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Uniform energy distribution in a pattern-forming
system of surface charges

Katarina Bellova, Antoine Julia and Felix Otto

Abstract. We consider a variational model for a charge density u 2 ¹�1; 1º on a
(hyper)plane, with a short-range attraction coming from the interfacial energy and
a long-range repulsion coming from the electrostatic energy. This competition leads
to pattern formation. We prove that the interfacial energy density is (asymptotically)
equidistributed at scales large compared to the scale of the pattern. We follow the
strategy laid out by Alberti, Choksi and Otto (2009). The challenge comes from the
reduced screening capabilities of surface charges compared to the volume charges
considered in the aforementioned work.

1. Introduction

The interplay of short-range attraction and long-range repulsion selects a length scale and
typically leads to pattern formation. In a thermodynamic limit, provided the influence of
boundary conditions fades away, this competition often seems to favor a periodic pattern,
like equidistant stripes. Within variational models, periodicity has been established in 1-d
situations, see e.g. [27], in 2-d models that are not too far from a packing problem, fore-
most [29] but also [6, 17, 30] or in models that feature a strong anisotropy, [19]. In higher
dimensions, the optimality of periodic stripes has also been proved in cases where the
model is still anisotropic but has cubic symmetry, see e.g. [13,22], these are first examples
of symmetry breaking.

In a multi-dimensional isotropic setting, even in a variational model, a proof of period-
icity seems out of reach. However, robust strategies for proving a uniform distribution of
e.g. the energy density at scales large compared to the intrinsic scale are available, see [2].
That paper deals with the popular model where the configuration space consists of charac-
teristic functions u 2 ¹�1;1º, the short-range attractive interaction is the interfacial energy
between the two phases, and the long-range repulsive interaction is electrostatic, with the
order parameter u playing the role of a charge density. While in [2] it is the volume frac-
tion that is implicitly prescribed, the problem of prescribed volume is also of interest
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because of the potential loss of tightness, [23,24], and its isoperimetric aspects, [10]; both
problems are related in the regime of small volume fraction, [9].

The main challenge in establishing a mesoscopically uniform energy distribution
(which by a virial argument also leads to equipartition and thus uniform distribution of
the interfacial energy) lies in capturing screening effects: on mesoscopic scales, charges
arrange themselves in such a way as to reduce the macroscopic part of the electric field b
as much as possible. In this paper, we consider a very similar problem, which however
is of different dimensionality: while the field b extends into d -dimensional space Rd , the
charges u are (hyper)surface charges constrained to Rd�1 � ¹0º. We expect that this model
could be derived as a thin film limit, see for instance [15]. In other words, we replace the
squared PH�1-norm of u by its fractional counterpart PH�1=2. This additional, dimensional,
restriction of the charge density juj � 1 clearly hinders screening and thus poses an addi-
tional challenge. In fact, it turns out that the arguments here, while following the same
strategy, are more involved than in [2], as we shall detail below. In fact, some aspects
are quite reminiscent of the deep work [12] on self-similarity of twin branching near an
austenite-martensite interface. Incidentally, our setting of a thin (partial) conductor, lead-
ing to a field energy in form of a (squared) fractional Sobolev norm, resonates with the
very active area of fractional elliptic equations and of thin obstacle problems; let us men-
tion [8] as a popular reference. Incidentally, for codimension strictly larger than two, the
problem setting and its analysis would be more subtle: for a wire of vanishing radius in
three dimensional space, the electrostatic “self-energy” of a charged portion is logarith-
mically divergent, and repulsive effects between differently charged portions only appear
to next order.

The natural idea from statistical mechanics of establishing the negligibility of bound-
ary effects by comparing different boundary conditions has been employed in [2], with
the vanishing flux boundary condition being good for pasting, and the free boundary
suitable for cutting. Incidentally, the ensuing monotonicity properties, which have been
subsequently used for more subtle ferromagnetic pattern formation in [28], Lemmas 4
and 5, were also crucial in recent progress on quantitative stochastic homogenization [5].
Electrostatic screening also plays a role in the popular (mostly two-dimensional) models
for Coulomb gases, and similar arguments have been used in this more subtle context, see
e.g. the recent work [4]. Let us also mention that the treatment of boundary layers with
incomplete screening of [2] motivated a variational approach to the regularity of optimal
transportation [21], see in particular Proposition 3.3 and Lemmas 2.3 and 2.4 therein.

We now give a short summary of this paper, contrasting it with [2]. We follow [2] in
the sense that a first main step is an energy bound on mesoscopic scales (Theorem 4.1
here, Lemma 3.5 there). We also follow [2] in introducing a relaxed problem (mean-
ing that the non-convex constraint u 2 ¹�1; 1º is replaced by u 2 Œ�1; 1�), using its
dual formulation (Lemma 4.9 here, Lemma 3.3 (a) there), appealing to a trace estimate
(Lemma 4.10 here, Lemma 3.2 there), in order to obtain a non-linear estimate (Lemma 4.7
here, Lemma 3.3 (b) there). However, and this is the major complication, in this paper,
even if we were to completely neglect the constraint on u, the field b still would not
vanish. In fact, it leads to what we call the “over-relaxed problem”. Hence the simple
ODE argument that leads to Lemma 3.5 in [2] has to be replaced by a Campanato iter-
ation (Lemma 4.4 here), adjusting “shifts” of the field at every scale (Lemma 4.3 using
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also Lemma 4.5). The similarities with Theorem 2.1 and (2.2) in [12] “reverse bootstrap”
are here.

As mentioned, we follow [2] in comparing free, no-flux, and periodic boundary con-
ditions with their easy relations (Lemma 4.2 here, Lemma 3.1 there). Because of the
fact that the relaxed problem (and even the over-relaxed problem) has a non-vanishing
charge density, the pasting of a mesoscopically optimal pattern into the relaxed solution
(Lemma 3.9 in [2]) is more involved. It requires an estimate of this over-relaxed charge
density (Lemma 5.3 here, which is the main output of the regularity Section 5), and a
finer modulation of the mesoscopically optimal pattern (based on Lemma 6.5, which is
folklore). Only this yields Lemmas 6.1 and 6.2, which relate the mesoscopically localized
energy to the one of the corresponding over-relaxed problem. By yet another Campanato-
type iteration, both lemmas finally imply the negligibility of the energy of the over-relaxed
problem (Lemma 6.4), and thus the main result (Theorem 3.1), from which derives the
equipartition between the two contributions to the energy (Theorem 3.2).

The next sections contain the mathematical formulation of the problem (Section 2), the
statements of the main theorems (Section 3), and three series of intermediate results on
the way to Theorem 3.1 (Sections 4, 5, and 6). All the proofs are postponed to Section 7.

2. The problem, notations and definitions

In the ambient space Rd with canonical basis .e1; : : : ; ed /, we consider two chemical
species distributed on the hyperplane Rd�1 � ¹0º. These species have different charge
densities, renormalised here as C1 and �1, respectively. The two different species also
have a chemical interaction; we model this by introducing an energy term proportional to
the interface area between them. In mathematical terms, the charge density is given by a
function u of locally bounded variation defined on the hyperplane and taking values ˙1.
The interfacial energy is then proportional to the total variation of u (the semi-norm defin-
ing the space BV, see Section 3.1 in [3]). The charges carried on the hyperplane generate
an electric field b in the whole of Rd , satisfying r � b D uHd�1 .Rd�1 � ¹0º/ in the
distributional sense. The electric energy is proportional to the square of the L2-norm of b.

We work in a large cube

QL B .�L=2;L=2/d�1 � .0; L/;

the bottom face of which we denote by QL D @QL \ ¹x W xd D 0º. In the same way as
in [2], we will study the minimizers .u;b/ 2 BV.QL;˙1/ � L2.QL;Rd / of the energy

(2.1) E.u;b;QL/ B
Z
QL

jruj C

Z
QL

1

2
jbj2;

under the following constraint, understood in the sense of distributions:

(2.2)

´
b � ed D u on QL;
r � b D 0 in QL;

where, letting � be the inner normal to the boundary, the normal component b � � is well
defined by application of the divergence theorem to vector fields �b, where � is a test
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function defined in the closure ofQL. (See Section IX.2 of [14] for a description of spaces
of divergence-free L2 vector fields.) Omitting parameters in (2.1) means that length has
been non-dimensionalized in such a way that the intrinsic scale of the pattern is unity.
Energy has been non-dimensionalized so that the energy per .d � 1/-dimensional area is
of order one.

The problem could equivalently be formulated in QL [ .�QL/, where the constraint
on QL could be formulated as a divergence equation in the distributional sense. This
would be closer to the charge/field meaning of the pair .u; b/. However, by the symmetry
of this problem, we consider only the upper cube.1 As explained in the introduction, we
seek a result on mesoscopically uniform energy density. To obtain this, we will study
the minimizer on smaller cubes Ql , and the lower parts of their boundaries Ql . When
studying a global minimizer on a smaller scale, we need to take into account the influence
of the whole domain. This takes the form of flux (Neumann) boundary conditions imposed
on the upper parts of the boundary of QL: �L B @QLnQL (or �l , for Ql ). We thus
use various types of boundary conditions which we list here. Implicitly, we have already
considered the following family of candidates with free boundary condition on �L:

A.QL/ B
°
.u;b/

ˇ̌̌
u 2 BV.QL;˙1/;b 2 L2.QL;Rd /;

r � b D 0 in QL;
b � � D u on QL

±
:

We also consider subclasses of A.QL/ corresponding to various flux boundary conditions
on �L (again interpreted in the distributional sense). For g 2 L2.�L/, we will consider

Ag.QL/ B ¹.u;b/ 2 A.QL/ W b � � D g on �Lº:

Of course, Ag.QL/ is only non-empty if j
R
�L
gj � Ld�1, so that both the divergence-

free condition and the boundary condition b � � D˙1 onQL can be satisfied. A particular
subclass which we will often study is the class of zero flux candidates

A0.QL/ B ¹.u;b/ 2 A.QL/ W b � � D 0 on �Lº:

Finally, it is particularly convenient to work in a horizontally periodic setting, as it
is invariant under horizontal translations. The charge u will then live in the torus Td�1

L

(the .d � 1/ dimensional cube of side length L, identifying the opposite faces in the usual
sense) and the field b in Td�1

L � .0;L/. The boundary condition for b on the top face will
be free in this case; and we have to define the energy slightly differently:

Eper.u;b;QL/ B
Z

Td�1
L

jruj C

Z
Td�1
L �.0;L/

1

2
jbj2:

This notation suggests that we have identified .u; b/ on Td�1
L � .0; L/ with horizontally

periodic functions in Rd�1 � .0; L/. In particular, the divergence-free condition holds
on the whole domain. However, we note that the energy takes into account (half of) the
interface concentrated on @.QL/.

1From a candidate in QL [ .�QL/ , one can define a symmetric candidate with no more energy by super-
posing the field b=2 and an appropriate reflection of b=2.
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We define the optimal energy densities corresponding to various classes candidates as

�.QL/ B inf
.u;b/2A.QL/

E.u;b;QL/
Ld�1

;

�0.QL/ B inf
.u;b/2A0.QL/

E.u;b;QL/
Ld�1

;

�per.QL/ B inf
.u;b/2Aper.QL/

Eper.u;b;QL/
Ld�1

�(2.3)

We note that, using the direct method of the calculus of variations, one can easily show
that a minimizer of the functional (2.1) exists in each of the classes A.QL/, Aper.QL/,
A0.QL/ and Ag.QL/ (for the latter, only if it is non empty).

We use the short-hand notation ., & for � C and � C with a constant C 2 .0;C1/
depending only on the dimension d , � stands for . and & at the same time. Furthermore,
a hypothesis of the form H � 1 for some quantity H , means that there exists a constant
C 2 .0;C1/ (still depending only on d ) such that H � C�1.

3. Statement of the main results

The main results of this paper are the following two theorems.

Theorem 3.1 (Uniform distribution of energy). There exists a constant �� 2 .0;C1/,
depending only on d , such that for L� 1,

(3.1) max
®
j�.QL/ � �

�
j; j�0.QL/ � �

�
j; j�per.QL/ � �

�
j
¯

.
1

L1=2
�

Furthermore, if .u;b/ is a minimizer in Aper.QL/ and L � l � 1, then there holds

(3.2)
ˇ̌̌E.u;b;Ql /

ld�1
� ��

ˇ̌̌
.

1

l1=2
�

We have no reason to believe that the exponent 1=2 in (3.1) and (3.2) is optimal in any
sense. However, it comes up naturally through Lemma 5.3. It should be compared to the
(better) exponent 1 in the case of [2], which however can be improved by using the first
variation (see Proposition 6.1 in that paper). We do not explore this direction in the present
paper. The method we use here does not allow us to compute a value of ��; however, a
candidate could be found by optimizing over periodic stripes configurations. A scaling
argument similar to one used in Theorem 1.2 of [2] yields:

Theorem 3.2 (Equipartition of the energy). For .u;b/ as above, if L � l � 1, then there
hold ˇ̌̌ 1

ld�1

Z
Ql

jruj �
��

2

ˇ̌̌
.

1

l1=4
and

ˇ̌̌ 1

ld�1

Z
Ql

1

2
jbj2 �

��

2

ˇ̌̌
.

1

l1=4
�
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4. Uniform energy bound

As in [2], the first main step in establishing Theorems 3.1 and 3.2 is a uniform bound on
the local energy density.

Theorem 4.1 (Uniform bound on the energy density). Let .u; b/ be a minimizer of (2.1)
in the class Aper.QL/ with L� 1. Then given l with L � l � 1, there holds

E.u;b;Ql /
ld�1

. 1:

(Since we formulate Theorem 4.1 in terms of the periodic problem, there is no loss
of generality in considering centered cubes Ql .) Clearly, the task at hand is to pass the
global energy estimate down to a local one, which will be done iteratively. The global
energy estimate is a consequence of the following easy lemma. It collects all the obvious
relations, including the natural monotonicities, which follow from cutting and pasting, and
some easy estimates on the various global energy densities.

Lemma 4.2 (Basic inequalities). There exists a constant C 2 .0;C1/, depending only
on d , such that for L� 1:

(i) �.QL/ � �
per.QL/ and �.QL/ � �0.QL/,

(ii) �.QL/ � �.QkL/ for each positive integer k,

(iii) �0.QkL/ � �
0.QL/ for each positive integer k,

(iv) �0.QL/ � C ,

(v) �.QL/ � 1=C ,

(vi) �per.QL/ � �.QL/C C=L.

As in [2], the main challenge in establishing Theorem 4.1 consists in controlling the
long-range interaction via the field. This relies on screening in the sense of electrostatics,
i.e., the reduction of the size of the field b through a rearrangement of the charges u. More
precisely, the issue is how effective this screening is in the presence of some flux boundary
data g on �L. If the charges u were not constrained at all, we would arrive at the following
“over-relaxed” problem:

E
g
0 .QL/ B inf

° Z
QL

1

2
jbj2

ˇ̌̌
r � b D 0 in QL;
b � � D g on �L:

±
It is standard that a divergence-free field minimizing this energy is the gradient of a poten-
tial b D �rv0 (see Section IX.3 of [14]). Furthermore, because of the free boundary
conditions on QL, the first variation of the field energy yields that b is L2-orthogonal to
all divergence-free vector fields zb (not necessarily vanishing on QL). By integration by
parts, this implies the vanishing of the boundary integral of v0zb � �. Since any flux bound-
ary data g of vanishing boundary integral can be extended to a divergence-free field zb, this
implies that the trace of v0 is orthogonal to all functions g of vanishing boundary integral,
and thus has to be constant. Therefore v0 can be chosen as the solution to

(4.1)

8̂<̂
:
��v0 D 0 in QL;
�rv0 � � D g on �L;
v0 D 0 on QL:
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Even in this ideal situation, screening is incomplete: while reducing the horizontal
components of the field near the surface QL, it has little effect on the vertical component.
The main insight is that, on large scales, the non-relaxed problem essentially has the same
decay properties as the over-relaxed one when passing from Ql to the smaller Q�l ; this
is the content of the following lemma. We consider the quantity F.ˇ; l/, corresponding to
the volume-averaged energy of a fixed pair .u;b/, at scale l after a vertical shift ˇ:

(4.2) F.ˇ; l/ B
E.u;b � ˇed ;Ql /

ld
�

Lemma 4.3 (One-step improvement). Let .b; u/ be a minimizer in Aper.QL/. There exist
constants ı 2 .0;C1/ and � 2 .0; 1=2�, depending only on d , such that the following
holds. If L � l � 1 and

(4.3) ˇ 2 Œ�1=2; 1=2� is such that F.ˇ; l/ � ı;

then there exists a new shift Q̌ such that

(4.4) jˇ � Q̌j . F.ˇ; l/1=2 and F. Q̌; �l/ � �F.ˇ; l/ .
1

l
�

In regularity theory, such a result is known as a one-step improvement lemma in a
Campanato iteration. As usual in Campanato’s characterization of Hölder spaces, the
(squared) volume average F involves constant shifts, which in view of our comments
after (4.1) reduce to the vertical component (and thus are parameterized by a scalar ˇ).
As usual in this theory, Lemma 4.3 feeds into a Campanato iteration, of which we just
retain how the error term Cl�1 in (4.4) affects the bound on small scales, which thanks
to the volume average in F is still finer information than needed for the area average in
Theorem 4.1.

Lemma 4.4 (Campanato iteration). Let .b; u/ be a minimizer in Aper.QL/. There exists a
constant ı 2 .0;C1/, depending only on d , such that the following holds : if F.0;L/ � ı
and L � l � 1, then there holds

F.0; l/ . F.0;L/C
1

l
�

We now explain the route towards Lemma 4.3. Note that (4.4) could be strengthened
to F. Q̌; �l/ � �˛F.ˇ; l/ � C˛l�1 for any ˛ 2 .0; 2/. In fact, the simpler F. Q̌; �l/ �
�˛F.ˇ; l/ would be obvious on the level of the over-relaxed problem. The main work
consists in appealing to local optimality for .b; u/ in order to lift this to the non-convex
problem, at the expense of the error term Cl�1. Following [2], this is done via the convex
“relaxed” problem, which in this paper plays an intermediate role between non-relaxed
and over-relaxed problem (and is just needed in this section):

(4.5) E
g
rel.QL/ B inf

²Z
QL

1

2
jbj2

ˇ̌̌̌ r � b D 0 in QL;
b � � 2 Œ�1; 1� on QL;
b � � D g on �L

³
:

In Lemma 4.5, we show that indeed the over-relaxed problem is close to the relaxed prob-
lem; and in Lemma 4.6, we establish that the relaxed problem is close to the original one
in terms of energy.
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Lemma 4.5 (Closeness of over-relaxed to relaxed problem). Let b be a solution to the
relaxed problem (4.5) and let ˇ 2 Œ�1=2; 1=2� be fixed. Let �rv0 be the solution to the
over-relaxed problem (4.1) with flux boundary data replaced by .b�ˇed / � � on �L. Then,
supposing

R
�L
..b � ˇed / � �/2 � Ld�1, there holdsZ

QL

jb � ˇ ed Crv0j2 .
� Z

�L

..b � ˇ ed / � �/2
� d
d�1
:

Lemma 4.6 (Closeness of relaxed to original problem). Given a minimizer b for the
relaxed problem (4.5), there exists .b; u/ 2 Ag.QL/ such thatZ

QL

jruj C

Z
QL

1

2
jb � bj2 . Ld�1:

While the proof of Lemma 4.6 is a straightforward post-processing, which relies on
elementary elliptic estimates in form of Lemma 4.12 below, Lemma 4.5 is more subtle. In
fact, we first establish a version of Lemma 4.5 without the shift.

Lemma 4.7 (Nonlinear estimate). Given g with
R
�L
g2 � Ld�1, if b is a minimizer for

the relaxed problem (4.5), and �rv0 is the minimizer of the over-relaxed problem (4.1),
then there holds Z

QL

1

2
jbCrv0j2 .

� Z
�L

g2
� d
d�1
:

Here, as in Lemma 4.5, the crucial aspect of this non-linear estimate is that the expo-
nent d=.d � 1/ appearing on the right-hand side is (strictly) larger than one. Lemmas 4.7
and 4.5 both crucially rely on an obvious L2-orthogonality between the over-relaxed prob-
lem and the two others, which we state for drama.

Lemma 4.8 (Orthogonality). Let b be a divergence-free field and let v0 be the solution to
the over-relaxed problem (4.1) in QL with g D b � � on �L. Then there holdsZ

QL

1

2
jbCrv0j2 D

Z
QL

1

2
jbj2 �

Z
QL

1

2
jrv0j

2:

Modulo Lemma 4.8, we follow the approach of [2] to establish Lemma 4.7: we appeal
to a dual formulation of the convex relaxed problem (see Lemma 4.9), which reduces
Lemma 4.7 to a trace estimate (Lemma 4.10).

Lemma 4.9 (Dual to the relaxed problem). Given g 2 L2.�L/ with j
R
�L
gj �Ld�1, there

holds

(4.6) E
g
rel.QL/ D � inf

° Z
QL

1

2
jrvj2 C

Z
QL

jvj �

Z
�L

vg
ˇ̌̌
v 2 H1.QL/

±
:

Lemma 4.10 (Trace estimate). Given a function w 2 H1.QL/, then for any " 2 .0; 1�,
there holds� Z

QL

w2
�1=2

. ."L/1=2
� Z

QL

jrwj2
�1=2
C

1

."L/.d�1/=2

Z
QL

jwj:
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We conclude this section by stating two elliptic estimates that we need. We could not
find a reference for the maximal regularity expressed in Lemma 4.11 and thus provide a
proof. Lemma 4.12 is standard and we include its elementary proof for convenience.

Lemma 4.11 (Normal flux estimate). For any harmonic function v on the cube Œ0; L�d

which vanishes on its bottom face xd D 0, we have, for the normal derivative @�v on the
boundary @.0; L/d , Z

¹xdD0º

.@�v/
2 .

Z
�

.@�v/
2;

where � B .@.0; L/d / n ¹xd D 0º.

Lemma 4.12 (Harmonic building block). Let g be such that
R
@QL

g D 0 and solves´
�v D 0 in QL;
rv � � D g on @QL:

Then for p 2 Œ2.d � 1/=d; 2�, there holdsZ
QL

jrvj2 . L
d�.d�1/ 2p

� Z
@QL

jgjp
�2=p

:

5. Pointwise estimates on the fields

This technical section is devoted to pointwise bounds on the field b coming from a fixed
energy minimizer .u; b/ in Aper.QL/. Rather than the field b, we are interested in its
potential v, which in fact is also horizontally periodic:

Lemma 5.1 (Periodicity of the potential v). There exists v such that b D �rv, v is peri-
odic in the horizontal directions, and v D 0 on ¹xd D Lº.

We think of v and b as fields on Rd�1 � .0; L/ that are horizontally periodic; we are
also interested in the corresponding (non-periodic) over-relaxed problem Eb��

0 .Ql / onQl
with flux boundary data given by b � � on �l , cf. (4.1), for some l � L. The upcoming
pointwise bounds are on both potentials v and v0, which share the same flux boundary
data on �l , as well as on the charge density �@dv0 on Ql coming from the over-relaxed
potential:

Lemma 5.2 (Pointwise bound on the potentials). The potential v and v0 are uniformly
Hölder-1=2 continuous, i.e., letting Œ � �C1=2.Q/ stand for the Hölder-1=2 semi-norm on the
cube Q, there holds

Œv �C1=2.QL/ . 1 and Œv0 �C1=2.Ql / . 1:

Lemma 5.3 (Pointwise bound on the over-relaxed charge density). Let Ql and v0 be as
in the previous lemma. Then there holds

j@dv0.x
0; 0/j . dist.x0; �l /�1=2 for all .x0; 0/ 2 Ql :
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These two results will be crucially used in the constructions of Section 6; they just
rely on the a priori bound of Theorem 4.1 and follow from elementary potential the-
ory. To be more precise, Lemma 5.3 is a straightforward consequence of the v0-part of
Lemma 5.2, which in view of the relation between v0 and v easily follows from the v-part
of Lemma 5.2. The v-part of Lemma 5.2 is an easy consequence of the following two
pointwise bounds on b D �rv.

Corollary 5.4 (Pointwise bound on the field away from the surface). Given .x0; xd / 2QL
with 1� xd � L, there holds

jb.x0; xd /j . xd
�1=2:

Lemma 5.5 (Pointwise bound on the field near the surface). Given .x0; xd / 2 QL with
xd � 1, there holds

jb.x0; xd /j . ln
� 1
xd

�
:

The bound of Corollary 5.4 is an immediate consequence of Theorem 4.1, whereas
the bound of Lemma 5.5, which we only use to extend the bound of Corollary 5.4 to the
range xd � 1, follows by elementary potential theory from the boundedness of the charge
density.

6. Boundary conditions are negligible in the thermodynamic limit

This section leads to Theorem 3.1 via a series of lemmas. Throughout the section, .u; b/
denotes a minimizer in Aper.QL/ with L� 1. The main strategy for the proof of The-
orem 3.1 is to relate the local energy E.u;b;Ql / (always in the regime l � 1) to the sum
of �0.Ql / (or �per.Ql /) and the energy

R
Ql

1
2
jrv0j

2 of the solution v0 to the over-relaxed
problem (4.1) onQl with flux boundary data b � � on �l . On the level of the lower bound,
this is done in Lemma 6.1; for the upper bound, it is Lemma 6.2.

Lemma 6.1 (Precise lower bound on the local energy). There exists a constantC , depend-
ing only on d , such that if L � l � 1, then there holds

1

ld�1

�
E.u;b;Ql / �

Z
Ql

1

2
jrv0j

2
�
� �0.Ql / �

C

l1=2
�

Lemma 6.2 (Precise upper bound on the local energy). There exists a constantC , depend-
ing only on d , such that if L � l � 1, then there holds

(6.1)
1

ld�1

�
E.u;b;Ql / �

Z
Ql

1

2
jrv0j

2
�
� �per.Ql /C

C

l1=2
�

Of course, both lemmas are established by constructions: in Lemma 6.1 we construct
a candidate for A0.Ql / based on .u; b C rv0/, which by definition of �rv0 has van-
ishing flux boundary data, while Lemma 6.2 uses a minimizer .uper; bper/ in Aper.Ql / to
construct a competitor for .u;b/ inQl based on .uper;bperCrv

per
0 �rv0/, which has the

right boundary conditions if vper
0 is the solution to the over-relaxed problem (4.1) with flux
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boundary data g B bper � � on �l . Loosely speaking, both lemmas express an orthogonal-
ity between the micro-structured part and the over-relaxed part, which is again based on
Lemma 4.8. Both lemmas express this relationship on the level of a relative error decaying
as l�1=2. An easy consequence of Lemma 6.1 for l D L and of Lemma 4.2 is the first part
of Theorem 3.1 in the form of:

Corollary 6.3 (Boundary conditions do not affect the global energy density). The limit

�� D lim
L!1

�.QL/ D lim
L!1

�0.QL/ D lim
L!1

�per.QL/

exists, with convergence rate

max
®
j�.QL/ � �

�
j; j�0.QL/ � �

�
j; j�per.QL/ � �

�
j
¯

.
1

L1=2
�

The second part of Theorem 3.1 follows from Lemmas 6.1 and 6.2 once we establish
that the energy of the over-relaxed problem is negligible:

Lemma 6.4 (Over-relaxed solutions are energetically negligible). GivenL�1 and ��1
such that ��1 2 2N C 1, if l � 1 is of the form l D �NL for some positive integer N
and v0 is the solution to the over-relaxed problem (4.1) induced by b on Ql , then there
holds

1

ld�1

Z
Ql

1

2
jrv0j

2 .
1

l1=2
�

While not very technical, Lemma 6.4 is subtle: the combination of Lemmas 6.1 and 6.2
(in conjunction with Corollary 6.3) allows us to relate the over-relaxed solution of a big
cube to those of smaller cubes that partition the big one. This drives yet another Cam-
panato iteration based on the (boundary) regularity of the over-relaxed problem, akin to
Lemmas 4.3 and 4.4.

The constructions of Lemmas 6.1 and 6.2 are technical: in the case of Lemma 6.1, the
pair .u;bCrv0/ is not admissible in A0.Ql / due to the additional charge �@dv0 onQl .
Thanks to Lemma 5.3, this extra charge is small outside of a boundary layer. In order to
achieve the related scaling l�1=2 of the relative error, we adjust for this small amount of
extra charge by a smooth deformation of the set described by the characteristic function u.
This type of deformation of u 2 ¹�1; 1º into another characteristic function Qu in order to
change the volume (fraction) while controlling the surface area is folklore. We did not
find in the literature a suitable statement for the quantitative modification of a set of finite
perimeter, though one might try and start from the perturbation defined in [16]. We state
(and prove) what we need for the convenience of the reader:

Lemma 6.5 (Smooth deformation of sets to adjust their volume). Let � � 1 and let Q D
.0; �/d�1 be a .d � 1/-dimensional cube. Consider a function u D ¹1;�1º on Q withˇ̌̌

�

Z
Q

u
ˇ̌̌
�
1

2
;(6.2) Z

Q

jruj � �d�2ƒ;(6.3)
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for some ƒ < C1. Then there exists a constant m0 2 .0;C1/, depending only on ƒ
and d , such that for any m 2 Œ�m0;m0 � there exists Qu D ¹�1; 1º with .u� Qu/ compactly
supported in Q and such that

�

Z
Q

Qu D �

Z
Q

uCm; �

Z
Q

j Qu � uj .ƒ jmj;
Z
Q

jr Quj �

Z
Q

jruj .ƒ �d�2jmj;

where the implicit constants in the last two inequalities depend only on ƒ and d .

Our application of Lemma 6.5 relies on the fact that we have “enough room” to perturb
the local volume fraction. This is a consequence of Theorem 4.1, which ensures that the
charge distribution u is approximately neutral on large scales:

Lemma 6.6 (Neutrality on large-scale averages). If .u;b/ is a minimizer in Aper.Ql / and
l � �� 1, then there holds ˇ̌̌

�

Z
Q
�

u
ˇ̌̌
�
1

2
�

7. Proofs

In this section, we provide the proofs of the theorems, lemmas, and corollaries in the order
they were stated.

Proof of Theorem 3.1. The convergence to ��, as L" C 1, of �.QL/, �per.QL/ and
�0.QL/ is established in Corollary 6.3. We turn to (3.2). We start by considering a cubeQl
contained in QL, with l D �nL for some integer n and some � � 1 with ��1 2 2N C 1,
such that Lemma 6.4 holds. By Lemma 6.1, Lemma 6.2, and (3.1) at scale l , there holdsˇ̌̌E.u;b;Ql /

ld�1
�

1

ld�1

Z
Ql

1

2
jrv0j

2
� ��

ˇ̌̌
.

1

l1=2
�

By Lemma 6.4, the term involving rv0 is controlled by Cl�1=2 and we may conclude for
such cubes.

So far, we have proved (3.2) for boxes of lateral size l of the form �nL, n 2 N, where
��1 2 2N C 1 with � � 1 coming from Lemma 6.4. We notice that Lemma 6.1 and
Corollary 6.3 imply

(7.1) E.u;b;Q/ � ��jQj & �ld�3=2

for all boxes Q of size l � L (the statement is trivial for l � 1). We note that the left-
hand side E.u; b; C / � ��jC j is super-additive in sets C touching the bottom. Since any
l 2 Œ0; L/ can be written as linear combination of ¹2�nLºn2N with coefficients in ¹0; 1º,
and since d � 3=2 > 0, we obtain that (7.1) holds for any non-square boxes C of lateral
size smaller than l , too. For a given boxQ, there exists a boxQ0 of side-length of the form
�nL and d non-square boxes C such that Q0 is the (disjoint) union of Q and the C ’s.
Hence by the above-mentioned super-additivity, and by (7.1), we may lift the opposite
estimate

E.u;b;Q/ � ��jQj . ld�3=2

from Q0 to Q.
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Proof of Theorem 3.2. We closely follow the proof of Theorem 1.2 in [2]. Let .u; b/ be a
minimizer in Aper.QL/. By Theorem 3.1, there existsC 2 .0;C1/ such that ifL� l� 1,
then there holds

(7.2)
E.u;b;Ql /

ld�1
� �� C

C

l1=2
�

On the other hand, for � 2 Œ1=2; 3=2�, the rescaled pair .u�;b�/ defined by

u�.�x/ D u.x/ and b�.�x/ D b.x/

is a candidate in Aper.Q�L/. In particular, the restriction of .u�;b�/ toQ�l is a candidate
in A.Q�l /. Using this and (3.1) in Theorem 3.1 at scale �l , we get

(7.3) f .�/ B
E.u�;b�;Q�l /

.�l/d�1
� �.Q�l / � �

�
�

C

.�l/1=2
�

In this notation, the combination of (7.2) and (7.3) yields

(7.4) f .�/ � f .1/ & �
1

l1=2
and f .1/ . 1:

It follows from a change of variables that f is of the form

(7.5) f .�/ D
1

�
aC �b; with a B

1

ld�1

Z
Ql

jruj; b B
1

ld�1

Z
Ql

1

2
jbj2:

Since f 00.�/D 2a=�3 � 16f .1/, it follows from the second item in (7.4) that jf 00.�/j. 1,
so that by Taylor’s formula for t 2 Œ�1=2; 1=2�,ˇ̌̌

f 0.1/ �
1

t

�
f .1C t / � f .1/

�ˇ̌̌
. jt j:

Thus, for t D ˙1=l1=4 and by the first item in (7.4) this implies jf 0.1/j . 1=l1=4, which
because of f 0.1/ D b � a, see (7.5), yields the claim of the theorem.

Proof of Theorem 4.1. Let .b; u/ be a minimizer in Aper.QL/. Provided L� 1, by state-
ments (vi), (i) and (iv) of Lemma 4.2, and in view of the definition (2.3), we have

E.u;b;QL/
Ld�1

. 1:

By the definition (4.2), again provided L� 1, we thus have F.0;L/ � C=L � ı, where ı
is as in Lemma 4.4. Applying this lemma for L � l � 1, we get

E.u;b;Ql / .
ld

Ld
E.u;b;QL/C ld�1 D ld�1

� l
L

E.u;b;QL/
Ld�1

C 1
�

. ld�1;

as desired.
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Proof of Lemma 4.2. To prove statement (i), notice that a minimizer .u; b/ in Aper.QL/,
when thought of as periodically extended and then restricted to QL, is also a candidate in
A.QL/, and thatEper.u;b;QL/�E.u;b;QL/, leading to �per.QL/� �.QL/. Similarly,
we have �0.QL/ � �.QL/.

To prove (ii), let k be a positive integer and consider a minimizer .u; b/ in A.QkL/.
We decompose QkL in kd�1 cubes ¹Qi

Lº of side length L touching the lower boundary,
and a large box above. Since by definition of � , E.u;b;Qi

L/ � L
d�1�.QL/, we obtain

�.QkL/ D
E.u;b;QkL/
.kL/d�1

�
1

kd�1

kd�1X
iD1

E.u;b;Qi
L/

Ld�1
� �.QL/:

Statement (iii) comes from concatenating kd�1 translated copies of a minimizer in
A0.QL/ and finally extending b by 0 on xd � L. There is no added interface if each
copy is the even reflection of its neighbour across the cubic face they share. We refer to
Sections 3.6 to 3.8 in [3] for the continuity and trace properties that make it possible to
cut and paste BV functions in neighbourhing cubes.

To prove (iv), notice that by (iii) it suffices to show that �0.QL/ . 1 for L 2 Œ1; 2�.
This is seen by constructing .u;b/ 2 A.QL/. Indeed, let u.x1; : : : ; xd�1/ B sign x1 and

b.x1; : : : ; xd�1; xd / D

8̂<̂
:

x1q
x21 C x

2
d

ed �
xdq
x21 C x

2
d

e1; if x21 C x
2
d
� L2;

0 otherwise:

We notice that inside ¹x21 C x
2
d
� L2º, this two-dimensional vector field is the rotated

gradient of the “stream function”  .x1; xd / D
q
x21 C x

2
d
� L, and thus divergence-free

and tangential to ¹x21 C x
2
d
DL2º. Hence its trivial extension is weakly divergence-free. It

vanishes on �L, and satisfies b � ed D signx1 D u onQL, so that the boundary conditions
are also satisfied.

We now turn to (v). As propagated in [11], scaling-wise optimal lower bounds in
pattern-forming variational problems typically rely on interpolation inequalities that cap-
ture the leading-order competition between the energy contributions. Here, the interpola-
tion estimate involves the BV norm and the PH�1=2 norm – we now give an elementary
proof. Choosing l to be sufficiently large but of order one, it is enough to show for
.u;b/ 2 A.QL/ that

Ld�1 . lE.u;b;QL/C
Ld�1

l2
�

By Young’s inequality, for this it suffices to establish for l � L,

(7.6) jQL�2l j . l

Z
QL

jruj C
�Ld�1

l

Z
QL

jbj2
�1=2

:

To this purpose, we fix a cut-off function � 2 Œ0; 1� with

(7.7) � D

²
1 on .�L�2l

2
; L�2l

2
/d�1 � ¹0º;

0 out of .�L�l
2
; L�l
2
/d�1 � Œ0; l/;

³
; while jr�j .

1

l
�



Uniform energy distribution 797

By convolution at scale l , we construct Qu 2 Œ�1; 1� such that

(7.8)
Z
QL�l

j Qu � uj . l

Z
QL

jruj; while jr Quj .
1

l
�

In particular, we obtain from this and the support condition in (7.7),

(7.9)
Z

Rd�1

j�u.u � Qu/j . l

Z
QL

jruj:

We now test (2.2) with � D � Qu, where we think of Qu as being extended in a constant way
to xd > 0. This yields Z

Rd�1

� Quu D �

Z
Rd

r� � b;

which in view of jr�j . 1=l (see the last items in (7.7) and (7.8)) and the Hölder inequal-
ity, implies

(7.10)
Z

Rd�1

� Quu .
�Ld�1

l

Z
QL

jbj2
�1=2

:

Because of the non-convex constraint in form of u2 D 1, the sum of (7.9) and (7.10) yieldsZ
Rd�1

� . l

Z
QL

jruj C
�Ld�1

l

Z
QL

jbj2
�1=2

;

which by (7.7) turns into (7.6).
To prove (vi), we let .u;b/ be an optimal configuration in A.QL/. On one of the 2d�1

(horizontal) quadrants ofQL, the energy per area does not exceed the original one; without
loss of generality, we may assume that this is the case for .0;L=2/d�1 � .0;L/. We extend
the restriction of .u; b/ to this quadrant by reflections to obtain a candidate . Nu; Nb/ 2
Aper.QL/. We do this iteratively in the horizontal directions i D 1; : : : ; d � 1: b � ei is
reflected evenly across xi D 0 in order to avoid a jump, u and all the other compon-
ents of b are reflected oddly. This way, we obtain a new configuration . Nu; Nb/ on QL, the
energy of which exceeds the one of .u; b/ by at most the additional interfacial energy
2.d � 1/Ld�2. (We refer again to Sections 3.6 to 3.8 in [3] for the results that allow us
to cut and paste BV functions.) Extending . Nu; Nb/ periodically in the horizontal directions
adds interfacial energy by at most the same amount.

Proof of Lemma 4.3. We consider a minimizer .b; u/ in Aper.QL/. We suppose that for
some ı 2 .0;C1/, to be chosen later, there holds F.ˇ; l/ � ı, for some l and ˇ with
L � l � 1 and ˇ 2 Œ�1=2; 1=2�. We choose a smaller scale � such that

� B argmin
° Z

�r

jb � ˇed j2
ˇ̌
r 2 Œ 3

4
l; l �

±
:

By Fubini’s theorem, this choice of � implies that

(7.11)
1

�d�1

Z
��

jb � ˇed j2 .
1

ld

Z
Ql

jb � ˇed j2
.4.2/
D F.ˇ; l/:
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Let v0 be the solution of the over-relaxed problem (4.1) in Q� with flux boundary data
.b�ˇed / � � on ��. We note that the Dirichlet energy of�rv0 is less than the squared L2-
norm of b � ˇed , as �rv0 is obtained by relaxation. Extend v0 harmonically to negative
values of xd by odd reflection (this is possible because v0 D 0 on Q�). We now shift the

problem by . Q̌ � ˇ/ed , where

(7.12) Q̌ B ˇ C @dv0.0/:

By the fact that rv0.0/ D @dv0.0/ed and the sub-harmonicity of jrv0j2, we have

(7.13) . Q̌ � ˇ/2
(7.12)
D jrv0.0/j

2 .
1

�d

Z
Q�

jrv0j
2
�

1

�d

Z
Q�

jb � ˇed j2
(4.2)
. F.ˇ; l/:

For � 2 .0; 1=2� to be chosen later, by the triangle inequality we obtainZ
Q�l

jruj C

Z
Q�l

1

2
jb � Q̌ed j2

�

Z
Q�l

jruj C

Z
Q�l

jb � ˇed Crv0j2 C
Z
Q�l

jrv0 � . Q̌ � ˇ/ed j2:(7.14)

We will treat the sum of the two first terms and the third term separately. For the third
term, the mean value property (Theorem 2.1 in [18]) yields

1

.�l/d

Z
Q�l

jrv0 � . Q̌ � ˇ/ed j2
(7.12)
D

1

.�l/d

Z
Q�l

jrv0 � rv0.0/j
2 . .�l/2 sup

Q�l

jr
2v0j

2:

By inner regularity of harmonic functions (see for instance Theorem 2.10 in [18]), fol-
lowed by the mean value property, and recalling that � 2 .0; 1=2� we thus get

(7.15)
1

.�l/d

Z
Q�l

jrv0 � . Q̌ � ˇ/ed j2 . .�l/2
1

�dC2

Z
Q�

jrv0j
2

(7.13)
. �2F.ˇ; l/:

We now compare the first two terms on the right-hand side of inequality (7.14) with
the energy of the relaxed problem, using Lemma 4.6: define b as the solution to the relaxed
problem (4.5) on Q� with flux boundary values b � � across ��. By Lemma 4.6, one can
find a candidate . Qu; Qb/ in Ab��.Q�/ such thatZ

Q�

jr Quj C

Z
Q�

1

2
j Qb � bj2 . �d�1:

Thus, by the triangle inequality, we have

(7.16)
Z
Q�

jr Quj C

Z
Q�

j Qb � ˇed Crv0j2 .
Z
Q�

jb � ˇed Crv0j2 C �d�1:

Furthermore, we note that .u; b/ is almost a minimizer in Ab��.Q�/ (up to the interfacial
energy concentrated in @.Q�/), so that we have

E.u;b;Q�/ � E. Qu; Qb;Q�/C C�d�2:
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Applying Lemma 4.8 to subtract �rv0 C ˇed from the fields, this turns intoZ
Q�

jruj C

Z
Q�

1

2
jb � ˇed Crv0j2 �

Z
Q�

jr Quj C

Z
Q�

1

2
j Qb � ˇed Crv0j2 C C�d�2:

Combining the last estimate with (7.16) yields

(7.17)
Z
Q�

jruj C

Z
Q�

jb � ˇed Crv0j2 .
Z
Q�

jb � ˇed Crv0j2 C �d�1:

We now crucially use Lemma 4.5 to estimate the minimum energy of the relaxed
problem in Q�. By the choice of �, we haveZ

��

�
.b � ˇed / � �

�2 (7.11)
. ld�1F.ˇ; l/ � ı ld�1:

Thus for sufficiently small ı, by Lemma 4.5,Z
Q�

jb � ˇed Crv0j2 .
� Z

��

�
.b � ˇed / � �

�2� d
d�1

(7.11)
. ldF.ˇ; l/

d
d�1 ;

so that, restricting to the cube Q�l � Q�, we getZ
Q�l

jruj C

Z
Q�l

jb � ˇed Crv0j2 �
Z
Q�

jruj C

Z
Q�

jb � ˇed Crv0j2

(7.17)
.

Z
Q�

jb � ˇed Crv0j2 C ld�1 . ldF.ˇ; l/
d
d�1 C ld�1:(7.18)

We may now conclude: inserting the estimates (7.15) and (7.18) into (7.14), we obtain

F. Q̌; �l/ � C
�
�2F.ˇ; l/C

1

�d
F.ˇ; l/

d
d�1 C

1

�d l

�
:

We first choose � � 1 such that

C�2F.ˇ; l/ �
1

2
� F.ˇ; l/

and then ı � 1 such that

C

�d
F.ˇ; l/

d
d�1 �

1

2
� F.ˇ; l/;

which, combined with (7.13), yields (4.4).

Proof of Lemma 4.4. Let ı 2 .0;C1/ be arbitrary, to be chosen later. Consider a min-
imizer .u; b/ in Aper.QL/. Fix � 2 .0; 1=2� according to Lemma 4.3. Without loss of
generality, we ask that l D �NL for some positive integer N . By induction over n, we
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will prove that there exists a sequence of shifts ¹ˇnºNnD1 in Œ�1=2; 1=2�, such that for
n D 1; : : : ; N , there holds
(7.19)

F.ˇn; �
nL/ � �nF.0;L/C

C�nC1

L

nX
mD1

��2m and jˇnj � C
�
F.0;L/1=2C

1
p
�nL

�
;

with C 2 .0;C1/ to be chosen later. In particular we remark that for n � N , the first part
of (7.19) implies

F.ˇn; �
nL/ � �nF.0;L/C

C�nC1

L

��2.nC1/ � 1

��2 � 1

D �nF.0;L/C
C�nC1

L

��2n � �2

1 � �2
� �nF.0;L/C

C

1 � �2
1

�n�1L
�(7.20)

Letting ˇ0 B 0, the inequalities in (7.19) hold trivially for nD 0. We now pass from n

to nC 1. Suppose that (7.19) and (7.20) hold at all steps from 0 to n with 0 � n � N � 1.
We note that (7.19) and (7.20) imply that the assumption (4.3) from Lemma 4.3 is satisfied
provided ı in the present proof is chosen sufficiently small. Denoting by C0 the implicit
constant in (4.4), there exists ˇnC1 such that

F.ˇnC1; �
nC1L/ � �F.ˇn; �

nL/C
C0

�nL

(7.19) at step n
� �nC1F.0;L/C

C�nC1

L

nX
mD1

��2m C
C0

�nL
�

This is consistent with (7.19) provided we choose C such that C � C0. Furthermore,
by (4.4), we have

(7.21) jˇnC1 � ˇnj � C0F.ˇn; �
nL/1=2:

We thus control ˇnC1 by

jˇnC1j �

nX
mD0

jˇmC1 � ˇmj
(7.21) at every step

� C0

nX
mD0

F.ˇm; �
mL/1=2

(7.20) at every step
� C0

� nX
mD0

�
�mF.0;L/

�1=2
C

r
C

1 � �2

nX
mD1

1
p
�m�1L

�
� C0

1

1 �
p
�
F.0; L/1=2 C C0

r
C

1 � �2
1

p
�
�1
� 1

1
p
�nL
�

This is consistent with (7.19) at step nC 1 and implies in particular ˇnC1 2 Œ�1=2; 1=2�
provided we choose C such that

C � max
°
C0

1

1 �
p
�
; C0

r
C

1 � �2
1

p
�
�1
� 1

±
:

Using (7.20) for n D N , we obtain

(7.22) F.ˇN ; l/ . F.0;L/C
1

l
�
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By the triangle inequality, using the fact that F is a volume average, we may remove
the shift:

F.0; l/ . F.ˇN ; l/C ˇ
2
N

(7.22) ; (7.19)
. F.0;L/C

1

l
�

Proof of Lemma 4.5. We first note that b being a minimizer of the relaxed problem (4.5)
implies that for ˇ 2 R, b � ˇed is a minimizer of the shifted relaxed problem:

(7.23) min

´Z
QL

1

2
j Qbj2

ˇ̌̌̌ r � Qb D 0 in QL;
Qb � � 2 Œ�1C ˇ; 1C ˇ � on QL;
Qb � � D .b � ˇed / � � on �L

µ
:

Indeed, if Qb is a candidate for the problem (7.23), writing ed D rxd , we obtain by integ-
ration by parts that

R
QL
.b � ˇed � Qb/ � ˇed D 0 so thatZ

QL

b � .ˇed / �
1

2
jˇed j2 D

Z
QL

Qb � .ˇed /C
1

2
jˇed j2

to the effect ofZ
QL

1

2
j Qbj2 �

Z
QL

1

2
jb � ˇed j2 D

Z
QL

1

2
j QbC ˇed j2 �

Z
QL

1

2
jbj2:

The last term is non-negative as QbC ˇed is a candidate for the relaxed problem (4.5), of
which b is a minimizer. Thus, recalling that ˇ 2 Œ�1=2; 1=2� and considering a minim-
izer Qb of the more constrained problem

min

´Z
QL

1

2
j Qbj2

ˇ̌̌̌ r � Qb D 0 in QL;
Qb � � 2 Œ�1=2;�1=2� on QL;
Qb � � D .b � ˇed / � � on �L

µ
;

there holds

(7.24)
Z
QL

jb � ˇ ed j2 �
Z
QL

j Qbj2:

Consider also the solution �rv0 to the over-relaxed problem (4.1) in QL with flux
boundary data given by Qb � � on �L. For Qb and �rv0 it is clear that Lemma 4.8, but also a
version of Lemma 4.7 hold (replacing the constraint b � � 2 Œ�1; 1� by b � � 2 Œ�1=2; 1=2�
only affects the implicit constant), so thatZ

QL

j Qbj2 �
Z
QL

jrv0j
2
D

Z
QL

j QbCrv0j2 .
� Z

�L

�
.b � ˇ ed / � �

�2� d
d�1
:

Hence, using (7.24) and once more Lemma 4.8, we get, as desired,Z
Ql

jb � ˇ ed Crv0j2 .
� Z

�l

�
.b � ˇ ed / � �

�2� d
d�1
:
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Proof of Lemma 4.6. Let b be a minimizer for the relaxed problem (4.5) in QL with flux
boundary condition g. DivideQL into O.Ld�1/ small cubesQi with side length l 2 Œ1;2�
sitting on the bottom and a large box above of height L � l and sides of length L. Divide
each Qi into two boxes QCi and Q�i , such that area.QiC/ � area.Qi�/ D

R
Qi

b � � 2

Œ�ld�1; ld�1 �. Then define u on Qi so that

(7.25) u D

´
1 on QCi ;

�1 on Q�i ;
and

Z
Qi

u D

Z
Qi

b � �:

The interfacial energy inQi is given by
R
Qi
jruj D 2ld�2 (or zero if

R
Qi

b � � D˙ld�1).
Taking into account the interface between the cubes Qi , the global interfacial energy
in QL thus satisfiesZ

QL

jruj �
�L
l

�d�1
2ld�2 C 2d

L

l
2Ld�2 . Ld�1:

It remains to modify the field b so that it becomes compatible with u. In each Qi , we
solve the following Neumann problem (which is solvable by (7.25))8̂<̂

:
��vi D 0 in Qi ;
�rvi � � D 0 on @Qi nQi ;
�rvi � � D u � b � � on Qi :

As u D ˙1 and jb � �j � 1 on Qi , we may apply Lemma 4.12 to get
R
Qi
jrvi j

2 . 1.
Define a field b by

b B

´
b � rvi on Qi ;
b in QLn

S
i Qi :

By construction, .u;b/ 2 Ag.QL/ and there holdsZ
QL

jb � bj2 D
X
i

Z
Qi

jrvi j
2 . Ld�1:

Proof of Lemma 4.7. Clearly, b and v0 satisfy the assumptions of Lemma 4.8, so we haveZ
QL

1

2
jbCrv0j2 D

Z
QL

1

2
jbj2 �

Z
QL

1

2
jrv0j

2
D E

g
rel.QL/ �E

g
0 .QL/:

Let v be the minimizer of the dual to the relaxed problem on QL, see (4.6), and let w B
v � v0. There holds

E
g
rel.QL/ �E

g
0 .QL/ D �

Z
QL

1

2
jrvj2 �

Z
QL

jvj C

Z
�L

vg �

Z
QL

1

2
jrv0j

2

D �

Z
QL

1

2
jrv � rv0j

2
�

Z
QL

rv � rv0 �

Z
QL

jvj C

Z
�L

vg:
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We now integrate by parts the mixed term and, appealing to (4.1), we get

E
g
rel.QL/ �E

g
0 .QL/ D �

Z
QL

1

2
jrwj2 C

Z
QL

�
� jwj C w @dv0

�
:

Next, denoting V B .
R
QL
.@dv0/

2/1=2, by Hölder’s inequality, Lemma 4.10 for " 2 .0; 1�,
and Young’s inequality, we obtain

E
g
rel.QL/ �E

g
0 .QL/ � �

Z
QL

1

2
jrwj2 �

Z
QL

jwj C
� Z

QL

w2
�1=2

V

� �

Z
QL

1

2
jrwj2CC."L/1=2

� Z
QL

jrwj2
�1=2

V C
� CV

."L/.d�1/=2
�1
� Z

QL

jwj

�
1

2
C 2"LV 2 C

� CV

."L/.d�1/=2
� 1

� Z
QL

jwj:(7.26)

From Lemma 4.11 applied to v0 and the assumption
R
�L
g2 � Ld�1, which we rewrite

as
R
�L
g2 � cLd�1 for some c 2 .0;C1/, we know that

(7.27) V D
� Z

QL

.@dv0/
2
�1=2

.
� Z

�L

g2
�1=2

. c1=2L.d�1/=2:

Hence, if c is small enough, depending only on d , we may choose " 2 .0; 1� such that
."L/.d�1/=2 �CV , so that the second term on the right-hand side of (7.26) is non-positive.
Using (7.27) in (7.26), we thus obtain, as desired,

E
g
rel.QL/ �E

g
0 .QL/ . V

2
d�1
C2 .

� Z
�l

g2
� d
d�1
:

Proof of Lemma 4.8. Using the condition r � b D 0 to integrate by parts, we getZ
QL

b � rv0 D �
Z
�L

v0b � � D �
Z
�L

v0g D

Z
�L

v0rv0 � � D �

Z
QL

jrv0j
2:

HenceZ
QL

1

2
jbCrv0j2D

Z
QL

1

2
jbj2C

Z
QL

b � rv0C
Z
QL

1

2
jrv0j

2
D

Z
QL

1

2
jbj2�

Z
QL

1

2
jrv0j

2:

Proof of Lemma 4.9. This proof is similar to that of Lemma 3.3 in [2]. The idea is to
replace the constraints by a linear (thus concave) maximization problem. When the con-
straints for b are not met, the supremum is infinite and such candidates cannot be minim-
izers. The condition j

R
�L
gj � Ld�1 ensures that the class on which we minimize for the
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relaxed problem is not empty. This minimization problem can then be stated as

E
g
rel.QL/ D inf

b

²Z
QL

1

2
jbj2

ˇ̌̌̌
ˇ r � b D 0 in QL;

b � � 2 Œ�1; 1� on QL;
b � � D g on �L

³

D inf
b;u

²Z
QL

1

2
jbj2

ˇ̌̌̌
ˇ b 2 L2.QL;Rd /;
u 2 L2.QL; Œ�1; 1�/;

r � b D 0 in QL;
b � � D u on QL;
b � � D g on �L

µ

D inf
b;u

sup
v

´Z
QL

�1
2
jbj2 C b � rv

�
C

Z
QL

vuC

Z
�L

vg

ˇ̌̌̌
ˇ b 2 L2.QL;Rd /;
u 2 L2.QL; Œ�1; 1�/;
v 2 H1.QL/

µ
:

The infimum being taken for a convex functional, and the supremum for an affine one,
we use a classical min-max theorem (see for instance [7], Chapter I, Proposition 1.1) to
change the order of the operations. To see that we may apply this proposition, let us denote
the functional in the last line by K..u; b/; v/; it is defined on the product of the spaces
E B L2.QL/ � L2.QL;Rd / and H1.QL/, equipped with the weak topology. Consider
the convex subset AB E \ ¹.u;b/; u 2 Œ�1; 1�º. The functionalK is linear and bounded
in the variable v, thus concave and weakly continuous. It is also convex and weakly lower
semi continuous in the variable .u; b/ on A. If yb D �ryv is the minimizer for the relaxed
problem (the fact that the minimizers are gradients is standard, as for the over-relaxed
problem (4.1), see Section IX.3 of [14]), then the set®

.u;b/ 2 A
ˇ̌
K..u;b/; yv/ � Egrel.QL/

¯
is not empty (take the pair .yb � ed ; yb/). It is also weakly compact, by the weak lower semi
continuity of K in the variable in the variable .u; b/ and the condition u 2 Œ�1; 1�. Thus,
by the aforementioned proposition, we have

inf
.u;b/2A

sup
v2H1.QL/

K..u;b/; v/ D sup
v2H1.QL/

inf
.u;b/2A

K..u;b/; v/:

Furthermore, as jbj2 C 2b � rv D jb C rvj2 � jrvj2, the infimum is reached for
b D �rv in QL and u D �sgn v on QL, thus

E
g
rel.QL/

D sup
v

inf
b;u

´Z
QL

�1
2
jbj2 C b � rv

�
C

Z
QL

vuC

Z
�L

vg

ˇ̌̌̌
ˇ b 2 L2.QL;Rd /;
u 2 L2.QL; Œ�1; 1�/;
v 2 H1.QL/

µ

D sup
v

°
�

Z
QL

1

2
jrvj2 �

Z
QL

jvj C

Z
�L

vg
ˇ̌̌
v 2 H1.QL/

±
D � inf

v

° Z
QL

1

2
jrvj2 C

Z
QL

jvj �

Z
�L

vg
ˇ̌̌
v 2 H1.QL/

±
:

Proof of Lemma 4.10. By scaling and translation invariance, it is sufficient to consider the
cube .0; 1/d . Let w be a smooth function on this cube .0; 1/d . Clearly,

jw.x0; xd /j �

Z xd

0

jrw.x0; t /jdt C jw.x0; 0/j:
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Integrating over xd between 0 and 1, we getZ 1

0

jw.x0; xd /j dxd �
Z 1

0

jrw.x0; t /j dt C jw.x0; 0/j:

Integrating over x0 2 .0; 1/d�1 and using Hölder’s inequality on the first term on the right-
hand side now yieldsZ

.0;1/d
jwj �

� Z
.0;1/d

jrwj2
�1=2
C

Z
.0;1/d�1�¹0º

jwj:

Next, from Lemma 3.2 in [2], with " B 1, we know thatZ
.0;1/d�1�¹0º

w2 .
Z
.0;1/d

jrwj2 C
� Z

.0;1/d
jwj
�2
;

which, combined with the square of the previous estimate, yields

(7.28)
Z
.0;1/d�1�¹0º

w2 .
Z
.0;1/d

jrwj2 C
� Z

.0;1/d�1�¹0º

jwj
�2
:

By approximation and a trace estimate, (7.28) remains true for any w 2 H1.QL/.
Now given a function w on .0; 1/d and " 2 .0; 1�, with " D 1=N for some positive

integer N , we divide the lower side of the cube into N d�1 boxes of side length ". In each
of these boxes (letting xi correspond to the centers of their bases), inequality (7.28) is
applied to the rescaled potential w.xi C "x/. Using the fact that the sum of squares of
non-negative numbers is smaller than or equal to the square of their sum, we obtainZ

.0;1/d�1�¹0º

w2 . "

Z
.0;1/d�1�.0;"/

jrwj2 C
1

"d�1

� Z
.0;1/d�1�¹0º

jwj
�2
:

Extending the first integral on the right-hand side to the whole of .0; 1/d and taking the
square root, we get the desired estimate. It is easily seen that up to a change of constant,
this estimate holds for any " 2 .0; 1� and not just for inverses of positive integers.

Proof of Lemma 4.11. A similar result is established by a somewhat different argument
in Remark 5.5 of [26]. We start with a couple of reductions. By scaling invariance, it is
enough to prove the estimate with .0;L/d replaced by .0;�/d . Decomposing the harmonic
function v into 2d � 1 parts, we may restrict ourselves to the situation where v has zero
boundary flux on all but two of the 2d faces of the cube .0; �/d , which we call input
face and output face, and zero Dirichlet boundary condition on the output face (the one on
which we want to estimate the L2-norm of the normal derivative). We suppose L2-control
of the normal derivative on the input face. We distinguish two cases: the easier case, in
which the input face is opposite to the output face, and the harder case in which they
are adjacent. By cubic symmetry, we may in both cases take the input face to be the top
face ¹xd D �º.
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In the easy case, we have

v.x0; 0/ D 0 for x02 .0; �/d�1; and
@iv.x/ D 0 if xi 2¹0; �º for some i D 1; : : : ; d �1:

(7.29)

We then seek the following estimate on the bottom face ¹xd D 0º:

(7.30)
Z
.0;�/d�1

.@dv/
2.xd D 0/dx1 � � � dxd�1 .

Z
.0;�/d�1

.@dv/
2.xd D �/dx1 � � � dxd�1:

In the hard case, we can suppose that v vanishes on the face ¹x1 D 0º; we thus have

(7.31) v.0; x2; : : : ; xd /D0 and @iv.x/D0 if

8̂<̂
:
xi2¹0; �º for some iD2; : : : ; d � 1;
or x1 D �;
or xd D 0:

We then seek the estimate

(7.32)
Z
.0;�/d�1

.@1v/
2.x1 D 0/dx2 � � � dxd .

Z
.0;�/d�1

.@dv/
2.xd D �/dx1 � � � dxd�1:

We will show both with help of Fourier series. In the easy case, in view of (7.29), we
may develop v in Fourier series in the horizontal variables x0 D .x1; : : : ; xd�1/; because
of the harmonicity of v and the fact that v.¹xd D 0º/ D 0, these take on the form

v D
X
n0

an0 cos.n1x1/ � � � cos.nd�1xd�1/ sinh.jn0jxd /;

where the sum runs over all n0 2 Nd�1 and jn0j2 D n21 C � � � C n
2
d�1

. Because of

@dv D
X
n0

jn0jan0 cos.n1x1/ � � � cos.nd�1xd�1/ cosh.jn0jxd /

and Parseval’s identity, we may re-express (7.30) asX
n0

jn0j2a2n0 .
X
n0

jn0j2 cosh2.�jn0j/a2n0 :

As cosh � 1, this holds and the easy case (7.30) follows.
In the hard case, by (7.31), reflecting v evenly across the plane ¹x1 D �º, we can write

v D
X
n0

an0 sin
�
.n1 C

1
2
/x1
�

cos.n2x2/ � � � cos.nd�1xd�1/ cosh.˛.n0/xd /;

where ˛.n0/ > 0 satisfies ˛.n0/2D .n1C 1
2
/2C n22C � � �C n

2
d�1

, and the sum runs over all
n0 D .n1; : : : ; nd�1/ 2Nd�1. By Parseval’s identity applied to the variables x2; : : : ; xd�1
over .0; �/ and to x1 over .0; 2�/, we may re-express the right-hand side of (7.32) asZ

.0;�/d�1
.@dv/

2.xd D �/ dx1 � � � dxd�1 �
X
n0

˛.n0/2a2n0 sinh2.�˛.n0//

�

X
n0

˛.n0/2a2n0 exp.2�˛.n0//;(7.33)
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where the last comparison follows from the fact that ˛.n0/ � 1=2. For the left-hand side
of (7.32), Parseval’s identity applied to the variables x2; : : : ; xd�1 yieldsZ
.0;�/d�1

.@1v/
2.x1 D 0/ dx2 � � � dxd �

X
n2;:::;nd�1

Z �

0

�X
n1

.n1 C
1
2
/an0 cosh.˛.n0/xd /

�2
dxd :

We consider the individual terms on the right-hand side and start by expanding the square:Z �

0

�X
n1

.n1 C
1
2
/an0 cosh.˛.n0/xd /

�2
dxd

D

X
n1

X
m1

.n1 C
1
2
/an0.m1 C

1
2
/am0

Z �

0

cosh.˛.n0/xd / cosh.˛.m0/xd / dxd ;

where, with a slight abuse of notation,m0 B .m1; n2; : : : ; nd�1/. Because of the element-
ary inequalityZ �

0

cosh.˛.n0/xd / cosh.˛.m0/xd / dxd �
Z �

0

exp.˛.n0/xd C ˛.m0/xd / dxd

�
1

˛.n0/C ˛.m0/
exp.�.˛.n0/C ˛.m0///

we getZ
.0;�/d�1

.@1v/
2.x1 D 0/ dx2 � � � dxd

.
X

n2;:::;nd�1

X
n1

X
m1

.n1 C
1
2
/jan0 j.m1 C

1
2
/jam0 j

1
˛.n0/C˛.m0/

exp.�.˛.n0/C ˛.m0///

�

X
n2;:::;nd�1

X
n1

X
m1

1

n1 Cm1 C 1
˛.n0/jan0 j exp.�˛.n0// ˛.m0/jam0 j exp.�˛.m0//;

as ˛.n0/ � n1 C 1=2. A glance at (7.33) now shows that (7.32) reduces to the following
statement on non-negative sequences ¹bn0 B ˛.n0/ exp.�˛.n0//jan0 jºn0 :X

n2;:::;nd�1

X
n1

X
m1

1

n1 Cm1 C 1
bn0 bm0 .

X
n2;:::;nd�1

X
n1

b2n0 ;

which clearly can be disintegrated into

(7.34)
1X
nD0

1X
mD0

1

nCmC 1
bnbm .

1X
nD0

b2n:

We conclude the proof with an argument for (7.34). By symmetry in n and m, the
statement follows from

1X
nD0

nX
mD0

1

nCmC 1
bnbm .

1X
nD0

b2n;

and to reduces to
1X
nD0

bn
1

nC 1

nX
mD0

bm .
1X
nD0

b2n:
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Applying the Cauchy–Schwarz inequality to the left-hand side, we see that (7.33)
follows directly from

(7.35)
1X
nD0

1

.nC 1/2

� nX
mD0

bm

�2
.
1X
nD0

b2n:

Let us prove this last estimate. In terms of the discrete anti-derivative Bn B
Pn
mD0 bm,

(7.35) amounts to a discrete version of Hardy’s inequality and can be established in a
similar way: we obtain, by a discrete integration by parts,

NX
nD0

1

.nC 1/2
B2n �

NX
nD0

1

.nC 1/.nC 2/
B2n D

NX
nD0

� 1

nC 1
�

1

nC 2

�
B2n

� B20 C

NX
nD1

1

nC 1
.B2n � B

2
n�1/ D b

2
0 C

NX
nD1

1

nC 1
bn.Bn C Bn�1/

� b20 C
� NX
nD1

b2n

NX
nD1

1

.nC1/2
.BnCBn�1/

2
�1=2
� b20 C 2

� NX
nD1

b2n

NX
nD1

1

.nC1/2
B2n

�1=2
and thus, by Young’s inequality,

PN
nD0

1
.nC1/2

B2n .
PN
nD0 b

2
n, which yields (7.35) in the

limit N " 1.

Proof of Lemma 4.12. Without loss of generality, we may assume that L D 1 by scaling,
and work in .0; 1/d . It also suffices to prove the statement for p D 2.d � 1/=d as the other
cases follow from Jensen’s inequality. By the Sobolev trace theorem, see Theorem 5.36
in [1], (which we may use because the cube is bi-Lipschitz equivalent to a ball) and the
Poincaré inequality (we may assume that v has zero average), there holds

(7.36)
� Z

@.0;1/d
jvj

2.d�1/
d�2

� d�2
2.d�1/ .

� Z
.0;1/d

jrvj2
�1=2

:

Noting that q B 2.d � 1/=.d � 2/ satisfies 1=p C 1=q D 1, by integration by parts and
Hölder’s inequality, we may writeZ

.0;1/d
jrvj2 D

Z
@.0;1/d

vg �
� Z

@.0;1/d
jvjq

�1=q� Z
@.0;1/d

jgjp
�1=p

:

Using (7.36) and regrouping the terms in rv yields the desired estimate.

Proof of Lemma 5.1. Considering b on the strip Rd�1 � .0; L/, the fact that it derives
from a potential (b D �r Qv) is standard (as for the over-relaxed problem (4.1), see Sec-
tion IX.3 of [14]). Moreover, we have Qv.x/ D v.x/ C � 0 � x0, where v is (horizontally)
periodic (with period L) on Rd � .0; L/ and � 0 2 Rd�1. The latter can be seen by noting
that for any i D 1; : : : ; d � 1, the function Qv.� CLei / � Qv has gradient �b.� CLei /C b,
which vanishes by periodicity of b, and thus must agree with some constant �i , which
implies that v.x/ B Qv.x/ � � 0 � x0, where � 0 B .�1; : : : ; �d�1/, is periodic. It remains to
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prove that � 0 D 0. Since replacing b by b � �
R
Œ0;L/d�1�.0;L/

b0, where b0 denotes the hori-
zontal component of b, does not affect the constraint and strictly reduces the energy unless
�
R
Œ0;L/d�1�.0;L/

b0 D 0, we learn from minimality that this average must indeed vanish. Tak-
ing the average of the identity �b0 D r 0v C � 0 and noting that �

R
Œ0;L/d�1�.0;L/

r 0v D 0,
because the horizontal variables run over the torus, we obtain the desired � 0 D 0.

The fact that v can be chosen to vanish on ¹xd D Lº follows from the free boundary
condition on that face, in the same way that the over-relaxed potential v0 of (4.1) vanishes
on QL.

Proof of Lemma 5.2. We first prove that v is Hölder continuous on Rd�1. By Corol-
lary 5.4 and Lemma 5.5, it is clear that for .x0; xd / 2 Rd�1 � .0; L/, there holds

jb.x0; xd /j .
1

xd 1=2
�

Thus, considering two points x0; y0 2 Rd�1, which by horizontal periodicity we may
suppose to be at distance less than L, we join .x0; 0/ to .y0; 0/ by a vertical half circle
contained in Rd�1 � .0;L/ of diameter 2r D jx0 � y0j, and integrate rv D �b along this
curve to get

jv.x0; 0/ � v.y0; 0/j �

Z �

0

1

.r sin s/1=2
r ds .

p
r:

Furthermore by Lemma 5.1, v vanishes on Rd�1 � ¹Lº. Thus the potential v solves a
Dirichlet problem with Hölder-1=2 boundary conditions on Rd�1 � ¹0; Lº. As can be
seen via the representation through the Poisson kernel (for the slab), the modulus of Hölder
continuity transmits (up to a constant) from the boundary data to its harmonic extension:

(7.37) Œv �C1=2.QL/ . 1:

Let us turn to the over-relaxed potential v0 defined on Ql ; let w B v � v0. As v0 D 0
on Ql , using the first part of the lemma, there holds w D v on Ql hence Œw �C1=2.Ql / . 1.
Furthermore, since on �l , rv0 � � D �b � � D rv � �, there holds rw � � D 0 on �l .
We thus reflect w evenly across �l \ ¹xd D lº to extend it harmonically onto a box of
double the height. Subsequently by horizontal even reflections, we extend w harmonically
to the whole strip Rd�1 � Œ0; 2l �. We control the Hölder-1=2 semi-norm of w on the
whole boundary. We then conclude as in the case of v that Œw �C 1=2.Ql / . 1, which yields
Œv0 �C 1=2.Ql / . 1 by (7.37) and the triangle inequality.

Proof of Lemma 5.3. As the potential v0 vanishes on Ql , its odd extension across the
plane ¹xd D 0º, which we still denote by v0, is harmonic. Setting r B dist..x0; 0/; �l /,
we thus obtain, by inner regularity theory (Theorem 2.10 in [18]),

(7.38) j@dv.x
0; 0/j .

1

r
sup

B..x0;0/;r/

jvj:

By the Hölder continuity of Lemma 5.2 we obtain in particular jv0.x/j . xd
1=2, so

that (7.38) yields the desired estimate in the form of j@dv.x0; 0/j . r�1=2.
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Proof of Corollary 5.4. By periodicity, we may assume x0 D 0. For L=2 � xd � 1, by
Theorem 4.1 there holds Z

Q2xd

jbj2 . xd
d�1:

This extends to L � xd � 1 by reflection across ¹xd D Lº, as v D 0 on that plane.
Since jbj2 is sub-harmonic in Q2xd , the mean value property yields

jb.0; xd /j2 .
1

xd d

Z
Q2xd

jbj2 .
1

xd
�

Proof of Lemma 5.5. Consider a minimizer .u; b/ 2 Aper.QL/. We want to control the
field b.x0;xd /D�rv.x0;xd /. Without loss of generality, we assume x0D 0. GivenR>0,
let BCR B B.0;R/\ ¹xd > 0º and Bd�1R B B.0;R/\ ¹xd D 0º. We compare v with the
potential Qv generated by the charges u in Bd�12 , which can be written as a single layer
potential. We only use the representation of the gradient of Qv:

(7.39) r Qv.x0; xd / D cd

Z
Bd�12

.x0 � y0; xd /

j.x0; xd / � .y0; 0/jd
u.y0/ dy0:

The function w B v � Qv is harmonic in BC2 with zero boundary flux on Bd�12 ; it can thus
be reflected across Bd�12 to obtain a harmonic function onB2, which we still denote byw.
Hence jrwj2 is sub-harmonic and there holds

(7.40) sup
x2BC1

jrw.x/j .
� Z

B2

jrwj2
�1=2

.
� Z

BC2

jr Qvj2 C jrvj2
�1=2

:

Applying Theorem 4.1 to Q4, we get
R
BC2
jrvj2 . 1, so that it remains to control jr Qvj2.

We claim that for .x0; xd / 2 BC2 ,

(7.41) jr Qv.x0; xd /j . ln
� 1
xd

�
;

which first gives supx2BC1 jrw.x/j . 1 by (7.40) and then the statement of the lemma by
the triangle inequality (in the sup-norm).

The proof of estimate (7.41) is elementary by the representation (7.39), which yields

jr Qv.x0; xd /j .
Z
Bd�12

1

.jx0 � y0j C xd /d�1
dy0 .

Z
Bd�14

1

.jz0j C xd /d�1
dz0

.
Z 4

0

rd�2

.r C xd /d�1
dr .

Z 4

0

1

r C xd
dr . ln

� 1
xd

�
:

Proof of Lemma 6.1. Suppose, as in the statement of the lemma, that L � l � 1, and that
.u;b/ is a minimizer in Aper.QL/. Let v0 be the solution to the over-relaxed problem (4.1)
with flux boundary data b � � on �l . It suffices to construct a candidate .u�;b�/ in A0.Ql /

such that

(7.42)
E.u�;b�;Ql /

ld�1
�
E.u;b;Ql /

ld�1
�

1

ld�1

Z
Ql

1

2
jrv0j

2
C

C

l1=2
�
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The candidate field b� will be a controlled modification of bCrv0, which has vanishing
flux boundary condition on �l . We need to modify it near Ql , jointly with u in order to
obtain the right flux boundary condition on Ql . We decompose the bottom of Ql into
cubes Qi of side length � � 1, such that � divides l and is large enough (depending only
on d , in view of an application of Lemma 6.5) so that on each cube Qi there holds

(7.43) E.u;b;Qi /. �d�1 (by Theorem 4.1), or E.u;b;Qi /� �
d�2ƒ for some ƒ. 1;

as well as j�
R
Qi
uj � 1=2 (by Lemma 6.6), and �

R
Qi
j@dv0j � 1=2 (by Lemma 5.3). Indeed,

the last condition is satisfied for large enough �, as, by Lemma 5.3,

�

Z
Qi

j@dv0j . �
Z
Qi

dist..x0; 0/; �l /�1=2 dx0 .
1

�1=2
�

For each cube Qi not adjacent to �l , again by Lemma 5.3, we have

(7.44) �

Z
Qi

j@dv0j . dist.Qi ; �l /�1=2:

Thus, if m0 is given by Lemma 6.5 with the constant ƒ coming from condition (7.43)
(which in particular controls �

R
Qi
jruj), there exists R . 1 such that if dist.Qi ; �l / � R,

then

(7.45) �

Z
Qi

j@dv0j � m0:

We call these cubes “inner cubes” and treat separately the cubes with dist.Qi ; �l / < R

(“outer cubes”). If Qi is an inner cube, thanks to (7.45), we may apply Lemma 6.5 on Qi
with

mi B �
Z
Qi

@dv0:

This yields Qui 2 ¹�1; 1º with . Qui � u/ compactly supported in Qi and

�

Z
Qi

Qui D �

Z
Qi

.uC @dv0/ D �
1

�d�1

Z
�i

.bCrv0/ � �;(7.46)

�

Z
Qi

j Qui � uj . jmi j
(7.44)
. dist.Qi ; �l /�1=2;(7.47) Z

Qi

jr Qui j �

Z
Qi

jruj . jmi j
(7.44)
. dist.Qi ; �l /�1=2:(7.48)

As Qui D u near the .d � 2/-dimensional boundary of Qi , there is no added interface at
the junction between the inner cubes. We then introduce a harmonic building block bi
in Qi with zero boundary flux on �i and flux boundary data Qui � u � @dv0 on Qi . By
Lemma 4.12 for p D 2, which we may apply because of (7.46), the corresponding energy
is controlled asZ
Qi

jbi j2 . �
Z
Qi

j Qui�u�@dv0j
2 .

Z
Qi

j Qui�uj
2
C

Z
Qi

j@dv0j
2

(7.47);(7.44)
. dist.Qi ;�l /�1=2:
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It remains to treat the outer cubes; in this case, we can modify the field more crudely
as there are only about ld�2 such cubes. If Qi is an outer cube, partition Qi into two
boxes, and define Qui on Qi such that Qui D 1 on one box and Qui D �1 on the other. The
size of the two boxes is chosen so that

(7.49)
Z
Qi

. Qui � @dv0 � u/ D 0:

The interfacial energy in Qi is given by

(7.50)
Z
Qi

jr Qui j D �
d�2 . 1:

We then add a harmonic building block bi with zero boundary flux on �i and flux bound-
ary data �@dv0 � u C Qui on Qi . Fix p 2 Œ2.d � 1/=d; 2�. By (7.49), we can apply
Lemma 4.12 to Qi . The energy of bi is controlled asZ

Qi

jbi j2 . �
d�.d�1/ 2p

� Z
Qi

j@dv0 � uC Qui j
p
�2=p

.
�� Z

Qi

j@dv0j
p
�
C 1

�2=p
:

By Lemma 5.3 and since p < 2, we obtain

(7.51)
Z
Qi

jbi j2 . 1:

Note that the total interfacial energy of the union of the outer cubes is controlled by ld�2.
We thus define a candidate in .b�; u�/ 2 A0.Ql / by

b� D

´
bCrv0 if xd � �;
bCrv0 C bi in Qi ;

(7.52)

u� D Qui in Qi :

To compute its total energy E.b�; u�;Ql /, we start with the interfacial energyZ
Ql

jru�j
(7.50)
�

Z
Ql

jruj C
X

Qi inner cube

� Z
Qi

jr Qui j �

Z
Qi

jruj
�
C Cld�2

(7.48)
�

Z
Ql

jruj C C
� X
Qi inner cube

dist.Qi ; �l /�1=2 C ld�2
�

�

Z
Ql

jruj C Cld�3=2:(7.53)

For the field energy, by Lemma 4.8, note thatZ
Ql

jb�j2 (7.52)
D

Z
Ql

ˇ̌̌
bC

X
i

bi1Qi Crv0
ˇ̌̌2
D

Z
Ql

ˇ̌̌
bC

X
i

bi1Qi
ˇ̌̌2
�

Z
Ql

jrv0j
2:

Thus, there holdsZ
Ql

jb�j2 C
Z
Ql

jrv0j
2 (7.52)
D

Z
Ql\¹xd��º

jbj2 C
X
i

Z
Qi

jbC bi j2
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and thusZ
Ql

jb�j2 C
Z
Ql

jrv0j
2
�

Z
Ql

jbj2 D
X
i

Z
Qi

�
jbi j2 C 2b � bi

�
.

X
Qi outer cube

Z
Qi

�
jbi j2 C jbj2

�
C

X
Qi inner cube

� Z
Qi

jbi j2 C
ˇ̌̌ Z
Qi

b � bi
ˇ̌̌�
:(7.54)

For the inner cubes, we integrate the mixed terms by parts, using the facts that b is the
gradient of a Hölder-1=2 potential v (cf. Lemma 5.2) and that bi is divergence-free with
zero boundary flux on �i . More precisely, choosing a point .x0i ; 0/ at the bottom of the
inner cube Qi , we getˇ̌̌ Z

Qi

b � bi
ˇ̌̌
D

ˇ̌̌ Z
Qi

.v � v..x0i ; 0//bi � �
ˇ̌̌
D

ˇ̌̌ Z
Qi

.v � v..x0i ; 0//. Qui � @dv0 � u/
ˇ̌̌

� sup
x02Qi

jv.x0; 0/ � v..x0i ; 0//j
� Z

Qi

j Qui � uj C

Z
Qi

j@dv0j
� (7.44) ; (7.47)

. dist.Qi ; �l /�1=2:

For the outer cubes, we appeal to (7.51) and condition (7.43) in the choice of �. We plug
this into the estimate (7.54) to obtainZ

Ql

jb�j2 C
Z
Ql

jrv0j
2
�

Z
Ql

jbj2 . ld�2 C
X

Qi inner cube

dist.Qi ; �l /�1=2 . ld�3=2:

Combining the interfacial and field energies, cf. (7.53), and the last estimate, we get the
desired (7.42) in form of

E.u�;b�;Ql / � E.u;b;Ql / �
Z
Ql

1

2
jrv0j

2
C Cld�3=2:

Proof of Lemma 6.2. Recall that v0 is the solution to the over-relaxed problem (4.1) inQl
with flux boundary data b � � on �l . Consider a periodic minimizer .uper;bper/ 2Aper.Ql /.
Let vper

0 denote the solution to the over-relaxed problem in Ql with flux boundary data
bper � �. Notice that the field bper Crv

per
0 � rv0 has the same normal flux boundary con-

ditions as b on �l . We will modify .uper;bperCrv
per
0 �rv0/ in order to obtain a candidate

.u�;b�/ in Ab��.Ql / such that

(7.55)
E.u�;b�;Ql /

ld�1
�
E.uper;bper;Ql /

ld�1
C

1

ld�1

Z
Ql

1

2
jrv0j

2
C

C

l1=2
;

which implies (6.1) up to an additional interfacial energy of order ld�2. As in Lemma 6.1,
we decompose the bottom of Ql into cubes Qi and consider separately the cubes near �l
and the others. We choose cubes of side length � � 1, where � divides l and is such
that on each cube Q� of side length � contained in Ql and with base in Ql , there
holds E.uper; bper; Q�/ . 1 (by Theorem 4.1), j�

R
Q�
uperj � 1=2 (by Lemma 6.6), and

�
R
Q�
j@dv

per
0 j � 1=4 and �

R
Q�
j@dv0j � 1=4 (by Lemma 5.3). Lemma 5.3 in facts yields the

following more precise estimate for an inner cube Qi :

�

Z
Qi

.j@dv
per
0 j C j@dv0j/ . dist.Qi ; �l /�1=2:
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We do not detail the construction of the new charge u� (equal to Qui on the cubesQi ) as
it is similar to what we did in the proof of Lemma 6.1, replacing u by uper when applying
Lemma 6.5 for the inner cubes with

mi B �
Z
Qi

.�@dv
per
0 � @dv0/:

When it comes to the construction of b� there is a slight difference coming from the
fact that we need to take both rv0 and rvper

0 into account. On a cube Qi , we let bi be the
harmonic building block corresponding to Lemma 4.12 with zero boundary flux on �i and
flux boundary data Qui � uperC @dv

per
0 � @dv0 onQi . We then define .u�;b�/ 2Ab��.QL/

by

b� D

´
bper Crv

per
0 � rv0 if xd � �;

bper Crv
per
0 � rv0 C bi if .x0; xd / 2 Qi ;

(7.56)

u� D Qui in Qi :

As for (7.53), the interfacial energy is controlled as

(7.57)
Z
Ql

jru�j �

Z
Ql

jruper
j C Cld�3=2:

To compute the energy of b�, we first notice that Lemma 4.8 impliesZ
Ql

jb�j2 �
Z
Ql

jrv0j
2
D

Z
Ql

jb� Crv0j2

(7.56)
D

Z
Ql\¹xd��º

jbper
Crv

per
0 j

2
C

X
i

Z
Qi

jbper
Crv

per
0 C bi j2

D

Z
Ql

jbper
Crv

per
0 j

2
C

X
i

Z
Qi

�
2.bper

Crv
per
0 / � bi C jbi j

2
�
:

We apply Lemma 4.8 to bper Crv
per
0 and use the fact that

R
Ql
jrv

per
0 j

2 � 0 to obtainZ
Ql

jb�j2 �
Z
Ql

jrv0j
2
�

Z
Ql

jbper
j
2
�

X
i

ˇ̌̌ Z
Qi

2.bper
Crv

per
0 / � bi

ˇ̌̌
C

X
i

Z
Qi

jbi j2

.
Z
Ql

jrv
per
0 j

2
C

X
Qi outer cube

Z
Qi

�
jbi j2 C jbper

j
2
�

C

X
Qi inner cube

� Z
Qi

jbi j2 C
ˇ̌̌ Z
Qi

bper
� bi
ˇ̌̌�
:(7.58)

Applying Lemma 6.1 to .uper; bper/ (which is a minimizer in Aper.Ql /) and using Corol-
lary 6.3 (which only relied on Lemma 6.1) to get j�per.Ql /� �

0.Ql /j . l�1=2, we obtain

1

ld�1

Z
Ql

1

2
jrv

per
0 j

2
� �per.Ql / � �

0.Ql /C
C

l1=2
.

1

l1=2
�
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The remaining terms on the right-hand side of (7.58) are controlled by the same arguments
as those in (7.54), to the effect ofZ

Ql

jb�j2 �
Z
Ql

jrv0j
2
�

Z
Ql

jbper
j
2 . ld�3=2:

Combined with (7.57), this yields (7.55).

Proof of Corollary 6.3. Using statements (vi) and (i) of Lemma 4.2 as well as Lemma 6.1
for l D L� 1, we obtain

(7.59) �per.QL/ � �.QL/C
C

L
� �0.QL/C

C

L
� �per.QL/C

C

L1=2
�

Thus, it suffices to prove that there exists �� 2 .0;C1/ with j�0.QL/� ��j . L�1=2. In
fact, it even suffices to prove the existence of the limit �� of �0.QL/ and thus of �.QL/
as L " C1. Indeed, supposing the limit exists, statements (ii), (iii), and (i) of Lemma 4.2,
together with (7.59) imply

�.QL/ � lim
k!1

�.QkL/ D �
�
D lim
k!1

�0.QkL/ � �
0.QL/ � �.QL/C

C

L1=2
�

We now argue that limL!C1 �0.QL/ 2 .0;C1/ by showing that the integer monoton-
icity of Lemma 4.2 (iii) approximately extends to all L� l � 1 in form of

(7.60) �0.QL/ � �
0.Ql /C

C

l
�

This, together with Lemma 4.2 (i) and (v), yield the existence of a positive and finite limit.
In order to prove (7.60), let .u;b/ be a minimizer in A0.QL/ for L� 1. Given a positive
number �, we define .u�; b�/ by u�.� �/ D u.�/ and b�.� �/ D b.�/ (as in the proof of
Theorem 3.2). Clearly .u�;b�/ 2 A0.Q�L/, and it is easy to see by a change of variables
that

E.u�;b�;Q�L/
.�L/d�1

� max
°
�;
1

�

± E.u;b;QL/
Ld�1

�

From this we infer that for L � L0 � 1, �0.QL/ � .L=L0/ �0.QL0/ and in turn, as
Lemma 4.2 (iv) implies �0.QL/ . 1, there holds

(7.61) j�0.QL0/ � �
0.QL/j .

L

L0
� 1:

Now, for L� l � 1, let k 2 N be such that .k C 1/l > L � kl ; applying (7.61) with
L0 D kL, we obtain by Lemma 4.2 (iii),

�0.QL/ � �
0.Qkl /C

C

l
� �0.Ql /C

C

l
�

Proof of Lemma 6.4. Let 1� l 0 � l � L, where we assume l to be an odd integer mul-
tiple of l 0. Let �rvl

0

0 be the solution of the over-relaxed problem (4.1) in Ql 0 with flux
boundary data b � � on �l 0 . We first claim that

(7.62)
Z
Ql 0

jrvl
0

0 � rv
l
0j
2 . ld�1l 01=2:
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To see this, we decompose Ql \ ¹xd < l 0º into cubes Qi of side l 0 (including Ql 0 ), and
denote by �rvi0 the corresponding solutions of the over-relaxed problem. Then the field

Qb B

´
�rvi0 on Qi ;

b on Ql \ ¹xd � l 0º;

is a competitor for the over-relaxed problem on Ql , so that, using Lemma 4.8,Z
Ql

1

2
j QbCrvl0j

2
�

Z
Ql

1

2
j Qbj2 �

Z
Ql

1

2
jrvl0j

2

�

Z
Ql\¹xd>l

0º

1

2
jbj2 C

X
i

Z
Qi

1

2
jrvi0j

2
�

Z
Ql

1

2
jrvl0j

2:

On the one hand, we know by Lemma 6.1 and Corollary 6.3 thatZ
Qi

1

2
jrvi0j

2
� E.u;b;Qi / � ��l 0 d�1 C Cl 0 d�3=2:

On the other hand, by Lemma 6.2 and Corollary 6.3, we have

�

Z
Ql

1

2
jrvl0j

2
� E.u;b;Ql / � ��ld�1 C Cld�3=2:

Since the energy is additive up to the interfacial energy coming from pasting,

E.u;b;Ql / �
Z
Ql\¹xd>l

0º

1

2
jbj2 C

X
i

E.u;b;Qi /C C
l

l 0
ld�2;

and we obtain Z
Ql

1

2
j QbCrvl0j

2 .
� l
l 0

�d�1
l 0 d�3=2 C

l

l 0
ld�2 .

ld�1

l 0 1=2
�

Restricting the integral to Ql 0 , we recover (7.62) by definition of Qb.
Second, we claim

(7.63)
Z
Ql 0

jrvl0j
2 .

� l 0
l

�d Z
Ql

jrvl0j
2:

Indeed, reflecting vl0 oddly across ¹xd D 0º, we obtain a harmonic function on the box
.�l=2; l=2/d�1 � .�l; l/, so that (7.63) is a consequence of the mean-value property of
the sub-harmonic function jrvl0j

2.
Combining (7.62) and (7.63) with the triangle inequality, and letting � B l 0=l we get

1

.�l/d�1

Z
Q�l

1

2
jrv�l0 j

2
� C0

�
�

1

ld�1

Z
Ql

1

2
jrvl0j

2
C

1

.�l/1=2

�
:

We fix � , depending only on d , such that 1=� is an odd integer, and so small that C0� �
1=2; so that letting Dl B l�.d�1/

R
Ql

1
2
jrvl0j

2, we obtain

(7.64) D�l �
1

2
Dl C

C

l1=2
�
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Applying Lemma 6.1 and Corollary 6.3 to l D L, we get

DL �
E.u;b;QL/
Ld�1

� �0.QL/C
C

L1=2
.

1

L1=2
�

With this anchoring, we iterate (7.64), to obtain the desired Dl . l�1=2 for l � 1.

Proof of Lemma 6.5. By rescaling, we may assume without loss of generality that � D 1,
so that Q D .0; 1/d�1. We will define a smooth vector field � , compactly supported in Q,
such that r � � approximates u � �

R
Q
u. Then we will transport the values of u along

the flow generated by �, for positive or negative time depending on whether we want to
increase or decrease the average charge. The flow of � is the map ˆ�.�/W .t; x/ 2 R �Q
! Q solving the differential equation´

@tˆt .x/ D �.ˆt .x// for .t; x/ 2 R �Q;

ˆt jtD0 D ˆ0 D id on Q:

As � will be smooth and compactly supported, for all t 2 R, ˆt is a diffeomorphism ofQ
that coincides with the identity close to the boundary of Q. For shortness, we set

ut B u ıˆ�1t :

By definition, ut , like u, takes values into ¹�1; 1º. We shall construct � such that

(7.65)
d

dt

Z
Q

ut �
1

4
for jt j � 1

and that
R
Q
jut � uj and

R
Q
jrut j are Lipschitz continuous at t D 0. This will allow us to

define Qu B ut for some appropriate t 2 Œ�4m; 4m� with the desired properties.
We now turn to the construction of the vector field �. In order to flow from positive to

negative charges, we want r � � ' u � �
R
u. In particular, a good candidate is the gradient

of the potential  obtained by solving the following Poisson problem:

(7.66)

´
�� D u � �

R
Q
u in Q;

�r � � D 0 on @.Q/:

Notice that the vector field �r has divergence equal to u � �
R
Q
u. We reflect u and  

evenly along the sides of Q to extend them to the whole of Rd�1. The extended  still
satisfies �� D u � �

R
Q
u. Since supRd�1 ju � �

R
Q
uj � 2, by elliptic regularity (we refer

to Section 8.11 in [18]), r is Hölder-1=2 continuous. In particular, it is square integrable
in the larger cube QQ B .�1; 2/d�1. We will use the following uniform bounds:

(7.67) 8x; y 2 Rd�1; jr .y/ � r .x/j . jy � xj1=2 and
Z
QQ

jr j2 . 1:

To obtain �, we cut off and mollify �r to obtain a smooth vector field, compactly
supported in Q. Given r 2 .0; 1=2�, for any function f , we denote by f r B f � 'r the
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convolution of f with a standard mollifier 'r on the scale r . Next, fix �1r W .0; 1/! Œ0; 1�

to be a smooth compactly supported cut-off function such that �1r .s/D 1 for s 2 Œr; 1� r�,
and j.�1r /

0j . 1=r . We now define a cut-off function �r onQ for x D .x1; : : : ; xd�1/ 2Q
by �r .x/ B …d�1

iD1 �
1
r .xi /. Finally we define � on Q by

(7.68) � B ��rr 
r :

We do not stress the dependence of � on r , as r will later be fixed. There holds

(7.69) r � � D ��r� 
r
� r�r � r 

r (7.66)
D �r

�
ur � �

Z
Q

u
�
� r�r � r 

r :

Let us show that the second term r�r � r r is small in the L1-norm, for small r .
Notice that r�r is supported in the set of points lying at distance less than r to @.Q/.
Consider one of these points x. Without loss of generality, we may suppose that there
exists k 2 ¹1; : : : ; d � 2º such that xi 2 .0; r/ for i � k and xi 2 Œr; 1 � r � for i > k. As
xi 2 Œr; 1 � r � implies .�1r /

0.xi / D 0, there holds

r�r � r 
r .x/ D

kX
iD1

@i�r .x/ @i 
r .x/:

By estimate (7.67) and the Neumann boundary condition in (7.66), for i � k, we have

j@i 
r .x/j . r1=2:

Together with jr�r j . 1=r , we thus obtain

jr�r .x/ � r 
r .x/j .

1

r1=2
�

The set of all such x has area of order r . We thus have

(7.70)
Z
Q

jr�r � r 
r
j . r1=2:

On the one hand, by the convolution estimate and recalling the extension of u by even
reflection,

(7.71)
Z
Q

jur � uj . r

Z
Q

jruj � rƒ;

and on the other hand, as juj � 1,

(7.72)
Z
Q

ˇ̌̌
.�r � 1/

�
ur � �

Z
Q

u
�ˇ̌̌

. r:

We inferZ
Q

ˇ̌̌
r � � �

�
u � �

Z
Q

u
�ˇ̌̌ (7.69)
�

Z
Q

ˇ̌̌
�r

�
ur � �

Z
Q

u
�
� r�r � r 

r
�

�
u � �

Z
Q

u
�ˇ̌̌

�

Z
Q

jur�uj C

Z
Q

ˇ̌̌
.�r�1/

�
ur� �

Z
Q

u
�ˇ̌̌
C

Z
Q

jr�r � r 
r
j

(7.71);(7.72);(7.70)
.ƒ r1=2:(7.73)
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Now that we have this control over �, let us prove that its flow modifies the global
charge in the desired way (7.65). By a change of variables,Z

Q

ut D

Z
Q

u det Dˆt :

Using Liouville’s formula to differentiate the determinant and operating the converse
change of variables yields

(7.74)
d

dt

Z
Q

ut D

Z
Q

u.r � �/ ıˆt det Dˆt D
Z
Q

ut r � �:

Hence at t D 0, using (7.73) and the fact that juj D 1, we obtainˇ̌̌ d
dt

ˇ̌̌
tD0

Z
Q

ut �

Z
Q

u
�
u � �

Z
Q

u
�ˇ̌̌

.ƒ r1=2;

so together with the assumption (6.2), we get

3

4
�
d

dt

ˇ̌̌
tD0

Z
Q

ut .ƒ r1=2:

Hence we now may fix r > 0 so small that

d

dt

ˇ̌̌
tD0

Z
Q

ut �
1

2
�

It remains to prove that (7.65) holds also for t small enough and not just at t D 0. We
postpone this and start by proving that the total variation of ut is uniformly bounded. By
Theorem 17.5 in [25], or by a standard generalization of Theorem 10.4 in [20], the first
variation of the total variation of ut at time t along the flow of � is equal to

d

dt

Z
Q

jrut j D �

Z
Q

�
rtan � �

�
jrut j;

where rtan � � is the tangential divergence of � along the reduced boundary of the set of
finite perimeter ¹ut D�1º. Since r is now fixed and depends only andƒ and d , we obtain
from (7.68), the fact that  r D  � 'r and the Hölder inequality that

(7.75) sup
Q

j�j .ƒ
�

sup
Q

jr j2
�1=2 (7.67)

.ƒ 1 and sup
Q

jD�j .ƒ 1:

Hence ˇ̌̌ d
dt

Z
Q

jrut j
ˇ̌̌

.ƒ
Z
Q

jrut j

and thus for t 2 Œ�1; 1�,

(7.76)
Z
Q

jrut j �

Z
Q

jruj .ƒ t:
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Let us now go back to proving (7.65) for small t . It is enough to prove that the function
t 7! d

dt

R
Q
ut is Lipschitz continuous at t D 0, with a Lipschitz constant depending only

on the total variation of u (the bound ƒ from the statement). Indeed, by (7.74),ˇ̌̌ d
dt

Z
Q

ut �
d

dt

ˇ̌̌
tD0

Z
Q

ut

ˇ̌̌
�

Z
Q

jus � ujj r � �j
(7.75)
.ƒ

Z
Q

jus � uj:

Hence t 7! d
dt
j
R
Q
ut j is Lipschitz continuous at tD0 provided the function t 7!

R
Q
jut �uj

is as well. To this purpose, we make use ofZ
Q

jus � uj D sup
�2C10 .Q/;j� j�1

Z
Q

.us � u/�:

In particular, it suffices to show that the functions t 7!
R
Q
.ut �u/� are uniformly Lipschitz

continuous at t D 0. For this, we note that by a similar argument as for (7.74), we have

d

dt

Z
Q

.ut � u/� D
d

dt

Z
Q

ut� D

Z
Q

ut r � .��/

and thus ˇ̌̌ d
dt

Z
Q

.ut � u/�
ˇ̌̌
� sup

Q

j��j

Z
Q

jrut j
(7.76);(6.3)

.ƒ sup
Q

j�j
(7.75)
.ƒ 1:

Proof of Lemma 6.6. Let us choose a smooth cut-off function � compactly supported in
Q� [Q� and such that �

R
Q�
.1� �/� 1=4, while jr�j. 1=�. On the one hand, this impliesˇ̌̌

�

Z
Q�

u
ˇ̌̌
�

ˇ̌̌
�

Z
Q�

�u
ˇ̌̌
C
1

4
;

so that it is enough to establish ˇ̌̌
�

Z
Q�

�u
ˇ̌̌
�
1

4
:

On the other hand we obtain from (2.2)Z
Q�

�u D �

Z
Q�

r� � b

and as jr�j . 1=�, by the Hölder inequality and Theorem 4.1, we haveˇ̌̌
�

Z
Q�

�u
ˇ̌̌

.
� 1
�d

Z
Q�

jbj2
�1=2

.
1

�1=2
;

so that the conclusion follows provided �� 1.
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[17] Farmer, B., Esedoḡlu, S. and Smereka, P.: Crystallization for a Brenner-like potential. Comm.
Math. Phys. 349 (2017), no. 3, 1029–1061,



K. Bellova, A. Julia and F. Otto 822

[18] Gilbarg, D. and Trudinger, N. S.: Elliptic partial differential equations of second order. Reprint
of the 1998 edition. Springer, Berlin, 2001.

[19] Giuliani, A. and Müller, S.: Striped periodic minimizers of a two-dimensional model for
martensitic phase transitions. Comm. Math. Phys. 309 (2012), no. 2, 313–339.

[20] Giusti, E.: Minimal surfaces and functions of bounded variation. Monographs in Mathematics,
Birkhäuser, Boston, 1984.

[21] Goldman, M. and Otto, F.: A variational proof of partial regularity for optimal transportation
maps. Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1209–1233.

[22] Goldman, M. and Runa, E.: On the optimality of stripes in a variational model with non-local
interactions. Calc. Var. Partial Differential Equations 58 (2019), no. 3, Paper No. 103, 26pp.

[23] Knüpfer, H. and Muratov, C. B.: On an isoperimetric problem with a competing nonlocal
term I: The planar case. Comm. Pure Appl. Math. 66 (2013), no. 7, 1129–1162.

[24] Lu, J. and Otto, F.: Nonexistence of a minimizer for Thomas–Fermi–Dirac–von Weizsäcker
model. Comm. Pure Appl. Math. 67 (2014), no. 10, 1605–1617.

[25] Maggi, F.: Sets of finite perimeter and geometric variational problems. Cambridge Studies in
Advanced Mathematics 135, Cambridge University Press, Cambridge, 2012.

[26] Miura, T. and Otto, F.: Sharp boundary "-regularity of optimal transport maps. Adv. Math. 381
(2021), Paper No. 107603, 65 pp.

[27] Müller, S: Singular perturbations as a selection criterion for periodic minimizing sequences.
Calc. Var. Partial Differential Equations 1 (1993), no. 2, 169–204.

[28] Otto, F. and Viehmann, T.: Domain branching in uniaxial ferromagnets: asymptotic behavior
of the energy. Calc. Var. Partial Differential Equations 38 (2010), no. 1-2, 135–181.

[29] Theil, F.: A proof of crystallization in two dimensions. Comm. Math. Phys. 262 (2006), no. 1,
209–236.

[30] Weinan, E. and Li, D.: On the crystallization of 2D hexagonal lattices. Comm. Math. Phys.
286, 2009, no. 3, 1099–1140.

Received April 14, 2020. Published online November 10, 2021.

Katarina Bellova
Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen,
Germany;
katarina.bellova@uni-due.de

Antoine Julia
Laboratoire de Mathématiques d’Orsay, Bâtiment 307, rue Michel Magat, Faculté des Sciences
d’Orsay, Université Paris-Saclay, 91405 Orsay Cedex, France;
antoine.julia@universite-paris-saclay.fr

Felix Otto
Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany;
otto@mis.mpg.de

mailto:katarina.bellova@uni-due.de
mailto:antoine.julia@universite-paris-saclay.fr
mailto:otto@mis.mpg.de

	1. Introduction
	2. The problem, notations and definitions
	3. Statement of the main results
	4. Uniform energy bound
	5. Pointwise estimates on the fields
	6. Boundary conditions are negligible in the thermodynamic limit
	7. Proofs
	References

