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SDEs with random and irregular coefficients

Guohuan Zhao

Abstract. We consider Itô uniformly nondegenerate equations with random coeffi-
cients. When the coefficients satisfy some low regularity assumptions with respect to
the spatial variables and Malliavin differentiability assumptions on the sample points,
the unique solvability of singular SDEs is proved by solving backward stochastic
Kolmogorov equations and utilizing a modified Zvonkin type transformation.

1. Introduction

The main purpose of this work is to study the well-posedness of stochastic differential
equations (SDEs) with random and irregular coefficients. More precisely, we are con-
cerned with the following SDE in Rn:

(1.1) Xt .!/ D X0.!/C

ˆ t

0

�s.Xs; !/ dWs.!/C
ˆ t

0

bs.Xs; !/ ds:

Here ¹Wtºt2Œ0;1� is a d -dimensional Brownian motion defined on a complete filtered prob-
ability space .�;F;Ft ;P/, where F and Ft are generated by ¹Wsºs2Œ0;1� and ¹Wsºs2Œ0;t�,
respectively. The coefficients � WRn � Œ0;1���!Rn˝Rd and bWRn � Œ0;1���!Rn

are B� P-measurable, where B denotes the Borel algebra on Rn and P stands for the col-
lection of all the progressively measurable sets on Œ0; 1� ��.

In the past half century, a great deal of mathematical effort in stochastic analysis
has been devoted to the study of the existence, uniqueness and regularity properties of
strong solutions to Itô uniformly nondegenerate stochastic equations with deterministic
and irregular drifts. When r� 2 L2dloc and b is bounded, Veretennikov [19] proved the
strong existence and uniqueness of solutions to the SDE (1.1) by developing a original idea
proposed by Zvonkin in [26]. In the case where � D I and b 2LqtL

p
x with n=pC 2=q < 1,

using Girsanov’s transformation and LqtL
p
x -estimates for parabolic equations, Krylov–

Röckner [11] obtained the existence and uniqueness of strong solutions to (1.1). After
that, a lot of works investigated properties of the strong solution to (1.1) with singular
drifts. Among all, we mention that the Hölder continuity of the stochastic flow was proved
by Fedrizzi and Flandoli in [5], provided that the coefficients meet the same condition as
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in [11]. When b is bounded, Menoukeu et al. [15] obtained the weak differentiability of the
stochastic flow and the Malliavin differentiability of Xt with respect to the sample ! by
using Malliavin’s calculus. Zhang [21] extended Veretennikov’s unique strong solvability
result to the case where r�; b 2 LqtL

p
x with n=p C 2=q < 1. Under similar conditions,

the regularity of strong solutions with respect to the initial data and sample point was also
shown in [22] and [20]. For more recent results, we refer the reader to [12] and [16]. We
also note that martingale problems and stochastic Lagrangian flows corresponding to (1.1)
were studied by many researchers, among which we quote [2, 17, 23–25].

The well-posedness and regularity of strong solutions to SDEs with singular coeffi-
cients is not only a fundamental theoretical problem, but also has a wide range of applic-
ations in many mathematical and physical problems. For instance, in the remarkable
paper [7], Flandoli, Gubinelli and Priola studied the following linear stochastic transport
equation (see also [6]):

(1.2) @tuC b � ruCru ı
dWt
dt
D 0; u0 D ';

where b WRn � Œ0; 1�!Rn is deterministic. Using the stochastic flow of the corresponding
SDE (or stochastic characteristics), they proved the existence and uniqueness for the above
equation in the L1-setting, provided that the drift b is ˛-Hölder continuous uniform in t
and the divergence of b satisfies some integrability conditions. However, as mentioned
in [7], one of the major obstacles to extending the regularization by noise phenomenon to
the case where b is random is the fact that, even when b is Hölder continuous in x, the
stochastic characteristics corresponding to (1.2) may not uniquely exist. Below is a simple
but typical example.

Example 1.1. Let d D n D 1. Assume � D 1 and

bt .x/ D
p
jx �Wt j ^ 1; X0 D 0:

Denote Yt WD Xt �Wt . Then Yt satisfies the following random ODE:

dYt .!/ D bt .Yt .!/CWt .!/; !/ dt D
�p
jYt .!/j ^ 1

�
dt; Y0 D 0:

One can verify that y.1/t � 0 and y.2/t D t
2=4 are two solutions of the above ODE, which

implies X .1/t D Wt and X .2/t D t
2=4CWt are two Ft -adapted solutions to the equation

Xt D

ˆ t

0

bs.Xs/ ds CWt ; t 2 Œ0; 1�:

The above example proves that the nondegeneracy of the noise and the uniform Hölder
continuity of bt .�; !/ are insufficient to guarantee the well-posedness of (1.1). To the best
of our knowledge, there is no much literature addressing this issue so far. The main work
before this paper is Duboscq–Réveillac [4], which studies the stochastic regularization
effects of diffusions with random drift coefficients on random functions. After adding
some Malliavin differentiability conditions on b and f , the authors extended the bounded-
ness of time average of a deterministic function f depending on a diffusion process X
with deterministic drift coefficient b to random mappings f and b by investigating the
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backward stochastic Kolmogorov equation (1.5) (a � I) in some Lp-type space. How-
ever, their work misses some important requirements, in particular because it asks for a
specific form of Malliavin derivative for the drift, and in certain situations, alsoW 1;p reg-
ularity for the drift with respect to x, which makes the results not so strong. This paper
attempts to make some progress in this direction. Roughly speaking, our main result, The-
orem 1.2, shows that if the noise is additive and nondegenerate, and if b is Hölder in x,
the well-posedness of the Itô equation (1.1) is guaranteed when Dbt .x/, the Malliavin
derivative of bt .x/, also satisfies a Hölder continuity assumption with respect to x.

With a slight abuse of notation, we shall abbreviate Lp.�;F;PIRm/ as Lp.�/; the
integer m may take different values in different places. Our main result is:

Theorem 1.2. Let ˛ 2 .0; 1/, p > n=˛,ƒ > 1,� WD ¹.s; t/ 2 Œ0; 1�2 W 0 6 s 6 t 6 1º and
let D be the Malliavin derivative operator. Assume that � and b are B � P measurable.
Then equation (1.1) admits a unique solution if � and b satisfy the following assumptions:

(i) for almost all ! 2�, �.!/ and b.!/ are bounded, and for all x; y2Rn; t 2 Œ0; 1�,

jbt .x; !/ � bt .y; !/j 6 ƒjx � yj˛; j�t .x; !/ � �t .y; !/j 6 ƒjx � yjI

(ii) for almost all ! 2 � and all .x; t/ 2 Rn � Œ0; 1�,

ƒ�1j�j2 6
1

2
� ikt �

jk
t .x; !/�i �j 6 ƒj�j2; 8� 2 Rd I

(iii) for each .x; t/2Rn � Œ0;1�, �t .x/;bt .x/ are Malliavin differentiable and the ran-
dom fieldsDs�t .x/ andDsbt .x/ have continuous versions, as maps from Rn ��
to L2p.�/, such that

(1.3) sup
.s;t/2�

�
kDs�tkC˛.RnIL2p.�// C kDsbtkC˛.RnIL2p.�//

�
6 ƒ:

We give an example of b meeting the conditions in Theorem 1.2.

Example 1.3. Let n D d D 1, ˛ 2 .0; 1/, p > 1=˛. Assume NbW Œ0; 1� � R2 ! R is a
bounded function satisfying�

j Nbt .x; y/ � Nbt .x
0; y/j C j@y Nbt .x; y/ � @y Nbt .x

0; y/j
�

6 C jx � x0j˛

for all x; x0; y 2 Rn and t 2 Œ0; 1�, and

bt .x; !/ WD Nbt

�
x;

ˆ t

0

hr .!/ dWr .!/
�
:

Here h is an adapted process satisfying

sup
s2Œ0;1�

E
�
jhsj

2p
C

ˆ 1

0

jDshr j
2p dr

�
<1:

Noting that

Dsbt .x/ D @y Nbt

�
x;

ˆ t

0

hr dWr
�� ˆ t

s

Dshr dWr C hs
�

1�.s; t/;
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by the Burkholder–Davis–Gundy inequality, one sees that

sup
t2Œ0;1�I!2�

kbt .�; !/kC˛.R/ C sup
.s;t/2�

kDsbtkC˛.RIL2p.�//

6 C
h
1C sup

s2Œ0;1�

E
�
jhsj

2p
C

ˆ 1

0

jDshr j
2p dr

�1=2pi
<1;

so b satisfies the conditions (i) and (iii) in Theorem 1.2.

Our approach to the study of the well-posedness of (1.1) shall use a modified Zvonkin
transformation. Such kind of trick was first proposed in [26] for solving SDEs with deter-
ministic and bounded coefficients. To explain our main idea, let us first give a brief
introduction to Zvonkin’s idea. Denote

a D
1

2
���; Ltu D a

ij
t @ijuC b

i
t @iu:

When a and b are deterministic, a;b 2L1t C
˛
x and a is uniformly elliptic, so by Schauder’s

estimate, the following backward equation:

@tuC Ltu D �b; uT .x/ D 0;

admits a unique solution u 2 L1t C
2C˛
x with @tu 2 L1t C

˛
x . Moreover, if T is sufficiently

small, the map x 7! �t .x/ WD x C ut .x/ is a C 2-homeomorphism. Assuming that Xt
solves (1.1), by Itô’s formula, Yt WD �t .Xt / satisfies a new SDE with Lipschitz continuous
coefficients. Thus, the strong uniqueness of the solution to the original equation is given
by the one of the new equation. In the case where � and b are progressive measurable and

ess sup!2�
�
k�.!/kL1t C˛x C kb.!/kL1t C˛x

�
<1;

and thanks to the classic Schauder estimate, one can solve pointwisely the backward equa-
tion

(1.4) @tw C Ltw C f D 0; wT .x/ D 0:

Moreover, w satisfies

ess sup
!2�

�
kw.!/kL1t C

2C˛
x
C k@tw.!/kL1t C˛x

�
6 C ess sup

!2�

kf .!/kL1t C˛x :

However, in this case, for each x 2 Rd , the process w�.�; x/ W .t; !/ 7! wt .x; !/ is non-
adapted, so one cannot apply the Itô–Wentzell formula as in the deterministic case. A very
natural way to overcome this difficulty is to consider the function ut WD E.wt jFt / instead
of wt . Formally, ut satisfies the following backward stochastic Kolmogorov equation (see
Lemma 3.1):

(1.5) dut C .Ltut C ft / dt D vt � dWt ; uT .x/ D 0:

Let us mention that a more general class of semi-linear equations including (1.5) was
already studied by Du–Qiu–Tang [3] in Lp-spaces and also by Tang–Wei [18] in Hölder
spaces. However, the main obstacle for applying their result for our purposes is that one
can only expect that the vector field v is in someLp (or C ˛) space, which is far from what
is needed to apply the Itô–Wentzell formula (see Lemma A.7). Inspired by [4] and [26], in
this paper we prove a C 2C˛ type estimate (Theorem 3.5) for .u;v/, provided that the coef-
ficients satisfy some Malliavin differentiability conditions. To achieve this purpose, we
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first extend the classic Schauder estimate to random PDEs with Banach variables. Such
kind of extension gives a C 2C˛ estimate for u, as well as a C ˛ estimate for v (see
Lemma 3.1). The main result of this paper is Theorem 3.5, where we give a C 2C˛ estimate
for v, provided that the Malliavin derivatives of the coefficients satisfy (1.3). To us, such
kind of result is new and intriguing. With such a regularity estimate in hand, we then use
a modified Itô–Wentzell’s formula and a Zvonkin type transformation to prove the well-
posedness of (1.1). We believe our results have the potential to be applied to stochastic
transport equations with random coefficients and some other nonlinear stochastic PDEs.

This paper is organized as follows. In Section 2, we investigate a random Banach-
valued non-adapted Kolmogorov equation, and prove its well-posedness in some Hölder
type spaces. In Section 3, we study the solvability of the backward stochastic Kolmogorov
equation (1.5) in some C 2C˛ space. Our main result is proved in Section 4. An Itô–
Wenzell type formula and some auxiliary lemmas used in our main proofs are presented
in the Appendix.

2. Schauder estimates for random Banach-valued PDEs

In this section, we give a self-contained proof of a Schauder type estimate for random
Banach-valued parabolic PDEs by using the Littlewood–Paley decomposition.

Let T 2 .0; 1�, let D be a domain of Rn, let DT D D � Œ0; T �, and let B be a real
Banach space. For ˛ 2 .0; 1/ and a strongly continuous function gWD ! B, we define

kgk0ID WD sup
x2D

jg.x/jB ; Œg�˛ID WD sup
x;y2D

jg.x/ � g.y/jB

jx � yj˛
�

For k 2 N,

kgkC kC˛.DIB/ WD

kX
iD0

kr
igk0ID C Œr

kg�˛ID :

Here and below, all the derivatives of an B-valued function are defined with respect
to the spatial variable in the strong sense, namely, rg is the unique map from Rn to
L.RnIB/ such that limjhj!0 jg.x C h/ � g.x/ � rg.x/ � hjB D 0. For any ˇ > 0, the
space C ˇ;0x;t .DT IB/ consists of all continuous functions f WDT ! B such that

kf k
C
ˇ;0
x;t .DT IB/

WD sup
t2Œ0;T �

kf .t/kCˇ .DIB/ <1:

Below we always denote QT D Rn � Œ0; T � and Q D Q1. If there is no confusion with
the time parameter T and the underlying Banach space B , we simply write C ˇ and C ˇx;t
instead of C ˇ .RnIB/ and C ˇ;0x;t .QT IB/, respectively.

2.1. Littlewood–Paley decomposition

Let S.Rn/ be the Schwartz space of all rapidly decreasing complex valued functions
on Rn, and let S0.Rn/ be the dual space of S.Rn/ (the tempered distributions space). Given
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f 2 S.Rn/, the Fourier transform and the inverse Fourier transform of f are defined by

F.f /.�/ WD .2�/�n=2
ˆ

Rn

e�i��xf .x/ dx; F�1f .�/ WD .2�/�n=2
ˆ

Rn

ei��xf .x/ dx:

Let � WRn ! Œ0; 1� be a smooth radial function such that

�.�/ D 1; j�j 6 1I �.�/ D 0; j�j > 3=2:

Define

'.�/ WD �.�/ � �.2�/; '�1.�/ WD �.2�/; 'j .�/ WD '.2
�j
�/ .j D 0; 1; 2; : : : /:

It is easy to see that ' > 0 and supp ' � B3=2 n B1=2, and formally,

kX
jD�1

'j .�/ D �.2
�k�/

k"1
���! 1:

In particular, if jj � j 0j > 2, then

supp'.2�j �/ \ supp'.2�j
0

�/ D ¿:

Let z' be another smooth radial function such that supp z' 2 B7=4nB1=4 and z'.x/ D 1 for
all x 2 B3=2nB1=2. Denote

hj WD F�1.'j /; zhj WD F�1.z'j /:

For any f 2 L1.RnIB/C L1.RnIB/, define

�jf WD

ˆ
Rn

hj .x � y/f .y/ dy; z�jf WD

ˆ
Rn

zhj .x � y/f .y/ dy:

2.2. A basic a priori estimate

Assume .�;F; P/ is a complete probability space, H is a real Hilbert spaces and B D

Lp.�;F;PIH / for some p > 2. Let aij , bi and c be real-valued measurable functions on
Q �� and define

Lt WD a
ij
t @ij C b

i
t@i C ct :

Fix T2.0;1�. We first give a precise definition of solutions to the following B-valued PDE:

(2.1)

´
@tw C Ltw C f D 0 in Qo

T ;

wT D 0 on Rn:

Definition 2.1. A function wWQT ! B is called a solution of (2.1) if
(1) for each t 2 Œ0;T �,w.t; �/ is a twice strongly differentiable function from Rn to B;
(2) for each x 2 Rn, the process w.�; x/ is absolutely continuous from Œ0; T � to B,

and satisfies

wt .x/ D

ˆ T

t

.Lsws C fs/.x/ ds:
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In order to study the solvability of (2.1), we need the following.

Assumption 2.2. The map .x; t;!/ 7!.at .x;!/;bt .x;!/;ct .x;!/;ft .x;!// is B.Q/�F
measurable and there are constants ˛ 2 .0; 1/ and ƒ > 1 such that for almost all ! 2 �,

kaij .!/k
C
˛;0
x;t
C kbi .!/k

C
˛;0
x;t
C kc.!/k

C
˛;0
x;t

6 ƒ;(H1)

and

ƒ�1j�j2 6 aij .!/�i �j 6 ƒj�j2:(H2)

Our main result in this section is the following.

Theorem 2.3. Under Assumption 2.2, for any f 2 C ˛x;t , equation (2.1) admits a unique
solution w in C 2C˛x;t . Moreover,

(2.2) k@twkC˛x;t C kwkC 2C˛x;t
C T �1kwkC 0x;t

6 Ckf kC˛x;t ;

where C only depends on n, p, ˛ and ƒ.

As in the proof for the classic Schauder estimate, we first consider the case at .x;!/D
at .!/ and b D c D 0. Define

At;s WD

ˆ s

t

a.r/ dr; pat;s.x/ WD .det 4�At;s/�1=2 exp.�hx;A�1t;sxi/

and
P at;sf .x/ WD

ˆ
Rn

pat;s.x � y/f .y/ dy:

Lemma 2.4. Let T 2 .0; 1�; ˛ 2 .0; 1/. Assume a is x-independent and satisfies (H2).
For any f 2 C ˛x;t , the function wt .x/ D

´ T
t
P at;sfs.x/ ds is the unique function in C 2C˛x;t

satisfying

(2.3) wt D

ˆ T

t

.aijs @ijws C fs/ ds:

Moreover, there is a constant C , that only depends on n, ˛, p and ƒ, such that

(2.4) k@twkC˛x;t C kwkC 2C˛x;t
C T �1kwkC˛x;t 6 Ckf kC˛x;t :

Proof. We first prove that the map w defined above satisfies (2.4) by using Littlewood–
Paley decompositions. Recall that B D Lp.�; F; PIH /. For any g 2 L1.RnIB/ C
L1.RnIB/, by Minkowski’s inequality, we have

k.�jP
a
t;sg/.x/kB D

�
Ej.�jP at;sg/.x/j

p

H

�1=p
D
�
Ej.P at;s z�j�jg/.x/j

p

H

�1=p
D

hˆ
�

ˇ̌̌ˆ
Rn

.p
a.!/
t;s �

zhj /.y/ ��jg.x � y; !/ dy
ˇ̌̌p
H

P. d!/
i1=p

6
ˆ

Rn

dy
hˆ

�

jp
a.!/
t;s �

zhj .y/j
p
� j�jg.x � y; !/j

p

H
P. d!/

i1=p
6 k�jgk0

ˆ
Rn

�
ess sup!2�jp

a.!/
t;s �

zhj .y/j
�

dy:(2.5)
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By (H2),
ˆ

Rn

�
ess sup!2� jp

a.!/
t;s �

zhj .x/j
�

dx 6



 sup

I=ƒ6a6ƒI
jpat;s �

zhj .x/j




L1x

D

ˆ
Rn

dx sup
I=ƒ6a6ƒI

ˇ̌̌ˆ
Rn

pat;s.x � y/ 2
jn zh0.2

jy/ dy
ˇ̌̌

D

ˆ
Rn

dx sup
I=ƒ6a6ƒI

ˇ̌̌ˆ
Rn

2jnp2
2j a
t;s .2jx � z/ zh0.z/ dz

ˇ̌̌
D

ˆ
Rn

dx sup
I=ƒ6a6ƒI

ˇ̌̌ˆ
Rn

p2
2j a
t;s .x � z/ zh0.z/ dz

ˇ̌̌
:

Noting that
kf kL1 6 Cn;N k.1C jxj

2N /f .x/kL1 ; 8N > n=2;

and
F�1.pat;s/.�/ D exp.�h�; At;s �i/;

we obtainˆ
Rn

�
ess sup!2� jp

a.!/
t;s �

zhj .x/j
�

dx 6
ˆ

Rn

dx sup
I=ƒ6a6ƒI

ˇ̌̌ˆ
Rn

p2
2j a
t;s .x � z/ zh0.z/ dz

ˇ̌̌
6 C




.1C jxj2N / sup
I=ƒ6a6ƒI

jp2
2j a
t;s �

zh0j.x/




L1x

D C sup
I=ƒ6a6ƒI




.1C jxj2N /jp22j at;s �
zh0j.x/





L1x

6 C sup
I=ƒ6a6ƒI




.1C�N /ŒF�1.p22j at;s / � F�1.zh0/�.�/




L1
�

D C sup
I=ƒ6a6ƒI

ˆ
B7=4nB1=4

ˇ̌̌
.1C�N /Œexp.�22j h�; At;s�i/ � z'�.�/

ˇ̌̌
d�:

Since supj˛jDk @
˛.eaj�j

2
/ 6 C.1C jaj/k.1C j�j/keaj�j

2
, we get

ˆ
Rn

�
ess sup!2�jp

a.!/
t;s �

zhj .x/j
�

dx

6 C

ˆ
1=46j�j67=4

Œ1C .ƒ22j .s � t //2N � expŒ�22j .s � t /j�j2=ƒ� d�:

(2.6)

Denote ƒj WD ƒ22j .s � t / and �j WD 1
16
ƒ�122j .s � t /. Combining (2.5) and (2.6), we

get

k�jP
a
t;sgk0 D sup

x2Rn

k.�jP
a
t;sg/.x/kB 6 C.1Cƒ2Nj / e��j

ˇ̌
B7=4nB1=4

ˇ̌
k�jgk0:

By Lemma A.1 and the elementary inequality

.1Cƒ2Nj / e��j 6 Ck.1 ^ Œ2
2j
� .s � t /��k/ .8k 2 N/;
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we get

k�jP
a
t;sgk0 6 C 2�j˛kgk˛.1Cƒ

2N
j / e��j 6 Ck 2

�j˛.1 ^ Œ22j � .s � t /��k/kgk˛:

This yields

k�jwtk0 D



�j ˆ T

t

P at;sfs ds




0

6 C 2�j˛kf kC˛x;t

ˆ T�t

0

.1 ^ 2�2jkr�k/ dr:

If t > T � 2�2j , then

k�jwtk0 6 C 2�j˛kf kC˛x;t � .T � t / 6 C 2�j.2C˛/kf kC˛x;t I

if t < T � 2�2j , by choosing k D 2, then

k�jwtk0 6 C 2�j˛kf kC˛x;t �
�
2�2j C 2�4j

ˆ T�t

2�2j
s�2 ds

�
6 C 2�j.2C˛/kf kC˛x;t :

Again using Lemma A.1, one sees that

kwkC 2C˛x;t
6 C sup

t2Œ0;T �
j>�1

�
2�j.2C˛/k�jwtk0

�
6 Ckf kC˛x;t :

This completes the proof of (2.4). By basic calculations, one can verify that w satis-
fies (2.3). It remains to show that the w defined above is the unique solution to (2.1)
in C 2C˛x;t . Assume zw 2 C 2C˛x;t is another function satisfying (2.3). Let 0 6 % 2 C1c .R

n/ be
such that

´
%D 1 and write %".x/D "�n%.x="/. Define v WDw � zw and v" WD v � %". For

any k > n=p, N > 1 and " 2 .0; 1/, by the Sobolev embedding and Hölder’s inequality,

Ekv"t1 � v
"
t2
k
p

L1.BN IH/
D E sup

khkHD1

khv"t1 � v
"
t2
; hik

p

L1.BN /

6 CN kp�n E sup
khkHD1

khv"t1 � v
"
t2
; hik

p

W k;p.BN /

6 CN kp�n E
kX
iD0

ˆ
BN

ˇ̌̌
r
i

ˆ t2

t1

.aij @ij v
"
s /.x/ ds

ˇ̌̌p
H

dx

6 CN kp�n
jt2 � t1j

p�1

kC2X
iD2

ˆ
BN

ˆ t2

t1

E
ˇ̌̌ˆ
BNC1

vs.y/r
i�".x � y/ dy

ˇ̌̌p
H

ds dx

6 C"N
kpCnp�n

jt2 � t1j
p�1

ˆ t2

t1

ˆ
BNC1

Ejvs.y/jpH dy 6 C"N
.kCn/p

jt2 � t1j
p
kvk

p

C 0x;t
:

Due to Kolmogorov’s criterion, for almost all ! 2 � and all " 2 .0; 1/, .x; t/ 2 QT ,

kv"t .x; !/kH 6 C".!/.1C jxj/
kCn;

which means v"t .�; !/ satisfies a certain growth condition at infinity. On the other hand,
by definition, for almost all ! 2 � and each h 2 H , the real valued function hv"t .!/; hi
satisfies

@t hv
"
t .!/; hi C a

ij
t .!/@ij hv

"
t .!/; hi D 0; hv

"
T .!/; hi D 0:
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Thus, we have hv"t .!/; hi � 0 (see [8], Chapter 7, p. 176), i.e., w � %" D zw � %" a.s. So

kwt .x/ � zwt .x/kB 6 lim
"!0
kwt .x/ � .w � %"/t .x/kB C lim

"!0
k zwt .x/ � . zw � %"/t .x/kB

D 0:

This completes our proof.

Proof of Theorem 2.3. Thanks to Lemma 2.4 and the method of continuity, we only need
to prove the a priori estimate (2.2). Assume w 2 C 2C˛x;t is a solution to (2.1). Let � 2
C1c .R

d / be so that �.x/ D 1 if jxj 6 1 and �.x/ D 0 if jxj > 2. Fix a number ı > 0,
which will be determined later. Define �z

ı
D �..x � z/=ı/. Then

@t .w�
z
ı /C L

z
t .w�

z
ı /C .f�

z
ı /C Œ�

z
ıLtw � L

z
t .w�

z
ı /� D 0;

where Lztwt .x/ WD a
ij
t .z/@ijwt .x/. Using (H1) and noting that

�zıLtw�L
z
t .w�

z
ı /D�

z
ı .a

ij
�aijz /@ijwC.b

i�zı �2a
ij
z @j�

z
ı /@iwC.c�

z
ı �a

ij
z @ij�

z
ı /w;

we have

kŒ�zıLtw � L
z
t .w�

z
ı /�kC˛x;t 6 Cı˛kr2wk

C
˛;0
x;t .B2ı .z/�Œ0;T �IB//

C C
�
ı�˛kr2wkC 0x;t

Cı�1�˛krwkC˛x;t Cı
�2�˛
kwkC˛x;t

�
:(2.7)

Combining Lemma 2.4 and equation (2.7), we obtain that for any ı > 0,

sup
z2Rn

kwk
C
2C˛;0
x;t .B2ı .z/�Œ0;T �IB/

6 Cn sup
z2Rn

kwk
C
2C˛;0
x;t .Bı .z/�Œ0;T �IB/

6 C sup
z2Rn

kw�zıkC 2C˛x;t
6 C sup

z2Rn

kf�zı C Œ�
z
ıLtw � L

z
t .w�

z
ı /�kC˛x;t

6 Cı˛ sup
z2Rn

kwk
C
2C˛;0
x;t .B2ı .z/�Œ0;T �IB/

C C
�
ı�˛kr2wkC 0x;t

C ı�1�˛krwkC˛x;t C ı
�2�˛
kwkC˛x;t C ı

�˛
kf kC˛x;t

�
:

By choosing ı 2 .0; 1/ sufficiently small such that Cı˛ 6 1=2, we obtain

sup
z2Rn

kwk
C
2C˛;0
x;t .B2ı .z/�Œ0;T �IB/

6 Cı
�
kwkC 2x;t

C kf kC˛x;t

�
:

Using interpolation, we get

kwkC 2C˛x;t
6 Cı sup

z2Rn

kwk
C
2C˛;0
x;t .B2ı .z/�Œ0;T �IB/

6 "Cı kwkC 2C˛x;t
C Cı;"

�
kwkC 0x;t

C kf kC˛x;t

�
; 8" 2 .0; 1/:

By choosing " small such that "Cı 6 1=2, we get

(2.8) kwkC 2C˛x;t
6 C

�
kwkC 0x;t

C kf kC˛x;t

�
:
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It remains to show that kwkC 0x;t can be controlled by kf kC˛x;t . By Minkowski’s inequality,
for any t 2 Œ0; T �,�

E
ˆ
Br .x/

jwt .y/j
p

H
dy
�1=p

D

�
E
ˆ
Br .x/

ˇ̌̌ˆ T

t

@sws.y/ ds
ˇ̌̌p
H

dy
�1=p

D

�
E
ˆ
Br .x/

ˇ̌̌ˆ T

t

.Lsws C fs/.y/ ds
ˇ̌̌p
H

dy
�1=p

6 C

ˆ T

t

�
E
ˆ
Br .x/

jLswsCfsj
p

H
.y/ dy

�1=p
ds 6 CT rn=p.kwkC 2x;t

Ckf kC 0x;t
/:(2.9)

One the other hand, by Hölder’s inequality,

jwt .x/jB 6
 
Br .x/

jwt .x/ � wt .y/jB dy C
 
Br .x/

jwt .y/jB dy

6 krwkC 0x;t

 
Br .x/

jx � yj dy C
 
Br .x/

�
E
ˆ
Br .x/

jwt .y/j
p

H

�1=p
dy

6 rkrwkC 0x;t
C r�n=p

�
E
ˆ
Br .x/

jwt .y/j
p

H
dy
�1=p

:

(2.10)

Combining (2.9) and (2.10), we obtain

kwkC 0x;t
6 rkrwkC 0x;t

C CT .kwkC 2x;t
C kf kC 0x;t

/:

Due to (2.8),
kwkC 2x;t

6 C.kf kC˛x;t C kwkC 0x;t
/:

Combining the above two inequalities and letting r ! 0, we get

kwkC 0x;t
6 CT .kwkC 0x;t

C kf kC˛x;t /:

By choosing T sufficiently small such that CT 6 1=2, we get

kwkC 0x;t
6 CT kf kC˛x;t :

This together with (2.8) implies that (2.2) holds for some small T > 0. The same estimate
for arbitrary T 2 .0; 1� can be obtained by induction.

Remark 2.5. If f satisfies

ess sup
!2�

kf .!/k
C
˛;0
x;t .QT IR/

<1;

then (2.1) can be solved pointwisely, and by the classic Schauder estimate, it holds that

ess sup
!2�

�
k@tw.!/kC˛;0x;t .QT IR/

C kw.!/k
C
2C˛;0
x;t .QT IR/

C T �1kw.!/k
C
˛;0
x;t .QT IR/

�
6 C ess sup

!2�

kf .!/k
C
˛;0
x;t .QT IR/

:
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3. A Schauder estimate for a backward SPDE

In this section, we prove the solvability of (1.5) in the C 2C˛x;t � C
2C˛
x;t space. Recall that

Wt is a d -dimensional Brownian motion on a complete probability space .�;F;P/, Ft D
�¹Ws W s 6 tº

W
N and FDF1. For any t 2 Œ0;1� andX 2F, we denote EtX WDE.X jFt /.

Throughout this section, we always assume T 2 .0; 1�, and that H is a real Hilbert space,
B D Lp.�IH / for some p > 2 andH D L2.Œ0; 1�IRd /. With a slight abuse of notation,
we writeLp.�/DLp.�IRm/ for some integerm> 1 that can change in different places.

Lemma 3.1. Let H D R. Assume that a; b; c are B � P measurable and satisfy Assump-
tion 2.2. Then the BSPDE

ut .x/ D

ˆ T

t

.Lsus C fs/.x/ ds �
ˆ T

t

vs.x/ � dWs

has an Ft -adapted solution .u;v/ in C 2C˛x;t �C
˛.RnILp.�IH/ and ut DEtwt , wherew

is the solution to (2.1). Moreover,

kukC 2C˛x;t
C T �1kukC 0x;t

C kvkC˛.RnILp.�IH// 6 Ckf kC˛x;t ;

where C only depends on n, d , p, ˛ and ƒ.

Proof. Let w be the solution of (2.1). Define ut .x/ D Etwt .x/. By Theorem 2.3 and
Lemma A.4,

kukC 2C˛x;t
C T �1kukC 0x;t

6 Ckf kC˛x;t :

Since at .x/; bt .x/ 2 Ft , by the definition of u, we have

ut .x/ D Et
° ˆ T

t

Œ.Lsws C fs/.x/� ds
±

D

ˆ T

t

EsŒ.LswsCfs/.x/�dsC
°ˆ T

t

Et Œ.LswsCfs/.x/�ds�
ˆ T

t

EsŒ.LswsCfs/.x/�ds
±

D

ˆ T

t

.Lsus C fs/.x/ ds Cmt .x/ �mT .x/:

Here,

(3.1) mt .x/ D

ˆ T

t

Et Œ.Lsws C fs/.x/� ds C
ˆ t

0

EsŒ.Lsws C fs/.x/� ds 2 Ft :

For any t 2 Œ0; T �, noting that

EtmT .x/ D Et
ˆ T

0

EsŒ.Lsws C fs/.x/� ds

D Et
ˆ t

0

EsŒ.Lsws C fs/.x/� ds C Et
ˆ T

t

EsŒ.Lsws C fs/.x/� ds

D

ˆ t

0

EsŒ.Lsws C fs/.x/� ds C
ˆ T

t

Et Œ.Lsws C fs/.x/� ds D mt .x/;
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we deduce that m�.x/ is a Ft -martingale. By Theorem 2.3, (3.1) and Lemma A.4, one
can see that m 2 C ˛x;t . Thanks to the martingale representation, there is an Ft -adapted
process v�.x/ such that

mt .x/ �m0.x/ D

ˆ t

0

vs.x/ � dWs :

Hence, we have

ut .x/ D

ˆ T

t

.Lsus C fs/.x/ ds �
ˆ T

t

vs.x/ � dWs;

i.e.,

ut .x/ D u0.x/ �

ˆ t

0

.Lus C fs/.x/ ds C
ˆ t

0

vs.x/ � dWs :

By (3.1) and the Burkholder–Davis–Gundy inequality, we obtain

E
h� ˆ T

0

jvt .x/ � vt .y/j
2 dt

�p=2i
D Ehm.x/ �m.y/ip=2T 6 C EjmT .x/ �mT .y/jp

D C E
ˇ̌̌ˆ T

0

EsŒ.Lsws C fs/.x/ � .Lsws C fs/.y/� ds
ˇ̌̌p

6 C

ˆ T

0

E
ˇ̌̌
Es
h
.Lsws C fs/.x/ � .Lsws C fs/.y/

iˇ̌̌p
ds

6 C

ˆ T

0

E j.Lsws C fs/.x/ � .Lsws C fs/.y/jp ds

6 C jx � yj˛p
�
kwk

p

C 2C˛x;t

Ckf k
p

C˛x;t

�
6 C jx � yj˛pkf k

p

C˛x;t
;

which yields
kvkC˛.RnILp.�IH// 6 Ckf kC˛x;t ;

and completes the proof.

As we mentioned in the introduction, Zvonkin type transforms are an effective way to
prove the well-posedness of SDEs with singular coefficients. However, the C ˛-regularity
of v in the spatial variable is not enough to apply this trick. So we need to get a better
regularity estimate for v under some mild conditions. To achieve this goal, we start with
some definitions and lemmas. Let �b be a set of random variables of the form

F D f .hh1; W i; : : : ; hhm; W i/;

where f 2 C1
b
.Rm/, hi 2H and hhi ;W i WD

´ 1
0
hs dWs . We define the operatorD on �b ,

with values in the set of H -valued random variables, by

DF D

mX
iD1

@if .hh1; W i; : : : ; hhm; W i/hi :

For any p 2 Œ1;1/, D1;p is the closure of the set �b with respect to the norm kF kD1;p WD

kF kp C kDF kLp.�IH/.
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Lemma 3.2. Suppose ¹ytºt2Œ0;1� is a process .may not be adapted/ on .�;P;F/ such that

yt D y0 C

ˆ t

0

Pyr dr;

with y0 2 D1;2 and Py 2 L2.Œ0; 1�ID1;2/. Then there exists a random field ¹ys;tº.s;t/2Œ0;1�2
such that for each t 2 Œ0; 1�, y�;t DD�yt in L2.�IH/; for each s 2 Œ0; 1�, the map Œ0; 1� 3
t 7! ys;t 2 L

2.�IRd / is absolutely continuous, and

(3.2) Etyt D Ey0 C
ˆ t

0

Es Pys ds C
ˆ t

0

Esys;s dWs :

Proof. By our condition that y0 2 D1;2 and Py 2 L2.Œ0; 1�ID1;2/, we have that Dy0 2
L2.Œ0;1���IRd / and the map .s; t;!/ 7!Ds Pyt .!/ is an element ofL2.Œ0;1�2 ��IRd /.
By Fubini’s theorem, there is a Lebesgue null set N � Œ0; 1� such that for each s … N, the
map t 7!Ds Pyt is an element of L2.Œ0; 1�IL2.�// andDsy0 2 L2.�/. For any s 2 Œ0; 1�,
define

ys;t D

´
Dsy0 C

´ t
0
Ds Pyr dr if s … N; t 2 Œ0; 1�;

0 if s 2 N; t 2 Œ0; 1�:

Obviously, for each s 2 Œ0; 1�, the map Œ0; 1� 3 t 7! yt;s 2 L
2.�/ is absolutely continuous.

By our assumptions,
ˆ 1

0

k PyrkD1;2 dr 6
�ˆ 1

0

k Pyrk
2
D1;2 dr

�1=2
<1;

i.e., PyW Œ0; 1�! D1;2 is Bochner integrable. Since D is a continuous operator from D1;2

to L2.�/, we get

Dyt D Dy0 CD

ˆ t

0

Pyr dr D Dy0 C
ˆ t

0

D Pyr dr:

Combining this with the definition of ys;t , we get y�;t DD�yt inL2.�IH/ for all t 2 Œ0;1�.
Moreover, by our assumptions,

E
ˆ 1

0

jys;sj
2 ds 6 E

ˆ 1

0

jDsy0j
2 ds C E

ˆ 1

0

ˇ̌̌ˆ s

0

Ds Pyr dr
ˇ̌̌2

ds

6 kDy0k2 C
ˆ T

0

kD Pyrk
2
2 dr <1;

which means that ys;s is an element of L2.Œ0; 1� ��IRd /. By Lemma A.6, we have

(3.3)
Etyt D Eyt C

ˆ t

0

EsDsyt � dWs D Eyt C
ˆ t

0

Esys;t � dWs

D Eyt C
ˆ t

0

Esys;s � dWs C
ˆ t

0

Es.ys;t � ys;s/ � dWs :

Note that for any s … N, t 2 Œ0; 1�,

ys;t � ys;s D

ˆ t

s

Ds Pyr dr :
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By the stochastic Fubini theorem,
ˆ t

0

Es.ys;t � ys;s/ � dWs D
ˆ t

0

Es
�ˆ t

s

Ds Pyr dr
�
� dWs

D

ˆ t

0

�ˆ t

s

EsDs Pyr dr
�
� dWs D

ˆ t

0

dr
ˆ r

0

EsDs Pyr � dWs

(A.5)
D

ˆ t

0

.Er Pyr � E Pyr / dr D
ˆ t

0

Er Pyr dr C Ey0 � Eyt :

Plugging this into (3.3), we obtain (3.2).

For any F 2 F and h 2 H , denote

(3.4) �"hF.!/ WD F
�
! C "

ˆ �
0

hs ds
�
; Dh

"F WD
.�"hF � F /

"
�

The next lemma is taken from [14], and gives a characterization of the space D1;p in terms
of differentiability properties.

Lemma 3.3. Let p 2 .1;1/ and F 2 Lp.�/. The following properties are equivalent.

(1) F 2 D1;p .

(2) There is DF 2 Lp.�IH/ such that for any h 2 H and q 2 Œ1; p/,

lim
"!0

EjDh
"F � hDF; hiH j

q
D 0:

(3) There is DF 2 Lp.�IH/ and some q 2 Œ1; p/ such that for any h 2 H ,

lim
"!0

EjDh
"F � hDF; hiH j

q
D 0:

Moreover, in that case, DF D DF .

Denote �T D ¹.s; t/ W 0 6 s 6 t 6 T º, � D �1. We need the following.

Assumption 3.4. For each .x; t/ 2 Q, at .x/, bt .x/ and ct .x/ are Malliavin differenti-
able, and each of the random fields Dsat .x/, Dsbt .x/ and Dsct .x/ has a continuous
version as a map from Rn �� to L2p.�/ such that

sup
.s;t/2�

�
kDsatkC˛.RnIL2p.�// C kDsbtkC˛.RnIL2p.�//

C kDsctkC˛.RnIL2p.�//

�
6 ƒ0 <1:

(H3)

The next theorem is the key to the main purpose of this paper.

Theorem 3.5. Let T 2 .0; 1�, q > 2p > 4 and C ˇx;t D C
ˇ;0
x;t .QT IL

p.�//. Under Assump-
tions 2.2 and 3.4, the following BSPDE:

(3.5) ut .x/ D

ˆ T

t

.Lsus C fs/.x/ ds �
ˆ T

t

vs.x/ � dWs;
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has an Ft -adapted solution .u; v/ 2 C 2C˛x;t �C
2C˛
x;t , provided that f 2 C ˛;0x;t .QT IL

q.�//

and Df 2 C ˛;0x;t .QT IL
2p.�IH//. Moreover, there is a constant C , that only depends

on n, d , p, q, ˛, ƒ and ƒ0, such that

kukC 2C˛x;t
C kvkC 2C˛x;t

6 C
�
kf k

C
˛;0
x;t .QT IL

q.�//
C sup
.s;t/2�T

kDsftkC˛.RnIL2p.�IRd //

�
:

Proof. We divide the proof into four steps.
Step 1. Let

ƒf WD kf kC˛;0x;t .QT ILq.�//
C sup
.s;t/2�T

kDsftkC˛.RnIL2p.�IRd //;

and letw be the unique solution to equation (2.1) in C 2C˛;0x;t .QT IL
q.�//. Below we show

that for each .x; t/, wt .x/ is Malliavin differentiable, and that Dw satisfies the following
Lp.�IH/-valued equation:

(3.6) Dwt D

ˆ T

t

.LrDwr CGr / dr;

where Gr D Dfr C .@ijwrDa
ij
r C @iw

i
rDb

i
r C wr �Dcr /. To do this, we consider the

following Lp.�IH/-valued PDE:

(3.7) Dwt D

ˆ T

t

Lr .Dwr / dr C
ˆ T

t

Gr dr D 0:

By Assumptions 2.2 and 3.4, and Theorem 2.3, we get

kwk
C
2C˛;0
x;t .QT ILq.�//

6 Ckf k
C
˛;0
x;t .QT IL

q.�//
6 Cƒf ;

and X
i;j

kDaij k
C
˛;0
x;t .QT IL

2p.�IH//

C

X
i

kDbik
C
˛;0
x;t .QT IL

2p.�IH//
C kDck

C
˛;0
x;t .QT IL

2p.�IH//
<1:

Recalling that q > 2p � 4, Hölder’s inequality yields

kGk
C
˛;0
x;t .QT IL

p.�IH//
6 Cƒf :

Due to Theorem 2.3 (with H D H therein), there exists a unique solution Dw 2

C
2C˛;0
x;t .QT IL

p.�IH// of (3.7). Thus, for any h 2 H , Dhwt WD hDwt ; hi satisfies

Dhwt �

ˆ T

t

Lr .D
hwr / dr D

ˆ T

t

hGr ; hi dr;(3.8)

kDhwkC 2C˛x;t
C kDh@twkC˛x;t 6 C jhjHƒf :(3.9)
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Next we show that Dh
"wt .x/ (see (3.4) for the definition) converges to Dhwt .x/ in

Lp.�/, and as a consequence, we have Dwt .x/ D Dwt .x/. By the definition of Dh
"w,

one sees

Dh
"wt �

ˆ T

t

�
�"ha

ij
r @ijD

h
"wr C �"hb

i
r @iD

h
"wr C �"hcr D

h
"wr

�
dr

D

ˆ T

t

�
Dh
" fr CD

h
" a
ij
r @ijwr CD

h
" b
i
r@iwr CD

h
" crwr

�
dr:

(3.10)

Noting that for any F 2 D1;p and h 2 H ,

(3.11) Dh
"F D

.�"hF � F /

"
D "�1

ˆ "

0

��hD
hF d�;

we get that for any q0 2 Œp; 2p/,

EjDh
" fr .x/ �D

h
" fr .y/j

q0
D




"�1 ˆ "

0

��h ŒD
hfr .x/ �D

hfr .y/� d�



q0
Lq
0
.�/

6 sup
06�6"

k��h.D
hfr .x/ �D

hfr .y//k
q0

Lq
0
.�/
:

Due to Girsanov’s theorem,

dP ı ��1
�h

dP
D E.�h/ WD exp

�
�

ˆ T

0

hr dWr �
�2

2

ˆ T

0

jhr j
2 dr

�
:

Hence,

EjDh
" fr .x/ �D

h
" fr .y/j

q0 6 sup
06�6"

EŒjDhfr .x/ �D
hfr .y/j

q0E.�h/�

6 sup
06�6"

EŒjDhfr .x/ �D
hfr .y/j

2p�
q0

2p � EŒE
q

2p�q0 .�h/�
1�

q0

2p

6 CkDfrk
q0

C˛.RnIL2p.�IH//
jhj

q0

H jx � yj
˛q0 ;

where we have used the following fact in the last inequality:

EE�.�h/ D EE.��h/ exp
��2 � �

2
jhj2H

�
6 C� :

Thus,
sup
"2.0;1/

kDh
" f kC˛;0x;t .QT ILq

0
.�//

6 C jhjHkDf k
C
˛;0
x;t .QT IL

2p.�IH//
:

Similarly, for any q00 2 .1; 2p/,

sup
"2.0;1/

�
kDh

" akC˛;0x;t .QT ILq
00
.�//
CkDh

" bkC˛;0x;t .QT ILq
00
.�//
CkDh

" crkC˛;0x;t .QT ILq
00
.�//

�
6 C:

Choosing q0D p and q00D pq
q�p
2 .p;2p/, and noticing that kwk

C
2C˛;0
x;t .QT ILq.�//

6Cƒf ,
by Hölder’s inequality, we get

(3.12) sup
"2.0;1/



Dh
" f CD

h
" a
ij @ijw CD

h
" b
i@iw CD

h
" cw




C
˛;0
x;t .QT IL

p.�//
6 C jhjHƒf :
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Since �"ha; �"hb; �"hc satisfy (H1) and (H2), by (3.10), (3.12) and Theorem 2.3, we have

sup
"2.0;1/

�
kDh

"wkC 2C˛x;t
C kDh

" @twkC˛x;t

�
6 C jhjHƒf :(3.13)

Let ıh"w WD D
h
"w �Dhw. Next we want to prove that ıh"wt .x/! 0 in Lp.�/, for each

.x; t/ 2 QT . By definition,

@tı
h
"w C Ltı

h
"w D �.D

h
" f �D

hf /

�
�
.Dh

" a
ij
�Dhaij /@ijw C .D

h
" b
i
�Dhbi /@iw C .D

h
" c �D

hc/w
�

� "
�
Dh
" a
ij @ijD

h
"w CD

h
" b
i @iD

h
"w CD

h
" c D

h
"w
�
DW �

3X
iD1

F ";i ;

(3.14)

i.e., ıh"w is aLp.�/-valued solution to (2.1) with f replaced by F "t WD
P3
iD1F

";i
t . Estim-

ates (3.9) and (3.13) yield

sup
"2.0;1/

�
kıh"wkC 2C˛x;t

C k@tı
h
"wkC˛x;t

�
6 C jhjHƒf :(3.15)

By (3.14), for each R > 0, we have

@t .ı
h
"w�R/C Lt .ı

h
"w�R/C F

"�R

� .2aij @iı
h
"w@j�R C ı

h
"wa

ij
t @ij�R C ı

h
"wb

i
t@i�R/ D 0;

where �R.x/ D �.x=R/. Due to our assumptions and (3.15),

.2aij @iıh"w@j�R C ıh"waijt @ij�R C ıh"wbit@i�R/

C˛x;t 6 C jhjHƒf =R:

So by Theorem 2.3, for any ˛0 2 .0; ˛/,

(3.16) kıh"w�RkC 2C˛
0

x;t
6 CkF "�RkC˛0x;t

C C jhjHƒf =R:

Thanks to Lemma 3.3, for each .x; t/ 2 QT , F ";1t .x/ D Dh
" ft .x/ �D

hft .x/! 0

inL2p.�/. By (3.11) and the continuity ofDf WQT 7!L2p.�IH/, one can verify that the
mapQT 3 .x; t/ 7!Dh

" ft .x/ 2L
p.�/ is equivalent continuous. So by the Arzelà–Ascoli

theorem, for any sequence "n! 0 .n!1/, there exists a subsequence "nk ! 0 .k!1/

such that for all R > 0, F "nk ;1�R ! 0 in C ˛
0

x;t with some ˛0 2 .0; ˛/. Similarly, we have
F "nk ;2�R! 0 and F "nk ;3�R! 0 in C ˛

0

x;t as k!1. Thus, lim sup"!0kF
"�RkC˛0x;t

D 0.
So by (3.16), for any R0 > 0,

lim sup
"!0

kıh"w�R0kC 2C˛
0

x;t
6 lim
R!1

lim sup
"!0

kıh"w�RkC 2C˛
0

x;t
6 lim
R!1

C=R D 0;

which implies Dh
"wt .x/ � Dhwt .x/ ! 0 in Lp.�/. Again by Lemma 3.3, for each

.x; t/ 2QT , we have wt .x/ 2 D1;p andDwt .x/DDwt .x/ 2 C
2C˛;0
x;t .QT IL

p.�IH//.
Estimate (3.6) follows by the definition of Dw.
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Step 2. For any .s; t/ 2 �T , let wst .x/ be the solution to the following equation:

wst D

ˆ T

t

.Lrw
s
r C g

s
r / dr;

where gsr WD .Dsa
ij
r /@ijwr C .Dsb

i
r /@iwr C .Dscr /wr CDsfr . By Hölder’s inequality,

kgskC˛x;t 6 kDsf kC˛;0x;t .QT ILp.�// C kwkC 2C˛;0x;t .QT IL2p.�//

�X
ij

kDsa
ij
k
C
˛;0
x;t .QT IL

2p.�//

C

X
i

kDsb
i
k
C
˛;0
x;t .QT IL

2p.�//
C kDsckC˛;0x;t .QT IL2p.�//

�
6 Ckf k

C
˛;0
x;t .QT IL

q.�//
C C sup

.s;t/2�T

kDsftkC˛.RnILp.�// 6 Cƒf :

Theorem 2.3 yields

sup
s2Œ0;T �

�
k@tw

s
kC˛x;t C kw

s
kC 2C˛x;t

�
6 CkgskC˛x;t 6 Cƒf :(3.17)

Step 3. In this step, we prove that the function wst .x/ constructed in Step 2 is a version
of Dswt .x/. Let

A˛ D ¹w W w 2 C 2C˛x;t ; @tw 2 C
˛
x;tº; kwkA˛ WD kwkC 2C˛x;t

C k@twkC˛x;t :

By linearity and Theorem 2.3, the solution map of (2.1),

T W C ˛x;t 3 f 7! w 2 A˛;

is Lipschitz continuous. Since Œ0;T � 3 s 7! gs 2C ˛x;t is measurable, s 7!ws is measurable
from Œ0; T � to A˛ . For any ' 2 C1c ..0; T /IR

d /, define

w' D

ˆ T

0

'.s/ � ws ds; g' D

ˆ T

0

'.s/ � gs ds:

Then, one sees that w' satisfies

w
'
t D

ˆ T

t

.Lrw
'
r C g

'
r / dr:

On the other hand, noticing that Dw is the unique solution to (3.6), we have

h';Dwt iH D

ˆ T

t

.Lrh';DwriH C h'; griH / dr D
ˆ T

t

.Lrh';DwriH C g
'
r / dr:

So w' D h';Dwi, which implies s 7! ws is a version of Dw.

Step 4. In this step, we prove the C 2C˛ regularity estimate for v. Define ut .x/ D
Etwt .x/. Theorem 2.3 and Lemma A.4 yield

kukC 2C˛x;t
6 kwkC 2C˛x;t

6 Ckf kC˛x;t 6 Cƒf :
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Let Pwt .x/ WD �ŒLtwt .x/C ft .x/�. By Step 1, Pw 2 C ˛;0x;t .QT ID
1;p/. Note that

wt .x/ D w0.x/C

ˆ t

0

Pws.x/ ds:

Thanks to Lemma 3.2, for each .x; t/ 2 QT ,

ut .x/ D Etwt .x/ D Ew0.x/C
ˆ t

0

Es Pws.x/ ds C
ˆ t

0

EsWs;s.x/ � dWs;

where Ws;t .x/DDsw0.x/C
´ t
0
Ds Pwr .x/dr for all .x; t/ 2QT and s 2 Œ0; T � a.e. Since

Ws;s.x/ D Dsw0.x/C

ˆ s

0

Ds Pwr .x/ dr D
ˆ T

s

DsŒLrwr C fr �.x/ dr

D

ˆ T

s

ŒLrDswrCg
s
r �.x/ dr D

ˆ T

s

ŒLrw
s
rCg

s
r �.x/ D w

s
s .x/; s 2 Œ0; T � a.e.;

we get

ut .x/ D u0.x/ �

ˆ t

0

Es.Lsws C fs/.x/ ds C
ˆ t

0

Eswss .x/ � dWs

D u0.x/ �

ˆ t

0

.Lsus C fs/.x/ ds C
ˆ t

0

Eswss .x/ � dWs :

Since uT .x/ D 0, we have

u0.x/ D

ˆ T

0

.Lsus C fs/.x/ ds �
ˆ T

0

Eswss .x/ � dWs :

Combining the above two equations, we obtain

ut .x/ D

ˆ T

t

.Lsus C fs/.x/ ds �
ˆ T

t

Eswss .x/ dWs :

Let vs.x/ D wss .x/. Then the above identity implies that .ut ; vt / D .Etwt ; Etwtt / is a
solution to (3.5). Moreover,

kvkC 2C˛x;t
D sup
06t6T

kEtwttkC 2C˛.RnILp.�// 6 sup
s2Œ0;T �

kwskC 2C˛x;t

(3.17)
6 Cƒf <1:

So we complete our proof.

Let % 2 C1c .R
n/ be such that

´
% D 1, and %m.x/ WD mn%.mx/. For any function

gWRn ! Rm, set gm WD g � �m.
The following corollary of Theorem 3.5 is standard.

Corollary 3.6 (Stability). Assume a, b and c satisfy Assumptions 2.2 and 3.4. Let wmt
.respectively .um; vm// be the solution to (2.1) .respectively (3.5)/ in C 2C˛x;t .respectively
C 2C˛x;t � C

2C˛
x;t / with a; b; c; f replaced by am; bm; cm; f m. Then for any ˇ 2 .0; ˛/, it

holds that

k@t .w � w
m/k

C
ˇ
x;t
C kw � wmk

C
2Cˇ
x;t
C T �1kw � wmkC 0x;t

! 0 as m!1;

ku � umk
C
2Cˇ
x;t
C kv � vmk

C
2Cˇ
x;t
! 0 as m!1:
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4. SDEs with random singular coefficients

In this section, we give the proof for our main result.

Proof of Theorem 1.2. We first point out that it is enough to prove the well-posedness
of (1.1) for t 2 Œ0; T=2�, where T is a universal constant depending only on n; ˛;ƒ; p.

(a) Pathwise uniqueness. Assume that Xt is a solution to (1.1). We prove the unique-
ness by using a Zvonkin type transformation. With a slight abuse of notation, we denote
C
ˇ
x;t D C

ˇ;0
x;t .QT IL

p.�IRm//, where m is an integer that can change in different places.
Recall that Lt D a

ij
t @ij C b

i
t@i . We consider the following BSPDE:

(4.1) dut C .Ltut C bt / dt D vt � dWt ; uT .x/ D 0:

By our assumptions and Theorem 3.5, (4.1) has an Ft -adapted solution .ut ; vt / and

(4.2) kukC 2C˛x;t
C kvkC 2C˛x;t

<1:

Since ut D Etwt , wt solves

@tw C Ltw C b D 0; wT .x/ D 0

and
ess sup
!2�

�
sup
t2Œ0;T �

kbt .�; !/kC˛ C sup
.s;t/2�T

kDsbt .�; !/kC˛
�
<1:

By Remark 2.5, we have

ess sup
!2�

sup
t2Œ0;T �

�
kwt .�; !/kC 2C˛ C T

�1
kwt .�; !/kC˛

�
6 C ess sup

!2�

sup
t2Œ0;T �

kbt .�; !/kC˛ :

Interpolation inequality and the above estimate yield

ess sup
!2�

sup
t2Œ0;T �

kut .�; !/kC 1 6 ess sup
!2�

sup
t2Œ0;T �

kwt .�; !/kC 1 6 CT ;

where CT ! 0 as T ! 0. Below we fix T D T .n; ˛;ƒ; p/ > 0 so that

ess sup
!2�

sup
t2Œ0;T �

kut .�; !/kC 1 6
1

2
�

Let �t .x/ D x C ut .x/. Then

(4.3)
1

2
6 ess sup

!2�

sup
06t6T

kr�t .x; !/kL1 6
3

2
�

So, for almost all ! 2 �, �t .�; !/ is a stochastic C 2C˛-differential homeomorphism
from Rn to Rn. By the definition of �,

d�t .x/ D �.Ltut .x/C bt .x// dt C vt .x/ � dWt D dut .x/ D dgt .x/C dmt .x/;
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where

(4.4) gt .x/ D �

ˆ t

0

.Lsus.x/C bs.x// ds; mt .x/ WD

ˆ t

0

vs.x/ dWs :

We want to show that �, g, u, v and X are regular enough to apply the Itô–Wenzell
formula (see Lemma A.7). Since kvkC 2C˛x;t

<1, we have

sup
t2Œ0;T �Ix¤y

Ejr2vt .x/ � r2vt .y/jp

jx � yj˛p
<1:

Note that p > n=˛, so for any ˇ 2 .n=p; ˛/ and N > 0, by Garsia–Rademich–Rumsey’s
inequality,

sup
t2Œ0;T �

E
�

sup
x;y2BN

jrv2t .x/ � r
2vt .y/j

jx � yjˇ�n=p

�p
6 CN sup

t2Œ0;T �

E
�ˆ

BN

ˆ
BN

jr2vt .x/ � r
2vt .y/j

p

jx � yjdCˇp
dx dy

�
6 CN

ˆ
BN

ˆ
BN

jx � yj�dC.˛�ˇ/p 6 CN :

Combining this and the fact that supt2Œ0;T � Ejr2vt .0/jp <1, we get

sup
t2Œ0;T �

E
�

sup
x2BN

jr
2vt .x/j

p
�
<1; 8N > 0:

Moreover, one can also prove

(4.5) sup
t2Œ0;T �

EkvtkpC 2.BN / <1; 8N > 0:

Recall that gt .x/ and mt .x/ are defined in (4.4). Let

�t .x/ WD

ˆ t

0

gs.x/ ds
(4.1)
D ut .x/ � u0.x/ �mt .x/:

By Burkholder–Davis–Gundy’s inequality, for each k D 0; 1; 2,

E
ˇ̌
r
kmt .x/ � r

kmt .y/
ˇ̌p 6 CE

hˆ t

0

jr
kvs.x/ � r

kvs.y/j
k ds

ip=2
6 CE

ˆ t

0

jr
kvs.x/ � r

kvs.y/j
p ds 6 C jx � yj˛pkrkvk

p

C˛x;t
;

which together with (4.2) implies

k�kC 2C˛x;t
6 C

�
kukC 2C˛x;t

C kvkC 2C˛x;t

�
:
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By the definition of �,

k@t�kC˛x;t D kgkC˛x;t 6 kLtuC bkC˛x;t 6 C
�
kukC 2C˛x;t

C kbkC˛x;t

�
:

Thanks to Lemma A.3, for any ˇ 2 .n=p; ˛/ and � D 1=2C .˛ � ˇ/=2 2 .1=2; 1/, we
have

k�k
C �t C

1Cˇ
x

6 Ck@t�k
�
C˛x;t
k�k1��

C 2C˛x;t
:

By the same procedure used for proving (4.5), we haveh
E



ˆ t2

t1

gs ds



p
C 1.BN /

i1=p
D
�
Ek�t1 � �t2k

p

C 1.BN /

�1=p 6 CN jt1 � t2j
� ; � 2 .1=2; 1/:

On the other hand, EjXt1 �Xt2 jp
0 6 C jt1 � t2j

p0=2, where p0 D p=.p � 1/. So �;g; v;X
satisfy all the conditions in Lemma A.7. Using (A.7), we get

d�t .Xt / D �Ltut .Xt / � bt .Xt / dt C vkt .Xt / dW k
t

C Œbit .Xt /@i�t .Xt /C a
ij
t .Xt /@ij�t .Xt /C @iv

k
t .Xt /�

ik
t .Xt /� dt

C @i�t .Xt /�
ik
t .Xt / dW k

t

D @iv
k
t .Xt /�

ik
t .Xt / dt C @i�t .Xt /� ikt .Xt / dW k

t C v
k
t .Xt / dW k

t :

Set

Yt D �t .Xt /; zbt .y/ D @iv
k
t �

ik
t ı �

�1
t .y/ and z�t .y/ D Œr�t�t C vt � ı �

�1
t .y/:

By the above calculations, one sees that

(4.6) Yt D Y0 C

ˆ t

0

zbs.Ys/ ds C
ˆ t

0

z�s.Ys/ dWs :

Thanks to Lemma A.2, zb and z� are B � P-measurable. For any x; y 2 BN and t 2 Œ0; T �,
by the definitions of zb and z� , we have

jzbt .0/j C jz�t .0/j 6 CKNt ;

jzbt .x/ � zbt .y/j C jz�t .x/ � z�t .y/j 6 CKNt jx � yj;

where KNt WD kutkC 2.BN / C kvtkC 2.BN /. It is not hard to see that KNt is progressive
measurable and satisfies

E
ˆ T

0

KNt dt 6 T sup
t2Œ0;T �

EKNt
(4.5)
< 1:

Thanks to Theorem 1.2 of [9], equation (4.6) admits a unique solution, which implies Xt
is unique up to indistinguishability.

(b) Existence. Let bmt D bt � %m and let Xm be the solution to

Xmt D X0 C

ˆ t

0

bms .X
m
s / ds C

ˆ t

0

�s.X
m
s / dWs; t 2 Œ0; T �:(4.7)
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We claim that Xmt converges to a process Xt uniformly on compacts in probability (ucp
convergence, in short). Let .um; vm/ be the pair of functions constructed in Theorem 3.5
satisfying

dumt C
�
a
ij
t @iju

m
t C .b

m
t /
i@iu

m
t C b

m
t

�
dt D vmt � dWt :

Like before, we can find a uniform constant T D T .n;˛;ƒ;p/ > 0 such that krumt kL1 6
1=2. Define �mt .x/ WD x C u

m
t .x/; Y

m
t WD �

m
t .X

m
t / and Zm;m

0

t WD Y mt � Y
m0

t . Again by
Itô–Wentzell’s formula, we have

Z
m;m0

t D Y mt � Y
m0

t D u
m
0 .X0/ � u

m0

0 .X0/C

ˆ t

0

Œzbms .X
m
s / �

zbm
0

s .X
m0

s /� ds

C

ˆ t

0

Œz�ms .X
m
s / � z�

m0

s .X
m0

s /� dWs;

where

zbmt WD Œ@iv
m;k
t � ikt � ı .�

m
t /
�1; z�mt WD Œ.r�

m
t /�t C v

m
t � ı .�

m
t /
�1:

By Itô’s formula, for any stopping time � 6 T ,ˇ̌
Z
m;m0

t^�

ˇ̌2
D jum0 .X0/ � u

m0

0 .X0/j
2
C 2

ˆ t^�

0

Zm;m
0

s �
�
zbms .Y

m
s / �

zbm
0

s .Y
m0

s /
�

ds

C

ˆ t^�

0

tr
�
z�ms .Y

m
s / � z�

m0

s .Y
m0

s /
��
z�ms .Y

m
s / � z�

m0

s .Y
m0

s /
�� ds Cmt^� ;(4.8)

where

mt D 2

ˆ t

0

Zm;m
0

s �
�
z�ms .Y

m
s / � z�

m0

s .Y
m0

s /
�

dWs :

For any N; k 2 N, let Km;Nt WD kumt kC 2.BN / C kv
m
t kC 2.BN /,

�N;k D inf
m

inf
°
t > 0 W

ˆ t

0

.K
m;N
s /2 ds > k

±
^ T;

and
�N D inf

m
inf
®
t > 0 W jY mt j > N=2

¯
^ T; �N;k WD �N ^ �N;k :

For all x; y 2 BN=2 and t 2 Œ0; �N;k �, we have

(4.9) sup
m2N

�
jzbmt .x/ �

zbmt .y/j C jz�
m
t .x/ � z�

m
t .y/j

�
6 Ckjx � yj:

Since for each .x; t/ 2 BN=2 � Œ0; T �, .�mt /
�1.x/ 2 BN , we obtain that for any x 2 BN=2

and t 2 Œ0; �N;k �,

jzbmt .x/ �
zbm
0

t .x/j 6
ˇ̌
Œ@iv

m;k
t � ikt � ı .�

m
t /
�1.x/ � Œ@iv

m0;k
t � ikt � ı .�

m
t /
�1.x/

ˇ̌
C
ˇ̌
Œ@iv

m0;k
t � ikt � ı .�

m
t /
�1.x/ � Œ@iv

m0;k
t � ikt � ı .�

m0

t /
�1.x/

ˇ̌
6 Ckrvmt �rv

m0

t kL1.BN /CCkv
m0

t kC 2.BN /j.�
m
t /
�1.x/�.�m

0

t /
�1.x/j

6 Ckvmt � v
m0

t kC 2.BN / C Ckv
m0

t kC 2.BN / sup
y2BN

j�m
0

t .y/ � �
m
t .y/j

6 Ck
�
kumt � u

m0

t kC 2.BN / C kv
m
t � v

m0

t kC 2.BN /

�
:
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Similarly, for each x 2 BN=2 and t 2 Œ0; �N;k �,

jz�mt .x/ � z�
m0

t .x/j 6 Ck
�
kumt � u

m0

t kC 2.BN / C kv
m
t � v

m0

t kC 2.BN /

�
:

By Theorem 3.5, Corollary 3.6 and the same procedure used for proving (4.5), we have

sup
t2Œ0;T �;m2N

EjKm;Nt j
p
D sup

t2Œ0;T �;m2N
E
�
kumt kC 2.BN / C kv

m
t kC 2.BN /

�p
<1

and
lim
m!1

sup
t2Œ0;T �

E
�
kut � u

m
t kC 2.BN / C kvt � v

m
t kC 2.BN /

�p
D 0:

Thus,

(4.10) lim
k!1

�N;k D T; lim
N!1

�N D T

and

(4.11) lim
m;m0!1

E
�
kz�mt � z�

m0

t k
p

L1.BN=2/
C kzbmt �

zbm
0

t k
p

L1.BN=2/
1Œ0;�N;k �.t/

�
D 0:

Let � D �N;k in (4.8). Using (4.9), we haveˇ̌
Z
m;m0

t^�N;k

ˇ̌2 (4.9)
6
ˇ̌
um0 .X0/ � u

m0

0 .X0/
ˇ̌2

C Ck

ˆ t^�N;k

0

jZm;m
0

s j
�
jZm;m

0

s j C kzbms �
zbm
0

s kL1.BN=2/

�
ds

C Ck

ˆ t^�N;k

0

�
jZm;m

0

s j C kz�ms � z�
m0

s kL1.BN=2/

�2 ds Cmt^�N;k

6 kum0 � u
m0

0 k
2
L1 C Ck

ˆ t

0

ˇ̌
Z
m;m0

s^�N;k

ˇ̌2 ds Cmt^�N;k

C Ck

ˆ t^�N;k

0

�
kzbms �

zbm
0

s k
2
L1.BN=2/

C kz�ms � z�
m0

s k
2
L1.BN=2/

�
ds:

By Gronwall’s inequality and (4.11), we get

(4.12)

E
ˇ̌
.Zm;m

0

/�
T^�N;k

ˇ̌2 6 Ckku
m
0 � u

m0

0 k
2
L1

C CkE
ˆ T

0

�
kz�ms � z�

m0

s k
2
L1.BN=2/

C kzbms �
zbm
0

s k
2
L1.BN=2/

�
1Œ0;�N;k �.s/ ds

(4.11)
�! 0 as m;m0 !1:

On the other hand,

jXmt �X
m0

t j D j.�
m
t /
�1.�mt .X

m
t // � .�

m
t /
�1.�mt .X

m0

t //j 6 2 j�mt .X
m
t / � �

m
t .X

m0

t /j

6 2 j�mt .X
m
t / � �

m0

t .X
m0

t /j C 2 j�
m0

t .X
m0

t / � �
m
t .X

m0

t /j

6 2kumt � u
m0

t kL1 C 2jY
m
t � Y

m0

t j:(4.13)
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Combining (4.12) and (4.13), we get

lim
m;m0!1

E sup
t2Œ0;T �

jXm
t^�N;k

�Xm
0

t^�N;k
j

6 2 lim
m;m0!1

E sup
t2Œ0;T �

kumt � u
m0

t kL1 C 2 lim
m;m0!1

E.Zm;m
0

/�
T^�N;k

D 0:

Noting that

lim
N!1

lim
k!1

�N;k D lim
N!1

�N
(4.10)
D T;

we obtain
lim

m;m0!1
P
�

sup
t2Œ0;T=2�

jXmt �X
m0

t j > "/
�
D 0; 8" > 0:

This implies that there is a continuous process ¹Xtºt2Œ0;T=2� such that Xm ! X in the
sense of ucp. Hence,

ˆ t

0

�s.X
m
s / dWs

P
�!

ˆ t

0

�s.Xs/ dWs; 8t 2 Œ0; T=2�;

and for each t 2 Œ0; T=2� and " > 0,

P
�ˇ̌̌ˆ t

0

bms .X
m
s / ds �

ˆ t

0

bs.Xs/ ds
ˇ̌̌
> "

�
6 P

�
sup

t2Œ0;T=2�

jbm.Xmt / � b.X
m
t /j >

"

2

�
C P

�
sup

t2Œ0;T=2�

jbt .X
m
t / � bt .Xt /j ds >

"

2

�
6 P

�
kbm � bkL1.QT / >

"

2

�
C P

�
sup

t2Œ0;T=2�

jXmt �Xt j
˛ >

"

2ƒ

�
! 0; as m!1:

Taking limits on both sides of (4.7), one sees that X is a solution to (1.1).

A. Appendix

In this section, we give some lemmas used in the previous sections. The following basic
result is useful.

Lemma A.1. Let f 2 L1.RnIB/C L1.RnIB/.

(1) .Bernstein’s inequality/ For any kD0; 1; 2; : : :, there is a constant CDC.n; k/>0
such that for all j D �1; 0; 1; : : :,

kr
k�jf k0 6 C 2kj k�jf k0I

(2) For any ˛ 2 .0; 1/, there is a constant C D C.˛; n/ > 1 such that

C�1 sup
j>�1

2j˛k�jf k0 6 kf kC˛ 6 C sup
j>�1

2j˛k�jf k0:

One can find the proof of above lemma in [1] for BDR. We present its Banach-valued
version below for the reader’s convenience.
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Proof. For any j D 0; 1; 2; : : :, we have
´

Rn hj .z/ dz D 'j .0/ D 0, so

k�jf .x/kB D



 ˆ

Rn

hj .x � y/Œf .y/ � f .x/� dy





B

D




 ˆ
Rn

2jnh.2j .x � y//Œf .y/ � f .x/� dy





B

6 Ckf kC˛

ˆ
Rn

2jnh.2j z/ jzj˛ dz D C 2�j˛kf kC˛ ;

which implies
sup
j>�1

2j˛ k�jf k0 6 C˛kf kC˛ :

On the other hand,


f .x/ � kX
jD�1

�jf .x/





B
D




ˆ
Rn

F�1.�.2�k �//.y/Œf .x/ � f .x � y/� dy





B

D




ˆ
B
2k"

F�1.�/.z/Œf .x/ � f .x � 2�kz/� dz





B

C




ˆ
Bc
2k"

F�1.�/.z/Œf .x/ � f .x � 2�kz/� dz





B

6 oscB".x/f �
ˆ

Rn

jF�1.�/.y/j dy C 2kf k0

ˆ
Bc
2k"

jF�1.�/.y/j dy:

Letting k !1 and then "! 0, we obtain that for each f 2 Cb.RnIB/ and x 2 Rn,
f .x/ D

P
j>�1�jf .x/. Thus, for any K > 0,

jf .x/�f .y/jB 6
X
j>�1

j�jf .x/��jf .y/jB 6 jx�yj
X

�16j6K

kr�jf k0C2
X
j>K

k�jf k0

6 C˛
�
jx � yj 2.1�˛/K C C 2�˛K

�
sup
j>�1

2 j̨
k�jf k0:

For any jx � yj < 1, by choosing K D � log2.jx � yj/, we obtain

jf .x/ � f .y/jB 6 C˛ jx � yj
˛ sup
j>�1

2 j̨
k�jf k0;

completing the proof.

Suppose f WRn ! Rn is a continuous homeomorphism on Rn; its inverse map is
denoted by f �1. Our next auxiliary lemma is used in the proof of Theorem 1.2.

Lemma A.2. Suppose .S I�/ is a measurable space. Let F W .S �RnI � �B/! .RnIB/.

(1) Assume X is another measurable map from .S I �/ to .RnIB/. Then the map
a 7! F.a;X.a// is measurable from .S I �/ to .RnIB/.
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(2) For any L > 0, define

HL WD
®
f WRn ! Rnjf is a continuous homeomorphism and

L�1jx � yj 6 jf .x/ � f .y/j 6 Ljx � yj
¯
:

If F W .S �RnI� �B/! .RnIB/ and for each a 2 S , F.a; �/ 2HL, then the map

F �1 W S �Rn 3 .a; x/ 7! ŒF �1.a; �/�.x/ 2 Rn

is � �B=B measurable.

Proof. (1) This conclusion is trivial since the map a 7! .a;X.a// is �=� �B measurable.
(2) Define

d.f; g/ WD sup
x2Rn

jf .x/ � g.x/j

1C jxj
; 8f; g 2 HL:

It is easy to verify that HL is a metric space equipped with the metric d . For any f 2 HL
and " > 0, by the continuity of x 7! F.a; x/, we get

¹a W d.F.a; �/; f / < "º D
\
q2QnI

r2Q\Œ0;1/

°
a W
jF.a; q/ � f .q/j

1C jqj
< r"

±
2 � :

So the map F W .S; �/! .HL;B.HLI d// is measurable. Obviously, the map

Inv W HL 3 f 7! f �1 2 HL;

is well-defined. Now assume d.fn; f /! 0. Given x 2 Rn, call y D f �1.x/. Then

jf �1n .x/ � f �1.x/j D jf �1n ı f .y/ � f �1n ı fn.y/j

6 Ljf .y/ � fn.y/j 6 L.1C jyj/d.fn; f /:

By definition of HL,
jf .y/ � f .0/j > L�1jyj;

which implies
jxj D jf .y/j > L�1jyj � jf .0/j:

So

jf �1n .x/ � f �1.x/j 6 L.1C Lf .0/C Ljxj/d.fn; f / 6 Cf;L.1C jxj/d.fn; f /;

which implies d.f �1n ; f �1/ 6 Cf;Ld.fn; f /! 0. Thus, the map InvWHL ! HL is con-
tinuous. Hence, the map F �1 WD Inv ı F from .S;�/ to .HL;B.HL// is also measurable.
As a consequence, the map

F �1 W S �Rn 3 .a; x/ 7! ŒInv ı F.a; �/�.x/ 2 Rn

is � �B=B measurable.
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Roughly speaking, the above lemma shows that if .a; x/ 7! F.a; x/ is measurable,
then .a; x/ 7! F �1.a; �/.x/ is also measurable.

The following interpolation lemma is used several times in our paper.

Lemma A.3. Let 06 
0 < 
1 < 
2 with 
1 …N and let � WD .
2 � 
1/=.
2 � 
0/ 2 .0;1/.
Write QT D Rn � Œ0; T � and let B be a Banach space. Then there is a constant C > 0

such that, for all f 2 C 
2x;t with @tf 2 C

0
x;t ,

(A.1) kft1 � ft2kC 
1 6 C jt1 � t2j
�
k@tf k

�

C

0
x;t

kf k1��
C

2
x;t

:

Proof. First of all, for any t 2 Œ0; 1�, we have

kftkC 
1 6 Ckftk
�
C 
0 kftk

1��
C 
2 :

For any 0 6 t0 < t1 6 T , ˇ 2 .0; �/ and q > 1=� , by the Garsia–Rademich–Rumsey
inequality, we have

kft1 � ft0k
q
C 
1

jt1 � t0jˇq�1
6 C

ˆ t1

t0

ˆ t1

t0

kft � fsk
q
C 
1

jt � sj1Cˇq
ds dt

6 C

ˆ t1

t0

ˆ t1

t0

kft � fsk
�q
C 
0 kft � fsk

.1��/q
C 
2 jt � sj�1�ˇq ds dt

6 C
�ˆ t1

t0

ˆ t1

t0

jt � sj�q

jt � sj1Cˇq
ds dt

�
k@tf k

�q

C

0
x;t

kuk
.1��/q

C

2
x;t

D C jt1 � t0j
�q�ˇqC1

k@tf k
�q

C

0
x;t

kuk
.1��/q

C

2
x;t

;

which gives (A.1).

Lemma A.4. Suppose ˇ > 0, H is a real Hilbert space and C ˇx D C ˇ .RnILp.�IH //.
Assume G is a subalgebra of F. Then

(A.2) kE.X jG/k
C
ˇ
x

6 kXk
C
ˇ
x
:

Moreover, for any k 2 N with k 6 ˇ,

(A.3) r
kE.X.x/jG/ D E.rkX.x/jG/:

Proof. We only prove (A.2) when ˇ 2 .0; 1/. Denote EGX.�/ WD E.X.�/jG/. By Jensen’s
inequality,

E
ˇ̌
EGX.x/ � EGX.y/

ˇ̌p
H

6 E
�
EG
jX.x/ �X.y/jH

�p 6 E
�
EG
ˇ̌
X.x/ �X.y/

ˇ̌p
H

�
D EjX.x/ �X.y/jp

H
6 jx � yjˇp kXkp

C
ˇ
x

;

which yields

kEGXk
C
ˇ
x
D sup
x;y2Rd

ŒEjEGX.x/ � EGX.y/j
p

H
�1=p

jx � yjˇ
6 kXk

C
ˇ
x
:
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For (A.3), we only give the proof for k D 1. Again by Jensen’s inequality,ˇ̌
EGX.x C h/ � EGX.x/ � ŒEG

rX.x/� � h
ˇ̌
H

6 EG
ˇ̌
X.x C h/ �X.x/ � rX.x/ � h

ˇ̌
H
:

Thus,

E
ˇ̌
EGX.x C h/ � EGX.x/ � ŒEG

rX.x/� � h
ˇ̌p
H

6 E EG
�ˇ̌
X.x C h/ �X.x/ � rX.x/ � h

ˇ̌p
H

�
D
ˇ̌
X.x C h/ �X.x/ � rX.x/ � h

ˇ̌p
B
! 0 as h!1;

which gives the desired result.

Lemma A.5. Suppose f WRn ��! Rm is B � F measurable and f 2 C 1.RnID1;p/.
Then rf 2 C.RnID1;p/ and

rDf D Drf:

Proof. We assume n D m D 1 for simplicity. For any x 2 R, by definition,

@x;�f .x/ WD
f .x C �/ � f .x/

�

Lp.�/
�! @xf .x/ .� ! 0/:

On the other hand, since Df 2 C 1.RILp.�;H//, we have

D@x;�f .x/ D
Df.x C �/ �Df.x/

�

Lp.�IH/
�! @x.Df /.x/ .� ! 0/:

By the closability of the Malliavin derivative, we get D@xf .x/ D @xDf.x/ 2 D1;p and

k@xf .x/kD1;p D lim inf
j� j!0




f .x C �/ � f .x/
�





D1;p

6 kf kC 1.RID1;p/:

For any F 2 D1;2, we have the following remarkable Clark–Ocone formula:

(A.4) F D E.F /C
ˆ 1

0

EtDtF � dWt WD E.F /C
dX
kD1

ˆ 1

0

E.Dk
t F jFt / dW

k
t :

The identity (A.4) implies the following simple lemma.

Lemma A.6. Suppose F 2 D1;2. Then, for each t 2 Œ0; 1�,

(A.5) EtF D EF C
ˆ t

0

EsDsF � dWs :

Proof. By Clark–Ocone’s formula,

mt D EF C
ˆ t

0

EsDsF � dWs

is a Ft -martingale with m1 D F . Thus,

EtF D Etm1 D mt D EF C
ˆ t

0

EsDsF � dWs :
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The following lemma, which is a modification of Theorem 1.1 in [13], is needed in
our proof of main result. A similar result for distributional valued processes can be found
in [10].

Lemma A.7 (Itô–Wentzell’s formula). Let .�;F;Ft ;P/ be a standard filtered probabil-
ity space satisfying the common conditions. Let p; p0 2 Œ1;1� with 1=p C 1=p0 D 1 and
˛1;˛2 2 .0;1/ with ˛1C ˛2 > 1. SupposeXt D .X1t ; : : : ;X

n
t / are continuous semimartin-

gales and let �t .x/ be a random field continuous in .x; t/ 2 Q almost surely. Assume �
and X satisfy

(1) for each t 2 Œ0; 1�, Rn 3 x 7! �t .x/ 2 R is C 2 continuous a.s.,

(2) for each x 2 Rn, t 7! �t .x/ is a continuous Ft -semimartingale represented as

(A.6) �t .x/ D �0.x/C

ˆ t

0

gs.x/ ds C
ˆ t

0

vks .x/ dmks ;

where m1; : : : ;md are continuous martingales, and the random fields g and v are locally
bounded and

(a) for each x 2 Rn, t 7! gt .x/ and t 7! vt .x/ are Ft -adapted processes;
(b) for each t 2 Œ0; 1�, x 7! vt .x/ is C 1 a.s.;
(c) for each t 2 Œ0; 1�, x 7! gt .x/ is continuous, and

E sup
x2BN

ˇ̌̌
r

ˆ t2

t1

gs.x/ ds
ˇ̌̌p

.p;N jt1 � t2j˛1p;

EjXt1^�N �Xt2^�N j
p0 .p0N jt1 � t2j˛2p

0

;

where �N D inf¹t > 0 W jXt j > N º.
Then we have

(A.7)
d�t .Xt / D gt .Xt / dt C vkt .Xt / dmkt C @i�t .Xt / dX it

C
1

2
@ij�t .Xt / dhX i ; Xj it C @ivkt .Xt / dhmk ; X i it :

Proof. The proof is similar to that of Theorem 1.1 in [13]. Without loss of generality, we
can assume jXt j is bounded by a constant N . For any t > 0, let tl D lt=n; l D 0; : : : ; n.
Define s.n/ WD t Œsn=t �=n and Xns WD Xs.n/. Then,

�t .Xt / � �0.X0/ D

n�1X
lD0

Œ�tlC1.Xtl / � �tl .Xtl /�C

n�1X
lD0

Œ�tlC1.XtlC1/ � �tlC1.Xtl /�

DW I n1 C I
n
2 :

By (A.6) and the definition of Xn,

I n1 D

n�1X
lD0

ˆ tlC1

tl

gs.Xtl / ds C
n�1X
lD0

ˆ tlC1

tl

vks .Xtl / dmks D
ˆ t

0

gs.X
n
s / ds C

ˆ t

0

vks .X
n
s / dmks :
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Since gs.Xns /! gs.Xs/, vs.Xns /! vs.Xs/ a.s., and g and v are uniformly bounded in
Œ0; 1� � BN , we obtain

I n1
P
�!

ˆ t

0

gs.Xs/ ds C
ˆ t

0

vks .Xs/ dmks as n!1:

By Taylor expansion,

I n2 D

n�1X
lD0

@i�tlC1.Xtl /.X
i
tlC1
�X itl /C

1

2

n�1X
lD0

@ij�tlC1.�l /.X
i
tlC1
�X itl /.X

j
tlC1
�X

j
tl
/

DW I n21 C I
n
22;

where �l are some random variables between Xtl and XtlC1 . It is standard to show that

I n22
P
�!

1

2

ˆ t

0

@ij�s.Xs/ dhX i ; Xj is as n!1:

For I n21, we rewrite it as

I n21 D

n�1X
iD0

@i�tl .Xtl /.X
i
tlC1
�X itl /C

n�1X
lD0

Œ@i�tlC1.Xtl / � @i�tl .Xtl /�.X
i
tlC1
�X itl /

DW I n211 C I
n
212:

Like before,

I n211
P
�!

ˆ t

0

@i�s.Xs/ dX is ; as n!1:

Again by (A.6),

I n212 D

n�1X
lD0

@i

�ˆ tlC1

tl

gs.Xtl / ds
�
.X itlC1 �X

i
tl
/

C

n�1X
lD0

�ˆ tlC1

tl

@iv
k
s .Xtl / dmks

�
.X itlC1 �X

i
tl
/ DW I n2121 C I

n
2122:

By our assumption (c) and Hölder’s inequality,

EjI n2121j .
n�1X
lD0

h
E sup
x2BN

ˇ̌̌
r

ˆ tl

tlC1

gs.x/ ds
ˇ̌̌pi1=p �

E
ˇ̌
XtlC1 �Xtl

ˇ̌p0�1=p0
.
n�1X
lD0

jtlC1 � tl j
˛1C˛2 . n�˛1�˛2C1 ! 0 as k !1:

It is standard to show

I n2122
P
�!

ˆ t

0

@iv
k.Xs/ dhmk ; X i is as k !1:

Combining all the above calculations, we obtain (A.7).
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