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Variation of the uncentered
maximal characteristic function

Julian Weigt

Abstract. Let M be the uncentered Hardy-Littlewood maximal operator, or the
dyadic maximal operator, and let d > 1. We prove that for a set E C R4 of finite
perimeter, the bound var M1 g < C,; var 1 g holds. We also prove this for the local
maximal operator.

Introduction

The uncentered Hardy-Littlewood maximal function of a non-negative locally integrable
function f is given by

1
M =
T = 2B /B /
where the supremum is taken over all open balls B C R¢ that contain x. Various versions
of this maximal operator have been investigated. There is the (centered) Hardy-Littlewood
maximal operator, where the supremum is taken only over those balls that are centered
in x, or the dyadic maximal operator, which maximizes over dyadic cubes instead of balls.
Those operators also have local versions, where for some open set 2 C R¢ the supremum
is taken only over those balls or cubes that are contained in 2. For example, the local
dyadic maximal function with respect to Q of f € Ll (Q) at x € Q is given by

loc

1
WA= 0 70y

where the supremum is taken over all half open dyadic cubes O C R¢ withx € O C Q.
It is well known that many maximal operators are bounded on L?(R¢) if and only
if p > 1. The regularity of the maximal operator was first studied in [17], where Kinnunen
proved for the Hardy-Littlewood maximal operator that for p > 1 and f € W17 (R%)
also the bound
IVM£llp < CapllV 11,

holds, from which it follows that the Hardy-Littlewood maximal operator is bounded
on WhP(R9).
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The proof combines the pointwise bound |VM f| < M|V f| with the L?(R?)-bound
of the maximal operator. Since the maximal operator is not bounded on L'(R?), this
approach fails for p = 1. For p > 1, the gradient L?(R?)-bound or some correspond-
ing version is valid for most maximal operators. However, so far no counterexamples
have been found for p = 1. So in 2004, Hajtasz and Onninen posed the following ques-
tion in [15]: for the Hardy-Littlewood maximal operator M, is f + |VM f| a bounded
mapping W11 (R¢) — L'(R?)? This question for various maximal operators has since
become a well known problem and has been the subject of lots of research. In one dimen-
sion, for L1(R) the gradient bound has already been proven in [26] by Tanaka for the
uncentered maximal function, and later in [21] by Kurka for the centered Hardy—Little-
wood maximal function. The latter proof turned out to be much more complicated. In [22],
Luiro has proven the gradient bound for radial functions in L' (R¢) for the uncentered
maximal operator. More research on this question, and also more generally on the end-
point regularity of maximal operators, can be found in [1-3,7-9, 14,24]. However, so far
the question has been essentially unsolved in dimensions larger than one for any maximal
operator.

In this paper we prove that for M being the dyadic or the uncentered Hardy—Littlewood
maximal operator, and E C R? being a set with finite perimeter, we have

varMlg < Cyvarlg.

This answers the question of Hajtasz and Onninen in a special case, and is the first truly
higher dimensional result for p = 1 to the best of our knowledge. We furthermore prove a
localized version, as is stated in Theorems 1.2 and 1.3. The Hardy-Littlewood uncentered
maximal function and the dyadic maximal function have in common that their level sets
{Mf > A} can be written as the union of all balls/dyadic cubes X with fX f>AL(X).
Our proof relies on this. Since this is not true for the centered Hardy—Littlewood maximal
function, a different approach has to be found for that maximal operator.

Also related topics for various exponents 1 < p < oo have been studied, such as the
continuity of the maximal operator in Sobolev spaces [5] and bounds for the gradient
of other maximal operators, such as fractional, convolution, discrete, local and bilinear
maximal operators [6, 10, 11,16, 19,20,23,25].

1. Preliminaries and main result

We work in the setting of sets of finite perimeter, as in Evans—Gariepy [12], Section 5. For
a measurable set E C R?, we denote by £ (E) its Lebesgue measure and by #¢~'(E) its
(d — 1)-dimensional Hausdorff measure. For an open set 2 C R?, a function f € L} ()
is said to have locally bounded variation if for each open and compactly supported U C 2

we have
sup{/ fdivp:gp € CCI(U;IR{d), lp| < 1} < 00.
U

Such a function comes with a measure j and a function v: Q — R¥ that has [v| = 1 u-a.e.
such that, for all ¢ € C}(Q;R?), we have

/fdivgo:/(pvdu.
Q Q
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We define the variation of f in Q by

varg f = u(Q).
For a measurable set £ C R¥, we define the measure theoretic boundary by

B E B NnE
LEEDNE) 4 i sup ZEE DN E) > ol.
rd r—0 rd

0+ E = {x : lim sup

r—0

The following coarea formula is our strategy to approach the variation of the maximal
function.

Lemma 1.1 (Theorem 5.9 in [12]). Let Q@ C R? be open. Let f € L} (Q). Then

loc
varg f = /RJ(’d_l(a*{f > AN Q)dA.

We say that measurable set E C R? has locally finite perimeter if its characteristic
function 1g has locally bounded variation. For f = 1g, we call varg 1g the perimeter
of E and v from above the outer normal of £. Lemma 1.1 implies

varg 1 = H47Y(3,.E N Q).
Recall the definition of the set of dyadic cubes:
U {[xl,xl + 2"y XX [xg,xqg +2") i =1,...,n, x; € Z"Z}.
nez

The maximal function of a characteristic function can be written as

ML () L(ENX)
X)= sup ———,
BV = xea 2(X)

where X ranges over balls for the uncentered maximal operator, and over dyadic cubes
for the dyadic maximal operator. Now we are ready to state the main results of this paper.

Theorem 1.2. Let M be the local dyadic maximal operator with respect to an open set
Q C R?. Let E C R? be a set with locally finite perimeter. Then

varg Mlg < Cg HV(0.E N Q),

where Cy depends only on the dimension d.

Theorem 1.3. Let M be the local uncentered maximal operator with respect to an open
set @ C RY. Let E C R? be a set with locally finite perimeter. Then

varg Mlg < Cg HV(0.E N Q),

where Cy depends only on the dimension d.

We can for example take 2 = R¢. Denote {M1g > A} = {x € Q : MIg(x) > A}. We
reduce Theorems 1.2 and 1.3 to the following results.
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Proposition 1.4. Let M be the local dyadic maximal operator with respect to some open
set @ C Re. Let E C R? be a set with locally finite perimeter and let A € (0,1). Then
HET QMg > AN Q) < Ca A~ @V dgd=13 E N Q).
By Lemma 2.4, we have E* N Q C {Mlg > A}*, so that we might intersect the right-
hand side with {M1g > A} *.

Proposition 1.5. Let M be the local uncentered maximal operator. Let E C R? be a set
with locally finite perimeter and let A € (0, 1). Then

HET QMg > AN Q) < Ca A~ @D/ —1ogd) H4 3. E N {MIg > A}).

The constants Cy that appear in Theorems 1.2 and 1.3 and Propositions 1.4 and 1.5
are not equal. Since the proofs of Theorems 1.2 and 1.3 are almost the same, we do them
simultaneously.

Proof of Theorems 1.2 and 1.3. By Lemma 1.1 and Propositions 1.4 and 1.5, we have

1
varg M1z =/ HET 0. {M1g > A} N Q) dA
0

1
< cd/ A=D1 _1og 1) HITV(DLE N Q) dA
0

=d(d +1)Cy HI(.ENQ). .

In Sections 2 to 4 we prove Propositions 1.4 and 1.5. In Section 5 we prove Propos-
ition 5.1, which is Proposition 1.5 without the factor 1 — log A. The rate A~¢~1/4 g
optimal.

We introduce some notation we will use throughout the paper. By @ < b we mean that
there exists a constant C; that depends only on the dimension d such that a < Cyzb. For a
set B of subsets of R?, we write

Js=U 8

BeB

Foraball B = B(x,r) C R and ¢ > 0, we denote ¢B = B(x,cr). If 8 is a set of balls,
we denote

cB ={cB:Be B}
Foraset E C RY and a point x € Rd, we denote

dist(x, E) = inf |x — y|.
yeE

We also need more measure theoretic quantities. We define the measure theoretic interior
of E by

LBEINE) _ )

int«(E) = {x : lim sup y,
’

r—>0

the measure theoretic closure by

L(B(x,r)NE) - 0}

E* = {x : lim sup i
.

r—0
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and the measure theoretic boundary by
0+E = E* \ int,(E).
Lemma 1.6. Let A, B C R4 be measurable. Then
0+(AUB) C (3xA\ B*) U (0+B \ A*) U (3.4 N 34 B).
Proof. Let x € 0,(A U B). Then
. L£(B(x,r)N (AU B))

b L(B(x,r)\ (AU B))

limsu 7 >0 and limsu 7 > 0.
r—0 r r—0 r
By symmetry, it suffices to consider the case that
L(B(x,r)yNA
lim sup % > 0.
r—>0 r
Then
: L(Bx.r)\A4) _ . L(B(x,r)\ (AU B))
lim sup e lim sup y >0,
r—0 r r—0 r
which means x € 0, A. Analogously, if
£(B(x,r)N B
lim sup % > 0,
r—0 r
then x € 04 B so we get x € 04, A N 04 B. Otherwise
) E(B(x,r) N B)
limsup ————— =0,
r—>0 r
and we can conclude x € 0,4 \ B*. n

Let E C R be measurable and let ;1 be the measure from the definition of var 1
and v the outer normal. We define the reduced boundary 8* E of E C R as the set of all
points x € R such that for all » > 0 we have u(B(x,r)) > 0,

lim vdu = v(x),

r—>0 B(x,r)
and |v(x)| = 1. This is Definition 5.4 in [12]. By Lemma 5.5 in [12], we have 0* E C 0+ F
and #9~1(3,E \ 9* E) = 0. Thus it suffices to consider only the reduced boundary when
estimating the perimeter of a set. But most of the time we will formulate the results for the
measure theoretic boundary. The exception is Lemma 2.4, which we could only prove for
the reduced boundary because there we make use of Theorem 5.13 in [12], which states
the following.

Lemma 1.7 (Theorem 5.13 in [12]). Let E C R4 be a measurable set. Assume 0 € 3*E
withv(0) = (1,0,...,0). Then forr — O we have 11 — lix.x, <0} in Llloc(Rd).

A central tool used here is the relative isoperimetric inequality, see Theorem 5.11
in [12]. It states that for a ball B and any measurable set £ C R4, we have

(1.1) min{£(E N B), £(B\ E)}¥' < #9(3.E N B)?.
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Figure 1. A John domain.

However we need the relative isoperimetric inequality also for other sets than balls. An
open bounded set A is called a John domain if there is a constant K and point x € A from
which every other point y € A can be reached via a path y such that for all ¢ we have

(1.2) dist(y(t), A°) > K~y — y(1)|.

This is called the cone condition, see Figure 1. Theorem 107 in the lecture notes [13] by
Piotr Hajtasz states that all John domains admit a relative isoperimetric inequality.

Lemma 1.8. Let A C R? be a John domain with constant K. Then A satisfies a relative
isoperimetric inequality with constant Ck 4 only depending on K and the dimension d,

min{£(E N A), £(A\ E)}*7! < Cxg HI71O.E N A7,

For example, a ball and an open cube are John domains.
Another basic tool is the Vitali covering lemma, see for example Theorem 1.24 in [12].

Lemma 1.9 (Vitali covering lemma). Let B be a set of balls in R? with diameter bounded
by some R € R. Then it has a countable subset B of disjoint balls such that

s clJss
Instead of considering {M1g > A}, we will only consider a finite union of balls/cubes.
In order to pass from there to the whole set {M1g > A}, we will use an approximation
result. We say that a sequence (A,), of sets in R converges to some set 4 in LL (R?) if

loc
(14,)n converges to 14 in LL (R?).

loc

Lemma 1.10 (Theorem 5.2 in [12] for characteristic functions). Let & C R4 be an open
set and let (Ay), be subsets of R? with locally finite perimeter that converge to A in
L} (Q). Then
H41(9,AN Q) < liminf X471 (3,4, N Q).
n—o00
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Lemma 1.11. Let o5 = £(B(0, 1)) be the Lebesgue measure of the d-dimensional unit

ball. Then
2 o4 2
N < <,/ =
d+17~ Od—1 d

Proof. By the logarithmic convexity of the I"-function, for all x > 1/2 we have

re) VI(x—1/2)F(x +1/2)  [T(x—1/2) _ 1
I'(x+1/2) ~ C(x+1/2) S \VTe+1/2 =172
I'(x) - I'(x) . ix) L
F'(x+1/2) — JT)I(x+1) VIQG&x+1D)  J/x
and the result follows from o4 = 79/2/T(d /2 + 1). |

We will need some facts about convex sets.

Lemma 1.12. The following properties hold for all convex and bounded sets A, B C R¥.
(i)  The set AN B is convex.
(i) IfA C B, then #971(34) < #9~1(3B).
(iii) For every e > 0, we have £({x € A : 0 < dist(x, A°) < &}) < e H 971 (DA).

Proof. (i) follows from the definition of convexity.
For every x € 9B, there is a point z € dA with

Z—Xx| = min |y — x|.
2= x| = min |y~ x

A straightforward computation shows that if z’ € 04 with |x — z’| = minyepq [x — Y|,
then |x — (z + 2’)/2| < minyeyy |x — y| and the inequality is strict if z’ # z. Hence we
must have z’ = z because (z + z)/2 € A by convexity. We denote p(x) = z.

Since A is convex, in every point z € A there is a hyperplane H which contains z and
such that for all y € d4 we have (y — z,n) < 0, where n is the normal of H. Because B
is bounded, there is an r > 0 such that z + rn € dB. It is easy to see that p(z 4+ rn) = z.
That means p: 9B — 04 is surjective.

Let x1,x5 € 0B. Fori = 1,2, denote z; = p(x;) and let H; be the hyperplane with
normal x; — z; which contains z;. Then (z; — zq, X1 — z;) < 0 because otherwise it is
straightforward to find a ¢ > 0 small enough with (1 —¢)zy + 1z, € ‘A which is closer
to x; than z;, which leads to a contradiction to p(x;) = z;. Similarly, we must have
(z1 — z2, X2 — z3) < 0. We can conclude

|z1 — z2||x1 — x2| = (21 — 22, X1 — Xx2)
= (z1 —z2,x1 —z1) + (22 — 21, X2 — Z2) + (21 — 22,21 — Z2)
> |z —Zz|2-

This means that the map p: 0B — dA4 is 1-Lipschitz, and we obtain (ii) because the Haus-
dorff measure does not increase under 1-Lipschitz maps by Theorem 2.8 in [12].
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For every A > 0, denote Ay = {x € A : dist(x, A°) > A}. Then A is convex and by
Theorem 3.14 in [12] and (ii) we have

L({x € A:0 < dist(x, A°) < &}) = / J1(94;) dA < / JI1(DA) dr
0 0

= e H971(04). .

2. Tools for both maximal operators

We start with a couple of tools that are used for both maximal operators.

Lemma 2.1. Let X C R? be an open set with finite measure and finite perimeter which
satisfies a relative isoperimetric inequality, and denote ¢ = H?=1(3X)¢ /L (X)?~ . Let
0< A <1—¢e<1andlet E be a measurable set suchthat A < L(ENX)/L(X)<1—e.
Then

HETVDLENX) 2 ¢ Vdgd=1)d=D/d god=1 5y,

Note that ¢ is invariant under scaling of X .

Proof. We first prove
2.1) LENX) <7D gd=15,E N X)4.

If ¢ > 1/2, then (2.1) follows directly from the relative isoperimetric inequality for X . For
& < 1/2, we obtain (2.1) from the relative isoperimetric inequality as follows:

HEVDLENX) 2 L(X\E) ! > 4718 (X)4 ' > @7 2(E N X)L
From (2.1) we conclude
e @RI G, EN X) 2 L(E N X)W/ > 3@=D/d p(x)(d=D/d
> ¢7MApE@DIE gpd =1 (o), =
Lemma 2.2 (Boxing inequality, cf. Theorem 3.1 in Kinnunen, Korte, Shanmugalingam
and Tuominen [18]). Let E C R? be a set with finite measure that is contained in the
union of a set B of balls B with £(E N B) < £(B)/2. Then there is a set ¥ of balls F

with £(F N E) = £(F)/2 which covers almost all of E. Furthermore, each F € ¥ is
contained in a ball B € B.

Proof. 1t suffices to show that for every ball B(x;,r;) € 8B, every Lebesgue point x €
int«(E) with x € B(x, 1) is contained in a ball F C B(xy,ry) with £(F N E) =
£L(F)/2. By assumption,
£(B(x1,
£(E 0 Bxy,ryy) = ZEELI)
and since x is a Lebesgue point, there is a ball B(xg, r¢) with x € B(xg, ro) C B(x1,71)
and

£(B(x0.70))

L(E N B(xg,rp)) > 5
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Figure 2. The regions in Lemma 2.3.

Define x;, = (1 —1¢)-xo+t-x;yandr;, = (1 —t)-rg+1t-rysothatt — B(xs,r;)isa
continuous transformation of balls. That means there is a ¢ with
L(B(x¢,71)) .

f(EﬂB(xt,rt))z 2

Since x € B(xg,ro) C B(xs,r;) C B(x1,r1), that means we have found the right ball. m

We will prove a more specialized version of Lemma 2.2.

Lemma 2.3. Let X be an open cube or a ball in R? and let E be a set with £(E N X) >
AL(X). Then there is a cover € of X \ E* consisting of balls C with diam C <2diam X
and

A diam C

2.2) Jed—l(a*E N {y € C 1 disi(y, X > =5

}) > A(@-1/d %d—1(3c)’

where cg = 24 if X isaball, and cqz = d4%g, if X is a cube.

The constants in Lemma 2.3 are not important and one could also impose a stronger
bound on the diameter of the balls C € € for A near 1.

Proof of Lemma 2.3. 1t suffices to show that for each x € 9X \ E* there is a ball C
centered in x that satisfies (2.2). Let x € dX \ E* and for 0 < r < diam X define

A(r) = {y € Blx,r) : dist(y, X%) > 2dcy }

We first show that A(r) is a John domain. Consider the case that X is a ball. Then
there is a point z € X N B(x, r) such that B(z,r/2) C X N B(x, r). That means

B(z, 2) c B(z, % — 22;) C A(r).
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Now let X be a cube. Then X N B(x, r) contains a cube with diameter at least r, i.e.,
sidelength at least r/+/d. Thus, A(r) contains a cube with sidelength at least

r Ar r r

1
ST Sabvrrd Bt

which in turn contains a ball B with radius r/ (4+/d). The last inequality holds because
104D/26) = 2 and Vdcyg = d@+tV/2g, is increasing in d by Lemma 1.11. We have
shown that there is a point z € A(r) such that

2.3) B(z, ﬁ) C A(r),

both if X is a cube or a ball. For any y € A(r), we have dist(y, z) < diam(A(r)) <2r.
Because A(r) is convex by Lemma 1.12 (i), it contains the convex hull of B( ) U{y}.

=8d.

We can conclude that A(7) is a John domain with K =
We have

K4J7

A
E(B. )\ AM) = £({y:0 < dist(y, (Bx,r) 0 X)) < #})
Ar

< 9
~ 2dcy - 2dcd

2.4) = L L(B(x,r)) < & L(B(x,r)NX),
2Cd 2

where the last inequality holds because as observed above, B(x,r) N X contains a ball
with radius /2 if X is a ball, and a cube with sidelength r/ Vd if X is a cube. Then from

L(XNE) -
LX) ~
and (2.4) with r = diam X we get

L(A(diam X) N E) - L(A(diam X) N E) - A A
L(A(diam X)) ~ 2(X) =t T2

Since x ¢ E*, we have £(E N B(x,r))/r? — 0 for r — 0. By (2.3) this implies that

there is an r¢ with
L(A(ro) N E)

£(A(ro)) 5

By continuity we conclude that there is an 7y < r < diam X such that

| /\

di
LAMNE) _ A
L(A(r)) 2

By (2.3) and Lemma 1.12(i), we have

d— d— r d—
2.5) HOVOB(x, 1)) < H I(BB(z,m))S% L0A(r)).
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Because A(r) is a John domain, it satisfies, by Lemma 1.8, a relative isoperimetric inequal-
ity, so that we can apply Lemma 2.1 with X = A(r) and ¢ = 1/2 and obtain

(2.6) HETVQA(r)) <A@V gd=1 (5 E N A(r)).
Combining (2.5) and (2.6) we obtain (2.2), which finishes the proof. [ ]

Note that the following Lemma 2.4 addresses the reduced boundary 0* E and not the
measure theoretic boundary 0+ E.

Lemma 2.4. Let @ C R? be an open set and let E C R? be measurable. Then for every
A € [0, 1), and for both the dyadic and the uncentered maximal operator with domain <2,

we have int,(E) N Q2 C {M1g = 1}. For the uncentered maximal operator, we furthermore
have 0*E N Q C {Mlg = 1}.

This is a slightly more precise version of M f > f almost everywhere for characteristic
functions.

Proof. Let x € int,(E) N 2. Then for every ¢ > 0 there is a ball B C Q2 with center x
and with £(B \ E) < e£(B), and a dyadic cube Q withx € Q C B and £(Q) = £(B).
This means £(Q \ E) < e£(B) < eL(Q). We can conclude M1g (x) = 1.

Let x € 0* E N Q. It suffices to consider x = 0 and

lim vg = (1,0,....,0).
r—0 B(0,r)

Then for r small enough we have 0 € B, = B((—r,0,...,0),r + r?) C Q, and so by
Lemma 1.7 we obtain

g EQ e B i <0) £y BOr+r) i <r) _
r—0 g T r>o £(B,) r—0 £(B(O,r + r2))

1.

3. The dyadic maximal function

In this section we discuss the argument for the dyadic maximal operator. It already show-
cases the main idea of the proof for the uncentered maximal operator. For the superlevelset
of the dyadic maximal operator we have

Mig > A} = |_J {dyadic cube 0 : L(E N Q) > A£(Q)}.

The first step in the proof of Proposition 1.4 is to consider only a finite set @ of cubes Q
with £(E N Q) > AL(Q) instead of the whole set, because this allows to write

H0.UQ) = Y a4 (00 na.U@).

Qe@

From there we use approximation results to extend to the union of all cubes Q with
L(E N Q) > AL(Q). The strategy for the uncentered maximal operator is similar, but
with cubes replaced by balls. The main argument is Proposition 3.1, which is more or less
Proposition 1.4 for the case that {M1g > A} consists of only one cube.
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Proposition 3.1. Let 0 < A < 1, let Q be a cube and let E C R4 be a measurable set
with £(E N Q) > AL(Q). Then

HIL @O\ E*) < A~@-D/d gpd=15 E A ().

Proof of Proposition 3.1. We apply Lemma 2.3 to X = Qc> and for the resulting cover use
Lemma 1.9 to extract a disjoint subcollection € such that 5€ still covers dQ \ E*. Then
by Lemma 1.12(i) and (ii) and Lemma 2.3 we have

HTOQNE*) < Y HTH0Q N5C) < Y HATH05C)

Cet Cet
<AT@VENY gd 1 G, ENC N Q) < AW gd 13, En Q). m
Cet

Remark 3.2. For A < 1/2, Proposition 3.1 also follows directly from the relative isoperi-
metric inequality (1.1) for Q. Proposition 3.1 also holds for Q being a ball.

Proof of Proposition 1.4. For each x € {Mlg > A} N Q there is a dyadic cube Q C Q
with x € Q and £(E N Q) > AL(Q). Since there are only countably many dyadic cubes,
we can enumerate them as 01, Q», .. .. For each n, let

Q,={Q;:Vj=1,....,nwith j #i wehave Q; Z O;}.
Then | @, = Q; U---U Q, and thus

U Qn = Mig > 2},

Because E and int.(E) agree up to measure zero and int«(E) C{M1g>A} by Lemma 2.4,
we have that | @, U E converges to {M1g > 2} in L} _(€2). Therefore, by Lemmas 1.6
and 1.10, we obtain

HIT(@M1g > A} N Q) < limsup 97 (0, (UQ, U E) N Q)

n—oo
3.1 < limsup #971((0.UQs\E*) N Q) + X (0.E N Q).
n—oo
It is not necessary, but in the line corresponding to (3.1) in the proof for the uncentered
Hardy-Littlewood maximal function, we can actually eliminate the term #¢~1(3, E N Q)
thanks to Lemma 2.4; see (4.1) in Section 4 and the subsequent comment. Here this is not
so clear because for the dyadic maximal function, Lemma 2.4 is weaker. But in any case, it
suffices to estimate the first term on the right-hand side of (3.1). We invoke Proposition 3.1
and use that the cubes in @, are disjoint and obtain

HH (U@ \E*)NQ) < Y HUTH((0«Q\E*)NQ)
0eQy,
< Z A—@=D/d pd=1(5 F Q)
0eqQy,
<A@V il ENQN{MIg >1}). =
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Figure 3. The objects in Lemma 4.1.

Proposition 3.1 readily implies Proposition 1.4 because {M1g > A} is a disjoint union
of such cubes. Two balls however can have nontrivial intersections, which is why the proof
for the uncentered Hardy-Littlewood maximal operator is much more complicated than
the proof for the dyadic maximal operator.

4. The uncentered maximal function

In this section we prove Proposition 1.5. The main step is Proposition 4.3. It is Propos-
ition 3.1 for a set B of finitely many balls B with £(B N E) > AL(B) instead of one
cube. Proposition 4.3 comes with an additional but harmless factor (1 — log A). We will
show in Section 5 that this factor can be removed.

Lemmad4.1. Let K > 0, let C be a ball and let be B a finite set of balls B with diam(B) >
K diam(C). Then

HITH3.UBNC) S (K4 + 1)1 Q0).
The rate K~ does not play a role in the application.

Proof. By translation and scaling, it suffices to consider the case C = B(0, 1). Let B(x,r)
be a ball with |x| > 4d 4 1 whose boundary intersects B(0, 1), which means 4d < r <
4d + 2. For any point y = (y1,...,vq) € R, denote 3 = (y',..., y%~"). Assume that
|x¢| = max{|x1],...,|xq]|}, so that

~ 1
IX]? = x> —x3 < (1 - 3) |x|?.
Then for every y € B(0, 1) we have
7 -3 < R+ 1< 4/1 l||+1<(1 1)(+1)+1
X <X —=x - —)(r
you= = d =\ "2
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xd—yd>\f|x|—1 (g“)

Yy () =xq4 —r2—|y—x[?

is well defined for y € B(0, 1), we have

B(x.r)N B(0.1) ={y € B(0.1) : ya > ¢()}

and for y € dB(x,r) N B(0, 1), the gradient of ¢ in yq, ..., yg—1 is bounded by

Ix=7 =7l Vdr 4d3/?
= =< =< =<
VI2Z—x—y2 |xa—yal " r—(d+1) " 4d—(Vd +1)
For the case that all balls B € B have radius at least 4d, we can conclude that the boundary

of the union of all balls of the above form is a piece of the infimum of 2+/d-Lipschitz
graphs, and thus itself a piece of a 2Vd -Lipschitz graph. We can conclude that

and

Therefore the function

IVo())] =

HITQU{B(x,r) € B:xq = max{|x1],..., |xq]}} N B(0,1))
Vad ¥ 1o,
<Vé4d +1lo4_, = % J41HB(0, 1)).
04

By rotation, we obtain the same bound for the union of those balls B(x,r) € 8 with
+x; = max{|x1],...,|xq|} foranyi = 1,...,d and any sign. This finishes the proof for
K > 4d.

If K < 4d, then we cover B(0,1) by < (%)d many balls Cy, C,, . .. so that for each i
we have diam(B) > 4d diam(C;). Then

HE(0.UBNBO.1)) <> H(0.UBNC) S Y HITHIC)

< (%)d%d—l(aB(o, 1). .

In this section, for a set of balls 8 we denote by B, the set of those B € B with
diam(B) € [%, 1)2". Further define B>, = (Ji~, Bk and Bx,, B<,, ... accordingly.

Lemmad.2. Let A € (0,1), let E C R? be measurable and let B be a finite set of balls B
with £(E N B) > AL(B). Then there is a set of balls € such that for each n € Z the
following holds.

(i) The balls in €, are disjoint.

(ii) The boundary piece 3\ ) B N 04\ Bu_1 \ E* is covered by 5C,,.
(iii) Each C € €, has distance at most 2 diam(C) to 3+ J B \ E*.

(iv) We have

HITH 0L E N {x e C dist(x, (UB)) = Ad~1277972)) z A€/ gpd =150,
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Proof. Apply Lemma 2.3 to each ball in 8 and denote by € the union of all of these balls.

They cover 0.\ J B \ E*. In particular, 3, J B N 0. By—1\ E* is covered by ‘€<n

Let n € Z. By Lemma 1.9, there is a subcollection €, of €, of disjoint balls with | €, C
|J 5€,. That means (i) and (ii) are satisfied. Now remove those balls C from €, such
that 5C does not touch d«|_J B \ E*. Then (ii) still holds and we also get (iii).

Let C € €, and let B € 8B be the ball which gave rise to C. We use B C | J 8 and
Lemma 2.3 to obtain

Jgd_l(a*E N {x e C : dist (X, UQBC) > Ad—lzn—d—z})

> Jgd—l(a*E N {x € C :dist(x, UB°) > %})

Adiam C

> de_l(a*E N {x € C :dist(x, BY) > g

}) > A(d—l)/de%d—l(ac),

proving (iv). ]

Proposition 4.3. Let A € (0,1). Let E C R? be a set of locally finite perimeter and let B
be a finite set of balls such that for each B € 8 we have £(E N B) > AL(B). Then

HIT @B\ E®) S A7V —1og 1) #9704 E Nints (U B)).

Proposition 4.3 is the key ingredient in the proof of Proposition 1.5. The idea of the
proof of Proposition 4.3 is that we want to split d«| J B into pieces according to how far
away a piece of d.| ] B is from a significant portion of E, and then identify for each such
piece of d«| J B a corresponding piece of 9, E with comparable size.

Proof of Proposition 4.3. We use Lemma 4.2. We first rearrange .| J8B \ E* and divide
it according to the (€,), in Lemma 4.2 and apply Lemma 4.1. We obtain

HIT (0 UB\E") = Jed—l(ga*uﬂ No.UBk\ E*)

= J(’d‘l(ija*Uﬂ Na.UBN U U5

n<k+1

=27 U UBNUSBNUSE)

n k>n—1

= X (JdUB N3 UBsn1 NUS5En)
<Y HTH(0.UB N UBzn1 NUSC)

=33 #(0.UB N 9. UBxn-1 N5C)

n Ce¢,

<Y HTO0).

n Ce¢,
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In what follows we apply first (iv), then (i) and (iii). We obtain
> x4 o0)
Cet,

SATEDIENT g4 0L E N {x € C 1 dist (x, UB°) = Ad 12" 7Y)
Cet,

=AU/ gd=1 5, En{x e U6, : dist (x, UB°) > Ad"2"972))
<A@V pd=1 G E 0 {x s Ad 712792 < dist (x, U B°) < 2" 1)),

Now we sum over . Since for a fixed number r € R the condition Ad 127472 <y <
27*1 can only occur for d + 3 + log, d —log, A many n € Z, we can bound

H 9. UB\E¥)
SATEVIEN" G0N 0. E N {x : Ad 712972 < dist (x, U B€) <2"11))

< ATV log 1) H4TV(9.E N U B). .
Remark 4.4. If the balls in |, €, were disjoint, then we could get rid of the factor
1 —log A by using Remark 3.2 instead of (iv).

Now we extend Proposition 4.3 to the whole set {M1g > A}.

Proof of Proposition 1.5. Note that
Mig > 2} = J{BCQ:£(BNE)>AIL(B)}.

First we pass to a countable set of balls. By the Lindelof property, see for example Pro-
position 1.5 in [4], there is a sequence of balls with

{M1E>A}=31UB2U

such that for each i we have £(E N B;) > AL(B;). Denote B, = {By,..., B,}. Then
\J Bx converges to {M1g > A} in L} (). Furthermore, by Lemma 2.4 we have

8. c | B Uintu(E) € Mlg > 2},

which means that also U8B, U E converges to {Mlg > A} in L} (). Since E and

loc
int«(E) agree up to a set of measure zero, we have (int«(E))* = E* and 0« (int«(E)) =
0+ E. We apply the approximation using Lemma 1.10 and then divide the boundary using
Lemma 1.6 and obtain

K0, {M1g > AN Q)
< limsup 97 (3, (U Bn Uinti(E)) N Q)

n—oo

@.1) <limsup #9710, UBy \ E* N Q) + H 7 (3.E \ ints (UB,) N Q).

n—00
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By Lemma 2.4, the second summand is bounded by #¢~1(0,E N Q N {Mlg > A}).
In fact, if #9713, E N Q N{MIg > A}) is finite then the second summand in (4.1) even
goes to 0 for n — oo. This is due to Lemma 2.4 for the uncentered maximal function,

because
int*(U £,,) ) U B,

which is an increasing sequence in n which exhausts {M1g > A}. In any case, it remains
to estimate the first summand in (4.1) which we do using Proposition 4.3:

HAIT(0:UBu \E*) <A77 (1 —1ogd) #9704 E N U Bn)
<A7@=D/d( _1og ) HETVOLE N {MIg > ).  wm

5. The optimal rate in A

In this section we prove the following improvement of Proposition 1.5.

Proposition 5.1. Let M be the local uncentered maximal operator. Let E C R¢ be a set
with locally finite perimeter and let A € (0, 1). Then

KA M1 > AN Q) <A@V gd=1@ En{Mlg > A}).

More important than the statement of Proposition 5.1 is maybe the proof strategy. It
may be helpful when attempting to generalize Theorem 1.3 to varM f < var f for general
functions f with bounded variation.

Remark 5.2. From taking Q = RY and E = B(0, 1), it follows that the rate A—d=1/d
in Proposition 5.1 is optimal.

In order to prove Proposition 5.1, it suffices to prove the following improvement of
Proposition 4.3.

Proposition 5.3. Ler A € [0,1/2), let E C R? be a set of locally finite perimeter and let B
be a finite set of balls such that for each B € 8 we have AL(B) < £(E N B) < %éﬁ(B).
Then

HIT (0, B) <A@V gd=1 (5, E N JB).

Proof of Proposition 5.1. Let 8B be a finite set of balls B with £(B N E) > AL(B). Then
HVWOUB\E*) < H9 " ({BeB:L(BNE)>£(B)/2})\E")
+ HND{B e B:AL(B) < L(BNE)<L(B)/2}\ E®)

By Proposition 4.3, the first summand in the previous display is bounded by a dimen-
sional constant times #¢~1(34E N | J B), and by Proposition 5.3, the second summand
is bounded by a dimensional constant times A ~@~1/4 3413 E N |J 8B). We conclude

HNWOUB\E*) s A7@-D/dgd=1(5, En|UB),

which is Proposition 4.3 without the factor 1 — log A. Now we can repeat the proof of
Proposition 1.5 verbatim without the factor 1 — log A. ]
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There is a weaker version of Proposition 5.3 which has a simpler proof, but already
suffices to prove Proposition 5.1 for Q@ = R¥.

Proposition 5.4. There is an ¢ > 0 depending only on the dimension such that for all
A € [0, &) the following holds. Let E C R¢ be a set of locally finite perimeter and let B
be a finite set of balls such that for each B € B we have AL(B) < £(E N B) < eX(B).
Then there is a finite superset B of B consisting of balls B with £(E N B) > AL(B) that
satisfies

HIT(0,UB) < A7V g1 (9, E N B).

Proof of Proposition 5.1 for @ = R?. Take ¢ > 0 from Proposition 5.4. For A > ¢, Pro-
position 5.1 already follows from Proposition 1.5. It suffices to consider the case that there
is an xg € R? with A < M1 g (xo) < &. Let x € R? with M1 (x) > A. Then there is a ball
C > x with £(E N C) > AL(C), while £(E N B(xg, |x — xo| + 1)) < e (B(xo. |x —
Xo|) + 1). By continuously transforming C into B(xg, |x — x2| + 1), we can conclude that
{Mlg > A}isaunionof balls B with AL (B) < £(E N B) <eL(B). Thus by the Lindel6f
property there is a sequence of balls (B,), with AL(B,) < £(E N By) < e£(By,) such
that {M1g > A} = By U B, U .... Let 8, be the finite superset of 8, = {B1,..., By}
from Proposition 5.4. Then

UBscJBs ciMip > 1)

1
loc

which means that Ba converges to {M1g > A}in L
of Proposition 1.5 that

(£2). Thus we get as in the proof

HIT @M1 g > A}) < limsup K47 (3, Bn).

n—o0o
By Proposition 5.4 we have

K0\ UBy) S AUV 30471 (9, E N U By)
<A@V gd=15 EN{Mlg > A}). .

5.1. The global case = R¢

In this subsection we present a proof of Proposition 5.4. It already contains some of the
ideas for the general local case Proposition 5.3.

Proof of Proposition 5.4. First, restrict ¢ < 1/2. Let ¥’ be the collection of balls from
Lemma 2.2 applied to E N | B and B. Let F be the countable disjoint subcollection
from Lemma 1.9. Extract from that a finite subcollection ¥ so that for every B € 8 we
have

(5.1) L(ENU5F NB) > %:E(B).

This is possible since B is finite. Here ¥ serves as a decomposition of E into pieces
F N E where each piece has a substantial amount of boundary. The overall goal is to
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collect for each F its contribution to #¢~1(3,| J B) and show that it is bounded by OF .
First we enlarge B. For every F € ¥, the ball B = (24)~ /4 F satisfies

L(F
EENB)>L(ENF)= % = AL(B).
Add all those balls B to 8. Then B is still finite.
Restrict ¢ < %10_‘1 and let r > 0 and F € ¥ with diam F > 8r(2)k)1/d. Since we
assume A < g, we obtain

diam((24) "4 F) — diam(5F) = (@A)~ = 5)diam F > (1 — 520)"/%) - 8r > 4r,

which means that any ball B € B with diameter at most r that intersects 5F is entirely con-
tained in (24)~'/¢ F € B. Hence we may remove B from B without changing 3| J B\ E *
Conversely, we may assume that if B € 8 has diameter r and F € ¥ is a ball for which 5F
intersects B, then diam F < 8r(2k)1/ 4 We further restrict & < %20‘“’ and obtain

E£(5F) 5984rd2e

(5.2) £(B) = 24rd

1
< .
-2

For each n € Z, denote by B,, the set of balls in B with diam B € [% 1)2". Denote

by F, the set of those balls with diam F € 2" (21)'/4[4,8). Let B € B, and let F € ¥
be such that 5F intersects B. Then

(5.3) F € ¥, forsomek <n.
By (5.2), any F € ¥ such that 5F intersects B is contained in 3B. Thus we get from (5.1)
and (5.3) that

A
5 L(B) < > Z(GFNB).
FeF<,, FC3B

We rewrite the previous display as

_ £G5FNB)

d—1 d—1

JH4N0B) <2 > EE J4=1(3B)
k<n Fe%,,FC3B £

L(F)\Vd __ . L(F)\@-v/d
2 X (u(B)) A 1)/d(:£(B)) 47 0B)
k<n Fe¥,,FC3B

(5.4) ~> Y k@i gdl o,

k<n Fe¥,,FC3B

This estimate can be seen as a way to distribute #¢~1(dB) over the balls F that it
contains. The next step will be to turn this dependence around, and see, for a fixed F, for
how much variation of #%~! (9« B) it is responsible.

Since B,, is finite, we have

HT 0. UBn) = D HTH0B N3 By).
BeB,
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We again multiply each summand by a number bounded from below according to (5.4):

> #4708 N 0. \UBy)

BeB,

d-1
< Z H(0B N 9« Bn) Z Z ok=np~(@d=1/d gpd=1(5p)

d—1
Be®B, H (33) k<n Fe¥;,FC3B
FH41(OB N 3. Bn)
— A—(d—l)/d sz—n Z J(’d_l(aF) Z * n).
d—1
k<n Fe¥y BeB,,3BDF H (BB)

Now we have reorganized .| J 8, according to the balls in . We want to bound the
contribution of each ball F € ¥ uniformly. For each F € ¥} for which there is a ball
B € B, with F C 3B, denote by B a largest such ball B. Then for each B € 8B,, with
F C 3B, we have B C 9Bfg. Thus

FH41(OB N 3 Bn) FH41(OB N . Bn)
2 H4-1(3B) s 2 HA1(OBF)

BeB,,3BOF BeB,,BCYBF

which is uniformly bounded according to Lemma 4.1. Therefore we can conclude

HOTH (0 Bp) S ATETVAN "ok N gL GF).
k<n FeF

So the interaction between the scales is small enough so that we can just sum over all
scales and obtain

H41(9,UB) < Z,}(’ilaug ) S ATV S S ok § gpd=1

k n>k FE.?’vk
5 )L—(d—l)/d Z Z ](d_l(aF) — A—(d—l)/d Z J(d_l(aF).
k Fe¥j Fe¥

Now we get back from F to E. Recall that foreach F € ¥ wehave £(F N E) = £(F)/2,
so that by Lemma 2.1 we have #¢~1(3F) < #971(3,E N F). Because the balls in F
are disjoint, we can then conclude

HET (0. UB) AUV TN @LENF) <A gd T (0, ENUB). w
Fe¥F

5.2. The general local case & c R¢

In this subsection we present a proof of Proposition 5.3. It requires a few more steps than
the proof of Proposition 5.4.

Lemma 5.5. Ler 0 < A < 2-W@+D/2(g 4 1)71/2 gnd let B, C be balls with diam C >
diam B and £(B N C) < AL(B). Then (1 — 2(d + 1)@+ A7) B and C are disjoint.
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Figure 4. The lower bound for £(B N C) in the proof of Lemma 5.5.

For the application we only need that for A small enough, B and (3/4)"/4C are dis-
joint. Since diam C > diam B, this follows if (3/4)'/¢ B and C are disjoint. The rate in A
plays no role.

Proof. After rescaling, rotation and translation, it suffices to consider the case that there
arer >1and 0<e<2suchthat B= B(ey,1)and C=B((¢—r)e;,r). Webound £(BNC)
from below by the marked area in Figure 4. For x € R?, denote X; = (x2,...,xg). The
two spheres dB and dC intersect in a plane orthogonal to e; that is between £e; and ge;.
Thus

-2 & &
{x:xl<x1<§}c{xeB:x1<§}CBﬂC,

and by symmetry and r > 1 also the image of the first set mirrored at x; = &/2 is contained
in B N C, so that
_2 & ¢/2 -1 _d3 Og_y  da1
éC(BﬂC)>2§i({x:x1<x1<—})=2 04g_1h 2 dh=2"2 ——¢ 2
2 0 d+1
Therefore, since £(B N C) < AE(B) = Aoy, we can conclude the following upper bound
for £ using Lemma 1.11:

cgt L MAHDod ji _papdH 1 oy e d L, a2,
0d—1 NZ] V2d
e <2(d + 1)@+ par1,
This finishes the proof because (1 — ¢) B and C are disjoint. ]

Lemma 5.6. Let0 < A <1, let B be aball and let ¥ be a set of balls with £((J ¥ N B) >
AL(B). Then there is a ball F € ¥ which intersects (1 —A/d)B.

Proof. Since
1
L£(B\ (1-1/d)B) = d;ﬁ(B)/ r4=ldr < A£(B),
1-A/d

the union | J ¥ cannot lie outside of (1 — 1/d)B. [
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Proof of Proposition 5.3. According to Lemma 2.2, for every B € B, almost every point
in E N B is contained in a ball F' C B with

L(FNE)= %Jﬁ(F).

Denote by § the set of all such balls F. By scaling, it suffices to consider the case that all
balls in ¥ and B have diameter at most 1. We inductively build sequences (), 2, and
(9n),2; of subsets of §. We denote =, = J,, .y <o Fn, and §-, and F, ..< accordingly.
Assume we are at scale n < 0. Denote by 8B, the set of balls in 8 with diam B € [%, 1)2".
Decompose 8B, into

B8° {B € By : £(U5F-n N B) < %x(B)},

8! = {B € 8y : £(U5F-n N B) > %11(3)}

and decompose B! into

1
1,0 __ 1. Vrod

By = {B e Bl £(UF-n N B) = ST ST £(B)}.

1

g(d+1)/2 (d + 1)(d+2)/2 ‘f(B)}'

B = {B e 8! : &(UF-n N B) >

Denote by §, the set of balls G € § with diam G € [%, 1)2" which intersect E \ | J5F>,

or are for some k > n and some B € 3,1’0 contained in B \ |J F<.<. Set F, to be a
maximal disjoint subcollection of §,,.

Denote ¥ = | J,, Fn, Bo = U, B, and B1-? and B! accordingly. Here are a few
properties of these ball collections.

(i)  The collection 5%, is a cover of | J &,.

(ii)  The collection 5% covers almost all of E.

(iii) The balls in (3/4)/4 # are disjoint.

(iv) If B € BY, then 5, covers at least /2 of B.
v) IfBe i)’,{’o, then 5, covers at least A of B.

Proof. (i) By the maximality of ¥, every G € §, intersects an F € . Since diam G <
2diam F, this means G C 5F.

(ii) Let G € ¢ be a ball and let n € Z be the integer with diam G € [%, 1)2". Then G
intersects E, so that by definition of §,, we have G N E C | 5%, or G € §,. By (i) we
can conclude G N E C | J5F5, in either case. Since & covers almost all of E, this means
so does 5% .

(iii) For each n, the balls in %, are disjoint. It remains to show that they are disjoint
from the balls in (3/ Hld g, Soassume F € F,.If F was chosen because it intersects
E \ |J5%=,, then it does not intersect F=.,. It remains to consider the case that there is
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ak>nanda B € !(3’,1’0 such that F C B and F does not intersect any G € Fp,<.<k.
Since B € B;’O, for every G € - we have

1
L(BNG) = gd+1)/2 (d + 1)(d+2)/2

£(B),

so that by Lemma 5.5 the balls (1 - 4(d+1))B and G are disjoint. Since (3/4)1/4 <
1— m and diam G > diam B, this means that (3/4)!/4G and B are disjoint, too.
Hence also F and | J(3/4)"/¢ . are disjoint.

(iv) For every B € B?, we have £(B N E) > AL(B). Thus since 5F covers almost
all of £ and

£(U5F-0n N B) < %f(B),

we must have Y
éﬁ(U 5F<n N B) > o) L(B).

(v) Let B € i)’,%’o. It suffices to show that 5F<, covers E N B. By the construction
of §, using Lemma 2.2 almost all of B N E is covered by the union of all G € § with
G C B and diam G < 2", Thus it suffices to show for each such G that G N E is contained
in 5F<,. Take k < n with diam G € [%, 1)2". If G N E is not contained in | 5Fk<.<n,
then G € §; and thus by (i) we have G C | J5F%. [ ]

Denote 8 = 8° U B0 5o that B = B U B Then by Lemma 1.6 we have

o8 c (aUs)u (s \Us").
Note that for a finite union of balls, the topological and measure theoretical notions agree
up to a set of d — 1 dimensional measure zero. By Lemma 5.6, for every B € 8! there is
an F € ¥ with diam F > diam B that intersects (1 — 8¢ +1)/2 g=(d+4)/2) B Because F
came about using Lemma 2.2, it is further contalned in a ball BF € 8. Since diam B <
diam Bf, we have B # Bp. For each F € ¥, denote by B(F) the set of B € B with
diam B < diam F such that F intersects (1 — 8 @+1)/2 j=(d+4)/2) B Then

U Uscalam\Us e U oo nsenUs

Fe¥

c U alJs" nsrp\ (|Jse) usr)

Fe¥

c U aJsmn (Usruse)

Fe¥

= Jays@E\Brc | a(FuU£(F)).

Fe¥ Fe¥

Thus Proposition 4.3 implies

> OUBY\USB) £ Y #90F)

Fe¥
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Recall that we made (3/4)/¢4 % disjoint and that by Lemma 2.2 for each F € ¥ we have
FCcU®Band £(F N E) = £(F)/2. Thus £((3)4F N E) € [+, 2]£(F), and so by
Lemma 2.1 we can conclude

d—1 _ (4@ d—1 1/d
> xR = (3) > HTHOG/HVF)
Fe¥ Fe¥F
(5.5) < Y HTNOLENB/HYVIF) < 47 (0.E N U B).
Fe¥F

It remains to prove

(5.6) HHOUB) s AT@VEN" 34 oF).
Fe¥

For n € Z, denote by B, the set of balls B € 8 with diam B € [, 1)2". Let B € B,
and let F € ¥, be a ball such that 5F intersects B. Then F' C 21B. By (iv) and (v), this
means

A
(5.7 SE(B) = £(BNU5F<) < > XGFNB).
FeF<,,FC21B

For each k € Z, denote by ﬁk the set of balls F € ¥ with diam F € [%, I)ZkAI/d. We
make a case distinction. If there isa k > n and aball F € ¥} with F C 21B, we have

H1(0B) yn(d—1)
d-1 =2 9 gd-1 2y 2" a

H (0B) = 41 (9F) H (0F) <2 T@=1)/d 2k @=T) ¥ (OF)
(5.8) ~ 2n=k)d=1) y —(d-1)/d de_l(aF),

and we are done with this case for the moment. Now assume all balls F € F with F C21B
are contained in ¥—,. Then by (5.7) we have

_ £B5FNB)
H113B) <2 = 1B
(0B) < Z NZ 22(B) (0B)

k<n Fef, FC21B

LF)\NVE_ _y1ya(LF)\@-D/d .
>3 NZ (Mi(B)) A~ 1)/d(—1i(B)) HI1(DB)
k<n Fe#,,Fc21B

(5.9) ~Y Y ATl G,

k<n Fe#, Fc21B

If d = 1, then Proposition 5.3 is straightforward to prove directly, so it suffices to
consider d > 2. There we can combine (5.8) and (5.9) into

de_l(aB) < A—(d—l)/d Zz—lk—n\ Z ]{d—l(aF)
k Fe¥f,FC21B



Variation of the uncentered maximal characteristic function 847

for simplicity. This estimate can be seen as a way to distribute #¢~'(dB) over the balls F
that it contains. The next step will be to turn the dependence around, and see, for a fixed
ball F € %, for how much of J4~1 (3« B) it is responsible. Since B, is finite, we have

0. UBn) = Y HTH(0B N 0. U B).
Beﬁn
and we multiply each summand by a number bounded from below according to (5.9):

H1 (9. B)

HA1(OB N 3. By) “lk=n|y —(d—1)/d gpd—1
5 Z de_l(aB) Z Z 2 A H (8F)

BeB, k Fe#,,FC21B

- e _ J971 (3B N 8. By)
= A~@ 0/ N gmlemnl NP ged-tgEy S "
d—
- J4=1(9B)

Fe% Be$B,21BDF

We have reorganized .| J B according to the balls in 5. We want to bound the contri-
bution of each ball F' € ¥ uniformly. For each F' € Fj for which there is a ball B € B,
with F C 21B, denote by BF a largest such B. Then for all B € 8, with F C 21B, we
have B C 3BF. Thus,

H41OB N 3. B,) HA=1(DB N 3. B)
> s 2

_ H4=1(dB) ~o H4=1(0Bf)
Be$B,21BDF Be$,,BC63Br

)

which is uniformly bounded according to Lemma 4.1. Therefore we can conclude
FA! (0« U:én) <A@/ Z 2kl Z HAVOF).
k Fey}k

So the interaction between the scales is small enough that we can just sum over all scales
and obtain

H11(0.UB) < 3 H0 (0.UBa) S A7V Y ookl S gpd=1 )
k n

n FEfk

S Af(dfl)/dz Z J(d*l(aF) — )Lf(dfl)/d Z :}(dil(aF),
k Fef Fe¥

and we have proven (5.6), which was all that remained to finish the proof of Proposi-
tion 5.3. u
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