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On the completeness of dual foliations on nonnegatively
curved symmetric spaces

Renato J. M. e Silva and Llohann D. Sperança

Abstract. We prove Wilking’s conjecture about the completeness of dual leaves
for the case of Riemannian foliations on nonnegatively curved symmetric spaces.
Moreover, we conclude that such foliations split as a product of trivial foliations and
a foliation with a single dual leaf.

1. Introduction

A singular Riemannian foliation F on M is a singular foliation, i.e., a decomposition
of M into integral submanifolds, called leaves, of an involutive family of smooth vec-
tor fields, such that geodesics emanating perpendicularly to a leaf stays perpendicular to
leaves.

Given a singular Riemannian foliation F , the dual leaf at x 2M is the subset

L#
x D ¹q 2M j 9c W Œ0; 1�!M; c.0/ D x; c.1/ D q; c is perpendicular to leavesº:

The set of dual leaves define the dual foliation. These concepts and their foundations
were introduced by Wilking [13] and have been used in different situations in literature
(see [2, 4, 10, 11]).

In particular, Wilking proves that the dual foliation is a singular foliation (Proposi-
tion 2.1 in [13]), which is Riemannian when dual leaves are complete and M is complete
with nonnegative sectional curvature. This is the case in many interesting situations:

Theorem 1 (Wilking, Theorem 3 in [13]). Suppose that M is a complete nonnegatively
curved manifold with a singular Riemannian foliation F . Then the dual foliation has
intrinsically complete leaves if, in addition, one of the following holds :

(1) F is given by the orbit decomposition of an isometric group action ;
(2) F is a non-singular foliation and M is compact ;
(3) F is given by the fibers of a Sharafutdinov retraction.

Although Theorem 1 gives many interesting conditions for completeness of dual leaves,
Wilking conjectures that it should be the general case in nonnegative sectional curvature:

2020 Mathematics Subject Classification: Primary 53C35; Secondary 53C12, 53C20.
Keywords: Lie groups, Riemannian foliations, symmetric spaces, holonomy, nonnegative sectional curvature.

https://creativecommons.org/licenses/by/4.0/


R. J. M. e Silva and L. D. Sperança 852

Conjecture 2 (Wilking, [13]). Suppose F is a singular Riemannian foliation on a com-
plete nonnegatively curved manifold. Then F has complete dual leaves.

In this note we give an affirmative answer for Wilking’s conjecture ([13], Conjecture)
in the case of a nonnegatively curved symmetric space.

Theorem 3. Let F be a singular Riemannian foliation onM , a simply connected symmet-
ric space with nonnegative sectional curvature. Then, the dual foliation F # has complete
leaves.

Following Lytchak [7], we actually prove a much stronger statement.

Corollary 4. Let F be a singular Riemannian foliation on M , a symmetric space with
nonnegative sectional curvature. Then F decomposes as a product F1 �F2, where F1 has
a single dual leaf and F2 consists of a single leaf. That is, there is a metric decomposition
M D Z �N , together with a singular Riemannian foliation F1 on Z, satisfying L#

.z;n/
D

Z � ¹nº, for all n 2 N , and

F D ¹L �N j L 2 F1º:(1.1)

The result is new even for foliations on the Euclidean space (the result could be traced
only for the low dimensional and regular cases, where the classification is complete:
see [9] and [6, 12], respectively.) and recovers an important result on polar foliations:

Theorem 5. Let F be a polar foliation on M and let † # M be a polar section. If the
action of the Weyl group on † splits, then F splits.

Theorem 5 recovers results of Ewert (Theorem 3 in [3]), Lytchak (Lemma 4.1 in [7])
and Liu–Radeschi (Proposition 3.4 in [5]). There are no analogous results in the general
case, although the slice theorem in [8] might give some insights for a generalization.

The paper is divided in the following way: in Section 2 we recall a result of Lytchak [7]
and present a direct application; in Section 3 we prove Theorem 3. Section 4 relates The-
orem 3 to polar foliations.

2. Preliminaries

To prove Theorem 3, we use a result by Lytchak to decompose M as a metric product
M D Z �N , where Z is a minimal dual leaf. To this aim, we recall:

Theorem 6 (Lytchak, Proposition 3.1 in [7]). Let M be a symmetric space with nonneg-
ative sectional curvature. If L# is a dual leaf, then M factors as M D Z �N , where L#

is an open subset of Z � ¹nº, for some n 2 N .

It follows that the dual leaf of minimal dimension is complete.

Proposition 7. Let M be a symmetric space with nonnegative sectional curvature. If L#

is a dual leaf with minimal dimension, then L# is complete. Moreover,

M D L#
�N:
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Proof. Suppose that L# is not complete. Then, Theorem 6 gives us a totally geodesic
submanifold with the same dimension as L# such that L# ¨ Z.

By hypothesis, the topological boundary of L# on Z is not empty, on the other hand
bd.L#/ D

S
F # � Z is a disjoint union of dual leaves (see Wilking [13], p. 1312).

Moreover, since F # � Z and dimL# must have minimal dimension among dual leaves,

dimL#
� dimF #

� dimZ D dimL#:

Therefore, by applying Theorem 6 again, each F # is an open subset of Z.
We conclude that the closure of L#, cl.L#/ D L# [ bd.L#/, is covered by non-trivial

disjoint open subsets. However, L# [ bd.L#/ is a closed connected subset of Z, since L#

is connected, a contradiction.

3. Proof of Theorem 3

We begin by constructing a very particular vertical vectors field outside a minimal dual
leaf. Then use its flow lines to connect every point in a slice Nz0 to Zn. We denote by V
and H the vertical and horizontal spaces, that is, the space tangent to the leaves and the
space orthogonal to V , respectively.

Let L# D Z and M D Z � N be a fixed closed dual leaf and its respective metric
decomposition given by Proposition 7. Fix .z;n/2Z �N such thatL#DZ � ¹nº. Denote
Z � ¹nº D Zn and ¹zº �N D Nz . We denote TM D TZ C TN , whenever it creates no
ambiguity.

Let U be a tubular neighborhood of Zn where the square of the distance function
f WU ! R,

f .z0; n0/ D dM ..z
0; n0/; Zn/

2
D dN .n

0; n/2;

is smooth. Note that the neighborhood U can be chosen as Z � Bn.r/, where Bn.r/ is
a convex radius r open ball around n 2 N , and that r does not depend on n, since the
injectivity radius on a symmetric space does not depend on the point.

Lemma 8. For every .z0; n0/ 2 U �Zn, there is a vector v.z0; n0/ 2 V \ TN such that

hv.z0; n0/;rf .z0; n0/i < 0:

Proof. We claim that

rf .z0; n0/ … QH.z0;n0/ D prTNH.z0;n0/;

where the right-hand side is the orthogonal projection of H.z0;n0/ in T.z0;n0/N . Recall that
�

1
2
rf .z0; n0/ is the velocity vector of a minimizing geodesic connecting .z0; n0/ to .z0; n/.

Observing that geodesics in M D Z � N are product geodesics, we conclude that no
horizontal vector can be of the formX Crf ,X tangent toZn0 , since the geodesic defined
by X Crf connects .z0; n0/ to the dual leaf Zn. (Recall that the velocity of a geodesic is
horizontal at one point if it is horizontal at every point. Therefore, .z0;n0/ 2Zn ifX Crf
is horizontal, since Zn is a dual leaf.)

Since rf … QH , rf must have a non-zero component on QH? \ TNz0 . However,
QH? \ TNz0 D H? \ TNz0 D V \ TNz0 . We conclude that any negative multiple of

prTN\V .rf .z
0; n0// has the desired properties.
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Proof of Theorem 3. Let Z D L# D Zn, M D Z �N and U D Z � Bn.r/ be as above,
with some fixed r independent of n. Let �Z WZ � N ! Z be the projections to the Z-
component. At every Z-slice we can define the foliations

FZ D ¹L \Z j L 2 F º and Fn0 D ¹L \Zn0 j L 2 F º

(we observe that the second is not necessarily Riemannian.) The splitting in equation (1.1)
is equivalent to the statement:

L 2 Fn0” �Z.L/ 2 FZ :(3.1)

In other words, that each slice Nz0 lies in a single leaf. Since �Z jZn0
is an isometry, we

also conclude that Fn0 has a single dual leaf, whenever (3.1) holds.
Equation (3.1) can be proved, for instance, by showing that .z0; n0/ and .z0; n/ lies

in the same leaf for every .z0; n0/ 2 M . But the flow of v, defined in Lemma 8, gives
us a vertical curve connecting .z0; n0/ to .z0; n/, as long as v can be chosen to form a
smooth vector field, proving the assertion for every .z0; n0/ 2 U . Once chosen v smooth,
the existence of such curve is a standard argument and, for convenience, we recall it in the
next paragraphs.

Let .z; n/ and U be as in the beginning of the section and fix L. Observe that L\Nz0

is a submanifold for almost every z0 2Z: the projection into theZ coordinate, � WL!Z,
�.z0; n0/D z0, is obviously smooth and has ��1.z0/D L\Nz0 . On the other hand, Sard’s
theorem guarantees that almost every z0 is a regular value for � .

Suppose that z0 is a regular value and denote by ˆt .z
0; n0/ the flow, starting at .z0; n0/,

defined by the vector field

v D �
prTL\V .rf /

kprTL\V .rf /k2
�

Observe that v is a smooth vector field in L\Nz0 \ U � ¹.z
0; n/º (Lemma 8). Moreover,

d

dt
f .ˆt .z

0; n0// D �
hrf; prTL\V .rf /i

kprTL\V .rf /k2
D �1;(3.2)

therefore ˆt .z
0; n0/ stays in U D f �1.Œ0; r2// and ˆt .z

0; n0/ must be defined for t 2
Œ0; f .z0; n0//, since v is locally Lipschitz away from f �1.0/. But

lim
t!f .z0;n0/�

ˆt .z
0; n0/ D .z0; n/:(3.3)

Indeed,ˆt fixes the first coordinate, since v2TN , and f .ˆt .z
0;n0//! 0 as t!f .z0;n0/�.

Equation (3.3) then follows by equation (3.2) and f �1.0/DZn. Since v2V andˆt .z
0;n0/

is converging, there is a sequenceˆtk .z
0;n0/, tk! f .z0;n0/�, which is Cauchy onL.z0;n0/.

By recalling that leaves are locally immersed submanifolds, therefore intrinsically com-
plete, we conclude that .z0; n/ 2 L.z0;n0/, as desired.

If z0 is not a regular value, consider a sufficiently small neighborhood U 0 of .z0; n/
and suppose that L \ Nz0 \ U intersects a closed connected component QL of L \ U 0.
Then, there is a sequence zi of regular values of f j QL\U\Nz0

converging to z0, Therefore,

the argument in the last paragraph shows that .zi ; n/ 2 QL. Since QL is closed, .z0; n/ 2 QL,
as desired.
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Finally, note that the arguments here show that Fn00 satisfy (3.1) whenever n00 is r-
close to a point n0 such that Fn0 satisfy (3.1). The proof is complete since we can cover N
with balls of radius r=2.

4. An application to polar foliations

A singular Riemannian foliation is called polar if it admits a totally geodesic horizontal
section, i.e., an immersed, simply connected, connected, totally geodesic submanifold
† # M such that † intersects every leaf perpendicularly.

One sees that the intersection of † with the singular strata happens in a collection of
totally geodesic hypersurfaces of †. If M is simply connected, such reflections define a
groupW , called the Weyl group (see [1] for details). The metric quotient†=W is isometric
to the leaf space M=F .

Now suppose that the action of the Weyl group splits, i.e.,W DW1 �W2 as a product
of groups, and † D †1 � †2 as a metric product, such that Wi only acts on the i -th
coordinate †i . In this case, the foliation splits (see Ewert [3] and Liu–Radeschi [5]), i.e.,
M is a metric productM DM1 �M2 and there are singular Riemannian foliations F1;F2

on M1;M2 such that
F D ¹L1 � L2 j Li 2 Fiº:

This is a fundamental fact used both in [7] and [5]. Here we give a simpler proof for this
fact based on Theorem 3 and arguments in Lytchak [7].

Proof of Theorem 5. With Theorem 3 at hand, Theorem 5 follows directly from the argu-
ments in [7], see Section 2.5 and the proof of Proposition 4.2. For convenience, we briefly
recall them here.

Suppose that a polar foliation F is given by a metric quotient pWM ! �, so � is
isometric to †=W . Further suppose that † admits a polar foliation G which is invariant
by W (i.e., W takes G -leaves to G -leaves), thus W acts on †=G D �0. It follows that the
fibers of q ı pWM ! �0 defines a polar foliation on M (we refer to [7], Section 2.5, for
details).

This is certainly the case when the action of W splits. Indeed, denote qi W�! �i D

†i=Wi the metric quotients. Then q1 ı p;q2 ı p define two polar foliations F 01 , F 02 onM ,
whose sections are†1 and†2, respectively. Observe that each leaf in F is the intersection
of a leaf in F 01 and one in F 02 .

By Theorem 3,M decomposes asM DM1 �M2, where the leaves of F 01 are products
ofM2 with the leaves of a foliation F1 inM1. Since every F 01-horizontal curve is mapped
by p into a �1-factor, and hence by p2 to a point, any dual leaf to F 01 is contained in
a F 02-leaf. Thus, the M1-factor is F 02-vertical. The proof is concluded by applying the
arguments in the last paragraph of the proof of Theorem 3 to conclude that F 02 splits as a
foliation F2 in M2 and the one-leaf foliation on M1.
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