Rev. Mat. Iberoam. 38 (2022), no. 3, 857-882
DOI 10.4171/RMI/1298

©2021 Real Sociedad Matematica Espariola
Published by EMS Press and licensed under a CC BY 4.0 license

Homology versus homotopy in rational fibrations

Manuel Amann

Abstract. Motivated by prominent problems like the Hilali conjecture, Yamaguchi—
Yokura recently proposed certain estimates on the relations of the dimensions of
rational homotopy and rational cohomology groups of fibre, base and total spaces in
a fibration of rationally elliptic spaces.

In this article we prove these estimates in the category of formal elliptic spaces and,
in general, whenever the total space in addition has positive Euler characteristic or
has the rational homotopy type of a homogeneous manifold (respectively of a known
example) of positive sectional curvature. Additionally, we provide general estimates
approximating the conjectured ones.

Moreover, we suggest to study families of rationally elliptic spaces under certain
asymptotics, and we discuss the conjectured estimates from this perspective for two-
stage spaces.

Introduction

The Hilali conjecture [10] speculates that for a rationally elliptic space, i.e., a simply-
connected space with both finite rational cohomology and rational homotopy groups, the
dimension of rational cohomology is at least as large as the dimension of the rational
homotopy groups; in other words, their well-defined quotient

dim (X)) ® Q

h(X) = dim H*(X)

is well-defined and smaller equal one. While the conjecture still being open, this quotient
was considered in several different further circumstances (for example see [18]).

Recently, it was asked by Yamaguchi—Yokura how this quotient behaves in fibrations
of rationally elliptic spaces.

It is the goal of this article to provide several special cases of their conjectured estim-
ates on the one hand and, on the other hand, to study this quotient asymptotically —first
suggesting, specifying and discussing different reasonable notions of “asymptotic beha-
viour” for families of rationally elliptic spaces.
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Throughout this article we denote by X a simply-connected CW-complex. Cohomo-
logy is considered with rational coefficients. As stated above, we call X rationally elliptic
if it is simply-connected and both dim 74 (X) ® Q < oo and dim H*(X) < oo. It is
called Fy or positively elliptic, if y(X) > 0. (By abuse of notation, we shall refer to ration-
ally elliptic spaces as just being elliptic. In particular, whenever we speak of a “fibration”,
it is actually enough to have a “rational fibration” structure.)

Recall that a prominent subclass of elliptic spaces, the class of rwo-stage spaces, is
defined as follows: their minimal Sullivan models (AV, d) up to isomorphism admit de-
compositions of the form VoM =W, @ W; and d(V°" @ Wy)=0,dW! C A(V""pW?O).

We provide several notions of convergence for families of elliptic spaces. See Section 2
for an elaborate discussion of this. In particular, we rigorously define w-convergence there.
It appears to be very hard to control the possible values of (X); so it seems reasonable to
consider its asymptotic behaviour. To our knowledge, this is the first time such a discussion
is launched. As a first step this then permits to prove:

Theorem A. The family X of two-stage spaces mw-converges to 0, i.e., with dim 7, (X)QQ
(for X € X) tending to 0o, h(X) tends to 0.

The following results deal with the behaviour of #(X) in fibrations. Hence consider a
fibration F' < X — B of rationally elliptic spaces.

Conjecture 0.1 (Yamaguchi—Yokura, [24]).
1 1
0.1) E-h(FxB)§h(X)<h(F)+h(B)+Z-

As an application of Theorem A, we discuss an asymptotic version of this problem
first. We say that a class X of rationally elliptic spaces asymptotically satisfies Conjec-
ture 0.1 if the following holds: there is k € N such that if dim 77, (X) ® Q > k for X € X,
then X satisfies the conjecture.

Clearly, any family X m-converging to 0 asymptotically satisfies the right-hand side
equation, i.e., for X € X with large enough rational homotopy groups, the quotient /(X)
is smaller than 1/4.

Corollary B. Let X be a family w-convergent to 0. Then X asymptotically satisfies the
right-hand side of inequality (0.1). In particular, this holds true for two-stage spaces.

Clearly, there are two-stage spaces (products of spheres, for instance) of arbitrarily
large rational homotopy. Actually, our estimates for two-stage spaces are explicit, and it is
easy then to provide concrete numbers for dim 77, (X) ® Q starting on the range in which
the inequality holds.

The following results aim to verify Conjecture 0.1 in particular cases. As a vital tool
to do so, we first verify a more or less close approximation to the left-hand side of Con-
jecture 0.1 in:

Theorem C. For any fibration F — X — B of elliptic spaces it holds that

h(F x B) <3-h(X).
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Next we prove the conjecture whenever X is positively elliptic, as well as in the cat-
egory of formal elliptic spaces. Recall that a space is formal if its rational homotopy type
depends only on its cohomology algebra.

Theorem D. Let F — X — B be a fibration of elliptic spaces.
If F is an Fy-space, it holds that

h(F x B) <2-h(X).

Moreover, Conjecture 0.1 holds with respect to any such fibration whenever
* X isan Fy-space, or

* Fisan Fy-space and satisfies the Halperin conjecture.

For a brief discussion of the Halperin conjecture, see Section 1.1. In particular, there
we provide a list of several classes of spaces for which the conjecture is verified.

The last formulation is stricter than necessary: for a fixed totally non-homologous to
zero fibration F' < X — B with F an Fy-space, the required inequalities hold already.
With the presented formulation it is our goal to stress that conjecturally any Fy-space F
should render the fibration totally non-homologous to zero.

Combining, refining and extending the previous arguments, we finally obtain:

Theorem E. Conjecture 0.1 holds for a fibration F — X — B of elliptic formal spaces.

This is proved in Propositions 5.3 and 5.4.

As a corollary to this, we can prove Conjecture 0.1 whenever X is a known example
of positive sectional curvature, respectively a homogeneous space of positive curvature
—see Section 1.2 for more details on these classes. This is particularly interesting for
different reasons: first of all, these spaces constitute a nice class of highly important
geometric examples. Second, maybe more strikingly, let us recall the Petersen—Wilhelm
conjecture, which states that whenever X — B is a Riemannian submersion with X (and
consequently B) positively curved Riemannian manifolds, then 2dim B > dim X ; respect-
ively, in the case of compact spaces, when this submersion is a fibration F <— X — B,
dim B > dim F. We recall the general property (for example, see [2] and Proposition 1,
p. 5, in [9]) that with X being elliptic (and not necessarily a manifold with curvature
bound), the fibration features in the category of elliptic spaces already. In particular, this
would provide an a priori weaker formulation of Conjecture 0.1.

In [2] we proved the Petersen—Wilhelm conjecture in a much more general context
for the known examples of positive curvature of even dimensions only using their rational
structure. (Since several odd-dimensional examples rationally split as a product, rational
tools are not enough in odd dimensions; in [9], the odd-dimensional examples are verified
using finite coefficients.)

Note further that due to the Bott—Grove—Halperin conjecture, positively curved man-
ifolds should be elliptic. In even dimensions, the equally famous Hopf conjecture specu-
lates that they have positive Euler characteristic. That is, conjecturally the case of even-
dimensional positively curved manifolds should be completely covered by Theorem D.

In summary, Conjecture 0.1 controls much more complicated invariants of fibration
decompositions of positively curved manifolds than merely dimensions. Given all previ-
ous observations and conjectures, one might speculate:
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Conjecture. For a closed simply-connected positively curved manifold M and any fibra-
tion F — M — B of simply-connected spaces, estimate (0.1) is well-defined and holds
true.

Viewed from a different angle, we once again observe that positively curved mani-
folds seem to constitute a class of spaces behaving extremely well with respect to several
different topological approaches. We verity this speculation on the known examples.

Corollary F. Conjecture 0.1 holds true whenever the cohomology algebra H*(X) is gen-
erated by at most one even-degree and at most one odd-degree element. In particular, this
is true if X has the rational type of a simply-connected closed homogeneous space of pos-
itive sectional curvature respectively of any known example of a closed manifold admitting
positive sectional curvature.

The content of this is the observation that any fibration then only involves formal
spaces. We remark that the confirmation of the conjecture for X positively elliptic is yet
another corollary of Theorem E as well: if y(X) > 0, by the multiplicativity of the Euler
characteristic in fibrations, so are y(B), y(F) > 0. It is well known that Fy-spaces are
formal.

We leave it to the reader to reformulate our results in larger generality for nilpotent
spaces and nilpotent fibrations.

Structure of the article. In Section 1 we discuss some relevant aspects from rational
homotopy theory. In Section 2 we note first observations on the conjecture before; in the
second part of the section, we elaborately consider and discuss different notions of con-
vergence for families of elliptic spaces. In Section 3 we explain the proof of Theorem A,
which is rather independent of the following arguments. Section 4 is devoted to the proof
of Theorem C. In particular, there we prove Lemma 4.2, which is central to our arguments
and underlies nearly all further (and partly even previous) work. Finally, in Section 5 we
refine and massively extend the previous arguments in order to provide proofs of Theor-
ems D and E. As an application of the obtained results, we use this to show Corollary F in
a subsequent step.

1. Some tools from rational homotopy theory

1.1. Excerpts from rational homotopy theory

This section cannot provide and is not intended to give an introduction to the theory. We
expect the reader to have gained a certain familiarity with necessary concepts for example
from [6] or [7]. We merely recall some tools and aspects which play a larger role in the
article.

Many computations of the article rely on the theory of (minimal) Sullivan models
of simply-connected spaces X . Just to recall, these are certain commutative differential
graded algebras (AV, d) encoding the rational homotopy type of X with V a positively
graded rational vector space and AV = T (V)/I, where T(V) is the tensor algebra on V
and I the ideal generated by graded commutators x ® y — (—1)d€*d€Yy @ x. Moreover,
we use relative models and models of fibrations as constructed in Proposition 15.5 of [6].
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That is, for a fibration of simply-connected spaces F' < E — B and for Sullivan models
(AV,d) of F and (AW, d) of B, amodel for E is given by a tensor product (AV ® AW, d),
where (AW, d) is a differential subalgebra, and the projection induced by W — 0 yields
the model (AV, d) of F.

We investigate fibrations and their Sullivan models from a cohomological and a homo-
topical point of view. For the associated Serre spectral sequence, see Chapter 18 of [6].
For the associated long exact sequence of homotopy groups in terms of models, see Sec-
tion 15(e), p. 214, of [6]. In particular, recall that with the terminology from the last
paragraph, the long exact homotopy sequence dualises to the exact sequence

S WE S HRW @V dg) — VE D Wk

where, as usual, dy denotes the linear part of the differential d on A(V & W), and this
model may not be minimal.

We shall speak of rational homotopy groups of F' and B being contracted when
passing to X, which is supposed to indicate that such a homotopy group lies in the kernel
respectively the image of dy and hence exists in F' respectively B, but no longer contrib-
utes non-trivial homotopy to X .

We shall moreover draw on Euler and homotopy Euler characteristics. We use the
convention to define the latter for an elliptic minimal Sullivan algebra (AV, d) as

¥z (AV,d) = dim V°% — dim Ve,

The Euler characteristic is multiplicative (which can be proved using the Serre spectral
sequence), the homotopy Euler characteristic is additive in fibrations (as follows from the
depicted long exact homotopy sequence).

The formal dimension N of an elliptic space, i.e., the largest degree with non-trivial
cohomology, can be computed via the following dimension formula using the degrees and
dimensions of its homotopy groups —see Theorems 32.2 (iii), p. 436, and 32.6 (i), p. 441,
in [6]. For this we recall the even and odd exponents a; and b; of a minimal Sullivan
algebra (AV, d), defined by the property that the 2a; are the degrees of a basis of V"
and the 2b; — 1 are the degrees of a basis of V°4_ It then holds that

> @b —1)=) (2a; —1) = N.

Compare Remark 4.1.

Elliptic spaces X of positive Euler characteristic, so-called Fy-spaces or positively
elliptic spaces, possess a very rigid structure: their rational cohomology is concentrated
in even degrees; actually it is given by a polynomial algebra modulo a regular sequence
whence these spaces are (hyper-/intrinsically) formal. Moreover, from formula (32.14)
in p. 446 of [6], we recall that the total dimension of their cohomology, i.e., their Euler
characteristic, which equals the sum of all Betti numbers in this case, is given by

q
b.
1.1 dmH*(X) =[] =,
(1.1) im H*(X) ,-Ulaf

where the b; and a; range over the odd respectively the even exponents of a minimal
model of X.
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As a consequence, positively elliptic spaces admit pure models —see Chapter 32,
p- 434, in [6]. This contributes to the importance of pure spaces in rational homotopy the-
ory. There are many prominent classes of pure spaces featuring homogeneous spaces and
biquotients as well as cohomogeneity one manifolds. Recall our definition of two-stage
spaces in the introduction, which clearly constitutes a slight generalisation of pureness.
Two-stage spaces gain special importance due to the following.

Proposition 1.1 (See Proposition 5.10, p. 32, in [4], cf. [12]). Let X be a formal elliptic
space. Then rationally it is the total space of a totally non-homologous to zero fibration

with model B
(AB,0) > (AB® AV,d) — (AV,d)

where B = B°Y, and (AV,d) is positively elliptic.

That is, in particular, formal elliptic spaces are two-stage.

Recall that a fibration FF < X — B is called totally non-homologous to zero if the
induced map H*(X) — H*(F) is surjective, or, equivalently, if the associated Serre spec-
tral sequence degenerates at the E,-term.

Remark 1.2. Moreover, we may assume that the model (AB ® AV, d) is minimal, i.e., the
fibration to be w-trivial as well (and then decompose it as depicted). This follows from the
proof of Proposition 5.10 in [4], in which we decomposed a two-stage model of X with
stage one mapping to a regular sequence in the algebra generated by stage 0 in this form.
Without restriction, we may choose the model we start with to be minimal. Indeed, the
model comes from [5], Theorem II, p. 577, and can be chosen as a minimal model of the
hyperformal cohomology H*(X).

One of the most famous and most influential conjectures in the area is:

Conjecture 1.3 (Halperin). Let F < X — B be a fibration of simply-connected spaces
with F positively elliptic. Then the fibration is totally non-homologous to zero.
In particular, this conjecture was verified in the following cases:
*  On compact homogeneous spaces of positive Euler characteristic ([21]).
*  On simply-connected Hard-Lefschetz spaces ([17]).
* In the case of at most three generators of the cohomology algebra (see [22] and [13]).

» For spaces of formal dimension at most 16 or Euler characteristic at most 16 (see
Theorem 11.6 in [3]).

* In the “generic case” (cf. [20]).

* The class of simply-connected finite type spaces satisfying the conjecture is closed
under fibrations (cf. [15]), i.e., if both base and fibre satisfy the Halperin conjecture,
so does the total space.

These classes of examples enrich Theorem D.

Note further that it is known that the Halperin conjecture for an elliptic space F holds
if and only if it holds in the category of elliptic spaces, more precisely, for base spaces
being odd-dimensional spheres (see Theorem 1.5, p. 6, in [14], and [16]).
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1.2. Positively curved spaces and their rational structure

By “positive curvature” we shall always denote positive sectional curvature.
The known examples of simply-connected positively curved closed manifolds are the
following (cf. [9]):

* The subsequent homogeneous spaces, namely compact rank one symmetric spaces
S™, CP", HP", CaP?, the Wallach flag manifolds W, W12, W24, the Aloff-Wallach

spaces W, and the Berger spaces B”, B'3.

 The biquotients £° due to Eschenburg, the family SU(3) /S! (parametrised by differ-
ent inclusions) generalising and comprising the Aloff-Wallach spaces, the family of
Bazaikin spaces SU(5) /Sp(2)S! in dimension 13 containing B13.

* A cohomogeneity one example P2 of dimension 7 due to Dearricot and Grove—Ver-
dianiZiller.

Without going into details, collecting the information for example from [25], [2], [9] we
derive that all these spaces are formal and elliptic, and, in any case, the following holds:

* If M is even-dimensional, it is positively elliptic.
e If M is odd-dimensional, it satisfies y, (M) = 1. It is either rationally a sphere, or

its rational cohomology algebra has exactly one generator in positive even-degree and
exactly one in odd-degree.

This is the necessary information underlying the proof of Corollary F for positively curved
manifolds (see Property (*) in page 879 and Remark 5.6).

We remark further that there is a classification of simply-connected positively curved
homogeneous spaces by Wallach and Bérard—Bergery (for example see [23]) which states
that the cited homogeneous examples are actually the only ones.

2. First observations

2.1. Fibrations

Let F — X — B a fibration of elliptic spaces. We call it z-trivial if m,.(X) ® Q =
7+ (F) ® Q & n«(B) ® Q, or, equivalently, if the relative minimal model of the fibration
is actually a minimal model of X .

It is interesting to observe that w-trivial fibrations play a role converse to the one of
totally non-homologous to zero ones with respect to Conjecture 0.1; more precisely,

» if the fibration is totally non-homologous to zero, then hA(X) < h(F) + h(B) (note
that the computations of [24], p. 3, for the product fibration apply similarly to yield
this inequality), and the right-hand side of (0.1) is satisfied, in particular;

 if the fibration is w-trivial, then h(F x B) < h(X), and the left-hand side of (0.1) is
satisfied, in particular.

As for the latter, it suffices to recall that the Serre spectral sequence of the fibration

F — X — B of simply-connected spaces of finite-dimensional rational cohomology sat-
isfies E2 = HP(B) ® HY(F), whence

@.1) dim H*(X) < dim H*(F) - dim H*(B).
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If the fibration is 7 -trivial, it follows that 74 (F X E) ® Q = 7« (X) ® Q. We deduce the
given estimate for 4(X). See also Proposition 3.2, p. 3, in [24], where the same arguments
are used to verify the conjecture for fibrations which are both w-trivial and totally non-
homologous to zero.

If the fibration is not m-trivial, which usually is the case, it is in particular necessary
to understand how much rational homotopy is contracted when passing to 74 (X) ® Q.
This is dealt with in Theorems C (in the general situation) and D (for positively elliptic
fibres). So the situation of z-trivial fibrations, or, more generally, both degeneracy proper-
ties of “mr-triviality” and “totally non-homologous to zero", nicely motivate these further
generalisations.

2.2. Convergence

There are several notions possible for defining “convergence” of a family of elliptic spaces.
Let us start discussing them.

Definition 2.1. Let X be a family of elliptic spaces. We say that X has an accumulation
point ¢ € R U {oo} if for any & > 0 there exist infinitely many X € X with |h(X) —c| <e.
We say that X converges to ¢ € R if ¢ is its only accumulation point.

Example 2.2. (1) Clearly, by definition, no finite family X of elliptic spaces can have
accumulation points nor converge. No family with universally bounded cohomology can
converge to zero.

(2) Every infinite family X of elliptic spaces has an accumulation point. If X con-
verges to ¢, then so does any infinite subfamily ¥ C X.

The family {CP"}, > is a family of universally bounded homotopy dim 77,44 (CP") ®
Q = 2 converging to zero. Compare Proposition 2.7.

(3) The family {S"},>» realises infinitely many rational homotopy groups, each ele-
ment satisfies dim 7. (X) < 2 for X € X. Clearly A(X) € {1/2, 1} for X in X, and the
family has two accumulation points (although the set {#(X) | X € X} is finite and hence
does not have any accumulation points). Odd spheres converge to 1/2, even ones to 1.

(4) There are infinite families X of elliptic spaces realising only finitely many Betti
numbers (for example, see Chapter 6.2, p. 243, in [7]). Hence these families have positive
accumulation points.

(5) Such families can already be found to realise the same cohomology algebras
(see [19]).

(6) All of these example families only realise finitely many rational homotopy groups,
hence the accumulation points are positive, but not infinite. Taking product or more elab-
orate constructions, one may easily adapt limit points.

Remark 2.3. As the Hilali conjecture speculates, any accumulation point should lie in the
closed interval [0, 1]. In particular, this holds true for every class of spaces for which the
Hilali conjecture was confirmed, like two-stage spaces (Theorem A in [1]) or hyperelliptic
spaces (Theorem 1 in [8]). Recall that a space is called hyperelliptic if it admits a model
(AV,d) withdVe¥e® = 0 and dV°% C A>0Veven @ AV 4 Since a space is pure if it admits
amodel (AV,d) with dVee" = 0, dV°4 C AV ", both hyperellipticity and two-stage are
generalisations of this concept.
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Fy-spaces are prominent examples of pure spaces (Proposition 32.10, p. 444, in [6]).
As sketched, even-dimensional positively curved manifolds should be Fy-spaces by the
conjectures by Bott—Grove—Halperin and Hopf. Even in odd dimensions one may specu-
late non-negatively curved manifolds to be pure.

The next result generalises our observation on the family of spheres in Example 2.2.

Proposition 2.4. Let X be a family of elliptic spaces, let P denote the family of pure
spaces, and let @ denote the one of two-stage spaces. If P C X, respectively @ C X, then
any number h(X) for X € P, respectively for X € @, is an accumulation point of X.

Proof. For every pure respectively two-stage space X, we construct an infinite sequence
of pure respectively two-stage spaces X; satisfying h(X) = h(X;) for all i > 1. This
pureness/two-stage property will be obvious from the construction. This can be done as
follows.

Recall that pure spaces are two-stage in particular. Let (A(Vy @ V1), d) be the two-
stage decomposition of the minimal model of X. We choose the minimal model in its
isomorphism class such that we display V; with minimal possible dimension. Hence, the
differential is injective on V; and differentials have a well-defined degree. Let vy, ..., vg
be a homogeneous basis of Vj and let v’l, e, v;c, be a homogeneous basis of V7. Up to
spatial realisation, it suffices to construct a two-stage minimal model (AW,d) = (A (W &
W1), d) of X; —for the sake of simplicity, we suppress the index i in the models. For this
we construct homogeneous bases wo., . . ., wi of Wy and w, ..., w;, of W;. The w; and wj’-
will be degree shifts of the corresponding v; and vj’-. We extend degrees multiplicatively.
Hence it remains to define

degw; :=3"-j and deg wj = 3! -deg(dv}) — 1,

and extend degrees multiplicatively as usual. We write dv} = p; (v;) as a polynomial p; in
the v;, and we denote by p; (w;) the corresponding polynomial replacing the v; by the w;.
Hence set

dw; :=0 and dw} := p;(w;),

which is well-defined by construction. Hence all the X; are well-defined pure respectively
two-stage spaces. They are all mutually distinct due to degrees.

Then all X; have isomorphic minimal models, however, using isomorphisms not res-
pecting the grading. Indeed, by construction, the isomorphism to (AV, d) is induced by
the correspondence v; ~ wj, vl’. ~ w;. (For this note that due to multiplication with 3,
the parity of the basis is preserved.) In particular, 2 (X;) = h(X) for all i. This proves the
result. ]

As a consequence, the family of pure or two-stage spaces or any family containing
them like the family of all elliptic spaces does not converge to any limit point.

Note that the elements in the sequences we constructed in the last proof all had the
same rational homotopy groups. It seems more interesting to understand what happens if
rational homotopy tends to infinity.
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Definition 2.5. A family X of elliptic spaces has a w-accumulation point ¢ € R U {00},
if for all & > 0 and all » € N there exists an X € X with dim 7,(X) ® Q > n and
|h(X)—c| <e.

The family 7-converges to c € R U {00}, i.e.,

lim h(X)=c
dim 7 (X)®Q—00

if ¢ is the only w-accumulation point.

In the following, let us discuss zero as an accumulation point. We need some prepar-
atory results first.

We provide an easy and coarse estimate on the dimension of the cohomology of a pure
space. Note that the important aspect for us is that this estimate is given purely in terms
of degrees and dimensions of rational homotopy groups, since the formal dimension N of
an elliptic space can be computed just using this degree information.

Lemma 2.6. Let (AV,d) be a pure minimal Sullivan algebra of formal dimension N.
Denote by ay, ..., ay the degrees of a homogeneous basis of V", Then

dim H(AV,d) < 28mV*“=dmVet Ty /g,

1<i<k
Proof. Letwy, ..., wy be such a homogeneous basis of V" with deg w; = a;. Consider
the rational fibration given by the relative model
(2.2) (A{vy, ..., ) @ AV, d)

with fibre (A (vy,.. ., vx),0) generated by elements of degrees degv; = a; - ([N/a;] + 1)
. . _ |'N/ai -| +1
—1 satisfying dv; = w; .
By construction — we chose the v; to map to elements of degree larger than the formal
dimension N of (AV, d) under the differential d—, the total space actually has the follow-

ing minimal model up to isomorphism:
(Avr. ... 0e) @ AV.d) = (AV.d) ® (A(vy,.... vk). 0).

Hence the relative model (2.2) admits a second rational fibration structure with base space
(A(Ve @ (vy,...,vx)).d) and fibre (AV°%, 0). The dimension of the cohomology of
the base space is [ [, .; < [N/a;].

By the E>-term of the associated Serre spectral sequence of this new fibration, we
deduce that

dim H(AV,d) - 2F = dim H((AV,d) ® (A(v1. ..., vt).0))
< dim H(AV*®,0) - dim HA(V®" @ (v1....,ve)).d) <29V TT [N/ai]
1<i<k
The assertion follows. ]
For the next proposition, it would have been enough to work with the well-known
estimate dim H*(X) < 29™X for an elliptic space (and again to use that formal dimension

can be expressed via the degrees of rational homotopy groups). As a service to the reader,
we provided the last lemma with its concise proof instead.
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Proposition 2.7. If the family X of elliptic spaces has 0 as an accumulation point, then

sup{dim7m.(X) ® Q} =0 or sup{i e N|m;(X)®Q # 0} = oo.
XeX XeX

In any case, formal dimensions are unbounded, i.e.,

sup {dim X'} = oo.

XeX
Proof. 1t suffices to show that fixing the rational homotopy groups 7«(X) ® Q of an
elliptic space X, there exists « € N such that dim H*(X') < « for all elliptic X" satisfy-
ing 7.(X') ® Q = m4(X) ® Q. Indeed, this implies that for dim H*(X) to be unbounded
within X (which is clearly necessary for accumulation point zero), it is required to have
infinitely many configurations 7, (X ). That is, either infinitely many homotopy Betti num-
bers or infinitely many degrees of rational homotopy groups (or both).

In any case, the dimension formula (see Section 1.1) for elliptic spaces (together with
the observation that the existence of an even-degree basis element of the rational homotopy
groups requires the existence of an additional odd-degree one of at least twice the degree,
see Proposition 32.9 in [6]) yields the unboundedness of formal dimensions.

So let us show the existence of «. By the odd spectral sequence (see Chapter 32 (b),
p- 438, in [6]), dim H(AV,d) < dim H(AV, dy) for a minimal Sullivan algebra (AV, d)
with associated pure one (AV, dy). Hence, without restriction, we may assume that the X’
are pure spaces, and we have to show that fixing rational homotopy groups there are only
finitely many dim H*(X’) for pure X’ realising the homotopy groups. This follows from
Lemma 2.6, in which we provide an upper bound on cohomology merely in terms of the
degrees and dimensions of the rational homotopy groups. ]

Recall the family of complex projective spaces from Example 2.2 with constant dimen-
sion of rational homotopy groups and diverging cohomology. Here the top degrees of
rational homotopy diverge. The family of products of spheres of a fixed dimension clearly
has bounded top homotopical degree and diverging homotopical dimension. Both families
m-converge to zero. This illustrates that both cases in the proposition really can occur.

So we already started to answer:

Question. Which accumulation points can be realised by a family of elliptic spaces? Or,
much more interestingly, which mw-accumulation-points can be realised?

Remark 2.8. Instead of merely looking at limits, we also suggest to have a closer look
at the rate of convergence. For example, if convergence is governed by n + n/2", then
the elements of X satisfy the toral rank conjecture. (Of course, this is a rather restrictive
condition.)

Clearly, it is well known (see Theorem 7.13, p. 279, in [7]) that the toral rank rk (X)
of an elliptic X satisfies

tk (X) < xx(X) < dim 7moqa(X).
Then
rk (X) - dimm.(X) ® Q - dimm.(X) ® Q
dim H*(X) - dim H*(X) -  2dimm(X)®Q
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and (ignoring trivial cases of contractible X or vanishing rank)

k (X) 2dim 7 (X)®Q
dimm(X)®Q 2%k

dim H*(X) > 2% ().

Since dim 774 (X) ® Q — 1k (X) + log, rk (X) — log, dim 74 (X) ® Q is greater equal 0
for all relevant values, the toral rank conjecture holds in this situation.

Next we investigate how convergence to zero behaves under fibrations whence extend-
ing the class to more instances.

Proposition 2.9. Let FIB = (F <— X — B) be a family of totally non-homologous to
zero fibrations of elliptic spaces.

o The family X of total spaces mw-converges to zero if both the family ¥ of fibres and the
family B of base spaces do.

»  The family of total spaces X is w-convergent to zero if and only if so is the family of
spaces ¥ x B = (F x B).

Proof. Assume first that both ¥ and 8 m-converge to zero, and we shall show that X
also r-converges to 0. Now with #(F) and k(B) also

dimz.(X) @ Q - dim 74 (F) ® Q + dim 74 (B) @ Q
dim H*(X) — dim H*(X)

h(X) = < h(F) + h(B)

tends to zero (using the assumption that both dim H*(F), dim H*(B) < dim H*(X)).
Due to Lemma 4.2 and the formula

3dim 74 (X) ® Q > dim 7, (F) ® Q + dim 74(B) ® Q,

which we obtain from there, we derive that with 7. (F) ® Q and 7«(B) ® Q, we have
also that dim 7 (X) ® Q is unbounded. Hence X m-converges to zero.

Now we deal with the second assertion. By the very last argument we derive that X has
unbounded rational homotopy if and only if ¥ x 8B has. It remains to show that (X ) tends
to zero if and only if #(F x B) does. Due to the fibrations being totally non-homologous
to zero, we have

L. g FxB dim 7, (X
dim H*(X) dim H*(X)
< dimn*(F).® Q+dimmy(B)® Q — h(F x B),
dim H*(F x B)
and the assertion follows. [

To avoid confusion: for the family ¥ x B the respective spaces F and B belong
to the same fibration. As the proof shows, for the first part of the statement instead of a
totally non-homologous to zero fibration it would be enough to have the weaker properties
dim H*(F),dim H*(B) < dim H*(X).
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3. Proof of Theorem A

We use the two-stage decomposition for the space X described in the introduction.

Proof of Theorem A. We need to show that for arbitrarily large numbers there exist infin-
itely many two-stage spaces X with larger homotopy and with /(X)) tending to zero. It is
clear (for example just by taking products of two-stage spaces) that the class of two-stage
spaces has unbounded rational homotopy. Hence it remains to see that the number /(X)
tends to zero with dim 774 (X) ® Q going to infinity.

We recall from Theorem 2.3, p. 195, in [11] that

dim H*(X) > 2dmW!=dimV=,

Moreover, by word-length,
dim H*(X) > 1 + dim A=?V®" 4+ dim A=>W° + dim V" . dim W° — dim W'!
I 4 2dim Veven 4 (dim:even) +dim WO + (dim WO)

2
+ dim Ve . dim W° — dim W'

Set n := dim V", m := dim W°, r := dim W! — dim V*"*". (It is clear that r > 0.) It
follows that

2n+m+r
max((n2 +n+m?+m+2nm+2-2r),2")’

h(X) <

and we have to show that as one of n, m, r goes to infinity, this expression falls below 1/k
for any k € N.

We consider two different cases.

Case 1. Suppose that r < 25 which implies that
5 3
h(X) < n+ 3m

nZ +m?2+2nm+2

In this case, whenever n — oo or m — 00, the right-hand side becomes arbitrarily small.

Case 2. Suppose that r > ";’" ,1.e.,in particular, 47 > 2n + m. Then r tends to infinity
if so do n or m. Moreover,
2n+m+r 5r
h(X) < ntm+r <.
2r 2r
This converges to 0 whenever any of n, m, r tend to infinity. [

We leave it to the reader to make use of the fact that the estimates are explicit, i.e., to
provide concrete numbers for n, m, r for which the estimates hold.
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4. Proof of Theorem C

Remark 4.1. In the following we shall draw on the dimension formula (see Section 1.1).
We remark that this formula for general elliptic Sullivan algebras (AV, d) is obtained by a
reduction to the pure case, i.e., by passing to the associated pure model (AV, dy ). For this
(see Proposition 32.4, p. 438, in [6]) it is shown that in the case when (AV, d) is minimal
its cohomology is finite dimensional if and only if so is H(AV, ds). In Proposition 32.7,
p-442,in [6], itis shown that (AV,d,) and (AV,d) have the same maximal degrees of non-
vanishing cohomology. Although, as it seems, despite not being explicitly required in the
assertions, the proof of this latter result also assumes the minimality of (AV, d). Clearly,
already the cohomological finiteness result is wrong without the minimality assumption,
as already the example of the contractible algebra (A (x, y),x — y,degx = 2,degy = 3)
with associated pure algebra (A (x, y),0) of infinite-dimensional cohomology shows. Also
Theorems 32.6, p. 441, and 32.9, p. 442, in [6] draw on minimality although, putatively,
not stated.

Clearly, the difference between minimal and non-minimal models is eradicated when
formulating the dimension formula in terms of homotopy groups (see [6], p. 434). The
dimension formula, however, stays correct the way it is formulated via even and odd expo-
nents of Sullivan algebras (see Section 1.1) also for non-minimal algebras if either (AV,d)
is pure or under the following restriction: up to isomorphism, a Sullivan algebra can be
written as the product of a minimal and a contractible one (see Theorem 14.9, p. 187,
in [6]). Hence it remains to verify when the dimension formula holds for the contract-
ible factor, i.e., basically for the two situations (A (x, y), x > y), once for deg x odd and
deg y = degx + 1 even, and once for deg x even and deg y = deg x + 1 odd. In the first
case we obtain dimension deg x — (deg y — 1) = deg x — deg x = 0, the dimension for-
mula holds; in the second one it fails due to deg y — (degx — 1) =degy —degy +2 =2.
(Note that a pureness assumption excludes the second case.)

However, in the proof of the following lemma we see that the latter algebra cannot
be decomposed as the total space of a fibration of elliptic spaces by exactly comparing
the dimension formula of such total spaces with the ones of the corresponding product
spaces of potential fibre and base. Indeed, this boils down to exactly the same “(42)-
contradiction” we just observed.

We now prove a crucial lemma underlying several results. Note that we already drew
on it in Section 2 (which we do not use at all for the subsequent reasoning).

Lemma 4.2. Let F — X — B be a fibration of rationally elliptic spaces. Then it holds
that

dim oqq(X) ® Q > dim moqq(B) ® Q > dim meyen(B) @ Q,
dimﬂodd(X) ® Q > dimﬂeven(X) & Q > dimﬂeven(F) ® Q»
dimﬂodd(X) ® Q = dimﬂodd(F)a

and, in total,

dim 7, (X) ® Q 4+ 2dim moqq(X) ® Q > dim7(F) ® Q + dim 7+ (B) ® Q.
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Proof. Recall the dimension formula (see Section 1.1) for the rationally elliptic space X :
dimX = Zb,- - Z(a,- -1,
i J

where the b; range over the degrees of a homogeneous basis of my4q(X) ® Q, and the
analog for the a; and 7even (X) ® Q, and dim X denotes formal dimension.

We now fix models and homogeneous bases of base and fibre, namely (A ( f;);,d) a
minimal model of F, and (A (b;);,d) one of B yielding the model of the fibration, i.e., a
(not necessarily minimal) Sullivan model for X given by

(A(fisbj)i > ).

Consider the long exact homotopy sequence

7 (F)®Q — m(X) ®Q — m(B) ® Q > 11(F) ® Q — 11(X) ® Q.

Up to a change of basis, we may assume that (passing to the dual sequence) ker 0* =
(fi)1<i<m. Consequently (see Section 1.1 and the description of the differential there),

dol(fi)reiam: (fi)1<izm = M{bi, f3)ij/ NZ2 (i, f3)ij = (bi. fi)ij

is injective with image in (b;);. Again, up to change of basis, we may assume that do( f;) =
bi, and deg f; + 1 = degb; for 1 <i < m. Hence a minimal model of X is given by
(A(fi.bj)i j>m»d) with a suitably adapted differential d.

Next, we use the equality of formal dimensions dim X = dim F + dim B (which can
easily be deduced from the Serre spectral sequence and the fact that E‘2iim B.dimF Q,
which is left invariant by the differentials), and compute both sides separately. By applying
the dimension formula to the two respective minimal models of X and of F x B it follows
that

Z deg P + deg f,° — Z (deg b7*" + deg f7™" —2)
i>m j>m

— Zdeg blg)dd + deg ﬁodd _ Z(deg b}:ven + deg fjeven _ 2)
i j

That is,
0= Z deg blpdd + deg indd _ Z(deg bjeyen + deg fjeven _ 2)
i<m j<m
= Z(deg fieven + 1) _ (deg fieven _ 1) + Z deg fiodd _ (deg fiUdd +1-— 1)
i<m i<m

_ even
— 2'#151‘5,«”‘](;- .

It follows that there is no even-degree element in the kernel of dg = 9%, i.e., any even-
degree rational homotopy group of F passes non-trivially to X . Respectively, the equation
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writes as
0= Z deg blg)dd + deg indd _ Z(deg b‘}c_ven + deg f}even —-2)
i<m j<m
=Y deghf™ — (degh{™ — 1 — 1) + Y (degh{"™" — 1) — (deg by — 1)
i<m i<m

odd
=2- #lsismbi ,

and odd-degree rational homotopy groups of the base space B pass injectively to X. Both
observations taken together prove that

dim Teyen (X) ® Q > dim 7reyen(F) ® Q  and
dim moqa(X) ® Q > dim 7oqa(B) @ Q.

It is well known (see Proposition 32.10, p. 444, in [6]) that a rationally elliptic Y satisfies
dim 7,49(Y) ® Q > dim 7reen (YY) ® Q. Hence it remains to prove that dim 7yqq(X) ® Q >
dim 7ry4¢(F) ® Q, whence the formula

dim 7 (X) ® Q + 2dim 7,99(X) ® Q > dim 7 (F) ® Q + dim 7 (B) ® Q

follows by summation.
The linear part of the differential d, namely

do: ()i = (A(firby)ij /NZ2(fibj)ig)™ = (2 b

maps into (b{*°");. From the proof on [6], p. 443, we cite that for each b{*" there exists a
basis element 57 (of degree at least 2 deg b$'*" — 1). Hence we derive that ker dol pouay,

passes directly to mgq(X) ® Q, and that also its image, im dy, is injectively represented
in the odd-degree rational homotopy of X . The intersection of those odd degree elements
contributed by the fibre and those by the base is clearly trivial. It follows that

dim 7oqa(F) ® Q = dim(£;°"*); = dimkerdo|, fosay, + dimimdol o),
< dim mqa(X) ® Q. =
Remark 4.3. We remark that the estimate
dim 74 (X) ® Q + 2dim 7o4q(X) ® Q > dim 74 (F) ® Q + dim7«(B) ® Q
is sharp as is shown by the example of the Hopf fibration S3 < S7 — S*.
We are finally in the position to provide the:

Proof of Theorem C. From (2.1) we recall that dim H*(X) < dim H*(F) - dim H*(B).
It follows from Lemma 4.2 that for elliptic spaces F' < X — B the following estimate
holds:

dim 7. (F) ® Q + dim 74 (B) ® Q - 3dim, (X) ® Q

4.1) h(F x B) = dim H*(F) - diim H*(B) ~—  dim H*(X)

= 3h(X).
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5. Proofs of Theorems D and E

We shall now refine previous arguments to the case of positively elliptic F or X .

Proof of Theorem D. Let us first prove the right inequality in (0.1) in the depicted cases.
For this we observe the following: due to the multiplicativity of the Euler characteristic
in fibrations (see Section 1.1), the space X is Fy if and only if so are both F and B.
Hence if X is Fy so are all spaces involved. Moreover, a positively elliptic space has
rational cohomology concentrated in even degrees (see Proposition 32.10 in [6]). Hence
the Serre spectral sequence degenerates for lacunary reasons, and the fibration is totally
non-homologous to zero, whence the right inequality in (0.1) holds (see Section 2.1).

The degeneration at the E5-term is enforced by the assumption that F satisfies the
Halperin conjecture.

Let us now deal with the left inequality in (0.1). We observed that in both settings
from the assertion F is positively elliptic. As in the proof of Theorem C, we recall that
dim H*(X) <dim H*(F) - dim H*(B). From inequality (4.1) we recall that 2(F x B) <
3h(X). In the case when F is positively elliptic, we improve this to h(F x B) < 2h(X)
by refining the respective proof. Indeed, it now suffices to show that

(5.1) 2dim 4 (X) @ Q > dim 4 (F) @ Q + dim 7. (B) ® Q,
since then
dim7.(F) ® Q + dim7.(B) @ Q

dim H*(F x B)

_ 2 (dim 7. (F) ® Q + dim 7. (B) ® Q)
dim H*(X)
dimm.(X) ® Q

T dim H*(X)

h(F x B) =

<2
=2 h(X).

(Note that the first inequality is actually an equality using that our fibration is totally non-
homologous to zero; yet, this is irrelevant for the argument at this stage of the proof.)

As we observed in the proof of Lemma 4.2, (imdg)oaqq = O, i.e., only odd degree
homotopy groups from F contract even degree ones from B. This implies that

dim 7, (X) ® Q = dim 74 (F) ® Q + dim 7« (B) ® Q — 2¢,

where
¢ < min { dim 7ogq(F) ® Q, dim eyen(B) ® Q}

Since both F is an Fy-space, we derive that
dim 774q(F) @ Q = dim 7teyen(F) ® Q and  dim 7 (F) ® Q = 2dim wogq(F).
Since y (B) > 0, we always have for elliptic B that

dimnodd(B) ® Q > dimﬂeven(B) & Q and dlm”*(B) & Q = 2dim neven(B)-
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It follows that

dim7.(X)® Q
> dim 74 (F) ® Q + dim 74« (B) ® Q — min{dim 774(B) ® Q,dim 7. (F) ® Q}
> max{dim 7« (B) ® Q,dim .« (F) ® Q},

whence inequality (5.1). |

Remark 5.1. The inequality (5.1) certainly does not hold when B is positively elliptic
(instead of F). For this just consider the Hopf fibration S* < S7 — S* (with correspond-
ing inequality 2 < 3) again.

In the proof of Theorem D we came to a point where we had to discuss fibrations of Fy-
spaces. Those are necessarily totally non-homologous to zero. In the proof of Theorem E
we have to deal with fibrations of formal elliptic spaces. As Fy-spaces are formal, this
generalises the previous discussion. However, such a fibration is no longer necessarily
totally non-homologous to zero, as again the example of the Hopf fibration S* < S7 — S*
shows already. Hence we shall have to discuss the trade-off of homotopy and cohomology
degeneration.

Let F — X — B be a fibration of formal elliptic spaces. Due to Proposition 1.1, we
know that such a formal elliptic space has the structure of the total space of a totally non-
homologous to zero fibration of an Fy-space over a product of odd-dimensional spheres.
Hence X admits the following Sullivan model:

(AVF @ ATF ® AV ® ATg,d),

with Tr, Tp concentrated in odd degrees, V5" = Vl‘g’dd, Vet = V}‘,ldd, (AVF @ ATF, a)
amodel of F, (AVp ® ATg,d) a model of B. Next we prove that whenever we contract
an element of T, cohomology halves at least.

Lemma 5.2.
dim H*(F x B)

dim H*(X) < —
( ) - 2d1m1m (dol7)
Proof. We denote by
2ay1, ..., 2aqim g, 204im Ve 415 - - - 5 20dim Ve ygen

the degrees of a homogeneous basis of V5" @ Vg'", and by

2b1—1,..., 2bdim yoid — 1, 2bdimV1‘,2dd+l —-1,..., 2bdimV1'Qdd+dim ygid — 1,
2b i, Vi pdimVdd41 L. 2bgin, Vi tdim Vg 4dim T — L,
2bgin Vi dim Vg¥4dim Tr+1 — Lo 2bg, V4t dim V¥4-dim Tr +dim Tp — 1

the degrees of a homogeneous basis of V}‘?dd ® Vf,’dd & Tr & Tp.
Since X is formal as well, we can compute its cohomology using the degrees of the
rational homotopy groups of F' and B. Thus it holds that

(5.2) dim H*(X) = 24mTr+dimTp I ba(iy/ai

1<i <dim V" +dim Vg
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for some permutation 7 of {1,...,dim V}?-dd + Vf,’dd + dim TF} in particular satisfying
by < b;. The first factor comes from the product of odd spheres over which X (being
formal elliptic) fibres rationally and in a totally non-homologous to zero manner; actually
dim7F 4+ dim 7Tp = y(X). The right-hand side computes the cohomological dimensions
of possible positively elliptic fibre parts of this totally non-homologous to zero fibration
decomposition of X. For this we observe that odd-degree homotopy of this part a priori
may come from all of V}dd ® Vé’dd @ TF. The degree restrictions for the b; essentially
draw on this factor being positively elliptic, i.e., a non-trivial relation of lower degree
cannot be replaced by one of higher degree whence the one of higher degree must be trivial
and yields a free factor of odd degree —indeed, the number of relations in the positively
elliptic part equals the number of cohomology generators.

As we need to take into account that some homotopy groups might be contracted, we
may even have that b, (;) = a;. We shall make this more precise. Let ¢ := dimim (do |7 )
denote the dimension of the subgroup of 7eyen(B) ® Q which is contracted by the rational
homotopy groups of F dual to TF and hence does not contribute to 7eyen (X) ® Q. (We
focus on this homotopy solely, although, clearly, more homotopy groups may be contrac-
ted by means of dg( VI?dd).) We may express the Fy-part in the previous estimate as

[1 briy/ai = I1 br/ai

1<i<dim Vg**"+dim V" 1<i<dim Vg**"+dim V" —c 2 or =1

l_[ bn(i)/ai,

dim V5" -dim V" —c +1.<i <dim Vg +dim Vgr — ]

where we reordered such that the last ¢ factors are those contracted by TF as depicted.
For this, recall again from [6], p. 443, that, after decomposing the algebra into a minimal
one times a contractible one, up to reordering the quotients b, (;)/a; are at least 2 on the
minimal factor; they equal 1 on the contractible factor, since, from the proof of Lemma 4.2
we recall that dg is trivial on V2", and only an odd-degree element of Vg can map non-
trivially to Vp. Hence the dimension formula yields b, (;)/a; = 1 in this situation.

Next we draw some consequences from this description: the minimal model of F' x B
is just the product of the minimal models of ' and B. Hence, in order to compute its
cohomology, every factor b; /a; > 2for 1 <i < dim Vg*" 4 dim V3" yields a factor of
at least 2. In other words, every basis element of T contracted via dy hence reduces the
dimension of the cohomology of F' x B by a factor of 2 at least. (Note that this is not true
for elements contracted by do(ngd).) This together with by < b; from above implies
that

dim H*(X) < 24mTrtamTs . I1 bra/ai
1<i <dim Vg’ +dim V" —c
s e [1 bi/a; =27¢-dim H*(F x B),

1<i <dim V£ +dim V§'"
which proves the asserted estimate. ]

This now enables us to prove Theorem E in the form of the next two propositions, one
for each estimate in (0.1).
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Proposition 5.3. Let F < X — B be a fibration of formal elliptic spaces. Then
h(F x B) <2-h(X).
Proof. We recall from Lemma 4.2 that
dim7«(F x B) @ Q < 3dimm.(X) ® Q.

We combine this with Lemma 5.2 and the notation from its proof (in particular, ¢ =
dimim (dg|7;)) leading to
dim . (X) @ Q - 2¢ . dimm«(X) ® Q
dim H*(X) — dimH*(F x B)
1 .
- 2¢. (3 -(dim 74 (F x B) ® Q))
- dim H*(F x B)

h(X) =

=2°-1-h(F x B).
Hence, in order to establish #(F x B) < 2h(X), it remains to observe that 2¢*1.1 > 1
is equivalent to ¢ > 1 and to discuss the case ¢ = 0.

If ¢ = 0, we argue as follows. As in the proof of Lemma 5.2, we decompose the
minimal model of F as (AVr ® ATk, d). Hence by the arguments from the proof of
Lemma 4.2, dg can only be non-trivial on a space of dimension dim V. Clearly, dim Vp%
< %dim( VF @ TF). Analogously, imdg C V5**", and dimimdg < % dim(Vp & Tp). That
is, both from fibre and from base space at most half-dimensional rational homotopy is
contracted. Hence

1
3

1
dimm.(X) ® Q > 3 dim . (F x B).
Adapting the inequalities above and using (2.1), we then have

h(X) = dim7.(X) ®Q _ 5-dimm (FxB)®@Q |
~ dimH*X) ~ dimH*(FxB) 2

-h(F x B),

and the result follows also in this case. [

Proposition 5.4. Let F — X — B be a fibration of formal elliptic spaces. Then

h(X) < h(F) + h(B) + %

Proof. The proof basically consists of refining equation (5.2) —in particular, drawing on
the terminology and results established there. Hence we recall that

dim H*(X) — 2dimTF+dimT3 A 1_[ byr(i)/ai

1<i <dim Vg +dim V<"

for some permutation 7w of {1,...,dim V¥ + V3! + dim T} satisfying by < b;.
We now claim and prove that up to renumbering,

(T[(]), ey JT(dlm V;Ven)) = (1’ e dim V}Ven)’

i.e., the first dim V" many b; come from the Fy-part of the fibre F, i.e., they are given
by the fact that the 2b; — 1 are the degrees of a homogeneous basis of V;dd.
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In order to prove this, we again draw on the observations from [6], p. 443, respect-
ively on Proposition 32.9, p. 442, in [6] and its proof. That is, we have seen that V7"
corresponds injectively (respecting degrees) to a subspace of eyen (X) ® Q. Hence in the
(not necessarily minimal) model of the fibration there must exist a homogeneous sub-
space S of Vi @ V3% @ Tr @ Tp of dimension at least dim V' with the property
that dS C AV and that (AVE*" ® AS,d) is elliptic. Here, as usual, d denotes the pro-
jection of d to the fibre A(VF & TF). Since c_l|TF®VB@TB = 0, the only such subspace
is gradedly isomorphic to V;;dd itself. In other words, since dim V}dd = dim V7", these

first degrees b; for 1 <i < dim V*" are uniquely determined by a homogeneous basis
of V4.,
Hence using (1.1) we can refine formula (5.2) by

(5.3) dim H*(X) = 2978 . dim H*(F) - ]_[ briy/ai,

1<i<dim Vg""

where the b; are the odd exponents of Vg & TF, and 7 is now a permutation of {1,.. ., Vl‘;Gld
+dim T'r} satisfying b, ;) < b;. Indeed, we have seen that both even and also odd expo-
nents of the Fy-part of F' appear in the product. That is, the product of their quotients
computes the dimension of the cohomology of the Fo-part of F, i.e., dim H(AVE, d).
With the decomposition of formal elliptic spaces (see Proposition 1.1 and Remark 1.2)
yielding dim H*(F) = dim H(TF,0) - dim H(AVF,d), and with 29™TF = dim H(TF),
the refined formula follows.
We derive the estimate

dim H*(X) > 24m T8 +dmVE™ . qim H*(F)
or, equivalently,
(5.4) dim H*(X) > 26 B)Hdim7ea(B)®Q | gimy f*(F).
Clearly, we have that
Xx(B) + dim 7even(B) ® Q > 3 - dim7(B) ® Q

and
dim 7. (X) ® Q < dim 7 (F) ® Q + dim 7. (B) ® Q.

Hence we can estimate

h(X) = dim (X)) ® Q - dim . (X) ® Q
dim H*(X) — 2xxB)Htdim7een(B)®Q . dim H*(F)
- dim7.(F) ® Q + dim7«(B) ® Q
= 2Wimm(B)®Q)/2 . dim H*(F)
dim . (F) ® Q dimm.(B) ® Q
= H@m.(B)®Q)/2 . dim H*(F)  2W@mm®@Q/2. dim H*(F)

(5.5)

The formula 2(X) < h(F) + h(B) + % trivially holds true whenever one of F and B are
contractible. Hence we may assume this not to be the case. As an elliptic space satisfies



M. Amann 878

Poincaré duality, it follows that both dim H*(F), dim H*(B) > 2. We derive that

dim 7. (B) ® Q

(5.6) h(X) < h(F) + 2(dim 7« (B)®Q)/2+1 "’

and we need to discuss the inequality n/2"/2*1 < 1/4 for n € N (playing the role of
dim 7 (B) ® Q). This holds true unless n € [1,7].

So, in order to finish the proof, we need to differ and discuss the following particular
cases:

(i) dim H*(F) = 2, implying that either

(1) F ~S%*+! k>0, or

(2) F~S%* k>1.
(ii)) dim H*(F) = 3 equivalent to F ~¢g Q[x]/x3.
(iii) dim H*(F) > 4

Case (i.1). Let us first deal with Case (i.1). That is, we consider a fibration
S' X > B

with dim 74 (B) ® Q < 7. It follows that dim 77, (X) ® Q < 8. As X is formal, from
Proposition 1.1 we derive that, depending on the dimension of its rational homotopy, the
cohomology of X satisfies the following: (dim 7«(X) ® Q, H*(X)) can be estimated
from below by (1, > 2["/21). Correspondingly, in the respective cases, (dim 74 (X) ® Q,
h(X)) canbe estimated by (1,<1/2),(2,<1),(3,<3/4),(4,<1),(5,<5/8),(6,< 3/4),
(7,<7/16), and (8, < 1/2).

Since in our case h(F) = h(S?k*1) = 1/2, we derive that the inequality h(X) <
1/2 + 1/4 = 3/4 (and hence the asserted strict inequality 2(X) < h(F) + h(B) + 1/4)
holds unless dim 7. (X) ® Q € {2, 4}. In these latter two cases the estimates, however,
are sharp only when X is positively elliptic. That is, given that by the additivity of the
homotopy Euler characteristic y, (X) > y»(S?**1!) = 1, the actual upper bounds in these
two cases are given by (2, >4), (4,> 16) for (dim7.(X) ® Q, H*(X)) and by (2,<1/2),
(4, < 1/4) for (dim 7« (X) ® Q, h(X)). Hence we are also done in these cases.

We remark that the arguments underlying this are our usual estimates of the cohomo-
logy of the Fy-factor: given the decomposition (AB ® AV, d) from Proposition 1.1 and
Remark 1.2, we estimate dim H(A B, 0) > 24™B and dim H(AV, d) > 24™V/2_ That is,
once we have fixed the dimension dim 77,(X) = dim V' + dim B (see Remark 1.2) of the
total rational homotopy, the smaller the dimension of the rational homotopy of the Fy-part,
dim V, the larger the overall cohomology dim H *(X) predicted by this estimate.

Case (i.2) and Case (ii). Since the Halperin conjecture is confirmed for spaces with
cohomology algebra generated by one element (see Section I.1; for monicly generated
cohomology this is just a trivial computation), the fibration is totally non-homologous to
zero in Cases (i.2) and (ii). As we recalled in Section 2.1, the formula 2(X) < h(F) +
h(B) holds whenever the fibration is totally non-homologous to zero. Hence we are done
in these cases.
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Case (iii). In Case (iii) we refine inequality (5.6) to

dim7.(B) ® Q

(5.7) h(X) < h(F) + S ootz

and solve that n/2"/2%2 <1 /4 holds for n € N \ {3}. Hence, eventually, assume dim 7 (B)
®Q = n = 3. Let us see that this case is merely an artefact of the proof. Indeed, we
provide a refined version of estimate (5.5) directly derived using inequality (5.4) and not
the simplification y,(B) + dim 7eyen(B) @ Q > % -dim7(B) ® Q. That is, we obtain

dim 7.(B) ® Q
X (B)+dim feven (B)®Q dim H*(F) )

h(X) < h(F) + 3

The cases when dim 774 (B) ® Q = n = 3 now are the following:

» either y,(B) =3 and, due to formality, B rationally is a product of three odd-dimensional
spheres, or

* xx(B) =1 and B has an Fy-component with cohomology algebra generated by one
element.

In the first case respectively the second case we derive that
dimm.«(B) ® Q - 3
2 X7z (B)+dim 7even (B)®Q . dim H*(F) ~— 234

dimm«(B) ® Q - 3
2% (B)+dim Teven (BY®Q . dim H*(F) ~ 22-4

and we are done. [

As a corollary of the proof, let us fix observation (5.4) again, as it may be of independ-
ent interest.

Corollary 5.5. For afibration of formal elliptic spaces F — X — B we have the estimate
dim H*(X) > 2% B Him7ea(BY®Q . gim 1+ (F).
We sum up the results of these propositions.

Proof of Theorem E. Clearly, Theorem E is a combination of Propositions 5.3, and 5.4.
|

We finally prove the conjecture for an interesting class of manifolds, namely for any
fibration with X rationally one of the known simply-connected manifolds of positive sec-
tional curvature. In particular, this includes all simply-connected homogeneous spaces
admitting homogeneous metrics of positive curvature —see Section 1.2 for details. The
key observation for this is that any such manifold M is formal and has the rational struc-
ture of an Fy-space, if dim M is even. If dim M is odd, they satisfy

(%) dim7,q(M) ® Q =2 and dim 7even(M) @ Q =1

unless M rationally is an odd-dimensional sphere.
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Remark 5.6. Indeed, clearly, the class of spaces with finite dimensional rational cohomo-
logy and satisfying (x) is exactly the class of spaces with rational cohomology algebra
generated by one even-degree and one odd-degree element.

Lemma 5.7. An elliptic Sullivan algebra (AV, d) satisfying (*) is formal.

Proof. A minimal model of this algebra is of the form (AV,d) = (A(x, y,z),d) with deg x
even, deg y, deg z odd. Since the associated pure algebra has finite-dimensional cohomo-
logy if and only if the original one has, we derive that, without restriction, deg z > deg y
and deg z > deg x. We derive that (AV,d) decomposes as the total space of a fibration with
fibre (A (x, z),d) over (A(y),0). Since (AV, d) is simply-connected whence deg y > 1,
we obtain that dx = 0. Consequently, (AV,d) = (A(x,z),d) ® (A(y),0) with dx = 0
and dz = x¥ for some k > 0. Such an algebra is clearly formal. ]

Proof of Corollary F. We need to discuss the potential fibrations for all total spaces X
which we depicted around ().

Case 1. If X is even-dimensional, then X is an Fy-space. Hence the result follows
from Theorem D.

Case 2. Let us assume that X rationally is an odd-dimensional sphere. By Lemma 4.2
we obtain that dim 7weyen (F) ® Q = 0, dim wo94(B) ® Q < 1, whence dim 7r¢yen(B) ® Q
<Tlanddimm,q(F) ® Q < 1.Intotal, it follows that both F and B have one of the models
(A(x),0), deg x odd, or (A(x, y),d) with deg x even, deg y odd, dx = 0, dy = x* for
some k > 1. Both are formal, and the result follows from Propositions 5.3 and 5.4.

Case 3. Now suppose X is odd-dimensional and not a sphere. Then () applies. By
the additivity of the homotopy Euler characteristic, we know that 1 = y,(M) = y,(F) +
x=(B). Hence either y,(F) =0and y,(B) =1or y(F) =1and y,(B) = 0. In the
first case, F' is positively elliptic. Moreover, since 7eyen(F) ® Q < dim meyen(M) ® Q,
it follows that H*(F') is generated by one element. Since the Halperin conjecture is con-
firmed for at most 3 cohomology algebra generators (see Section 1.1), the result follows
again from Theorem D.

In the second case, y,(F) = 1, the space B is positively elliptic, and we shall have to
distinguish yet two more non-trivial cases (using Lemma 4.2 again). For this we first note
that dim Zeyen (F) ® Q < 1, dim 7oqq(F) ® Q < 2, dim 744(B) ® Q < 2, dim 7o04(B) ®
Q < 2. Combining these pieces of information leads to the following cases:

(1) F either rationally is an odd-dimensional sphere, and it holds dim 7eyen(B) ® Q =
dim 7,9q(B) = 1, or dim 7eyen (B) ® Q = dim 7o9q9(B) = 2,

(ii) or F is of the type (*) described afore the proof. Hence H *(B) is either generated
by one element, by two elements or contractible.

In order to apply Propositions 5.3 and 5.4, it remains to observe using Lemma 5.7 that in
any case all of X, F, and B are formal. [

As we noted in Corollary 4.15, p. 2292, in [2], there are several geometric conditions
which require a positively curved manifold to be a compact rank one symmetric space, and
hence to satisfy Conjecture 0.1 in particular, like a 2-positive curvature operator, weakly
quarter-pinched curvature, or the sectional curvature bound sec > 1 together with the dia-
meter bound diam M > /2.
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