Since D0 is invertible, L.X/ is invertible if and only if the Schur complement of D0;

T .X/ D

0@X1;1 X1;2 B1;1
X�1;2 X2;2 0

B�1;1 0 0

1A �0@B1;2B2;2
0

1A D�10
�
B�1;2 B�2;2 0

�
;
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is invertible. Writing T .X/ as0@X1;1 � C1;1 X1;2 � C1;2 B1;1
X�1;2 � C

�
1;2 X2;2 � C2;2 0

B�1;1 0 0

1A ;
we observe that T .X/ is invertible if and only if X2;2 � C2;2 is invertible, proving item (1)
with H D rngB?1 and F D C2;2: Moreover,

T .X/�1 D

0@ 0 0 B�11;1
0 .X2;2 � C2;2/�1 �

B��1;1 � �

1A :
Since the upper 3 � 3 block of L.X/�1 is T .X/�1; it follows that

V �L.X/�1V D
�
0 0

0 .X2;2 � C2;2/�1

�
:

Hence X 2 �C if and only if X2;2 � C2;2 � 0; proving item (2) again with H D rngB?1
and F D C2;2:

Proof of Lemma 2.3. Since, by Lemma 2.4, X 2 �C if and only if W �XW � F � 0; the
set�C is both open and convex. Since�C is convex, to prove�C is a connected compon-
ent of �; it suffices to prove �C is closed in �: To this end, suppose .Xn/n is a sequence
from �C that converges to X 2 �: It follows from Lemma 2.4 that W �XnW � F � 0 for
each n and hence, after taking a limit,W �XW � F � 0: On the other hand, X 2� implies
W �XW � F is invertible by Lemma 2.4. Hence W �XW � F � 0 and therefore X 2 �C

by yet another application of Lemma 2.4.

Proposition 2.5. Suppose r 2C .<a;x /> is an nc rational function with the SMR as in (1.3)
and A 2 Sh

n: The set

�ŒA�C D ¹X 2 Sg
n W .A;X/ 2 domC rº

is open, convex and a connected component of the set

�ŒA� D ¹X 2 Sg
n W .A;X/ 2 dom rº � Sg

n:

Proof. LetN denote the size of realization. Thus J 2MN .C/:Without loss of generality,
we assume that rng T ˚ rng T ? decomposes CN as Ca ˚ Cb : Express J; S; T with
respect to this orthogonal decomposition as

J D

�
J1;1 J1;2
J �1;2 J2;2

�
; Sk D

�
Sk;0 Sk;1
S�
k;1

Sk;2

�
; Tj D

�
Tj;0 0

0 0

�
:

Let B D J1;2 ˝ I �
P
Sk;1 ˝Ak 2Ma;b.C/˝ Sn andD D J2;2 ˝ I �

P
k Sk;2 ˝

Ak 2 Sb ˝ Sn � Sbn and define LWSam ! SamCbn by

L.X/ D
�

X B

B� D

�
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and let V denote the inclusion of Ca ˝ Cn into .Ca ˝ Cn/˚ Cb ˝ Cn: Let � D ¹X 2
Sam W detL.X/ ¤ 0º and let

�C D ¹X 2 � W V �L.X/�1V � 0º:

By Lemma 2.3, �C is open, convex and a connected component of �: In particular, �C

is closed in �:
Define ƒWSg

n ! San by

ƒ.X/ D
�
J1;1 ˝ I �

X
k

Sk;0 ˝ Ak

�
�

X
j

Tj;0 ˝Xj :

Observe that ƒ is affine linear, �ŒA� D ƒ�1.�/ and �ŒA�C D ƒ�1.�C/: Thus, since ƒ
is continuous and�C is open,�ŒA�C is open. Likewise, sinceƒ is affine linear and�C is
convex, �ŒA�C is convex and thus connected. Finally, since �ŒA�C is connected, to show
it is a component of �ŒA�; it suffices to observe that it is closed since it is the inverse
image under the continuous map ƒj�ŒA� W �ŒA�! � of the closed (in �) set �C:

2.3. Characterization of partial convexity

Throughout this section we fix an SMR (1.3) for r , and let R.a; x/ denote the resolvent of
equation (2.2). Recall the definitions of RT and domC r of equations (1.5) and (1.6).

Theorem 2.6. If r 2 C .<a; x /> is an nc rational function with the SMR as in (1.3), then

(1) domC r is a domain of partial convexity for r I

(2) if D � dom r is a full domain of partial convexity for r; then D � domC r:

Corollary 2.7 ([29]). Suppose r 2 C .<x />: If r is convex in a free open set containing 0;
then dom0 r , the component of dom r containing 0, is convex and r is convex on dom0 r:

It is straightforward to verify that domC r is a free set. That domC r is open in x
and convex in x was established in Proposition 2.5. Thus to prove domC r is a domain of
partial convexity for r; it remains to prove that r is convex in x on domC r , a statement that
follows from Proposition 2.8 below. Item (2) of Theorem 2.6 is an immediate consequence
of the converse portion of Proposition 2.8.

Proposition 2.8. Let r denote the rational function of (1.3) and suppose E � dom r is a
free set that is open in x and convex in x:

If RT � 0 on E; then r is convex in x on E: Conversely, if E contains a free open
set U with U1 ¤ ;; and if r is convex in x on E; then RT � 0 on E:

2.3.1. The CHSY lemma. In this section we establish a variant of the CHSY lemma [10]
(see also [9, 48]) suitable for a proof of Proposition 2.8, starting with the of independent
interest Lemma 2.9 below.

Lemma 2.9. If �1; : : : ; �K 2 C .<x /> are linearly independent rational functions in g vari-
ables, m is a positive integer and U is a free open subset of Sg with U1 ¤ ;; then there
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exist a positive integer M , an X 2 UM and a matrix w 2Mm;M .C/ such that´ w �1.X/v
:::

w �K.X/v

!
W v 2 CM

µ
D CK

˝Cm
D CKm:

Proof. Let „ D col.�1; : : : ; �K/ 2 MK;1.C .<x />/: Let � denote the set of pairs .z; Y /,
where, for some n, Y 2 Un and z 2Mm;n.C/: Given .z; Y / 2 �n, let

V.z;Y / D ¹.IK ˝ z/„.Y /v W v 2 Cn
º � CK

˝Cm:

Given A D .z; Y / and zA D .zz; zY / both in � , let

A˚ zA D

��
z zz

�
;

�
Y 0

0 zY

��
:

It is straightforward to verify that VA˚ zA D VA C V zA: Hence, there exists a (dominating)
pair .w;X/ 2 � such that

(2.3) V.z;Y / � V.w;X/;

for all .z; Y / 2 � : Suppose ˛ 2 V?
.w;X/

: From equation (2.3), it follows that ˛ 2 V?
.z;Y /

for
all .z;Y / 2 � :Write ˛ 2CK ˝Cm as ˛ D

P
j̨ ˝ ej ;where ¹e1; : : : ; emº is the standard

orthonormal basis for Cm and j̨ 2CK :We will show, for each j; that
PK
sD1 . j̨ /s �s D 0;

and hence, by the linear independence assumption, that each j̨ , and hence ˛; is zero.
Accordingly, fix j and let n and Y 2Un be given. Given a vector f 2Cn; letwf D ejf �:
Since ˛ 2 V?

.Y;wf /
,

0 D ˛�ŒIK ˝ wf �„.Y / D .˛
�
j ˝ f

�/„.Y / D f �
KX
sD1

. j̨ /s �s.Y /:

Thus, for each j , the rational function � D
PK
sD1 . j̨ /s �s vanishes on U: By hypothesis,

U1 ¤ ; and U is an open free set. Hence, for each n; the set Un is nonempty and open
and � vanishes identically on U: Hence � is identically zero since there are no rational
identities [6]; cf. the definition of nc rational functions via matrix evaluations in [29]. The
desired conclusion follows.

Lemma 2.10. If the realization (1.3) is minimal and of sizeN and U is a free open subset
of dom r; then, for each m 2 N; there exist an M , .A;X/ 2 U; a w 2Mm;M .C/ and an
H 2 Sg

M such that

VA;X;H;w WD
°
.IN ˝w/

�X
i

Ti ˝Hi

�
R.A;X/.c ˝ IM /v j v 2 CM

±
D .rngT /˝Cm:

Proof. LetK denote the dimension of rngT and let U be a unitary matrix mapping rngT
into the firstK coordinates of CN : The entries �j of theN � 1matrixR.a;x/c are linearly
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independent nc rational functions by minimality of (1.3) and hence so are the entries of
the gN � 1 matrix

Q.a; x; h/ WD

0@h1R.a; x/c:::

hgR.a; x/c

1A :
Thus there are �j 2 C .<h; a; x /> such thatX

TihiR.a; x/c D
��
T1 � � � Tg

��
Q.a; x; h/ D U � col .�1; : : : ; �K ; 0; : : : ; 0/ :

Further, since the entries of Q are linearly independent, the set ¹�1; : : : ; �Kº is linearly
independent. By Lemma 2.9, for each positive integerm; there exist a positive integerM ,
a tuple .H; A; X/ 2 Sg

M �UM and a matrix w 2 MM;m.C/ such that the conclusion of
Lemma 2.9 holds, completing the proof.

2.3.2. Proof of Proposition 2.8. Observe that, from equation (2.1), it is evident that the
inequalityRT � 0 on E implies rxx is positive semidefinite on E , equivalently r is convex
in x on E by Proposition 2.2.

Now suppose rxx is positive semidefinite on E: To prove that the inequality RT � 0
holds on E , disaggregate the variables, in the following way. Let

xi D

�
x1i 0

0 x2i

�
; hi D

�
0 ki
k�i 0

�
; ai D

�
a1i 0

0 a2i

�
;

where the xji ; ki and aji form a 2.2gC h/ collection of freely noncommuting variables.
In these coordinates the .1; 1/ entry of rxx in (2.1) equals

(2.4) 2
h
c�R.a1; x1/

�X
i

Tiki

�i
R.a2; x2/

h�X
i

Ti .ki /
�
�
R.a1; x1/c

i
:

We next apply Lemma 2.10. Given a positive integerm and .A2;X2/ 2 Em, chooseM and
.A1; X1/ 2UM ; w 2Mm;M .C/ and H 2 Sg

M satisfying the conclusion of Lemma 2.10.
Thus .A; X/ D .A1 ˚ A2; X1 ˚ X2/ 2 EmCM and hence rxx.A; X/ŒH� � 0: Choose
K D wH 2Mm;M .C/: Substituting into (2.4) and observing that°hX

Tj ˝Kj

i
R.A1; X1/.c ˝ I / W v 2 Cn

±
spans rngT ˚Cm; it now follows that RT .A2; X2/ � 0:

2.3.3. Proof of Theorem 2.6. For item (1), Proposition 2.5 says that domC r is open in x
and convex in x: The forward direction of Proposition 2.8 says that r is convex in x on
domC r:

The converse direction of Proposition 2.8 says that, if D is a full domain of convexity
for r , then RT � 0 on E: Thus E � domC r:
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2.4. Realizations for partial convexity

Proposition 2.11. The rational function r 2 C .<a; x /> of equation (1.3) admits the real-
ization

r D c�
�
J �

X
Siai

��1
c C c�

�
J �

X
Siai

��1 X
Tixi

�
J �

X
Siai

��1
c

C c�
�
J �

X
Sjaj

��1X
Tixi

�
J �

X
Tjxj �

X
Skak

��1
�

X
Tixi

�
J �

X
Siai

��1
c:

(2.5)

We will refer to a realization of the form (2.5) as a caterpillar realization.

Proof. Formula (2.5) follows from a routine calculation.

Recall the definitions of VT and �a.D/ from equations (1.5) and (1.8), respectively.

Theorem 2.12 (Wurzelschmetterlingrealisierung). Suppose r 2 C .<a; x /> is symmetric
with SMR as in equation (1.3).

(1) The set domCver r is a vertebral domain of convexity for r:

(2) If D � dom r is a full vertebral domain of convexity for r; then D � domCver r .

Let bT j D V �T TjVT and let k be the dimension of rngT: There exist a rational function
w.a/ 2Mk.C .<a />/, defined on �a.domver r/ and positive semidefinite on �a.domCver r/;
rational functions j̀ .a/ 2 C .<a />k for 1 � j � g; that are defined on domver r I and a
rational function ff .a; x/ that is affine linear in x and defined on domver r such that, with

(2.6) `.a; x/ D
X

xj j̀ .a/;

(3) if .B; Y / 2 domver r I then I � .
P
Tj ˝ Yj /w.B/ is invertible and

r.B; Y / D `.B; Y /�w.B/
�
I �

�XbT i ˝ Yi�w.B/��1`.B; Y /C ff .B; Y /I
(4) and we have

domCver r D
°
.A;X/ 2 domver r W w.A/ � 0 and

I �
p
w.A/

hXbT j ˝Xj ipw.A/ � 0±I
and

r jdomCver r
.a; x/ D `.a; x/�

p
w.a/

�
I �

p
w.a/

XbT ixi pw.a/��1(2.7)

�
p
w.a/ `.a; x/C ff .a; x/I

(5) If r is a polynomial and D is a full vertebral domain of convexity for r; then

(a) ff; w and ` are also polynomials ;
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(b) r has the representation

(2.8) r.a; x/ D `.a; x/�w.a/`.a; x/C ff .a; x/;

and hence r is convex in x on �a.D/ � Sg and has degree at most two in x:

Conversely, any .rational/ function of the form (2.7) is convex in x on the set domCver r

and any polynomial of the form of equation (2.8) is convex in x on the free strip ¹A 2 Sh W

w.A/ � 0º � Sg:

Given the symmetric realization (1.3), express the matrices Tj ; Sj as block 2 � 2
matrices with respect to the orthogonal decomposition rngT ˚ rngT ? as

(2.9) Tj D

�bT j 0

0 0

�
; Sj D

 
S
j
11 S

j
12

S i�12 S
j
22

!
; J D

�
J11 J12
J �12 J22

�
:

Proof of Theorem 2.12. By definition, domCver r is convex in x and a subset of domC r:
Thus, since r is convex in x on domC r; it is also convex in x on domCver r: Thus item (1)
holds.

If D � dom r is full vertebral domain of convexity for r; then D is a full domain
of partial convexity for r: Hence, by Theorem 1.1, D � domC r: If .A; X/ 2 D ; then
.A; 0/ 2 D ; since D is a vertebral set. Thus both .A;X/ and .A; 0/ 2 domC r and hence
.A;X/ 2 domCver r; proving item (2).

By Proposition 2.11, r admits the caterpillar realization (2.5), whose resolvent

R.a; x/ D

 
J11 �

PbT jxj �PS
j
11aj J12 �

P
S
j
12aj

J �12 �
P
S
j�
12 aj J22 �

P
S
j
22aj

!�1
is defined on the domain of r:We obtain a free rational functionW.a/DR.a;0/2C .<a />:

Let w.a/ D V �T R.a; 0/VT denote the (block) .1; 1/-entry of W.a/: Likewise, the domain
of the rational function

`.a; x/ D V �T

X
TixiW.a/c

contains domW:

Suppose .A;X/ 2 domver r: Thus .A; 0/; .A;X/ 2 dom r; and hence

R�1.A;X/W.A/ D
�
J �

X
Tj ˝Xj �

X
Sk ˝ Ak

�
W.A/

D I �
�X

Tj ˝Xj

�
W.A/ D

��
I �

PbT j ˝Xj �w.A/ �
0 I

�
:(2.10)

It follows that I � .
PbT j ˝ Xj /w.A/ is invertible whenever .A; 0/; .A; X/ 2 dom r ,

establishing the first half of item (3). Moreover, in that case, from equation (2.10),

R.A;X/ D W.A/

��
I �

PbT j ˝Xj �w.A/ �
0 I

��1
D

�
w.A/

�
I �

PbT j ˝Xj �w.A/ �
0 I

��1
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and thus

RT .a; x/ D V
�
T R.a; x/VT D w.a/

�
I �

�XbT ixi�w.a/��1:
Letting ff denote the affine linear in x term from the caterpillar realization of equa-
tion (2.5),

r.A;X/ D `.A;X/�w.A/
�
I �

�XbT i ˝Xi�w.A/��1`.A;X/C ff .A;X/;
when .A;X/ 2 domver r; proving item (3).

Given square matrices P and Q of the same size, the eigenvalues of PQ and QP are
the same. Now suppose .X;A/ 2 domver r and w.A/ � 0 and let

T D
XbT i ˝Xi :

Choosing P D T
p
w.A/ and Q D

p
w.A/; it follows that Tw.A/ and

p
w.A/T

p
w.A/

have the same eigenvalues. Thus, in view of item (3), if I �
p
w.A/T

p
w.A/ � 0; then

I �
p
w.A/T

p
w.A/ � 0: Hence

RT .A;X/ D w.A/.I � Tw.A//�1 D
p
w.A/

�
I �

p
w.A/T

p
w.A/

��1p
w.A/ � 0

and therefore .A; X/ 2 domC r: The assumption RT .A; 0/ D w.A/ � 0 is equivalent to
.A; 0/ 2 domC r: Hence .A;X/ 2 domCver r:

Conversely, if .A; X/ 2 domCver r; then w.A/ � 0 and, since domCver r is convex in x
and .A; 0/ 2 domCver r; for each 0 � t � 1; the matrix I � tTw.A/ is invertible and hence
so is M.t/ D I �

p
w.A/T

p
w.A/: Since M.0/ is positive and M.t/ is invertible and

self-adjoint for 0 � t � 1; it follows that M.1/ � 0 and the proof of item (4) is complete.
In the case r is a polynomial, R.a; x/ is globally defined (has no singularities) and

is therefore a (matrix-valued) polynomial by Corollary 3.4 in [36]. Hence both w.a/ and
`.a; x/ are polynomials. By hypothesis, there is a free open set U � D with U1 ¤ ;:

Choose a point .a;x/2U1�Rh �Rg and consider the polynomial q.a; x/ D r.a � a; x/.
Let D 0 D ¹.A� aI;X/ W .A;X/ 2Dº: If .A;X/ 2D 0; then .A� aI;X/ 2D and hence
.A� aI;0/2D and finally .A;0/2D 0: Thus D 0 is a vertebral domain of partial convexity
for q: Hence, without loss of generality, we assume from the outset that .0; 0/ 2 D : Then
w.0/D V �T R.0; 0/VT is positive semidefinite by Theorem 2.6 since we have now convex-
ity in x in a neighborhood of 0: NextR.0; 0/D J�1 D J and sow.0/D J1;1 � 0: Since r
is a polynomial (and the realization is minimal), TJ is (jointly) nilpotent by Corollary 3.4
in [36]. But

TJ D

�
OT 0

0 0

� �
J11 J12
J �12 J22

�
D

�
OT J11 OT J12
0 0

�
;

whence OT J12 is (jointly) nilpotent. Thus Y D
p
J11Tj

p
J11 is self-adjoint and nilpotent

and hence 0: Thus, from equation (2.7), r has the representation of equation (2.8). From
this representation it is immediate that r has degree (at most) two in x and is convex in x
on the set ¹.A;X/ W w.A/ � 0º; which includes �a.D/ � Sg:
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Corollary 2.13. Let D be a vertebral set. Let r 2 C .<a; x /> be an nc rational function in
two classes of variables x D .x1; : : : ; xg/ and a D .a1; : : : ; ah/. Let r have a SMR (1.3).
Consider the matrices in block form based on rngT in equation (2.9) and let k denote the
dimension of rngT:

If J22 is invertible, then the function r is convex in x on D if and only if there exist
a rational function `.a; x/ 2 C .<a; x />k�1 that is linear in x, and a rational function
m.a/ 2 C .<a; x />k�k such that

r D `.a; x/�
�
m.a/ �

XbT ixi��1 `.a; x/C ff .a; x/;
where ff .a; x/ 2 C .<a; x /> is affine linear in x, and the resolvent .m.a/ �

PbT ixi /�1 is
positive on a dense subset of Dn for large n.

Proof. This result follows by using the Schur complement form for the inverse of a block
matrix in Proposition 2.11; the positivity condition follows from Proposition 2.8.

3. A polynomial factorization

In this section we introduce an auxiliary operation E on both matrices and polynomials and
in Theorem 3.3 provide a decomposition of symmetric polynomials � 2M2.Chx; yi/ for
which E� is (matrix) positive. This result is a key ingredient in the proof of Theorem 1.4,
which appears in Section 4, characterizing xy-convex polynomials.

Given a pair of block 2 � 2 matrices A D .Ai;j / and B D .Bi;j / define

A~ B D
�
Ai;j ˝ Bi;j

�
:

Thus A ~ B is a mix of Schur product (�) and tensor product (˝). It is known as the
Khatri–Rao product. Let V1 D

�
I
0

�
and V2 D

�
0
I

�
with respect to the block decomposition

of A and define W1 and W2 similarly with respect to the block decomposition of B . Let

E D
�
V1 ˝W1 V2 ˝W2

�
:

Lemma 3.1. With notation as above, A~ B D E�ŒA˝ B�E.

Proof. Note that

E�ŒA˝ B�E D
�
.V �j ˝W

�
j /ŒA˝ B�.Vk ˝Wk/

�2
j;kD1

and .V �j ˝W
�
j /ŒA˝ B�.Vk ˝Wk/ D Ajk ˝ Bjk .

Let, for j D 1; 2,

sj D

�
sj;0 sj;1
s�j;1 sj;2

�
;

where ¹sj;k W 1 � j � 2; 0 � k � 2º are freely noncommuting variables with sj;0 and sj;2
symmetric; that is s�

j;k
D sj;k for k D 0; 2. For notational purposes, let

s0 D I2 D

�
1 0

0 1

�
:
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Suppose pD
P
j;kD0pj;k xjxk is a 2� 2 symmetric matrix polynomial of degree (at most)

two in two symmetric variables x D .x1; x2/; where, for notation purposes, x0 D 1 (the
unit in Chxi), each pj;k 2M2.C/ and p�

j;k
D pk;j : Let Ep denote the matrix polynomial

in the six variables ¹sj;0; sj;1; sj;2 W 1 � j � 2º defined by

Ep.s/ D

2X
j;kD0

pj;k ~ sj sk :

Such a polynomial is naturally evaluated at a pair of block 2 � 2 symmetric matrices,

(3.1) Sj D

�
Sj;0 Sj;1
S�j;1 Sj;2

�
2M�.C/˝M2.C/;

using ~ via

Ep.S/ D

2X
j;kD0

pj;k ~ SjSk 2M�.C/˝M2.C/:

By contrast,

p.S/ D

2X
j;kD0

pj;k ˝ SjSk 2M2.C/˝M�.C/˝M2.C/:

However, p and Ep are closely related, as the following lemma describes. Its proof is
similar to that of Lemma 3.1.

Lemma 3.2. With notations as above,

Ep.S/ D E�
� 2X
j;kD0

pj;k ˝ SjSk

�
E D E�p.S/E:

In particular, if p.S/ � 0, then Ep.S/ � 0 too.

Theorem 3.3 is the main result of this section.

Theorem 3.3. Suppose �.x/ is a symmetric 2� 2 polynomial of degree at most two in the
symmetric variables x D .x1; x2/: If E�.S/ � 0 for all positive integers m; n and pairs
S D .S1; S2/ 2 S2nCm of 2 � 2 block symmetric matrices, then there exist an N � 12 and
q0; q1; q2 2MN;2.C/ such that

q�j qk D �j;k ; 1 � j; k � 2;

q�0qk C q
�
kq0 D �k;0 C �0;k ; k D 1; 2;

.q�0q0/1;1 D .�0;0/1;1; .q�0q0/2;2 D .�0;0/2;2:(3.2)

In particular, letting q denote the affine linear polynomial q D
P2
jD0 qjxj 2 ChxiN�2,

there is an r1 2 C such that

� D q�q C r; where r D
�
0 r1
r�1 0

�
:
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The remainder of this section is devoted to the proof of Theorem 3.3. Let ¹e1; e2º
denote the standard orthonormal basis for C2 with resulting matrix units eae�b for 1 �
a; b � 2: Let hx1; x2ik denote the words in x1; x2 of length at most k. Thus hx1; x2i1 D
¹x0; x1; x2º; where, as above, x0 D 1: We will view C3 as the span of hx1; x2i1 with
hx1;x2i1 as an orthonormal basis andM3.C/ as matrices indexed by hx1;x2i1�hx1;x2i1.
In this case, xjx�k are the matrix units.

Let S denote the subspace of M2.C/˝M3.C/ consisting of matrices

T D
�
T˛;ˇ

�
˛;ˇ2hx1;x2i1

;

where T˛;ˇ 2M2.C/ satisfy, for ˇ 2 hx1; x2i1;

Tˇ;x0 D Tx0;ˇ ; Tx0;x0 2 span¹e1e�1 ; e2e
�
2 º:

Thus Tx0;x0 is diagonal and S is an operator system; that is, a self-adjoint subspace of
M2.C/˝M3.C/ that contains the identity.

Define  W S!M2.C/ by

(3.3)  
�
T˛;ˇ

�
D

X
˛;ˇ2hx1;x2i1

�˛;ˇ � T˛;ˇ D
X

˛;ˇ2hx1;x2i1

�˛;ˇ ~ T˛;ˇ :

Proposition 3.4. The mapping  of equation (3.3) is completely positive .cp/.

Proof. To prove that  is cp, let a positive integer n and positive definiteZ 2Mn.C/˝ S

be given. In particular,
Z D

�
Z˛;ˇ

�
˛;ˇ2hx1;x2i1

;

where Z˛;ˇ D
�
.Z˛;ˇ /a;b

�2
a;bD1

2Mn.C/˝M2.C/; .Z˛;ˇ /a;b 2Mn.C/ and

Zx0;ˇ D Zˇ;x0 ; Zx0;x0 D

2X
aD1

.Zx0;x0/a;a ˝ ea e
�
a :

Since Z is positive definite, Z�x0;˛ D Zx0;˛ and letting ‚ D Z�1x0;x0 ;

0 �
�
Z˛;ˇ �Z˛;x0‚Zx0;ˇ

�
j˛jDjˇ jD1

D GG� D
�
G˛G

�
ˇ

�
j˛jDjˇ jD1

;

for some m and matrices

G˛ D
�
.G˛/a;j

�2
a;jD1

2Mn;m.C/˝M2.C/:

In particular, for 1 � a; b � 2;

.Z˛;ˇ /a;b �

�
Z˛;x0

�
‚1;1 0

0 ‚2;2

�
Zx0;ˇ

�
a;b

D

2X
jD1

.G˛/a;j .Gˇ /
�
b;j ;

where ‚j;j D .Zx0;x0/
�1
j;j : Thus, for j˛j D 1 D jˇj;

2X
jD1

.Z˛;x0/a;j ‚j;j .Zx0;ˇ /j;b C

2X
jD1

.G˛/a;j .Gˇ /
�
b;j D .Z˛;ˇ /a;b :
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Let

‰ D

�
‰1;1 0

0 ‰2;2

�
2MnCm.C/˝M2.C/;

where

‰a;a D

�
.Zx0;x0/a;a 0

0 Im

�
2MnCm.C/:

Let, for j D 1; 2;

(3.4) Wj D
�
.Wj /a;b

�
2MnCm.C/˝M2.C/;

where

.Wj /a;b D

�
.Zx0;xj /a;b .Gxj /a;b
.Gxj /

�
b;a

0

�
2MnCm.C/:

Since Z˛;x0 D Zx0;˛ is self-adjoint, so is Wj : By construction,

.Wj‰
�1Wk/a;b D

�
.Zxj ;xk /a;b �

� �

�
2MnCm.C/:

Let

W D

0@ ‰ W1 W2
W1 W1‰

�1W1 W1‰
�1W2

W2 W2‰
�1W1 W2‰

�1W2

1A 2MnCm.C/˝ S

and let V 2M2.nCm/;2n.C/ denote the isometry whose adjoint is

V � D

�
In 0 0 0

0 0 In 0

�
2M2n;2.nCm/.C/;

From the definition (3.3) of  (and letting  also denote its ampliations  ˝ I`;
where I` is the identity on M`.C/),

(3.5)  .W / D �x0;x0 ~‰ C �x0;x1 ~W1 C �x0;x2 ~W2 C

2X
j;kD1

�xj ;xk ~Wj‰
�1Wk :

By definition of the ~ operation, given

R D

�
R1;1 R1;2
R2;1 R2;2

�
2MnCm.C/˝M2.C/;

Ri;j D

 
R
1;1
i;j R

1;2
i;j

R
2;1
i;j R

2;2
i;j

!
2Mn.C/˚Mm.C/;

� D

�
�1;1 �1;2
�2;1 t2;2

�
2M2.C/

(3.6)

we have � ~R D .�i;jRi;j / and hence

V � Œ� ~R� V D
�
�i;jR

1;1
i;j

�
D � ~ zR;
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where zR D
�
R
1;1
i;j

�2
i;jD1

: Hence,

V � Œ�x0;x0 ~‰� V D �x0;x0 ~Zx0;x0 ;

V �
�
�x0;xj ~Wj

�
V D �xj ;xk ~Zxj ;xk ;

V �
�
�xj ;xk ~Wj‰

�1Wk
�
V D �xj ;xk ~Zxj ;xk :

Thus, from equation (3.5),
V � .W /V D  .Z/:

Hence, to prove  .Z/ � 0 it suffices to show  .W / � 0:

With R and � as in equation (3.6), given a block diagonal matrix

D D

�
D1 0

0 D2

�
2MnCm.C/˝M2.C/;

we have

D Œ� ~R� D D

�
D1 0

0 D2

� �
�i;jRi;j

� �D1 0

0 D2

�
D
�
�i;jDiRi;jDj

�
D � ~ .DRD/:

Hence, Sj D ‰�1=2Wj‰�1=2 2MnCm.C/˝M2.C/ are self-adjoint and

‰�1=2  .W /‰�1=2 D
X
j;k

‰�1=2
�
�j;k ~Wj;k

�
‰�1=2 D

X
j;k

�j;k ~ SjSk D E�.S/:

By hypothesis E�.S/ � 0 and hence  .W / � 0: Thus  .Z/ � 0 under the extra assump-
tion that Z � 0:

Now suppose Z 2Mn.C/˝ S is positive semidefinite. Since the identity is contained
in Mn.C/˝ S; for each � > 0; the matrix Z C �I is positive definite and in Mn.C/˝ S:

Thus, by what has already been proved,  .Z C �I / � 0 and hence, by letting � tend to 0;
it follows that  .Z/ � 0 and the proof is complete.

Proof of Theorem 3.3. Since, by Proposition 3.4, is cp it extends, by the Arveson exten-
sion theorem ([41], Theorem 7.5), to a cp map 'WM2.C/ ˝M3.C/ ! M2.C/. By a
well-known result of Choi ([41], Theorem 3.14), its Choi matrix

C' D

2X
j;kD0

2X
a;bD1

Œeae
�
b ˝ xjx

�
k � ˝ Œ'.eae

�
b ˝ xjx

�
k /� 2M2.C/˝M3.C/˝M2.C/

is positive semidefinite. In particular, C' factors as F �F , where

F D

2X
aD1

3X
jD1

e�a ˝ x
�
j ˝ Fj;a

for some N (� 12) and N � 2 matrices Fj;a and, in particular,

(3.7) F �j;aFk;b D '.eae
�
b ˝ xjx

�
k /:
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For qj D .Fj;1e1 Fj;2e2/2MN;2.C/;we have q�j qk D .e
�
aF
�
j;aFk;beb/

2
a;bD1

2M2.C/.
So, using (3.7), for a D 1; 2,

.�0;0/a;a D
�
�0;0 ~ eae

�
a

�
a;a
D  .eae

�
a ˝ x0x

�
0 /a;a

D '.eae
�
a ˝ x0x

�
0 /a;a D e

�
aF
�
0;aF0;aea D .q

�
0q0/a;a:

Hence equation (3.2) holds. Next, for ` D 1; 2 and 1 � a; b � 2,

.�0;` C �`;0/a;b D e
�
a

�
.�0;` C �`;0/~ eae

�
b

�
eb D e

�
a 

�
eae
�
b ˝ .x0x

�
` C x`x

�
0 /
�
eb

D e�a'
�
eae
�
b ˝ .x0x

�
` C x`x

�
0 /
�
eb D e

�
a ŒF

�
0;aF`;b C F

�
`;aF0;b�eb

D .q�0q` C q
�
` q0/a;b :

Thus q�0q` C q
�
`
q0 D �0;` C �`;0:

Finally, we see that q�j qk D �j;k (for 1 � j; k � 2) by computing, for 1 � a; b � 2;

.�j;k/a;b D e
�
a Œ�j;k ~ eae

�
b �eb D e

�
a .eae

�
b ˝ xjx

�
k /eb

D e�a'.eae
�
b ˝ xjx

�
k /eb D e

�
aF
�
j;aFk;beb D .q

�
j qk/a;b :

4. The characterization of xy-convex polynomials

In this section we prove Theorem 1.4. In Subsection 4.1 it is established that xy-convex
polynomials are biconvex (convex in x and y separately). Two applications of equa-
tion (2.8) of Theorem 2.12 then significantly reduce the complexity of the problem of
characterizing xy-convex polynomials. The notion of the xy-Hessian of a polynomial is
introduced in Subsection 4.2, where a border vector-middle matrix (see for instance [25])
representation for this Hessian is established. Further, it is shown that this middle matrix
is positive for xy-convex polynomials. The proof of Theorem 1.4 concludes in Subsec-
tion 4.3 by combining positivity of the middle matrix and Theorem 3.3.

4.1. xy-convexity implies biconvexity

The notion of xy-convexity for polynomials has a convenient concrete reformulation.

Proposition 4.1. A triple ..X; Y /; V / is an xy-pair if and only if, up to unitary equival-
ence, it has the block form

(4.1) X D

0@X0 A 0

A� � �

0 � �

1A ; Y D

0@Y0 0 C

0 � �

C � � �

1A ; V D
�
I 0 0

��
:

Thus, a polynomial p.x; y/ 2 M�.Chx; yi/ is xy-convex if and only if for each xy-pair
..X; Y /; V / of the form of equation (4.1), we have

.I� ˝ V /
�p.X; Y /.I� ˝ V / � p.X0; Y0/ � 0:
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Proof. Observe that .X0; Y0/ D V �.X; Y /V and that ..X; Y /; V / is an xy-pair; that is,
V �YXV D V �Y V V �XV . Thus, if p is xy-convex, then

0 � .I� ˝ V /
�p.X; Y /.I� ˝ V / � p.V

�.X; Y /V /

D .I� ˝ V /
�p.X; Y /.I� ˝ V / � p.X0; Y0/:

To establish the reverse implication, given an xy-pair ..X; Y /; V /; decompose the
space .X; Y / act upon as rngV ˚ .rngV /? and note that, with respect to this orthogonal
decomposition, X and Y have the block form

X D

�
X0 ˛

˛� ˇ

�
; Y D

�
Y0 



� ı

�
;

where X0, Y0, ˇ and ı are Hermitian. The relation V �YXV D V �Y V V �XV implies
˛
� D 0. But then ˛ and 
 are, up to unitary equivalence, of the form .A 0/ and .0 C /,
respectively.

Consider the following list of monomials:

L D ¹1; x; y; x2; y2; xy; yx; xy2; y2x; x2y; yx2; xyx;(4.2)

yxy; xyxy; yxyx; xy2x; yx2yº:

Proposition 4.2. If p 2Chx;yi is convex in both x and y .separately/, then p has degree
at most two in both x and y .separately/ and p contains no monomials of the form x2y2

or y2x2, only the monomials in the set L:

Proof. The degree bounds follow from Theorem 2.12. The representation of p in (2.8)
and that of ` in (2.6) imply p does not contain the monomials x2y2 and y2x2:

Let ŒL� denote the C-vector space with basis L of equation (4.2).

Lemma 4.3. If p 2 Chx; yi is xy-convex, then p is convex in both x and y. Hence
p 2 ŒL�:

Proof. Given .X1; Y / and .X2; Y /, let V D 1p
2
.I I /T and note ..X1 ˚X2; Y ˚ Y /; V /

is an xy-pair. Since p is xy-convex,

p
�X1 CX2

2
; Y
�
D p.V �.X; Y /V / � V �p.X; Y /V D

1

2

�
p.X1; Y /C p.X2; Y /

�
:

Thus p is convex in x: By symmetry p is convex in y: The conclusion of the lemma now
follows from Proposition 4.2.

4.2. The xy-Hessian

In view of Lemma 4.3, we now consider only symmetric polynomials p 2 ŒL�: Denote
by ¹s0; t0; ˛; ǰ ; 
; ıj W 0 � j � 2º freely noncommuting variables with s0, t0, ˇ0, ˇ2, ı0
and ı2 symmetric. Let, in view of Proposition 4.1,

s D

0@ s0
�
˛ 0

��
˛�

0

� �
ˇ0 ˇ1
ˇ�1 ˇ2

�1A ; t D

0@ t0
�
0 


��
0


�

� �
ı0 ı1
ı�1 ı2

�1A ; V D
�
1 0 0

��
:
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The xy-Hessian of p 2 Chx; yi; denoted Hxyp, is the quadratic in ˛ and 
 part of
V �p.s; t/V � p.V �.s; t/V / D V �p.s; t/V � p.s0; t0/: In particular, for p 2 ŒL�;

Hxyp WD V �p.s; t/V � p.V �.s; t/V / D V �p.s; t/V � p.s0; t0/:

The proof of the following lemma is routine.

Lemma 4.4. If p D
P
u2L puu 2 ŒL�; then Hxyp is a function of ˛, 
 , s0, t0, ı0, ı1, ˇ1

and ˇ2 with the explicit form

Hxyp D Œpx2˛˛
�
C py2



��C Œpxyx˛ı0˛
�
C pyxy
ˇ2


�
Cpxy2 .s0



�
C˛ı1


�/

C py2x.
 

�s0 C 
 ı

�
1 ˛
�/Cpx2y.˛˛

� t0 C ˛ˇ1

�/Cpyx2.t0˛˛

�
C 
ˇ�1 ˛

�/�

C Œpxy2x.s0


�s0 C ˛ı1


�s0 C s0
 ı
�
1 ˛
�
C ˛.ı20 C ı1ı

�
1 /˛
�/

C pxyxy.˛ı0˛
� t0 C ˛ı0ˇ1


�
C s0
ˇ2


�
C ˛ı1ˇ2


�/

C pyxyx.t0˛ı0˛
�
C 
ˇ�1 ı0˛

�
C 
ˇ2


�s0 C 
ˇ2ı
�
1 ˛
�/

C pyx2y.t0˛˛
�t0 C 
ˇ

�
1 ˛
� t0 C t0˛ˇ1


�
C 
.ˇ�1ˇ1 C ˇ

2
2/

�/�

D ˛
�
px2 C pxyxı0 C pxy2x.ı

2
0 C ı1ı

�
1 /
�
˛� C ˛

�
pxy2 C pxyxyı0

�
˛�t0

C t0˛
�
pyx2Cpyxyxı0

�
˛� C ˛

�
pxy2ı1Cpx2yˇ1 C pxyxy.ı0ˇ1 C ı1ˇ2/

�

�

C 

�
py2xı

�
1 C pyx2ˇ

�
1 C pyxyx.ˇ

�
1ı0 C ˇ

�
2ı1/

�
˛�

C ˛
�
pxy2xı1

�

�s0Cs0


�
pxy2xı

�
1

�
˛�Ct0˛

�
pyx2y

�
˛�t0Ct0˛

�
pyx2yˇ1

�

�

C 

�
pyx2yˇ

�
1

�
˛�t0 C 


�
py2 C pyxyˇ2Cpyx2y.ˇ

�
1ˇ1 C ˇ

2
2/
�

�

C 

�
py2x C pyxyxˇ2

�

�s0Cs0


�
pxy2 C pxyxyˇ2

�

�Cs0


�
pyx2y

�

�s0:

Lemma 4.5. If p 2 ŒL� and Hxyp D 0; then p is an xy-pencil. If p; q 2 ŒL� satisfy
Hxyp D Hxyq; then there is an xy-pencil � 2 Chx; yi such that p D q C �:

Proof. Since Hxy is a linear mapping, it suffices to show, if p D
P
w2L pww satisfies

Hxyp D 0, then p is an xy-pencil. To this end, observe, if Hxyp D 0, then, in view of
Lemma 4.4, pw D 0 for w in the set

¹x2; y2; xyx; yxy; xy2; y2x; x2y; yx2; xy2x; xyxy; yxyx; yx2yº:

Hence the only possible nonzero coefficients of p are p1; px ; py ; pxy ; pyx and the result
follows.

The Hessian of a p 2 ŒL� has a border vector-middle matrix representation that we
now describe. Since p 2 ŒL�;

p.x; y/ D �.x; y/C
X
w2L�

pww;

where �.x; y/ is an xy-pencil and

L� D ¹x
2; y2; xyx; yxy; xy2; y2x; x2y; yx2; xy2x; xyxy; yxyx; yx2yº

D L n ¹1; x; y; xy; yxº:

Since p is symmetric, there are relations among its coefficients. For instance, pxyx ;pyxy 2
R and pyx2 D px2y .
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Let B D B.s0; t0; ˛; 
/ denote the row vector-valued free polynomial

B.s0; t0; ˛; 
/ D
�
˛ t0˛ 
 s0


�
:

We call B the xy-border vector, or simply the border vector.
For 1 � j; k � 2, let Mj;k.ˇ1; ˇ2; ı0; ı1/ denote the 2 � 2 matrix polynomials

M11 D

�
px2 C pxyxı0 C pxy2x.ı

2
0 C ı1ı

�
1 / px2y C pxyxyı0

pyx2 C pyxyxı0 pyx2y

�
;

M12 D

�
px2yˇ1 C pxy2ı1 C pxyxy.ı0ˇ1 C ı1ˇ2/ pxy2xı1

pyx2yˇ1 0

�
;

M21 D

�
pyx2ˇ

�
1 C py2xı

�
1 C pyxyx.ˇ

�
1ı0 C ˇ2ı

�
1 / pyx2yˇ

�
1

pxy2xı
�
1 0

�
;

M22 D

�
py2 C pyxyˇ2 C pyx2y.ˇ

2
2 C ˇ

�
1ˇ1/ py2x C pyxyxˇ2

pxy2 C pxyxyˇ2 pxy2x

�
:

Let M D .Mj;k/
2
j;kD1

denote the resulting 4 � 4 (2 � 2 block matrix with 2 � 2 entries)
matrix polynomial. The matrix M is the xy-middle matrix, or simply the middle matrix,
of p.

Lemma 4.6. If p 2 ŒL� is symmetric, then

Hxyp D BMB�:

Proposition 4.7 shows that xy-convexity of p is equivalent to positivity of its middle
matrix.

Proposition 4.7. If p.x; y/ is xy-convex, then M.B1; B2; D0; D1/ � 0 for all matrices
.B1; B2;D0;D1/ of compatible sizes.

Proof. Since p is xy-convex, Hxyp � 0: Let positive integers M;N and matrices D0 2
MM .C/, B2 2 MN .C/ and B1; D1 2 MN;M .C/ be given. Choose a vector h 2 C2 and
X0; Y0 2 M2.C/ such that ¹h; X0hº and ¹h; Y0hº are linearly independent. Positivity of
the Hessian gives

0 � h�Hxyp.X0; A; B1; B2; Y0; C;D0;D1/h

D Œh�B.X0; A; Y0; C /�M.B1; B2;D0;D1/ Œh
�B.X0; A; Y0; C /�

�:

On the other hand, given vectors f1; : : : ; f4 2 CM , there exist A 2 M2;M .C/ and
C 2M2;N .C/ such that

B.X0; Y0; A; C /
�h D

0BB@
A�h

A�Y0h

C �h

C �X0h

1CCA D
0BB@
f1
f2
f3
f4

1CCA :
It follows that M.B1; B2;D0;D1/ � 0:
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4.3. Proof of Theorem 1.4

The convexity assumption on p implies that the middle matrix M of its Hessian takes
positive semidefinite values by Proposition 4.7.

Let

� D

��
ı0 ı1
ı�1 ı2

�
;

�
ˇ0 ˇ1
ˇ�1 ˇ2

��
:

Let Q denote the 2 � 2 matrix polynomial obtained from the first and third rows and
columns of M. Thus,

(4.3) Q D Q.ıa;b; ˇa;b/

�

�
px2Cpxyxı0Cpxy2x.ı

2
0Cı1ı

�
1 / px2yˇ1Cpxy2ı1Cpxyxy.ı0ˇ1Cı1ˇ2/

pyx2ˇ
�
1Cpy2xı

�
1Cpyxyx.ˇ

�
1ı0Cˇ2ı

�
1 / py2Cpyxyˇ2Cpyx2y.ˇ

2
2Cˇ

�
1ˇ1/

�
;

and, given S D .S1; S2/ of the block form of equation (3.1), we have Q.S/ � 0 since
M.S2;1; S2;2; S1;0; S1;1/ � 0 by Proposition 4.7.

Define a 2� 2 polynomial P.x1; x2/D
P
Pj;kxjxk (with x0 D 1 as usual) by setting

P0;0 D

�
px2 0

0 py2

�
; P0;1 D P1;0 D

1

2

�
pxyx pxy2

py2x 0

�
;

P0;2 D P2;0 D
1

2

�
0 px2y

pyx2 pyxy

�
;

P1;2 D

�
0 pxyxy
0 0

�
; P2;1 D

�
0 0

pyxyx 0

�
;

P1;1 D

�
pxy2x 0

0 0

�
; P2;2 D

�
0 0

0 pyx2y

�
;

(4.4)

and observe EP.�/ D Q.�/: Thus EP.S/ � 0 for all tuples of Hermitian matrices of the
form (3.1). Hence Theorem 3.3 produces an N and F D

P
Fj sj ; where Fj 2MN;2.C/;

and an R D
�
0 r
r� 0

�
such that F �F CR D P; where r 2 C. In particular,

F �j Fk D Pj;k ; 1 � j; k � 2;

F �0 Fk C F
�
k F0 D Pk;0 C P0;k ; k D 1; 2;

F �0 F0 D P0;0 CR;

F �1 F1 D P1;1 D

�
pxy2x 0

0 0

�
;

F �2 F2 D P2;2 D

�
0 0

0 pyx2y

�
:

Hence, letting ¹e1; e2º denote the standard orthonormal basis for C2; F1e2D 0D F2e1. In
particular, e�1F

�
2 F0 D 0: Now setƒx D F0e1; ƒy D F0e2; ƒyx D F1e1 andƒxy D F2e2
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and verify

ƒ�xƒx D e
�
1F
�
0 F0e1 D e

�
1P0;0e1 D px2 ;

ƒ�yƒy D e
�
2F
�
0 F0e2 D e

�
2P0;0e2 D py2 ;

ƒ�yxƒx Cƒ
�
xƒyx D e

�
1F
�
1 F0e1 C e

�
1F
�
0 F1e1 D e

�
1 .F

�
1 F0 C F

�
0 F1/e1;

D .2P1;0/1;1 D pxyx ;

ƒ�xyƒy Cƒ
�
yƒxy D e

�
2F
�
2 F0e2 C e

�
2F
�
0 F2e2 D e

�
2 .F

�
2 F0 C F

�
0 F2/e2

D e�2 .2P2;0/e2 D pyxy ;

ƒ�xƒxy D e
�
1F
�
0 F2e2 D e

�
1 .F

�
0 F2 C F

�
2 F0/e2 D e

�
1 .2P2;0/e2 D px2y ;

ƒ�yƒyx D e
�
2F
�
0 F1e1 D e

�
2 .F

�
0 F1 C F

�
1 F0/e1 D e

�
2 .2P1;0/e1 D py2x ;(4.5)

ƒ�xyƒx D e
�
2F
�
2 F0e1 D e

�
2 .F

�
2 F0 C F

�
0 F2/e1 D e

�
2 .2P2;0/e1 D pyx2 ;

ƒ�yxƒy D e
�
1F
�
1 F0e2 D e

�
1 .F

�
1 F0 C F0F

�
1 /e2 D e

�
1 .2P1;0/e2 D pxy2 ;

ƒ�yxƒyx D e
�
1F
�
1 F1e1 D e

�
1P1;1e1 D pxy2x ;

ƒ�xyƒxy D e
�
2F
�
2 F2e2 D e

�
2P2;2e2 D pyx2y ;

ƒ�xyƒyx D e
�
2F
�
2 F1e1 D e

�
2P2;1e1 D pyxyx ;

ƒ�yxƒxy D e
�
1F
�
1 F2e2 D e

�
1P1;2e2 D pxyxy :

Let
q D ƒ.x; y; xy/�ƒ.x; y; xy/;

where ƒ denotes the xy-pencil

ƒ D ƒxx Cƒyy Cƒxyxy Cƒyxyx:

A straightforward calculation, based on the identities of equation (4.5) and an appeal to
the formula for the xy-Hessian in Lemma 4.4, shows

Hxyq D Hxyp:

Hence, by Lemma 4.5, there is a Hermitian xy-pencil � such that

p D q C � D ƒ�ƒC �;

completing the proof.

Remark 4.8. Note that ƒ�xƒy Cƒ
�
yƒx D R D

�
0 r

r� 0

�
:
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