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Variation of the uncentered
maximal characteristic function

Julian Weigt

Abstract. Let M be the uncentered Hardy–Littlewood maximal operator, or the
dyadic maximal operator, and let d � 1. We prove that for a set E � Rd of finite
perimeter, the bound var M1E � Cd var 1E holds. We also prove this for the local
maximal operator.

Introduction

The uncentered Hardy–Littlewood maximal function of a non-negative locally integrable
function f is given by

Mf .x/ D sup
B3x

1

L.B/

ˆ
B

f;

where the supremum is taken over all open balls B � Rd that contain x. Various versions
of this maximal operator have been investigated. There is the (centered) Hardy–Littlewood
maximal operator, where the supremum is taken only over those balls that are centered
in x, or the dyadic maximal operator, which maximizes over dyadic cubes instead of balls.
Those operators also have local versions, where for some open set�� Rd the supremum
is taken only over those balls or cubes that are contained in �. For example, the local
dyadic maximal function with respect to � of f 2 L1loc.�/ at x 2 � is given by

Mf .x/ D sup
x2Q��

1

L.Q/

ˆ
Q

f;

where the supremum is taken over all half open dyadic cubes Q � Rd with x 2 Q � �.
It is well known that many maximal operators are bounded on Lp.Rd / if and only

if p > 1. The regularity of the maximal operator was first studied in [17], where Kinnunen
proved for the Hardy–Littlewood maximal operator that for p > 1 and f 2 W 1;p.Rd /
also the bound

krMf kp � Cd;pkrf kp
holds, from which it follows that the Hardy–Littlewood maximal operator is bounded
on W 1;p.Rd /.
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The proof combines the pointwise bound jrMf j � Mjrf j with the Lp.Rd /-bound
of the maximal operator. Since the maximal operator is not bounded on L1.Rd /, this
approach fails for p D 1. For p > 1, the gradient Lp.Rd /-bound or some correspond-
ing version is valid for most maximal operators. However, so far no counterexamples
have been found for p D 1. So in 2004, Hajłasz and Onninen posed the following ques-
tion in [15]: for the Hardy–Littlewood maximal operator M, is f 7! jrMf j a bounded
mapping W 1;1.Rd /! L1.Rd /? This question for various maximal operators has since
become a well known problem and has been the subject of lots of research. In one dimen-
sion, for L1.R/ the gradient bound has already been proven in [26] by Tanaka for the
uncentered maximal function, and later in [21] by Kurka for the centered Hardy–Little-
wood maximal function. The latter proof turned out to be much more complicated. In [22],
Luiro has proven the gradient bound for radial functions in L1.Rd / for the uncentered
maximal operator. More research on this question, and also more generally on the end-
point regularity of maximal operators, can be found in [1–3, 7–9, 14, 24]. However, so far
the question has been essentially unsolved in dimensions larger than one for any maximal
operator.

In this paper we prove that for M being the dyadic or the uncentered Hardy–Littlewood
maximal operator, and E � Rd being a set with finite perimeter, we have

var M1E � Cd var 1E :

This answers the question of Hajłasz and Onninen in a special case, and is the first truly
higher dimensional result for p D 1 to the best of our knowledge. We furthermore prove a
localized version, as is stated in Theorems 1.2 and 1.3. The Hardy–Littlewood uncentered
maximal function and the dyadic maximal function have in common that their level sets
¹Mf > �º can be written as the union of all balls/dyadic cubes X with

´
X
f > �L.X/.

Our proof relies on this. Since this is not true for the centered Hardy–Littlewood maximal
function, a different approach has to be found for that maximal operator.

Also related topics for various exponents 1 � p � 1 have been studied, such as the
continuity of the maximal operator in Sobolev spaces [5] and bounds for the gradient
of other maximal operators, such as fractional, convolution, discrete, local and bilinear
maximal operators [6, 10, 11, 16, 19, 20, 23, 25].

1. Preliminaries and main result

We work in the setting of sets of finite perimeter, as in Evans–Gariepy [12], Section 5. For
a measurable set E � Rd , we denote by L.E/ its Lebesgue measure and by Hd�1.E/ its
.d � 1/-dimensional Hausdorff measure. For an open set��Rd , a function f 2L1loc.�/

is said to have locally bounded variation if for each open and compactly supported U ��
we have

sup
°ˆ
U

f div' W ' 2 C 1c .U IR
d /; j'j � 1

±
<1:

Such a function comes with a measure � and a function �W�!Rd that has j�j D 1 �-a.e.
such that, for all ' 2 C 1c .�IR

d /, we haveˆ
�

f div' D
ˆ
�

' � d�:
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We define the variation of f in � by

var� f D �.�/:

For a measurable set E � Rd , we define the measure theoretic boundary by

@�E D
°
x W lim sup

r!0

L.B.x; r/ nE/

rd
> 0; lim sup

r!0

L.B.x; r/ \E/

rd
> 0

±
:

The following coarea formula is our strategy to approach the variation of the maximal
function.

Lemma 1.1 (Theorem 5.9 in [12]). Let � � Rd be open. Let f 2 L1loc.�/. Then

var� f D
ˆ

R
Hd�1.@�¹f > �º \�/ d�:

We say that measurable set E � Rd has locally finite perimeter if its characteristic
function 1E has locally bounded variation. For f D 1E , we call var� 1E the perimeter
of E and � from above the outer normal of E. Lemma 1.1 implies

var� 1E D Hd�1.@�E \�/:

Recall the definition of the set of dyadic cubes:[
n2Z

®
Œx1; x1 C 2

n/ � � � � � Œxd ; xd C 2
n/ W i D 1; : : : ; n; xi 2 2

nZ
¯
:

The maximal function of a characteristic function can be written as

M1E .x/ D sup
x2X��

L.E \X/

L.X/
;

where X ranges over balls for the uncentered maximal operator, and over dyadic cubes
for the dyadic maximal operator. Now we are ready to state the main results of this paper.

Theorem 1.2. Let M be the local dyadic maximal operator with respect to an open set
� � Rd . Let E � Rd be a set with locally finite perimeter. Then

var� M1E � Cd Hd�1.@�E \�/;

where Cd depends only on the dimension d .

Theorem 1.3. Let M be the local uncentered maximal operator with respect to an open
set � � Rd . Let E � Rd be a set with locally finite perimeter. Then

var� M1E � Cd Hd�1.@�E \�/;

where Cd depends only on the dimension d .

We can for example take�D Rd . Denote ¹M1E > �º D ¹x 2� WM1E .x/ > �º. We
reduce Theorems 1.2 and 1.3 to the following results.
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Proposition 1.4. Let M be the local dyadic maximal operator with respect to some open
set � � Rd . Let E � Rd be a set with locally finite perimeter and let � 2 .0; 1/. Then

Hd�1.@�¹M1E > �º \�/ � Cd ��.d�1/=dHd�1.@�E \�/:

By Lemma 2.4, we haveE� \�� ¹M1E > �º�, so that we might intersect the right-
hand side with ¹M1E > �º�.

Proposition 1.5. Let M be the local uncentered maximal operator. Let E � Rd be a set
with locally finite perimeter and let � 2 .0; 1/. Then

Hd�1.@�¹M1E > �º \�/ � Cd ��.d�1/=d .1 � log�/Hd�1.@�E \ ¹M1E > �º/:

The constants Cd that appear in Theorems 1.2 and 1.3 and Propositions 1.4 and 1.5
are not equal. Since the proofs of Theorems 1.2 and 1.3 are almost the same, we do them
simultaneously.

Proof of Theorems 1.2 and 1.3. By Lemma 1.1 and Propositions 1.4 and 1.5, we have

var� M1E D
ˆ 1

0

Hd�1.@�¹M1E > �º \�/ d�

� Cd

ˆ 1

0

��.d�1/=d .1 � log�/Hd�1.@�E \�/ d�

D d.d C 1/Cd Hd�1.@�E \�/:

In Sections 2 to 4 we prove Propositions 1.4 and 1.5. In Section 5 we prove Propos-
ition 5.1, which is Proposition 1.5 without the factor 1 � log �. The rate ��.d�1/=d is
optimal.

We introduce some notation we will use throughout the paper. By a . b we mean that
there exists a constant Cd that depends only on the dimension d such that a � Cdb. For a
set B of subsets of Rd , we write [

B D
[
B2B

B:

For a ball B D B.x; r/ � Rd and c > 0, we denote cB D B.x; cr/. If B is a set of balls,
we denote

cB D ¹cB W B 2 Bº:

For a set E � Rd and a point x 2 Rd , we denote

dist.x;E/ D inf
y2E
jx � yj:

We also need more measure theoretic quantities. We define the measure theoretic interior
of E by

int�.E/ D
°
x W lim sup

r!0

L.B.x; r/ nE/

rd
D 0

±
;

the measure theoretic closure by

E� D
°
x W lim sup

r!0

L.B.x; r/ \E/

rd
> 0

±
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and the measure theoretic boundary by

@�E D E
�
n int�.E/:

Lemma 1.6. Let A;B � Rd be measurable. Then

@�.A [ B/ � .@�A n B
�/ [ .@�B n A

�/ [ .@�A \ @�B/:

Proof. Let x 2 @�.A [ B/. Then

lim sup
r!0

L.B.x; r/ \ .A [ B//

rd
> 0 and lim sup

r!0

L.B.x; r/ n .A [ B//

rd
> 0:

By symmetry, it suffices to consider the case that

lim sup
r!0

L.B.x; r/ \ A/

rd
> 0:

Then

lim sup
r!0

L.B.x; r/ n A/

rd
� lim sup

r!0

L.B.x; r/ n .A [ B//

rd
> 0;

which means x 2 @�A. Analogously, if

lim sup
r!0

L.B.x; r/ \ B/

rd
> 0;

then x 2 @�B so we get x 2 @�A \ @�B . Otherwise

lim sup
r!0

L.B.x; r/ \ B/

rd
D 0;

and we can conclude x 2 @�A n B�.

Let E � Rd be measurable and let � be the measure from the definition of var 1E
and � the outer normal. We define the reduced boundary @�E of E � Rd as the set of all
points x 2 Rd such that for all r > 0 we have �.B.x; r// > 0,

lim
r!0

 
B.x;r/

� d� D �.x/;

and j�.x/j D 1. This is Definition 5.4 in [12]. By Lemma 5.5 in [12], we have @�E � @�E
and Hd�1.@�E n @

�E/D 0. Thus it suffices to consider only the reduced boundary when
estimating the perimeter of a set. But most of the time we will formulate the results for the
measure theoretic boundary. The exception is Lemma 2.4, which we could only prove for
the reduced boundary because there we make use of Theorem 5.13 in [12], which states
the following.

Lemma 1.7 (Theorem 5.13 in [12]). Let E � Rd be a measurable set. Assume 0 2 @�E
with �.0/ D .1; 0; : : : ; 0/. Then for r ! 0 we have 1 1

r E
! 1¹xWx1<0º in L1loc.R

d /.

A central tool used here is the relative isoperimetric inequality, see Theorem 5.11
in [12]. It states that for a ball B and any measurable set E � Rd , we have

(1.1) min¹L.E \ B/;L.B nE/ºd�1 . Hd�1.@�E \ B/
d :
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Figure 1. A John domain.

However we need the relative isoperimetric inequality also for other sets than balls. An
open bounded set A is called a John domain if there is a constantK and point x 2 A from
which every other point y 2 A can be reached via a path  such that for all t we have

(1.2) dist..t/; Ac/ � K�1jy � .t/j:

This is called the cone condition, see Figure 1. Theorem 107 in the lecture notes [13] by
Piotr Hajłasz states that all John domains admit a relative isoperimetric inequality.

Lemma 1.8. Let A � Rd be a John domain with constant K. Then A satisfies a relative
isoperimetric inequality with constant CK;d only depending on K and the dimension d ,

min¹L.E \ A/;L.A nE/ºd�1 � CK;d Hd�1.@�E \ A/
d :

For example, a ball and an open cube are John domains.
Another basic tool is the Vitali covering lemma, see for example Theorem 1.24 in [12].

Lemma 1.9 (Vitali covering lemma). Let B be a set of balls in Rd with diameter bounded
by some R 2 R. Then it has a countable subset QB of disjoint balls such that[

B �
[
5 QB:

Instead of considering ¹M1E > �º, we will only consider a finite union of balls/cubes.
In order to pass from there to the whole set ¹M1E > �º, we will use an approximation
result. We say that a sequence .An/n of sets in Rd converges to some set A in L1loc.R

d / if
.1An/n converges to 1A in L1loc.R

d /.

Lemma 1.10 (Theorem 5.2 in [12] for characteristic functions). Let � � Rd be an open
set and let .An/n be subsets of Rd with locally finite perimeter that converge to A in
L1loc.�/. Then

Hd�1.@�A \�/ � lim inf
n!1

Hd�1.@�An \�/:
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Lemma 1.11. Let �d D L.B.0; 1// be the Lebesgue measure of the d -dimensional unit
ball. Then r

2�

d C 1
�

�d

�d�1
�

r
2�

d
�

Proof. By the logarithmic convexity of the �-function, for all x > 1=2 we have

�.x/

�.x C 1=2/
�

p
�.x � 1=2/�.x C 1=2/

�.x C 1=2/
D

s
�.x � 1=2/

�.x C 1=2/
D

1p
x � 1=2

;

�.x/

�.x C 1=2/
�

�.x/p
�.x/�.x C 1/

D

s
�.x/

�.x C 1/
D

1
p
x
;

and the result follows from �d D �
d=2=�.d=2C 1/.

We will need some facts about convex sets.

Lemma 1.12. The following properties hold for all convex and bounded sets A;B � Rd .

(i) The set A \ B is convex.

(ii) If A � B , then Hd�1.@A/ � Hd�1.@B/.

(iii) For every " > 0, we have L.¹x 2 A W 0 < dist.x; Ac/ � "º/ � "Hd�1.@A/.

Proof. (i) follows from the definition of convexity.
For every x 2 @B , there is a point z 2 @A with

jz � xj D min
y2@A
jy � xj:

A straightforward computation shows that if z0 2 @A with jx � z0j D miny2@A jx � yj,
then jx � .z C z0/=2j � miny2@A jx � yj and the inequality is strict if z0 ¤ z. Hence we
must have z0 D z because .z C z0/=2 2 A by convexity. We denote p.x/ D z.

Since A is convex, in every point z 2 @A there is a hyperplaneH which contains z and
such that for all y 2 @A we have hy � z; ni � 0, where n is the normal of H . Because B
is bounded, there is an r � 0 such that z C rn 2 @B . It is easy to see that p.z C rn/ D z.
That means pW @B ! @A is surjective.

Let x1; x2 2 @B . For i D 1; 2, denote zi D p.xi / and let Hi be the hyperplane with
normal xi � zi which contains zi . Then hz2 � z1; x1 � z1i � 0 because otherwise it is
straightforward to find a t > 0 small enough with .1 � t /z1 C tz2 2 A which is closer
to x1 than z1, which leads to a contradiction to p.x1/ D z1. Similarly, we must have
hz1 � z2; x2 � z2i � 0. We can conclude

jz1 � z2jjx1 � x2j � hz1 � z2; x1 � x2i

D hz1 � z2; x1 � z1i C hz2 � z1; x2 � z2i C hz1 � z2; z1 � z2i

� jz1 � z2j
2:

This means that the map pW @B ! @A is 1-Lipschitz, and we obtain (ii) because the Haus-
dorff measure does not increase under 1-Lipschitz maps by Theorem 2.8 in [12].
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For every � � 0, denote A� D ¹x 2 A W dist.x; Ac/ � �º. Then A� is convex and by
Theorem 3.14 in [12] and (ii) we have

L.¹x 2 A W 0 < dist.x; Ac/ � "º/ D

ˆ "

0

Hd�1.@A�/ d� �
ˆ "

0

Hd�1.@A/ d�

D "Hd�1.@A/:

2. Tools for both maximal operators

We start with a couple of tools that are used for both maximal operators.

Lemma 2.1. Let X � Rd be an open set with finite measure and finite perimeter which
satisfies a relative isoperimetric inequality, and denote c D Hd�1.@X/d=L.X/d�1. Let
0 < �� 1� " < 1 and letE be a measurable set such that ��L.E \X/=L.X/� 1� ".
Then

Hd�1.@�E \X/ & c�1=d"d�1�.d�1/=d Hd�1.@X/:

Note that c is invariant under scaling of X .

Proof. We first prove

(2.1) L.E \X/d�1 . "�.d�1/ Hd�1.@�E \X/
d :

If " � 1=2, then (2.1) follows directly from the relative isoperimetric inequality forX . For
" < 1=2, we obtain (2.1) from the relative isoperimetric inequality as follows:

Hd�1.@�E \X/
d & L.X nE/d�1 � "d�1L.X/d�1 � "d�1L.E \X/d�1:

From (2.1) we conclude

"�.d�1/Hd�1.@�E \X/ & L.E \X/.d�1/=d � �.d�1/=d L.X/.d�1/=d

� c�1=d �.d�1/=d Hd�1.@X/:

Lemma 2.2 (Boxing inequality, cf. Theorem 3.1 in Kinnunen, Korte, Shanmugalingam
and Tuominen [18]). Let E � Rd be a set with finite measure that is contained in the
union of a set B of balls B with L.E \ B/ � L.B/=2. Then there is a set F of balls F
with L.F \ E/ D L.F /=2 which covers almost all of E. Furthermore, each F 2 F is
contained in a ball B 2 B.

Proof. It suffices to show that for every ball B.x1; r1/ 2 B, every Lebesgue point x 2
int�.E/ with x 2 B.x1; r1/ is contained in a ball F � B.x1; r1/ with L.F \ E/ D

L.F /=2. By assumption,

L.E \ B.x1; r1// �
L.B.x1; r1//

2
;

and since x is a Lebesgue point, there is a ball B.x0; r0/ with x 2 B.x0; r0/ � B.x1; r1/
and

L.E \ B.x0; r0// �
L.B.x0; r0//

2
�
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C
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E

Figure 2. The regions in Lemma 2.3.

Define xt D .1 � t / � x0 C t � x1 and rt D .1 � t / � r0 C t � r1 so that t 7! B.xt ; rt / is a
continuous transformation of balls. That means there is a t with

L.E \ B.xt ; rt // D
L.B.xt ; rt //

2
�

Since x 2 B.x0; r0/ � B.xt ; rt / � B.x1; r1/, that means we have found the right ball.

We will prove a more specialized version of Lemma 2.2.

Lemma 2.3. Let X be an open cube or a ball in Rd and let E be a set with L.E \X/ �

�L.X/. Then there is a cover C of @X nE� consisting of ballsC with diamC �2diamX
and

(2.2) Hd�1
�
@�E \

°
y 2 C W dist.y;X c/ >

� diamC

4dcd

±�
& �.d�1/=d Hd�1.@C /;

where cd D 2d if X is a ball, and cd D dd=2�d if X is a cube.

The constants in Lemma 2.3 are not important and one could also impose a stronger
bound on the diameter of the balls C 2 C for � near 1.

Proof of Lemma 2.3. It suffices to show that for each x 2 @X n E� there is a ball C
centered in x that satisfies (2.2). Let x 2 @X nE� and for 0 < r � diamX define

A.r/ D
°
y 2 B.x; r/ W dist.y;X c/ >

�r

2dcd

±
:

We first show that A.r/ is a John domain. Consider the case that X is a ball. Then
there is a point z 2 X \ B.x; r/ such that B.z; r=2/ � X \ B.x; r/. That means

B
�
z;
r

4

�
� B

�
z;
r

2
�

�r

2dcd

�
� A.r/:
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Now let X be a cube. Then X \ B.x; r/ contains a cube with diameter at least r , i.e.,
sidelength at least r=

p
d . Thus, A.r/ contains a cube with sidelength at least

r
p
d
� 2

�r

2dcd
�

r
p
d

�
1 �

1
p
dcd

�
�

r

2
p
d
;

which in turn contains a ball B with radius r=.4
p
d/. The last inequality holds because

1.1C1/=2�1 D 2 and
p
dcd D d .dC1/=2�d is increasing in d by Lemma 1.11. We have

shown that there is a point z 2 A.r/ such that

(2.3) B
�
z;

r

4
p
d

�
� A.r/;

both if X is a cube or a ball. For any y 2 A.r/, we have dist.y; z/ � diam.A.r// � 2r .
BecauseA.r/ is convex by Lemma 1.12 (i), it contains the convex hull ofB

�
z; r

4
p
d

�
[¹yº.

We can conclude that A.r/ is a John domain with K D 2r

r=.4
p
d/
D 8
p
d .

We have

L.B.x; r/ n A.r// � L
�°
y W 0 < dist.y; .B.x; r/ \X/c/ �

�r

2dcd

±�
�

�r

2dcd
Hd�1.@.B.x; r/ \X// �

�r

2dcd
Hd�1.@B.x; r//

D
�

2cd
L.B.x; r// �

�

2
L.B.x; r/ \X/;(2.4)

where the last inequality holds because as observed above, B.x; r/ \ X contains a ball
with radius r=2 if X is a ball, and a cube with sidelength r=

p
d if X is a cube. Then from

L.X \E/

L.X/
� �

and (2.4) with r D diamX we get

L.A.diamX/ \E/

L.A.diamX//
�

L.A.diamX/ \E/

L.X/
� � �

�

2
D
�

2
�

Since x 62 E�, we have L.E \ B.x; r//=rd ! 0 for r ! 0. By (2.3) this implies that
there is an r0 with

L.A.r0/ \E/

L.A.r0//
�
�

2
�

By continuity we conclude that there is an r0 � r � diamX such that

L.A.r/ \E/

L.A.r//
D
�

2
�

By (2.3) and Lemma 1.12(i), we have

(2.5) Hd�1.@B.x; r// . Hd�1
�
@B
�
z;

r

4
p
d

��
� Hd�1.@A.r//:



Variation of the uncentered maximal characteristic function 833

BecauseA.r/ is a John domain, it satisfies, by Lemma 1.8, a relative isoperimetric inequal-
ity, so that we can apply Lemma 2.1 with X D A.r/ and " D 1=2 and obtain

(2.6) Hd�1.@A.r// . ��.d�1/=dHd�1.@�E \ A.r//:

Combining (2.5) and (2.6) we obtain (2.2), which finishes the proof.

Note that the following Lemma 2.4 addresses the reduced boundary @�E and not the
measure theoretic boundary @�E.

Lemma 2.4. Let � � Rd be an open set and let E � Rd be measurable. Then for every
� 2 Œ0; 1/, and for both the dyadic and the uncentered maximal operator with domain �,
we have int�.E/\��¹M1E D 1º. For the uncentered maximal operator, we furthermore
have @�E \� � ¹M1E D 1º.

This is a slightly more precise version of Mf � f almost everywhere for characteristic
functions.

Proof. Let x 2 int�.E/ \�. Then for every " > 0 there is a ball B � � with center x
and with L.B nE/ � "L.B/, and a dyadic cubeQ with x 2Q � B and L.Q/ & L.B/.
This means L.Q nE/ � "L.B/ . "L.Q/. We can conclude M1E .x/ D 1.

Let x 2 @�E \�. It suffices to consider x D 0 and

lim
r!0

 
B.0;r/

�E D .1; 0; : : : ; 0/:

Then for r small enough we have 0 2 Br D B..�r; 0; : : : ; 0/; r C r2/ � �, and so by
Lemma 1.7 we obtain

lim
r!0

 
Br

1E D lim
r!0

L.¹y 2 Br W y1 < 0º/

L.Br /
D lim
r!0

L.¹y 2 B.0; r C r2/ W y1 < rº/

L.B.0; r C r2//
D 1:

3. The dyadic maximal function

In this section we discuss the argument for the dyadic maximal operator. It already show-
cases the main idea of the proof for the uncentered maximal operator. For the superlevelset
of the dyadic maximal operator we have

¹M1E > �º D
[ ®

dyadic cube Q W L.E \Q/ > �L.Q/
¯
:

The first step in the proof of Proposition 1.4 is to consider only a finite set Q of cubes Q
with L.E \Q/ > �L.Q/ instead of the whole set, because this allows to write

Hd�1
�
@�
S

Q
�
�

X
Q2Q

Hd�1
�
@Q \ @�

S
Q
�
:

From there we use approximation results to extend to the union of all cubes Q with
L.E \Q/ > �L.Q/. The strategy for the uncentered maximal operator is similar, but
with cubes replaced by balls. The main argument is Proposition 3.1, which is more or less
Proposition 1.4 for the case that ¹M1E > �º consists of only one cube.
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Proposition 3.1. Let 0 < � � 1, let Q be a cube and let E � Rd be a measurable set
with L.E \Q/ � �L.Q/. Then

Hd�1.@Q nE�/ . ��.d�1/=dHd�1.@�E \ VQ/:

Proof of Proposition 3.1. We apply Lemma 2.3 to X D VQ and for the resulting cover use
Lemma 1.9 to extract a disjoint subcollection C such that 5C still covers @Q n E�. Then
by Lemma 1.12(i) and (ii) and Lemma 2.3 we have

Hd�1.@Q nE�/ �
X
C2C

Hd�1.@Q \ 5C / �
X
C2C

Hd�1.@5C /

. ��.d�1/=d
X
C2C

Hd�1.@�E \ C \ VQ/ � �
�.d�1/=dHd�1.@�E \ VQ/:

Remark 3.2. For � � 1=2, Proposition 3.1 also follows directly from the relative isoperi-
metric inequality (1.1) for Q. Proposition 3.1 also holds for Q being a ball.

Proof of Proposition 1.4. For each x 2 ¹M1E > �º \ � there is a dyadic cube Q � �
with x 2Q and L.E \Q/ > �L.Q/. Since there are only countably many dyadic cubes,
we can enumerate them as Q1;Q2; : : :. For each n, let

Qn D ¹Qi W 8j D 1; : : : ; n with j ¤ i we have Qi 6� Qj º:

Then
S

Qn D Q1 [ � � � [Qn and thus[
n

Qn D ¹M1E > �º:

BecauseE and int�.E/ agree up to measure zero and int�.E/�¹M1E>�º by Lemma 2.4,
we have that

S
Qn [ E converges to ¹M1E >�º in L1loc.�/. Therefore, by Lemmas 1.6

and 1.10, we obtain

Hd�1.@�¹M1E > �º \�/ � lim sup
n!1

Hd�1
�
@�
�S

Qn [E
�
\�

�
� lim sup

n!1
Hd�1

��
@�
S

QnnE
�
�
\�

�
CHd�1.@�E \�/:(3.1)

It is not necessary, but in the line corresponding to (3.1) in the proof for the uncentered
Hardy–Littlewood maximal function, we can actually eliminate the term Hd�1.@�E \�/

thanks to Lemma 2.4; see (4.1) in Section 4 and the subsequent comment. Here this is not
so clear because for the dyadic maximal function, Lemma 2.4 is weaker. But in any case, it
suffices to estimate the first term on the right-hand side of (3.1). We invoke Proposition 3.1
and use that the cubes in Qn are disjoint and obtain

Hd�1
��
@�
S

Qn nE
�
�
\�

�
�

X
Q2Qn

Hd�1..@�Q nE
�/ \�/

.
X
Q2Qn

��.d�1/=dHd�1.@�E \Q/

� ��.d�1/=dHd�1.@�E \� \ ¹M1E > �º/:
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C

⋃
B

Figure 3. The objects in Lemma 4.1.

Proposition 3.1 readily implies Proposition 1.4 because ¹M1E > �º is a disjoint union
of such cubes. Two balls however can have nontrivial intersections, which is why the proof
for the uncentered Hardy–Littlewood maximal operator is much more complicated than
the proof for the dyadic maximal operator.

4. The uncentered maximal function

In this section we prove Proposition 1.5. The main step is Proposition 4.3. It is Propos-
ition 3.1 for a set B of finitely many balls B with L.B \ E/ > �L.B/ instead of one
cube. Proposition 4.3 comes with an additional but harmless factor .1 � log �/. We will
show in Section 5 that this factor can be removed.

Lemma 4.1. LetK > 0, letC be a ball and let be B a finite set of ballsB with diam.B/�
K diam.C /. Then

Hd�1
�
@�
S

B \ C
�

. .K�d C 1/Hd�1.@C /:

The rate K�d does not play a role in the application.

Proof. By translation and scaling, it suffices to consider the case C DB.0;1/. LetB.x; r/
be a ball with jxj � 4d C 1 whose boundary intersects B.0; 1/, which means 4d < r <
4d C 2. For any point y D .y1; : : : ; yd / 2 Rd , denoteby D .y1; : : : ; yd�1/. Assume that
jxd j D max¹jx1j; : : : ; jxd jº, so that

jbxj2 D jxj2 � x2d � �1 � 1

d

�
jxj2:

Then for every y 2 B.0; 1/ we have

jby �bxj � jbxj C 1 �r1 � 1

d
jxj C 1 �

�
1 �

1

2d

�
.r C 1/C 1

D r
�
1C

2

r
�

1

2d
�

1

2dr

�
� r;
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and

xd � yd �

r
1

d
jxj � 1 �

r � .
p
d C 1/
p
d

> 0:

Therefore the function

y 7! '. Oy/ D xd �

q
r2 � j1y � xj2

is well defined for y 2 B.0; 1/, we have

B.x; r/ \ B.0; 1/ D ¹y 2 B.0; 1/ W yd > '. Oy/º;

and for y 2 @B.x; r/ \ B.0; 1/, the gradient of ' in y1; : : : ; yd�1 is bounded by

jr'. Oy/j D
j1x � yjp

r2 � j1x � yj2
D
j1x � yj
jxd � yd j

�

p
dr

r � .
p
d C 1/

�
4d3=2

4d � .
p
d C 1/

� 2
p
d:

For the case that all ballsB 2B have radius at least 4d , we can conclude that the boundary
of the union of all balls of the above form is a piece of the infimum of 2

p
d -Lipschitz

graphs, and thus itself a piece of a 2
p
d -Lipschitz graph. We can conclude that

Hd�1
�
@
S®

B.x; r/ 2 B W xd D max¹jx1j; : : : ; jxd jº
¯
\ B.0; 1/

�
�

p
4d C 1 �d�1 D

p
4d C 1 �d�1

d�d
Hd�1.@B.0; 1//:

By rotation, we obtain the same bound for the union of those balls B.x; r/ 2 B with
˙xi D max¹jx1j; : : : ; jxd jº for any i D 1; : : : ; d and any sign. This finishes the proof for
K � 4d .

IfK < 4d , then we cover B.0; 1/ by .
�
4d
K

�d many balls C1;C2; : : : so that for each i
we have diam.B/ � 4d diam.Ci /. Then

Hd�1
�
@�
S

B \ B.0; 1/
�
�

X
i

Hd�1
�
@�
S

B \ Ci
�

.
X
i

Hd�1.@Ci /

.
�4d
K

�d
Hd�1.@B.0; 1//:

In this section, for a set of balls B we denote by Bn the set of those B 2 B with
diam.B/ 2 Œ1

2
; 1/2n. Further define B>n D

S
k>n Bk and B�n;B<n; : : : accordingly.

Lemma 4.2. Let � 2 .0; 1/, let E � Rd be measurable and let B be a finite set of balls B
with L.E \ B/ > �L.B/. Then there is a set of balls C such that for each n 2 Z the
following holds.

(i) The balls in Cn are disjoint.

(ii) The boundary piece @�
S

B \ @�
S

Bn�1 nE
� is covered by 5C�n.

(iii) Each C 2 Cn has distance at most 2 diam.C / to @�
S

B nE�.

(iv) We have

Hd�1
�
@�E \

®
x 2C W dist

�
x;
�S

B
�c�
� �d�12n�d�2

¯�
& �.d�1/=dHd�1.@C /:
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Proof. Apply Lemma 2.3 to each ball in B and denote by QC the union of all of these balls.
They cover @�

S
B n E�. In particular, @�

S
B \ @�

S
Bn�1 n E

� is covered by QC�n.
Let n 2 Z. By Lemma 1.9, there is a subcollection Cn of QCn of disjoint balls with

S
QCn �S

5Cn. That means (i) and (ii) are satisfied. Now remove those balls C from Cn such
that 5C does not touch @�

S
B nE�. Then (ii) still holds and we also get (iii).

Let C 2 Cn and let B 2 B be the ball which gave rise to C . We use B �
S

B and
Lemma 2.3 to obtain

Hd�1
�
@�E \ ¹x 2 C W dist

�
x;
S

Bc� > �d�12n�d�2¯�
� Hd�1

�
@�E \

°
x 2 C W dist

�
x;
S

Bc� > � diamC

2dC2d

±�
� Hd�1

�
@�E \

°
x 2 C W dist.x; Bc/ >

� diamC

2dC2d

±�
& �.d�1/=dHd�1.@C /;

proving (iv).

Proposition 4.3. Let � 2 .0; 1/. Let E � Rd be a set of locally finite perimeter and let B

be a finite set of balls such that for each B 2 B we have L.E \ B/ > �L.B/. Then

Hd�1.@�
S

B nE�/ . ��.d�1/=d .1 � log�/Hd�1
�
@�E \ int�

�S
B
��
:

Proposition 4.3 is the key ingredient in the proof of Proposition 1.5. The idea of the
proof of Proposition 4.3 is that we want to split @�

S
B into pieces according to how far

away a piece of @�
S

B is from a significant portion of E, and then identify for each such
piece of @�

S
B a corresponding piece of @�E with comparable size.

Proof of Proposition 4.3. We use Lemma 4.2. We first rearrange @�
S

B n E� and divide
it according to the .Cn/n in Lemma 4.2 and apply Lemma 4.1. We obtain

Hd�1
�
@�
S

B nE�
�
D Hd�1

�S
k

@�
S

B \ @�
S

Bk nE
�
�

D Hd�1
�S
k

@�
S

B \ @�
S

Bk \
S

n�kC1

S
5Cn

�
D Hd�1

�S
n

S
k�n�1

@�
S

B \ @�
S

Bk \
S
5Cn

�
D Hd�1

�S
n

@�
S

B \ @�
S

B�n�1 \
S
5Cn

�
�

X
n

Hd�1
�
@�
S

B \ @�
S

B�n�1 \
S
5Cn

�
�

X
n

X
C2Cn

Hd�1
�
@�
S

B \ @�
S

B�n�1 \ 5C
�

.
X
n

X
C2Cn

Hd�1.@C /:
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In what follows we apply first (iv), then (i) and (iii). We obtainX
C2Cn

Hd�1.@C /

. ��.d�1/=d
X
C2Cn

Hd�1
�
@�E \

®
x 2 C W dist

�
x;
S

Bc�
� �d�12n�d�2

¯�
D ��.d�1/=d Hd�1

�
@�E \

®
x 2

S
Cn W dist

�
x;
S

Bc�
� �d�2n�d�2

¯�
� ��.d�1/=d Hd�1

�
@�E \

®
x W �d�12n�d�2 � dist

�
x;
S

Bc�
� 2nC1

¯�
:

Now we sum over n. Since for a fixed number r 2 R the condition �d�12n�d�2 � r �
2nC1 can only occur for d C 3C log2 d � log2 � many n 2 Z, we can bound

Hd�1
�
@�
S

B nE�
�

. ��.d�1/=d
X
n

Hd�1
�
@�E \

®
x W �d�12n�d�2 � dist

�
x;
S

Bc�
� 2nC1

¯�
. ��.d�1/=d .1 � log�/Hd�1

�
@�E \

S
B
�
:

Remark 4.4. If the balls in
S
n Cn were disjoint, then we could get rid of the factor

1 � log� by using Remark 3.2 instead of (iv).

Now we extend Proposition 4.3 to the whole set ¹M1E > �º.

Proof of Proposition 1.5. Note that

¹M1E > �º D
[
¹B � � W L.B \E/ > �L.B/º:

First we pass to a countable set of balls. By the Lindelöf property, see for example Pro-
position 1.5 in [4], there is a sequence of balls with

¹M1E > �º D B1 [ B2 [ � � �

such that for each i we have L.E \ Bi / > �L.Bi /. Denote Bn D ¹B1; : : : ; Bnº. ThenS
Bn converges to ¹M1E > �º in L1loc.�/. Furthermore, by Lemma 2.4 we have[

Bn �

[
Bn [ int�.E/ � ¹M1E > �º;

which means that also [Bn [ E converges to ¹M1E > �º in L1loc.�/. Since E and
int�.E/ agree up to a set of measure zero, we have .int�.E//� D E� and @�.int�.E// D
@�E. We apply the approximation using Lemma 1.10 and then divide the boundary using
Lemma 1.6 and obtain

Hd�1.@�¹M1E > �º \�/

� lim sup
n!1

Hd�1
�
@�
�S

Bn [ int�.E/
�
\�

�
� lim sup

n!1
Hd�1

�
@�
S

Bn nE
�
\�

�
C Hd�1

�
@�E n int�

�S
Bn

�
\�

�
:(4.1)
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By Lemma 2.4, the second summand is bounded by Hd�1.@�E \ � \ ¹M1E > �º/.
In fact, if Hd�1.@�E \�\ ¹M1E > �º/ is finite then the second summand in (4.1) even
goes to 0 for n! 1. This is due to Lemma 2.4 for the uncentered maximal function,
because

int�
�[

Bn

�
�

[
Bn;

which is an increasing sequence in n which exhausts ¹M1E > �º. In any case, it remains
to estimate the first summand in (4.1) which we do using Proposition 4.3:

Hd�1
�
@�
S

Bn nE
�
�

. ��.d�1/=d .1 � log�/Hd�1
�
@�E \

S
Bn

�
� ��.d�1/=d .1 � log�/Hd�1.@�E \ ¹M1E > �º/:

5. The optimal rate in �

In this section we prove the following improvement of Proposition 1.5.

Proposition 5.1. Let M be the local uncentered maximal operator. Let E � Rd be a set
with locally finite perimeter and let � 2 .0; 1/. Then

Hd�1.@�¹M1E > �º \�/ . ��.d�1/=dHd�1.@�E \ ¹M1E > �º/:

More important than the statement of Proposition 5.1 is maybe the proof strategy. It
may be helpful when attempting to generalize Theorem 1.3 to var Mf . varf for general
functions f with bounded variation.

Remark 5.2. From taking � D Rd and E D B.0; 1/, it follows that the rate ��.d�1/=d

in Proposition 5.1 is optimal.

In order to prove Proposition 5.1, it suffices to prove the following improvement of
Proposition 4.3.

Proposition 5.3. Let � 2 Œ0; 1=2/, letE �Rd be a set of locally finite perimeter and let B

be a finite set of balls such that for each B 2 B we have �L.B/ < L.E \B/ � 1
2
L.B/.

Then
Hd�1

�
@�
S

B
�

. ��.d�1/=dHd�1
�
@�E \

S
B
�
:

Proof of Proposition 5.1. Let B be a finite set of balls B with L.B \E/ � �L.B/. Then

Hd�1
�
@
S

B nE�
�
� Hd�1.@¹B 2 B W L.B \E/ > L.B/=2º nE�/

CHd�1.@¹B 2 B W �L.B/ < L.B \E/ � L.B/=2º nE�/

By Proposition 4.3, the first summand in the previous display is bounded by a dimen-
sional constant times Hd�1.@�E \

S
B/, and by Proposition 5.3, the second summand

is bounded by a dimensional constant times ��.d�1/=dHd�1.@�E \
S

B/. We conclude

Hd�1
�
@
S

B nE�
�

. ��.d�1/=dHd�1
�
@�E \

S
B
�
;

which is Proposition 4.3 without the factor 1 � log �. Now we can repeat the proof of
Proposition 1.5 verbatim without the factor 1 � log�.
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There is a weaker version of Proposition 5.3 which has a simpler proof, but already
suffices to prove Proposition 5.1 for � D Rd .

Proposition 5.4. There is an " > 0 depending only on the dimension such that for all
� 2 Œ0; "/ the following holds. Let E � Rd be a set of locally finite perimeter and let B

be a finite set of balls such that for each B 2 B we have �L.B/ < L.E \ B/ � "L.B/.
Then there is a finite superset QB of B consisting of balls B with L.E \B/ > �L.B/ that
satisfies

Hd�1
�
@�
S
QB
�

. ��.d�1/=d Hd�1
�
@�E \

S
B
�
:

Proof of Proposition 5.1 for � D Rd . Take " > 0 from Proposition 5.4. For � � ", Pro-
position 5.1 already follows from Proposition 1.5. It suffices to consider the case that there
is an x0 2 Rd with � <M1E .x0/ � ". Let x 2 Rd with M1E .x/ > �. Then there is a ball
C 3 x with L.E \ C/ > �L.C /, while L.E \ B.x0; jx � x0j C 1// � "L.B.x0; jx �

x0j/C 1/. By continuously transforming C intoB.x0; jx � x2j C 1/, we can conclude that
¹M1E >�º is a union of ballsB with �L.B/<L.E \B/� "L.B/. Thus by the Lindelöf
property there is a sequence of balls .Bn/n with �L.Bn/ < L.E \ Bn/ � "L.Bn/ such
that ¹M1E > �º D B1 [ B2 [ : : :. Let QBn be the finite superset of Bn D ¹B1; : : : ; Bnº

from Proposition 5.4. Then [
Bn �

[
QBn � ¹M1E > �º

which means that
S
QBn converges to ¹M1E > �º in L1loc.�/. Thus we get as in the proof

of Proposition 1.5 that

Hd�1.@�¹M1E > �º/ � lim sup
n!1

Hd�1
�
@�
S
QBn

�
:

By Proposition 5.4 we have

Hd�1
�
@�
S
QBn

�
. ��.d�1/=dHd�1

�
@�E \

S
Bn

�
� ��.d�1/=dHd�1.@�E \ ¹M1E > �º/:

5.1. The global case� D Rd

In this subsection we present a proof of Proposition 5.4. It already contains some of the
ideas for the general local case Proposition 5.3.

Proof of Proposition 5.4. First, restrict " � 1=2. Let F 0 be the collection of balls from
Lemma 2.2 applied to E \

S
B and B. Let QF be the countable disjoint subcollection

from Lemma 1.9. Extract from that a finite subcollection F so that for every B 2 B we
have

(5.1) L
�
E \

S
5F \ B

�
�
�

2
L.B/:

This is possible since B is finite. Here F serves as a decomposition of E into pieces
F \ E where each piece has a substantial amount of boundary. The overall goal is to
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collect for each F its contribution to Hd�1.@�
S

B/ and show that it is bounded by @F .
First we enlarge B. For every F 2 F , the ball B D .2�/�1=dF satisfies

L.E \ B/ � L.E \ F / D
L.F /

2
D �L.B/:

Add all those balls B to B. Then B is still finite.
Restrict " � 1

2
10�d and let r > 0 and F 2 F with diamF � 8r.2�/1=d . Since we

assume � � ", we obtain

diam..2�/�1=dF / � diam.5F / D ..2�/�1=d � 5/ diamF � .1 � 5.2�/1=d / � 8r � 4r;

which means that any ballB 2B with diameter at most r that intersects 5F is entirely con-
tained in .2�/�1=dF2B. Hence we may removeB from B without changing @�

S
BnE�.

Conversely, we may assume that ifB 2B has diameter r and F 2F is a ball for which 5F
intersects B , then diamF < 8r.2�/1=d . We further restrict " � 1

4
20�d and obtain

(5.2)
L.5F /

L.B/
<
5d8d rd2"

2d rd
�
1

2
�

For each n 2 Z, denote by Bn the set of balls in B with diamB 2 Œ1
2
; 1/2n. Denote

by Fn the set of those balls with diamF 2 2n.2�/1=d Œ4; 8/. Let B 2 Bn and let F 2 F

be such that 5F intersects B . Then

(5.3) F 2 Fk for some k � n:

By (5.2), any F 2 F such that 5F intersects B is contained in 3B . Thus we get from (5.1)
and (5.3) that

�

2
L.B/ �

X
F 2F�n; F�3B

L.5F \ B/:

We rewrite the previous display as

Hd�1.@B/ � 2
X
k�n

X
F 2Fk ;F�3B

L.5F \ B/

�L.B/
Hd�1.@B/

.
X
k�n

X
F 2Fk ;F�3B

� L.F /

�L.B/

�1=d
��.d�1/=d

�L.F /

L.B/

�.d�1/=d
Hd�1.@B/

�

X
k�n

X
F 2Fk ;F�3B

2k�n��.d�1/=dHd�1.@F /:(5.4)

This estimate can be seen as a way to distribute Hd�1.@B/ over the balls F that it
contains. The next step will be to turn this dependence around, and see, for a fixed F , for
how much variation of Hd�1.@�

S
B/ it is responsible.

Since Bn is finite, we have

Hd�1
�
@�
S

Bn

�
D

X
B2Bn

Hd�1
�
@B \ @�

S
Bn

�
:
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We again multiply each summand by a number bounded from below according to (5.4):X
B2Bn

Hd�1
�
@B \ @�

S
Bn

�
.
X
B2Bn

Hd�1.@B \ @�
S

Bn/

Hd�1.@B/

X
k�n

X
F 2Fk ;F�3B

2k�n��.d�1/=dHd�1.@F /

D ��.d�1/=d
X
k�n

2k�n
X
F 2Fk

Hd�1.@F /
X

B2Bn;3B�F

Hd�1.@B \ @�
S

Bn/

Hd�1.@B/
�

Now we have reorganized @�
S

Bn according to the balls in F . We want to bound the
contribution of each ball F 2 F uniformly. For each F 2 Fk for which there is a ball
B 2 Bn with F � 3B , denote by BF a largest such ball B . Then for each B 2 Bn with
F � 3B , we have B � 9BF . ThusX

B2Bn;3B�F

Hd�1.@B \ @�
S

Bn/

Hd�1.@B/
.

X
B2Bn;B�9BF

Hd�1.@B \ @�
S

Bn/

Hd�1.@BF /
;

which is uniformly bounded according to Lemma 4.1. Therefore we can conclude

Hd�1
�
@�
S

Bn

�
. ��.d�1/=d

X
k�n

2k�n
X
F 2Fk

Hd�1.@F /:

So the interaction between the scales is small enough so that we can just sum over all
scales and obtain

Hd�1
�
@�
S

B
�
�

X
n

Hd�1
�
@�
S

Bn

�
. ��.d�1/=d

X
k

X
n�k

2k�n
X
F 2Fk

Hd�1.@F /

. ��.d�1/=d
X
k

X
F 2Fk

Hd�1.@F / D ��.d�1/=d
X
F 2F

Hd�1.@F /:

Now we get back from F toE. Recall that for eachF 2F we have L.F \E/DL.F /=2,
so that by Lemma 2.1 we have Hd�1.@F / . Hd�1.@�E \ F /. Because the balls in F

are disjoint, we can then conclude

Hd�1
�
@�
S

B
�

.��.d�1/=d
X
F 2F

Hd�1.@�E \F /��
�.d�1/=dHd�1

�
@�E \

S
B
�
:

5.2. The general local case� � Rd

In this subsection we present a proof of Proposition 5.3. It requires a few more steps than
the proof of Proposition 5.4.

Lemma 5.5. Let 0 � � � 2�.dC1/=2.d C 1/�1=2 and let B; C be balls with diamC �

diamB and L.B \ C/ � �L.B/. Then .1 � 2.d C 1/
1

dC1�
2

dC1 /B and C are disjoint.
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0 εε
2

1

B

C

Figure 4. The lower bound for L.B \ C/ in the proof of Lemma 5.5.

For the application we only need that for � small enough, B and .3=4/1=dC are dis-
joint. Since diamC � diamB , this follows if .3=4/1=dB and C are disjoint. The rate in �
plays no role.

Proof. After rescaling, rotation and translation, it suffices to consider the case that there
are r�1 and 0<"�2 such thatBDB.e1;1/ andCDB.."�r/e1; r/. We bound L.B\C/

from below by the marked area in Figure 4. For x 2 Rd , denote Nx1 D .x2; : : : ; xd /. The
two spheres @B and @C intersect in a plane orthogonal to e1 that is between "

2
e1 and "e1.

Thus °
x W Nx21 < x1 <

"

2

±
�

°
x 2 B W x1 <

"

2

±
� B \ C;

and by symmetry and r � 1 also the image of the first set mirrored at x1D "=2 is contained
in B \ C , so that

L.B \ C/ > 2L
�°
x W Nx21 < x1 <

"

2

±�
D 2

ˆ "=2

0

�d�1h
d�1
2 dh D 2�

d�3
2
�d�1

d C 1
"
dC1
2 :

Therefore, since L.B \C/� �L.B/D ��d , we can conclude the following upper bound
for " using Lemma 1.11:

"
dC1
2 �

�.d C 1/�d

�d�1
2
d�3
2 � 2

d�2
2
d C 1
p
d

p
� � � 2

dC1
2
d C 1
p
2d

� � 2
dC1
2 .d C 1/1=2�;

" � 2.d C 1/
1

dC1 �
2

dC1 :

This finishes the proof because .1 � "/B and C are disjoint.

Lemma 5.6. Let 0 < �� 1, letB be a ball and let F be a set of balls with L.
S

F \B/�

�L.B/. Then there is a ball F 2 F which intersects .1 � �=d/B .

Proof. Since

L.B n .1 � �=d/B/ D dL.B/

ˆ 1

1��=d

rd�1 dr < �L.B/;

the union
S

F cannot lie outside of .1 � �=d/B .
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Proof of Proposition 5.3. According to Lemma 2.2, for every B 2 B, almost every point
in E \ B is contained in a ball F � B with

L.F \E/ D
1

2
L.F /:

Denote by G the set of all such balls F . By scaling, it suffices to consider the case that all
balls in G and B have diameter at most 1. We inductively build sequences .Fn/�1nD0 and
.Gn/

�1
nD0 of subsets of G . We denote F>nD

S
n<k�0Fn, and G>n and Fn<��k accordingly.

Assume we are at scale n � 0. Denote by Bn the set of balls in B with diamB 2 Œ1
2
; 1/2n.

Decompose Bn into

B0
n D

°
B 2 Bn W L

�S
5F>n \ B

�
�
�

2
L.B/

±
;

B1
n D

°
B 2 Bn W L

�S
5F>n \ B

�
>
�

2
L.B/

±
and decompose B1

n into

B1;0
n D

°
B 2 B1

n W L
�S

F>n \ B
�
�

1

8.dC1/=2 .d C 1/.dC2/=2
L.B/

±
;

B1;1
n D

°
B 2 B1

n W L
�S

F>n \ B
�
>

1

8.dC1/=2 .d C 1/.dC2/=2
L.B/

±
:

Denote by Gn the set of balls G 2 G with diamG 2 Œ1
2
; 1/2n which intersect E n

S
5F>n

or are for some k � n and some B 2 B
1;0
k

contained in B n
S

Fn<��k . Set Fn to be a
maximal disjoint subcollection of Gn.

Denote F D
S
n Fn, B0 D

S
n B0

n , and B1;0 and B1;1 accordingly. Here are a few
properties of these ball collections.

(i) The collection 5Fn is a cover of
S

Gn.
(ii) The collection 5F covers almost all of E.
(iii) The balls in .3=4/1=dF are disjoint.
(iv) If B 2 B0

n , then 5F�n covers at least �=2 of B .

(v) If B 2 B
1;0
n , then 5F�n covers at least � of B .

Proof. (i) By the maximality of Fn, every G 2 Gn intersects an F 2 Fn. Since diamG �
2 diamF , this means G � 5F .

(ii) Let G 2 G be a ball and let n 2 Z be the integer with diamG 2 Œ1
2
; 1/2n. Then G

intersects E, so that by definition of Gn we have G \E �
S
5F>n or G 2 Gn. By (i) we

can conclude G \E �
S
5F�n in either case. Since G covers almost all of E, this means

so does 5F .
(iii) For each n, the balls in Fn are disjoint. It remains to show that they are disjoint

from the balls in .3=4/1=dF>n. So assume F 2 Fn. If F was chosen because it intersects
E n

S
5F>n, then it does not intersect F>n. It remains to consider the case that there is
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a k � n and a B 2 B
1;0
k

such that F � B and F does not intersect any G 2 Fn<��k .
Since B 2 B

1;0
k

, for every G 2 F>k we have

L.B \G/ �
1

8.dC1/=2 .d C 1/.dC2/=2
L.B/;

so that by Lemma 5.5 the balls
�
1 � 1

4.dC1/

�
B and G are disjoint. Since .3=4/1=d �

1 � 1
4.dC1/

and diamG � diamB , this means that .3=4/1=dG and B are disjoint, too.
Hence also F and

S
.3=4/1=dF>k are disjoint.

(iv) For every B 2 B0
n , we have L.B \ E/ � �L.B/. Thus since 5F covers almost

all of E and

L
�S

5F>n \ B
�
�
�

2
L.B/;

we must have

L
�S

5F�n \ B
�
�
�

2
L.B/:

(v) Let B 2 B
1;0
n . It suffices to show that 5F�n covers E \ B . By the construction

of G , using Lemma 2.2 almost all of B \ E is covered by the union of all G 2 G with
G �B and diamG < 2n. Thus it suffices to show for each suchG thatG \E is contained
in 5F�n. Take k � n with diamG 2 Œ1

2
; 1/2k . If G \ E is not contained in

S
5Fk<��n,

then G 2 Gk and thus by (i) we have G �
S
5Fk .

Denote QB D B0 [B1;0, so that B D QB [B1;1. Then by Lemma 1.6 we have

@�
[

B �
�
@�
[
QB
�
[

�
@�
[

B1;1
n

[
QB�
�
:

Note that for a finite union of balls, the topological and measure theoretical notions agree
up to a set of d � 1 dimensional measure zero. By Lemma 5.6, for every B 2B1;1 there is
an F 2 F with diamF > diamB that intersects .1� 8�.dC1/=2d�.dC4/=2/B . Because F
came about using Lemma 2.2, it is further contained in a ball BF 2 B. Since diamB <

diamBF , we have B ¤ BF . For each F 2 F , denote by B.F / the set of B 2 B with
diamB < diamF such that F intersects .1 � 8�.dC1/=2d�.dC4/=2/B . Then

@
[

B1;1
n

[
QB � @

[
B1;1

n

[
B �

[
F 2F

@
[
.B1;1

\B.F // n
[

B

�

[
F 2F

@
[
.B1;1

\B.F // n
�[

B.F / [ BF

�
�

[
F 2F

@
[

B.F / n
�[

B.F / [ BF

�
D

[
F 2F

@
[

B.F / n BF �
[
F 2F

@
�
F [

[
B.F /

�
:

Thus Proposition 4.3 implies

Hd�1
�
@
S

B1;1
n
S
QB
�

.
X
F 2F

Hd�1.@F /
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Recall that we made .3=4/1=dF disjoint and that by Lemma 2.2 for each F 2 F we have
F �

S
B and L.F \ E/ D L.F /=2. Thus L..3

4
/1=dF \ E/ 2 Œ1

4
; 3
4
�L.F /, and so by

Lemma 2.1 we can concludeX
F 2F

Hd�1.@F / D
�4
3

�.d�1/=d X
F 2F

Hd�1.@.3=4/1=dF /

.
X
F 2F

Hd�1.@�E \ .3=4/
1=dF / � Hd�1

�
@�E \

S
B
�
:(5.5)

It remains to prove

(5.6) Hd�1
�
@
S
QB
�

. ��.d�1/=d
X
F 2F

Hd�1.@F /:

For n 2 Z, denote by QBn the set of balls B 2 QB with diamB 2 Œ1
2
; 1/2n. Let B 2 QBn

and let F 2 F�n be a ball such that 5F intersects B . Then F � 21B . By (iv) and (v), this
means

(5.7)
�

2
L.B/ � L

�
B \

S
5F�n

�
�

X
F 2F�n;F�21B

L.5F \ B/:

For each k 2 Z, denote by QFk the set of balls F 2 F with diamF 2 Œ1
2
; 1/2k�1=d . We

make a case distinction. If there is a k � n and a ball F 2 QFk with F � 21B , we have

Hd�1.@B/ D
Hd�1.@B/

Hd�1.@F /
Hd�1.@F / � 22.d�1/

2n.d�1/

�.d�1/=d 2k.d�1/
Hd�1.@F /

� 2.n�k/.d�1/��.d�1/=dHd�1.@F /;(5.8)

and we are done with this case for the moment. Now assume all ballsF 2F withF � 21B
are contained in QF<n. Then by (5.7) we have

Hd�1.@B/ � 2
X
k<n

X
F 2 QFk ;F�21B

L.5F \ B/

�L.B/
Hd�1.@B/

.
X
k<n

X
F 2 QFk ;F�21B

� L.F /

�L.B/

�1=d
��.d�1/=d

�L.F /

L.B/

�.d�1/=d
Hd�1.@B/

�

X
k<n

X
F 2 QFk ;F�21B

2k�n��.d�1/=dHd�1.@F /:(5.9)

If d D 1, then Proposition 5.3 is straightforward to prove directly, so it suffices to
consider d � 2. There we can combine (5.8) and (5.9) into

Hd�1.@B/ . ��.d�1/=d
X
k

2�jk�nj
X

F 2 QFk ;F�21B

Hd�1.@F /
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for simplicity. This estimate can be seen as a way to distribute Hd�1.@B/ over the balls F
that it contains. The next step will be to turn the dependence around, and see, for a fixed
ball F 2 F , for how much of Hd�1.@�

S
QB/ it is responsible. Since QBn is finite, we have

Hd�1
�
@�
S
QBn

�
D

X
B2 QBn

Hd�1
�
@B \ @�

S
QBn

�
;

and we multiply each summand by a number bounded from below according to (5.9):

Hd�1
�
@�
S
QBn

�
.
X
B2 QBn

Hd�1.@B \ @�
S
QBn/

Hd�1.@B/

X
k

X
F 2 QFk ;F�21B

2�jk�nj��.d�1/=dHd�1.@F /

D ��.d�1/=d
X
k

2�jk�nj
X
F 2 QFk

Hd�1.@F /
X

B2 QBn;21B�F

Hd�1.@B \ @�
S
QBn/

Hd�1.@B/
�

We have reorganized @�
S
QBn according to the balls in F . We want to bound the contri-

bution of each ball F 2 F uniformly. For each F 2 QFk for which there is a ball B 2 QBn

with F � 21B , denote by BF a largest such B . Then for all B 2 QBn with F � 21B , we
have B � 3BF . Thus,X

B2 QBn;21B�F

Hd�1.@B \ @�
S
QBn/

Hd�1.@B/
.

X
B2 QBn;B�63BF

Hd�1.@B \ @�
S
QBn/

Hd�1.@BF /
;

which is uniformly bounded according to Lemma 4.1. Therefore we can conclude

Hd�1
�
@�
S
QBn

�
. ��.d�1/=d

X
k

2�jk�nj
X
F 2 QFk

Hd�1.@F /:

So the interaction between the scales is small enough that we can just sum over all scales
and obtain

Hd�1
�
@�
S
QB
�
�

X
n

Hd�1
�
@�
S
QBn

�
. ��.d�1/=d

X
k

X
n

2�jk�nj
X
F 2 QFk

Hd�1.@F /

. ��.d�1/=d
X
k

X
F 2 QFk

Hd�1.@F / D ��.d�1/=d
X
F 2F

Hd�1.@F /;

and we have proven (5.6), which was all that remained to finish the proof of Proposi-
tion 5.3.
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