

On the completeness of dual foliations on nonnegatively curved symmetric spaces

Renato J. M. e Silva and Llohann D. Sperança

Abstract. We prove Wilking's conjecture about the completeness of dual leaves for the case of Riemannian foliations on nonnegatively curved symmetric spaces. Moreover, we conclude that such foliations split as a product of trivial foliations and a foliation with a single dual leaf.

1. Introduction

A singular Riemannian foliation \mathcal{F} on M is a singular foliation, i.e., a decomposition of M into integral submanifolds, called *leaves*, of an involutive family of smooth vector fields, such that geodesics emanating perpendicularly to a leaf stays perpendicular to leaves.

Given a singular Riemannian foliation \mathcal{F} , the dual leaf at $x \in M$ is the subset

 $L_x^{\#} = \{q \in M \mid \exists c : [0,1] \to M, \ c(0) = x, \ c(1) = q, \ c \text{ is perpendicular to leaves}\}.$

The set of dual leaves define the *dual foliation*. These concepts and their foundations were introduced by Wilking [13] and have been used in different situations in literature (see [2, 4, 10, 11]).

In particular, Wilking proves that the dual foliation is a singular foliation (Proposition 2.1 in [13]), which is Riemannian when dual leaves are complete and M is complete with nonnegative sectional curvature. This is the case in many interesting situations:

Theorem 1 (Wilking, Theorem 3 in [13]). Suppose that M is a complete nonnegatively curved manifold with a singular Riemannian foliation \mathcal{F} . Then the dual foliation has intrinsically complete leaves if, in addition, one of the following holds:

- (1) \mathcal{F} is given by the orbit decomposition of an isometric group action;
- (2) \mathcal{F} is a non-singular foliation and M is compact;
- (3) \mathcal{F} is given by the fibers of a Sharafutdinov retraction.

Although Theorem 1 gives many interesting conditions for completeness of dual leaves, Wilking conjectures that it should be the general case in nonnegative sectional curvature:

²⁰²⁰ Mathematics Subject Classification: Primary 53C35; Secondary 53C12, 53C20.

Keywords: Lie groups, Riemannian foliations, symmetric spaces, holonomy, nonnegative sectional curvature.

Conjecture 2 (Wilking, [13]). Suppose \mathcal{F} is a singular Riemannian foliation on a complete nonnegatively curved manifold. Then \mathcal{F} has complete dual leaves.

In this note we give an affirmative answer for Wilking's conjecture ([13], Conjecture) in the case of a nonnegatively curved symmetric space.

Theorem 3. Let \mathcal{F} be a singular Riemannian foliation on M, a simply connected symmetric space with nonnegative sectional curvature. Then, the dual foliation $\mathcal{F}^{\#}$ has complete leaves.

Following Lytchak [7], we actually prove a much stronger statement.

Corollary 4. Let \mathcal{F} be a singular Riemannian foliation on M, a symmetric space with nonnegative sectional curvature. Then \mathcal{F} decomposes as a product $\mathcal{F}_1 \times \mathcal{F}_2$, where \mathcal{F}_1 has a single dual leaf and \mathcal{F}_2 consists of a single leaf. That is, there is a metric decomposition $M = Z \times N$, together with a singular Riemannian foliation \mathcal{F}_1 on Z, satisfying $L_{(z,n)}^{\#} = Z \times \{n\}$, for all $n \in N$, and

(1.1)
$$\mathcal{F} = \{L \times N \mid L \in \mathcal{F}_1\}$$

The result is new even for foliations on the Euclidean space (the result could be traced only for the low dimensional and regular cases, where the classification is complete: see [9] and [6, 12], respectively.) and recovers an important result on polar foliations:

Theorem 5. Let \mathcal{F} be a polar foliation on M and let $\Sigma \hookrightarrow M$ be a polar section. If the action of the Weyl group on Σ splits, then \mathcal{F} splits.

Theorem 5 recovers results of Ewert (Theorem 3 in [3]), Lytchak (Lemma 4.1 in [7]) and Liu–Radeschi (Proposition 3.4 in [5]). There are no analogous results in the general case, although the slice theorem in [8] might give some insights for a generalization.

The paper is divided in the following way: in Section 2 we recall a result of Lytchak [7] and present a direct application; in Section 3 we prove Theorem 3. Section 4 relates Theorem 3 to polar foliations.

2. Preliminaries

To prove Theorem 3, we use a result by Lytchak to decompose M as a metric product $M = Z \times N$, where Z is a minimal dual leaf. To this aim, we recall:

Theorem 6 (Lytchak, Proposition 3.1 in [7]). Let M be a symmetric space with nonnegative sectional curvature. If $L^{\#}$ is a dual leaf, then M factors as $M = Z \times N$, where $L^{\#}$ is an open subset of $Z \times \{n\}$, for some $n \in N$.

It follows that the dual leaf of minimal dimension is complete.

Proposition 7. Let M be a symmetric space with nonnegative sectional curvature. If $L^{\#}$ is a dual leaf with minimal dimension, then $L^{\#}$ is complete. Moreover,

$$M = L^{\#} \times N.$$

Proof. Suppose that $L^{\#}$ is not complete. Then, Theorem 6 gives us a totally geodesic submanifold with the same dimension as $L^{\#}$ such that $L^{\#} \subsetneq Z$.

By hypothesis, the topological boundary of $L^{\#}$ on Z is not empty, on the other hand $bd(L^{\#}) = \bigcup F^{\#} \subset Z$ is a disjoint union of dual leaves (see Wilking [13], p. 1312). Moreover, since $F^{\#} \subseteq Z$ and dim $L^{\#}$ must have minimal dimension among dual leaves,

$$\dim L^{\#} \leq \dim F^{\#} \leq \dim Z = \dim L^{\#}.$$

Therefore, by applying Theorem 6 again, each $F^{\#}$ is an open subset of Z.

We conclude that the closure of $L^{\#}$, $cl(L^{\#}) = L^{\#} \cup bd(L^{\#})$, is covered by non-trivial disjoint open subsets. However, $L^{\#} \cup bd(L^{\#})$ is a closed connected subset of Z, since $L^{\#}$ is connected, a contradiction.

3. Proof of Theorem 3

We begin by constructing a very particular vertical vectors field outside a minimal dual leaf. Then use its flow lines to connect every point in a slice $N_{z'}$ to Z_n . We denote by V and H the vertical and horizontal spaces, that is, the space tangent to the leaves and the space orthogonal to V, respectively.

Let $L^{\#} = Z$ and $M = Z \times N$ be a fixed closed dual leaf and its respective metric decomposition given by Proposition 7. Fix $(z,n) \in Z \times N$ such that $L^{\#} = Z \times \{n\}$. Denote $Z \times \{n\} = Z_n$ and $\{z\} \times N = N_z$. We denote TM = TZ + TN, whenever it creates no ambiguity.

Let U be a tubular neighborhood of Z_n where the square of the distance function $f: U \to \mathbb{R}$,

$$f(z',n') = d_M((z',n'), Z_n)^2 = d_N(n',n)^2,$$

is smooth. Note that the neighborhood U can be chosen as $Z \times B_n(r)$, where $B_n(r)$ is a convex radius r open ball around $n \in N$, and that r does not depend on n, since the injectivity radius on a symmetric space does not depend on the point.

Lemma 8. For every $(z', n') \in U - Z_n$, there is a vector $v(z', n') \in V \cap TN$ such that

$$\langle v(z',n'), \nabla f(z',n') \rangle < 0.$$

Proof. We claim that

$$\nabla f(z',n') \notin H_{(z',n')} = \operatorname{pr}_{TN} H_{(z',n')},$$

where the right-hand side is the orthogonal projection of $H_{(z',n')}$ in $T_{(z',n')}N$. Recall that $-\frac{1}{2}\nabla f(z',n')$ is the velocity vector of a minimizing geodesic connecting (z',n') to (z',n). Observing that geodesics in $M = Z \times N$ are product geodesics, we conclude that no horizontal vector can be of the form $X + \nabla f$, X tangent to $Z_{n'}$, since the geodesic defined by $X + \nabla f$ connects (z',n') to the dual leaf Z_n . (Recall that the velocity of a geodesic is horizontal at one point if it is horizontal at every point. Therefore, $(z',n') \in Z_n$ if $X + \nabla f$ is horizontal, since Z_n is a dual leaf.)

Since $\nabla f \notin \tilde{H}$, ∇f must have a non-zero component on $\tilde{H}^{\perp} \cap TN_{z'}$. However, $\tilde{H}^{\perp} \cap TN_{z'} = H^{\perp} \cap TN_{z'} = V \cap TN_{z'}$. We conclude that any negative multiple of $\operatorname{pr}_{TN \cap V}(\nabla f(z', n'))$ has the desired properties.

Proof of Theorem 3. Let $Z = L^{\#} = Z_n$, $M = Z \times N$ and $U = Z \times B_n(r)$ be as above, with some fixed *r* independent of *n*. Let $\pi_Z: Z \times N \to Z$ be the projections to the *Z*-component. At every *Z*-slice we can define the foliations

$$\mathcal{F}_Z = \{L \cap Z \mid L \in \mathcal{F}\} \text{ and } \mathcal{F}_{n'} = \{L \cap Z_{n'} \mid L \in \mathcal{F}\}$$

(we observe that the second is not necessarily Riemannian.) The splitting in equation (1.1) is equivalent to the statement:

$$(3.1) L \in \mathcal{F}_{n'} \Longleftrightarrow \pi_Z(L) \in \mathcal{F}_Z.$$

In other words, that each slice $N_{z'}$ lies in a single leaf. Since $\pi_Z|_{Z_{n'}}$ is an isometry, we also conclude that $\mathcal{F}_{n'}$ has a single dual leaf, whenever (3.1) holds.

Equation (3.1) can be proved, for instance, by showing that (z', n') and (z', n) lies in the same leaf for every $(z', n') \in M$. But the flow of v, defined in Lemma 8, gives us a vertical curve connecting (z', n') to (z', n), as long as v can be chosen to form a smooth vector field, proving the assertion for every $(z', n') \in U$. Once chosen v smooth, the existence of such curve is a standard argument and, for convenience, we recall it in the next paragraphs.

Let (z, n) and U be as in the beginning of the section and fix L. Observe that $L \cap N_{z'}$ is a submanifold for almost every $z' \in Z$: the projection into the Z coordinate, $\pi: L \to Z$, $\pi(z', n') = z'$, is obviously smooth and has $\pi^{-1}(z') = L \cap N_{z'}$. On the other hand, Sard's theorem guarantees that almost every z' is a regular value for π .

Suppose that z' is a regular value and denote by $\Phi_t(z', n')$ the flow, starting at (z', n'), defined by the vector field

$$v = -\frac{pr_{TL\cap V}(\nabla f)}{\|pr_{TL\cap V}(\nabla f)\|^2}$$

Observe that v is a smooth vector field in $L \cap N_{z'} \cap U - \{(z', n)\}$ (Lemma 8). Moreover,

(3.2)
$$\frac{d}{dt}f(\Phi_t(z',n')) = -\frac{\langle \nabla f, pr_{TL\cap V}(\nabla f) \rangle}{\|pr_{TL\cap V}(\nabla f)\|^2} = -1,$$

therefore $\Phi_t(z', n')$ stays in $U = f^{-1}([0, r^2))$ and $\Phi_t(z', n')$ must be defined for $t \in [0, f(z', n'))$, since v is locally Lipschitz away from $f^{-1}(0)$. But

(3.3)
$$\lim_{t \to f(z',n')^{-}} \Phi_t(z',n') = (z',n).$$

Indeed, Φ_t fixes the first coordinate, since $v \in TN$, and $f(\Phi_t(z',n')) \to 0$ as $t \to f(z',n')^-$. Equation (3.3) then follows by equation (3.2) and $f^{-1}(0) = Z_n$. Since $v \in V$ and $\Phi_t(z',n')$ is converging, there is a sequence $\Phi_{t_k}(z',n'), t_k \to f(z',n')^-$, which is Cauchy on $L_{(z',n')}$. By recalling that leaves are locally immersed submanifolds, therefore intrinsically complete, we conclude that $(z', n) \in L_{(z',n')}$, as desired.

If z' is not a regular value, consider a sufficiently small neighborhood U' of (z', n)and suppose that $L \cap N_{z'} \cap U$ intersects a closed connected component \tilde{L} of $L \cap U'$. Then, there is a sequence z_i of regular values of $f|_{\tilde{L}\cap U\cap N_{z'}}$ converging to z', Therefore, the argument in the last paragraph shows that $(z_i, n) \in \tilde{L}$. Since \tilde{L} is closed, $(z', n) \in \tilde{L}$, as desired. Finally, note that the arguments here show that $\mathcal{F}_{n''}$ satisfy (3.1) whenever n'' is *r*-close to a point n' such that $\mathcal{F}_{n'}$ satisfy (3.1). The proof is complete since we can cover N with balls of radius r/2.

4. An application to polar foliations

A singular Riemannian foliation is called *polar* if it admits a totally geodesic horizontal section, i.e., an immersed, simply connected, connected, totally geodesic submanifold $\Sigma \hookrightarrow M$ such that Σ intersects every leaf perpendicularly.

One sees that the intersection of Σ with the singular strata happens in a collection of totally geodesic hypersurfaces of Σ . If M is simply connected, such reflections define a group W, called the *Weyl group* (see [1] for details). The metric quotient Σ/W is isometric to the leaf space M/\mathcal{F} .

Now suppose that the action of the Weyl group splits, i.e., $W = W_1 \times W_2$ as a product of groups, and $\Sigma = \Sigma_1 \times \Sigma_2$ as a metric product, such that W_i only acts on the *i*-th coordinate Σ_i . In this case, the foliation splits (see Ewert [3] and Liu–Radeschi [5]), i.e., M is a metric product $M = M_1 \times M_2$ and there are singular Riemannian foliations $\mathcal{F}_1, \mathcal{F}_2$ on M_1, M_2 such that

$$\mathcal{F} = \{ L_1 \times L_2 \mid L_i \in \mathcal{F}_i \}.$$

This is a fundamental fact used both in [7] and [5]. Here we give a simpler proof for this fact based on Theorem 3 and arguments in Lytchak [7].

Proof of Theorem 5. With Theorem 3 at hand, Theorem 5 follows directly from the arguments in [7], see Section 2.5 and the proof of Proposition 4.2. For convenience, we briefly recall them here.

Suppose that a polar foliation \mathscr{F} is given by a metric quotient $p: M \to \Delta$, so Δ is isometric to Σ/W . Further suppose that Σ admits a polar foliation \mathscr{G} which is invariant by W (i.e., W takes \mathscr{G} -leaves to \mathscr{G} -leaves), thus W acts on $\Sigma/\mathscr{G} = \Delta'$. It follows that the fibers of $q \circ p: M \to \Delta'$ defines a polar foliation on M (we refer to [7], Section 2.5, for details).

This is certainly the case when the action of W splits. Indeed, denote $q_i: \Delta \to \Delta_i = \Sigma_i / W_i$ the metric quotients. Then $q_1 \circ p, q_2 \circ p$ define two polar foliations $\mathcal{F}'_1, \mathcal{F}'_2$ on M, whose sections are Σ_1 and Σ_2 , respectively. Observe that each leaf in \mathcal{F} is the intersection of a leaf in \mathcal{F}'_1 and one in \mathcal{F}'_2 .

By Theorem 3, M decomposes as $M = M_1 \times M_2$, where the leaves of \mathcal{F}'_1 are products of M_2 with the leaves of a foliation \mathcal{F}_1 in M_1 . Since every \mathcal{F}'_1 -horizontal curve is mapped by p into a Δ_1 -factor, and hence by p_2 to a point, any dual leaf to \mathcal{F}'_1 is contained in a \mathcal{F}'_2 -leaf. Thus, the M_1 -factor is \mathcal{F}'_2 -vertical. The proof is concluded by applying the arguments in the last paragraph of the proof of Theorem 3 to conclude that \mathcal{F}'_2 splits as a foliation \mathcal{F}_2 in M_2 and the one-leaf foliation on M_1 .

Acknowledgements. The authors thank A. Lytchak for making them aware of the problem and for spelling out the application to polar foliations. **Funding.** This work is part of the PhD thesis of the first author, and was partially supported (for L. Sperança) by CNPq 404266/2016-9 and FAPESP 2017/19657-0; and (for R. J. M. e Silva) by CAPES 88882.329041/2019-01.

References

- Alexandrino, M. M. and Bettiol, R. G. Lie groups and geometric aspects of isometric actions. Springer, Cham, 2015.
- [2] Angulo-Ardoy, P., Guijarro, L. and Walschap, G.: Twisted submersions in nonnegative sectional curvature. Arch. Math. (Basel) 101 (2013), no. 2, 171–180.
- [3] Ewert, H.: A splitting theorem for equifocal submanifolds in simply connected compact symmetric spaces. *Proc. Amer. Math. Soc.* **126** (1998), no. 8, 2443–2452.
- [4] Guijarro, L. and Walschap, G.: The dual foliation in open manifolds with nonnegative sectional curvature. *Proc. Amer. Math. Soc.* 136 (2008), no. 4, 1419–1425.
- [5] Liu, X. and Radeschi, M.: Polar foliations on symmetric spaces and the mean curvature flow. Preprint 2020, arXiv: 2006.03945.
- [6] Gromoll, D. and Walschap, G.: The metric fibrations of Euclidean space. J. Differential Geom. 57 (2001), no. 2, 233–238.
- [7] Lytchak, A.: Polar foliations of symmetric spaces. Geom. Funct. Anal. 24 (2014), no. 4, 1298–1315.
- [8] Mendes, R. and Radeschi, M.: A slice theorem for singular Riemannian foliations with applications. *Trans. Amer. Math. Soc.* 371 (2019), no. 7, 4931–4949.
- [9] Radeschi, M.: Low dimensional singular Riemannian foliations in spheres. Preprint 2012, arXiv: 1203.6113.
- [10] Sperança, L. D.: On Riemannian foliations over positively curved manifolds. J. Geom. Anal. 28 (2018), no. 3, 2206–2224.
- [11] Sperança, L. D.: Totally geodesic Riemannian foliations on compact Lie groups. Preprint 2020, arXiv: 1703.09577.
- [12] Sperança, L. D. and Weil S.: The metric foliations on Euclidean spaces. *Math. Z.* 295 (2020), no. 3-4, 1295–1299.
- [13] Wilking, B. A duality theorem for Riemannian foliations in nonnegative sectional curvature. *Geom. Funct. Anal.* 17 (2007), no. 4, 1297–1320.

Received July 1, 2020. Published online June 22, 2021.

Renato J. M. e Silva

Instituto de Matemática, Estatística e Computação Científica – UNICAMP, Rua Sérgio Buarque de Holanda, 651, 13083-97 Campinas, SP, Brazil; renatojuniorms@gmail.com

Llohann D. Sperança

Instituto de Ciência e Tecnologia – Unifesp, Avenida Cesare Mansueto Giulio Lattes, 1201, 12247-014, São José dos Campos, SP, Brazil; speranca@unifesp.br