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SDEs with random and irregular coefficients

Guohuan Zhao

Abstract. We consider It6 uniformly nondegenerate equations with random coeffi-
cients. When the coefficients satisfy some low regularity assumptions with respect to
the spatial variables and Malliavin differentiability assumptions on the sample points,
the unique solvability of singular SDEs is proved by solving backward stochastic
Kolmogorov equations and utilizing a modified Zvonkin type transformation.

1. Introduction

The main purpose of this work is to study the well-posedness of stochastic differential
equations (SDEs) with random and irregular coefficients. More precisely, we are con-
cerned with the following SDE in R”:

t

t
(1.1) X (@) = Xo(w) +/0 0s(Xs, w) dWs(w) +/0 bs (X5, w)ds.

Here {W;}¢[0,1] is a d -dimensional Brownian motion defined on a complete filtered prob-
ability space (2, J, J;, P), where J and J; are generated by {Ws}seqo,1] and {W;}sefo,1],
respectively. The coefficients o: R” x [0,1] x @ — R” ® R4 and b: R” x [0, 1] x @ — R”
are B x P-measurable, where B denotes the Borel algebra on R” and P stands for the col-
lection of all the progressively measurable sets on [0, 1] x €2.

In the past half century, a great deal of mathematical effort in stochastic analysis
has been devoted to the study of the existence, uniqueness and regularity properties of
strong solutions to Itd6 uniformly nondegenerate stochastic equations with deterministic
and irregular drifts. When Vo € Lﬁ)‘f and b is bounded, Veretennikov [19] proved the
strong existence and uniqueness of solutions to the SDE (1.1) by developing a original idea
proposed by Zvonkin in [26]. In the case where 0 =T and b € LY LY withn/p +2/q <1,
using Girsanov’s transformation and L? L% -estimates for parabolic equations, Krylov—
Rockner [11] obtained the existence and uniqueness of strong solutions to (1.1). After
that, a lot of works investigated properties of the strong solution to (1.1) with singular
drifts. Among all, we mention that the Holder continuity of the stochastic flow was proved
by Fedrizzi and Flandoli in [5], provided that the coefficients meet the same condition as
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in [11]. When b is bounded, Menoukeu et al. [ 15] obtained the weak differentiability of the
stochastic flow and the Malliavin differentiability of X; with respect to the sample @ by
using Malliavin’s calculus. Zhang [21] extended Veretennikov’s unique strong solvability
result to the case where Vo, b € LYL% with n/p +2/q < 1. Under similar conditions,
the regularity of strong solutions with respect to the initial data and sample point was also
shown in [22] and [20]. For more recent results, we refer the reader to [12] and [16]. We
also note that martingale problems and stochastic Lagrangian flows corresponding to (1.1)
were studied by many researchers, among which we quote [2, 17,23-25].

The well-posedness and regularity of strong solutions to SDEs with singular coeffi-
cients is not only a fundamental theoretical problem, but also has a wide range of applic-
ations in many mathematical and physical problems. For instance, in the remarkable
paper [7], Flandoli, Gubinelli and Priola studied the following linear stochastic transport
equation (see also [6]):

dw;

(1.2) o;u+b-Vu+Vuo iP =0, up=e,

where b:R” x [0, 1] — R” is deterministic. Using the stochastic flow of the corresponding
SDE (or stochastic characteristics), they proved the existence and uniqueness for the above
equation in the L°°-setting, provided that the drift b is «-Holder continuous uniform in ¢
and the divergence of b satisfies some integrability conditions. However, as mentioned
in [7], one of the major obstacles to extending the regularization by noise phenomenon to
the case where b is random is the fact that, even when b is Holder continuous in x, the
stochastic characteristics corresponding to (1.2) may not uniquely exist. Below is a simple
but typical example.

Example 1.1. Letd = n = 1. Assume ¢ = 1 and

bt(x)=\/|x—Wt|/\1, X0=0

Denote Y; := X; — W;. Then Y; satisfies the following random ODE:

dY;(w) = bi(Yi(®) + Wi (0), @) di = (V|Yi(@)| Al)dt, Yo =0.

a _ @)
=

One can verify that y 0 and y,” = t2/4 are two solutions of the above ODE, which
implies X t(l) = W; and X t(2) = t2/4 + W, are two F;-adapted solutions to the equation

t
X,:/ bs(X;)ds + W, te]o,1].
0

The above example proves that the nondegeneracy of the noise and the uniform Holder
continuity of b; (-, ) are insufficient to guarantee the well-posedness of (1.1). To the best
of our knowledge, there is no much literature addressing this issue so far. The main work
before this paper is Duboscq—Réveillac [4], which studies the stochastic regularization
effects of diffusions with random drift coefficients on random functions. After adding
some Malliavin differentiability conditions on b and f', the authors extended the bounded-
ness of time average of a deterministic function f depending on a diffusion process X
with deterministic drift coefficient b to random mappings f and b by investigating the
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backward stochastic Kolmogorov equation (1.5) (@ = I) in some L?”-type space. How-
ever, their work misses some important requirements, in particular because it asks for a
specific form of Malliavin derivative for the drift, and in certain situations, also wl.p reg-
ularity for the drift with respect to x, which makes the results not so strong. This paper
attempts to make some progress in this direction. Roughly speaking, our main result, The-
orem 1.2, shows that if the noise is additive and nondegenerate, and if b is Holder in x,
the well-posedness of the Itd equation (1.1) is guaranteed when Db;(x), the Malliavin
derivative of b;(x), also satisfies a Holder continuity assumption with respect to x.

With a slight abuse of notation, we shall abbreviate L? (2, F, P; R™) as L?(2); the
integer m may take different values in different places. Our main result is:

Theorem 1.2. Leta € (0,1), p>n/jo, A>1, A:={(s,t) €[0,1>:0<s <t <1} and
let D be the Malliavin derivative operator. Assume that o and b are B x P measurable.
Then equation (1.1) admits a unique solution if o and b satisfy the following assumptions:

(1) foralmostall w € Q, o(w) and b(w) are bounded, and for all x, y eR",t €[0, 1],
|bi(x,0) — b (y,0)| < Alx —y|%, o (x, @) — 0 (y, )| < Alx — yl;
(i) for almost all € Q2 and all (x,t) € R" x [0, 1],

_ L ek
AP < S ool ()il < AEP. VE €RY:

(iii) foreach (x,t) € R" x [0,1], 0¢(x), b (x) are Malliavin differentiable and the ran-
dom fields Dso4(x) and Dsb;(x) have continuous versions, as maps from R" x A
to L?P(R), such that

(1.3) (SUP (IDsot | can:r2r(2)) + | Dsbillcemn:L2r()) < A.
s,t)EA

We give an example of b meeting the conditions in Theorem 1.2.

Example 1.3. Let n =d =1, o € (0, 1), p > 1/a. Assume b:[0,1] x R2 — R is a
bounded function satisfying

(|5t(xvy) _Bt(x/»y)| + |3yl5t(xv)’) - ayb_t(x/’y”) < C|X_x/|a
forall x,x’,y € R" and ¢t € [0, 1], and

be(x, w) := E,(x, /t hr(a))dWr(w)>.
0

Here & is an adapted process satisfying

1
sup E<|hs|21’ +/ |Dyh, |2 dr) < 0.
sef0,1] 0

Noting that

_ t t
Dyby(x) = ayb,(x,/ hy dW,)(/ Dsh, dW, + hs>1A(s,t),
0 K}



G. Zhao 950

by the Burkholder—Davis—Gundy inequality, one sees that
sup b o)llcewy + sup [[Dshtllcow;r2r ()

t€[0,1];0eR (s,1)eA

1/2p
c[1+ supE|h 127 4 /|Ds |Pdr ]<oo,
s€l0,1]

so b satisfies the conditions (i) and (iii) in Theorem 1.2.

Our approach to the study of the well-posedness of (1.1) shall use a modified Zvonkin
transformation. Such kind of trick was first proposed in [26] for solving SDEs with deter-
ministic and bounded coefficients. To explain our main idea, let us first give a brief
introduction to Zvonkin’s idea. Denote

1 . .
a= EOU*’ Lou = ay 0;ju + bl oju.
When a and b are deterministic, a,b € LY CZ and a is uniformly elliptic, so by Schauder’s
estimate, the following backward equation:

d;u+ Lyu=-b, ur(x)=0,

admits a unique solution u € L{°C2T* with d,u € L C2. Moreover, if T is sufficiently
small, the map x — ¢;(x) := x + u,(x) is a C2-homeomorphism. Assuming that X,
solves (1.1), by 1td’s formula, Y, := ¢, (X;) satisfies a new SDE with Lipschitz continuous
coefficients. Thus, the strong uniqueness of the solution to the original equation is given
by the one of the new equation. In the case where o and b are progressive measurable and

ess sup,eq ([l0(@)[Lxce + [|b(@)||L2ce) < oo,

and thanks to the classic Schauder estimate, one can solve pointwisely the backward equa-
tion

(1.4) dw+ Lyw+ f =0, wr(x)=0.
Moreover, w satisfies

esssup (||w (@) [l g2+ + [0:w(@)lLgece) < C esssupl f(@)llLece-
weR weR

However, in this case, for each x € R?, the process w.(-, x): (t, w) — w;(x, ®) is non-
adapted, so one cannot apply the [t6—Wentzell formula as in the deterministic case. A very
natural way to overcome this difficulty is to consider the function u, := E(w,|F;) instead
of w,. Formally, u, satisfies the following backward stochastic Kolmogorov equation (see
Lemma 3.1):

(1.5) du; + (Leus + fr)dt = vy - dWs,  ur(x) = 0.

Let us mention that a more general class of semi-linear equations including (1.5) was
already studied by Du—Qiu-Tang [3] in L?-spaces and also by Tang—Wei [18] in Holder
spaces. However, the main obstacle for applying their result for our purposes is that one
can only expect that the vector field v is in some L? (or C%) space, which is far from what
is needed to apply the Itd—Wentzell formula (see Lemma A.7). Inspired by [4] and [26], in
this paper we prove a C 2% type estimate (Theorem 3.5) for (1, v), provided that the coef-
ficients satisfy some Malliavin differentiability conditions. To achieve this purpose, we
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first extend the classic Schauder estimate to random PDEs with Banach variables. Such
kind of extension gives a C 2+ egtimate for u, as well as a C* estimate for v (see
Lemma 3.1). The main result of this paper is Theorem 3.5, where we give a C2* estimate
for v, provided that the Malliavin derivatives of the coefficients satisfy (1.3). To us, such
kind of result is new and intriguing. With such a regularity estimate in hand, we then use
a modified [t6—Wentzell’s formula and a Zvonkin type transformation to prove the well-
posedness of (1.1). We believe our results have the potential to be applied to stochastic
transport equations with random coefficients and some other nonlinear stochastic PDEs.

This paper is organized as follows. In Section 2, we investigate a random Banach-
valued non-adapted Kolmogorov equation, and prove its well-posedness in some Holder
type spaces. In Section 3, we study the solvability of the backward stochastic Kolmogorov
equation (1.5) in some C2%* space. Our main result is proved in Section 4. An Itd—
Wenzell type formula and some auxiliary lemmas used in our main proofs are presented
in the Appendix.

2. Schauder estimates for random Banach-valued PDEs

In this section, we give a self-contained proof of a Schauder type estimate for random
Banach-valued parabolic PDEs by using the Littlewood—Paley decomposition.

Let T € (0, 1], let D be a domain of R”, let D7 = D x [0, T], and let 8 be a real
Banach space. For « € (0, 1) and a strongly continuous function g: D — 8, we define

._ . lg(x) —g(»)|s
lgllo;p := sup |g(x)|g. [gla;p := sup ————-
xeD x,yeD |X - yl
Fork e N,
k .
Iglciren.gy = Y IV glo:p + [VF¥&la:p -
i=0

Here and below, all the derivatives of an B-valued function are defined with respect
to the spatial variable in the strong sense, namely, Vg is the unique map from R” to

Z(R"; B) such that limyy—¢ |g(x + h) — g(x) — Vg(x) - h|g = 0. For any 8 = 0, the

space C f }O(DT; B) consists of all continuous functions f: Dr — B such that

If o800 . ayi= sup [ f(O)llcsp.a) < o0
Cor (P38 * o7 (DB

Below we always denote Q7 = R” x [0, T] and Q = Q. If there is no confusion with
the time parameter 7' and the underlying Banach space B , we simply write C# and C f P
instead of C#(R”; 8) and Cf”to(QT; B), respectively.

2.1. Littlewood—Paley decomposition

Let S(R™) be the Schwartz space of all rapidly decreasing complex valued functions
onR”, and let 8’ (R"™) be the dual space of S(R") (the tempered distributions space). Given
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f € 8(R"), the Fourier transform and the inverse Fourier transform of f are defined by

TE = @0 [ a5 = 0 [ E @
R” R?
Let y:R"” — [0, 1] be a smooth radial function such that

& =L1l<l; x€=0 I[§=3/2
Define

Q&) = () = 2(26), ¢-1():=x2). ¢ ()= =0,1,2,...).

It is easy to see that ¢ > 0 and supp ¢ C B3/, \ By, and formally,

k
3 6i(6) = x2Fe) H% 0,

j=-1

In particular, if |j — j'| = 2, then

suppp(27/) Nsuppp(2™/") = @.
Let ¢ be another smooth radial function such that supp ¢ € B7/4\Bj/4 and §(x) = 1 for
all x € B35\ By/>. Denote

h=F"p). =5 @)
Forany f € L'(R"; B) + L®(R"; B), define

aifi= [ =00y Bifi= [ R=nso.

2.2. A basic a priori estimate

Assume (§2, F, P) is a complete probability space, # is a real Hilbert spaces and 8 =
LP(Q2,F,P; #) for some p = 2. Leta’, b* and c be real-valued measurable functions on
0 x 2 and define 3

L; = a;]aij + b;a,- + ¢t
Fix T €(0, 1]. We first give a precise definition of solutions to the following $3-valued PDE:

(21) {3,w—|—L,w+f=0 mn QT’

wr =0 on R”.

Definition 2.1. A function w: Q7 — B is called a solution of (2.1) if
(1) foreacht €[0,T], w(t,-) is a twice strongly differentiable function from R” to B;

(2) for each x € R”, the process w(:, x) is absolutely continuous from [0, 7] to B,
and satisfies

T
e (x) = / (Lows + f3)(x) ds.
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In order to study the solvability of (2.1), we need the following.

Assumption 2.2. The map (x,t,w)—>(a;(x,w),b;(x,w),c;(x,w), fr(x,w)) is B(Q)xF
measurable and there are constants a € (0, 1) and A > 1 such that for almost all w € L,

(Hy) la¥ @)l e + 16° @)oo + @)oo < A,
and
(H,) ATVEP < a¥(w) & & < Mg

Our main result in this section is the following.

Theorem 2.3. Under Assumption 2.2, for any f € CY,, equation (2.1) admits a unique
solution w in Cf","“. Moreover

(2.2) cwlice, + lwlczse + T Hwlco, < Clf lice, -
where C only depends on n, p, o and A.

As in the proof for the classic Schauder estimate, we first consider the case a;(x, ) =
a;(w) and b = ¢ = 0. Define

S
A s ::/ a(r)dr, p;”s(x) = (det471A,,s)*1/zexp(—(x,A;;x))
t

and
PiS@) = [ b= 0103y,

Lemma 2.4. Let T € (0, 1], € (0, 1). Assume a is x-independent and satisfies (Hs).
Forany f € CY,, the function w;(x) = ftT P fs(x) ds is the unique function in Ci',"“
satisfying

T
23) w, = / (@ dijws + f3)ds.
t
Moreover, there is a constant C, that only depends on n, a, p and A, such that
(2.4) 18ewlice, + lwlczea + T wlcs, < Clf e,
Proof. We first prove that the map w defined above satisfies (2.4) by using Littlewood—
Paley decompositions. Recall that 8 = L?(Q,J, P; #). For any g € L'(R"; B) +
L (R"; 8), by Minkowski’s inequality, we have
1/ X 1/
1A PEe) (D)l = (EI(A; PEg)(0)15) "7 = (BI(PLA; Aje)(0)15) 7

[ [ ot i arge = veoray ) peaw]
< [ o [ 1 s B 1886 - y.ol, paw)]

@5) <18yl [ [esssupyeal il « 7, (0)1] 4.
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By (Hy),

[ [essmaca it sFyolax<| s i,
n I/A<a<Al

=/ dx  sup / p?ys(x—y)2j"go(2jJ’)dY)
R~ Rn

I/A<a<Al

= / dx  sup / 2-i”p,2,25j“(2jx —2) ho(2) dz‘
n ]Rn

I/A<a<Al

:/ dx  sup /Rptsa(x—z)ho(z)dz’

I/A<a<Al

Noting that
1Azt < Can A+ XPY) f() L. YN >n/2,
and
FHpE)E) = exp(—(£. A5 £)).
we obtain
[ Tesssupucalpis? siyllav< [ ax s | [ g - nhe):
n n I/A<a<AIl

<Cla+1xPY) s [pE ol

I/A<a<Al
=C s A+ PN
I/A<a<Al
2jq 1.5
<C s |+ AMIFTEED - T GG
I/A<a<Al L

—c s [ AN lexp(-22 (6 40D - 7166)|
I/A<a<Al JB7/4\Bi/

Since sup) |k 3¢ (e9E”) < C(1 + |a)* (1 + |E])Feals”, we get

(2.6) /]R [ess supweg|p, o )y 7 (x)[] dx
< C/ [1+ (A2% (s — 1))*M] exp[—2%/ (s — 1) |§[*/ A] dE.
/4<|§]<7/4
Denote A; := A2% (s —1) and A; := 1< A~'2%/(s — 1). Combining (2.5) and (2.6), we
get

14 Pfgllo = sup (A Pig)()ll < C(1+ AFN) ™ By /a\BisalllAjglo-

xeR”

By Lemma A.1 and the elementary inequality

1+ A ™™ <G ARY (s =D (YK eN),
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we get
1A, Pfigllo < C277%|glla(l + APN)e™ < G2 /(1 A 2% - (s = D7)l glla-
This yields

T T—t
1A wello = H A / PE f dsHO <C2| £ ce, / (1 A 2727k =Ry g
t 0

Ift > T —272/ then
1A wello < €277 fllce, - (T —1) < C2_j(2+°‘)||f||cg,,;

ift < T — 272/, by choosing k = 2, then

T—t
18wl < C2 fleg, - (272 +274 [

272J

572 ds) < 27| £l ca .

Again using Lemma A.1, one sees that

lwllgzse < C sup 277+ Ajw,llo) < C |l fllce, -
® tef0,T] ’
Jjz-1
This completes the proof of (2.4). By basic calculations, one can verify that w satis-
fies (2.3). It remains to show that the w defined above is the unique solution to (2.1)
in CZF®. Assume @ € CZF® is another function satisfying (2.3). Let 0 < o € C2°(R") be
such that [ ¢ = 1 and write g,(x) = ¢ "o(x/¢). Define v := w — @ and v* := v * ;. For
anyk >n/p, N > 1and ¢ € (0, 1), by the Sobolev embedding and Hélder’s inequality,

Bl =0, Wy = B S0 10, =06 e
H=1

k —
SCN7"E sup |{vf, = vi, i e sy
Il ge=1

k ) t - P
<CN T EY / v / (@30 () s ax
i=0" BN h #
k+2 t ) »
<Nl alt S [ [TE| [ w9 ] as ax
i—2 /BN J11 BN +1 ¥’

12}
< CN*PHP = — nl”’l/ /B E|vs(9)|5 dy < CeN P11, — 11|70
1 N+1 -

Due to Kolmogorov’s criterion, for almost all w € Q and all € € (0, 1), (x,7) € Or,
0F (. @)z < Ce(@)(1 + [x)**7,

which means v{ (-, w) satisfies a certain growth condition at infinity. On the other hand,
by definition, for almost all @ € © and each i € #, the real valued function (v¥(w), &)
satisfies 3

80 (v (@), h) + a¥ ()03 (5 (). h) =0, (v5(w). h) = 0.
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Thus, we have (v§ (w), h) = 0 (see [8], Chapter 7, p. 176), i.e., w * 0, = W * Q¢ a.s. SO

we(x) — W, (x)]| g < sli_rR)Hw,(x) —(w*0¢)(X) |3 + sli_%Hﬁ,(x) — (0 * 0¢): (¥) | 8

=0.
This completes our proof. ]

Proof of Theorem 2.3. Thanks to Lemma 2.4 and the method of continuity, we only need
to prove the a priori estimate (2.2). Assume w € ij’“ is a solution to (2.1). Let y €

CC"°(Rd) be so that y(x) = 1if |x|] < 1 and y(x) = 0 if |x| = 2. Fix a number § > 0,
which will be determined later. Define y§ = y((x —z)/J). Then

r(wyg) + L7(wxg) + (fx5) + [x5Lew — Li(wy3)] =0,
where Liw;(x) := aij (2)9;jw; (x). Using (H;) and noting that
X5 Lew— L (wx5) = x5 (a"” —aZ )i w+ (5" x5 —2a2 8, x5)dw+ (e x5 —a? 3y x5 w,
we have

2
”[X{)‘ZLtw - Lf(w)(g)]ﬂcg,, < CS“HV w”Cf:”,O(Bzg(z)x[O,T];B))

2.7 +C(8IVwllo, 87 Vwlicg, +87 *lwllcg,).
Combining Lemma 2.4 and equation (2.7), we obtain that for any § > 0,

<
sup lwll2tao g, yxjo.r3.8) < Cn Zseu]é)n”w”Cf,Jxra’O(Bs(Z)X[OsT];ﬂ)

< C sup [lwyglleate < € sup |5 + (x5 Lew — L7 (wxi)lllce,

zeR” zeR”
< C8% sup |lw|

zeR”

+CEVPwlco, + 87 [ Vwlicg, + 82 lwlicg, +8 1 flicg,)-

CZH*%(Bys (2)x[0,T1;B)

By choosing § € (0, 1) sufficiently small such that C% < 1/2, we obtain
0D Wl sty epeto ey < Co(I0lez, 1/ lles,).
Using interpolation, we get
lwliczpe < Cs sup [wllczieo g,y 2yxt071.8)
< eCsllwlczra + Coellwlcs, + 1/ llcs,). Ve € ©.1).

By choosing ¢ small such that eCs < 1/2, we get

(2.8) lwliczre < C(lwlco, + 11 lcg,)-
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It remains to show that ||w || co, can be controlled by |/ lce, - By Minkowski’s inequality,
forany ¢ € [0, T,

(E/B,< ) = (e[| [ awmel,n)”

1/p
“(f | s ol ar)
B, (x)

T
/p
e9 <c | (E/B()Isterfslﬁg(y)dy) ds < CTr?(Jwll ez, +1 flco, ).
t F(x E s

One the other hand, by Holder’s inequality,

210) ||z < f we () — we ()]s dy +][ o ()]s dy
Br(x) Br(x)

1/p
<WVoley, £ e=sliy+f (B o) o
© JBr(x) Br(x) Br(x)

_ 1/p
< rIVules, +r W(E/B Ol )
- (x

Combining (2.9) and (2.10), we obtain
lwlico, < rIVwlico, + CT(wlcz, + 1 llco,)

Due to (2.8),
lwlicz, < Cl fllce, + llwllce,)-

Combining the above two inequalities and letting r — 0, we get
lwlieo, < CT(wlles, + 11 flice,).
By choosing T sufficiently small such that CT < 1/2, we get
lwlico, < CTIf licg, -

This together with (2.8) implies that (2.2) holds for some small 7 > 0. The same estimate
for arbitrary T € (0, 1] can be obtained by induction. ]

Remark 2.5. If f satisfies

ess sup ||f(w)||C“°(QT R) < O
we

then (2.1) can be solved pointwisely, and by the classic Schauder estimate, it holds that
-1
o Y (”afw(”)”C?,;“(QT;R) tllw@)lczreo oy + T lw@)lcesorm)

< Cesssup ||f(w)||c°‘°(QT sR)”

weR
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3. A Schauder estimate for a backward SPDE

In this section, we prove the solvability of (1.5) in the Cff[“ xC f*,"" space. Recall that
W; is a d -dimensional Brownian motion on a complete probability space (2, F,P), F, =
o{Ws:s<t}\/NandF =T . Forany € [0,1] and X € F, we denote E’ X := E(X|F,).
Throughout this section, we always assume 7 € (0, 1], and that J is a real Hilbert space,
B =LP(Q; H) forsome p =2and H = L2([0, 1]; R¢). With a slight abuse of notation,
we write L?(2) = L?(2;R™) for some integer m = 1 that can change in different places.

Lemma 3.1. Let # = R. Assume that a, b, c are B x P measurable and satisfy Assump-
tion 2.2. Then the BSPDE

T T
U (x) =/ (Lsug +fs)(x)ds—/ vg(x) - dWj

has an Fy-adapted solution (u,v) in Cif"‘ x C*(R"; L?(Q2; H) and u; = E'w,, where w
is the solution to (2.1). Moreover,

lellczra + T ullco, + Ivllce@n:Lr@imy < Cllf g,
where C only depends onn, d, p, a and A.

Proof. Let w be the solution of (2.1). Define u;(x) = E’w;(x). By Theorem 2.3 and
Lemma A .4,
hellgzsa + T e, < Cllf e,

Since a;(x), b;(x) € F;, by the definition of u, we have
T
i) =B { [ Lo+ £ 0s)
t

T T T
— [ B s [ Bl Lt o0 [ Bl fwlas)

T
- / (Lsus + £3)()ds + me(x) — mr(x).
Here,
T t
G mx) = / E'[(Lows + £3)(x)]ds + / E*[(Lyws + f3)(0)]ds € .
t 0

For any ¢ € [0, T'], noting that
T
Emr(0) =B [ B((Law, + f)@)]ds
0

t T
—E / E[(Lows + f;)()]ds + E / E[(Lows + £)(x)] ds
0 t

t T
- /0 E[(Lows + ) ()] ds + / E'[(Lyws + £)(0)]ds = my (x).
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we deduce that m.(x) is a F;-martingale. By Theorem 2.3, (3.1) and Lemma A.4, one
can see that m € Cy,. Thanks to the martingale representation, there is an J;-adapted
process v.(x) such that

e () — mo(x) = /0 vy (x) - AW,

Hence, we have

T T
w) = [ Lo+ fods— [ o aw,
t t
ie.,
t t
) =) = [ (L + f0ds+ [ v .
0 0
By (3.1) and the Burkholder-Davis—Gundy inequality, we obtain

r /
B[([ 100 =002 ar) "] = Bm(e) =m(:) 22 < € Bl () = mr ()17
T D
= CE| [ Bl + (0 = Laws + 0] &

e /OTE B (Lo + @) = Loy + 0] ds

T
< C/O E|(Lsws + f5)(x) — (Lsws + f)(P)|? ds

< Clw =y (1wl 41 £ 120 ) < Clx = ¥ 121 112

cire
which yields
vllce@r;Lr@:ay < Cll flicg,.
and completes the proof. ]

As we mentioned in the introduction, Zvonkin type transforms are an effective way to
prove the well-posedness of SDEs with singular coefficients. However, the C*-regularity
of v in the spatial variable is not enough to apply this trick. So we need to get a better
regularity estimate for v under some mild conditions. To achieve this goal, we start with
some definitions and lemmas. Let S, be a set of random variables of the form

F = f((hl, W), ey (hm» W)),

where f € C°(R™), h; € H and (h;, W) := fol hs dWs. We define the operator D on Sy,
with values in the set of H -valued random variables, by

DF =Y 0 f({(h. W)..... (. W) hi.

i=1

For any p € [1,00), D7 is the closure of the set S, with respect to the norm || F ||p1.» :=
I Fllp + IDF || Lr@;:H).-
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Lemma 3.2. Suppose {y:}e[0,1] is a process (may not be adapted) on (2, P, F) such that

t
yt=y0+/ yrdr,
0

with yo € DV2 and y € L*([0, 1];D'2). Then there exists a random field st} s.nef012
such that for each t € [0,1], y., = D.y; in L>(; H); for each s € [0, 1], the map [0,1] >
t > ysp € L2(Q; R9) is absolutely continuous, and

t t
(3.2) Etyt =Eyo +/ E’y; ds +/ E’y; s dWs.
0 0

Proof. By our condition that yo € D2 and y € L2([0, 1]; D"?), we have that Dy, €
L2([0,1] x Q:R%) and the map (s, w) — Dy, (w) is an element of L2([0, 1]? x Q;R?).
By Fubini’s theorem, there is a Lebesgue null set N C [0, 1] such that for each s ¢ N, the
map ¢ > Dy, is an element of L2([0, 1]; L?(R2)) and Dsyo € L?(2). For any s € [0, 1],
define
| Dyyo+ [y Dsyrdr ifs ¢ Nt €[0,1],
Tt =100 ifseN,tel0 1]

Obviously, for each s € [0, 1], the map [0, 1] > 7 — y, ; € L?(R) is absolutely continuous.
By our assumptions,

t L. 1/2
[ setoear < ([ irluaor)” <oc.
0 0

i.e., y:[0,1] — DY?2 is Bochner integrable. Since D is a continuous operator from D12
to L2(2), we get

¢ t
Dy,:DyO—i—D/ )'/,drsz0+/ Dy, dr.
0 0

Combining this with the definition of y;;, we get y., = D.y, in L?(Q; H) forall 7 € [0, 1].
Moreover, by our assumptions,

1 1 1, s 5
E/ |ys,s|2dssE/ |Dsy0|2ds—|-E/ ‘/ Dy ir dr) ds
0 0 0 0

T
<1yl + [ 1D I3ar < ox.
0
which means that y; s is an element of L2([0, 1] x €; R%). By Lemma A.6, we have

t t
Etyt = Eyt + / Estyt . de = EYt + / Esys’t . dWS
(3.3) 0 0

t t
=Ey, + / ES)’s,s - dW + / Es(ys,t — Ys,5) - dWs.
0 0

Note that for any s ¢ N, ¢ € [0, 1],

t
Vst — Vs,s :/ Dgy,dr.
s
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By the stochastic Fubini theorem,

t t ¢
/Es(ys,t_)’s,s)‘dVVs=/ E(/ Dsy'rdr).dWs
0 0 s
4 t t r
= / (/ ESDS)'/rdr>-dWs =/ dr/ ESD,y, - dW,
0 s 0 0

t t
= / (E'j, —Ej,)dr — / E’j, dr + Eyo — Ey.
0 0

Plugging this into (3.3), we obtain (3.2). ]
Forany F € Fand h € H, denote

(3.4) Qﬂqmzzf(w+s/7hm) lﬂFzzgﬁ%;fz-
0

The next lemma is taken from [14], and gives a characterization of the space D!*? in terms
of differentiability properties.

Lemma 3.3. Let p € (1,00) and F € L?(2). The following properties are equivalent.
(1) F eD"2,
(2) Thereis DF € LP(2; H) such that forany h € H and q € [1, p),

n%mbthﬁﬂquzo
E—>
(3) Thereis DF € LP(2; H) and some q € [1, p) such that forany h € H,

lim E|D*F — (DF. h)g|? = 0.

e—0
Moreover, in that case, DF = DF.
Denote Ay = {(s,7) : 0<s <t < T}, A= A;. We need the following.

Assumption 3.4. For each (x,t) € Q, a;(x), b;(x) and c;(x) are Malliavin differenti-
able, and each of the random fields Dsa;(x), Dsb;s(x) and Dgc(x) has a continuous
version as a map from R" x A to L?P () such that

sup (| Dsasllcern;r2r @y + I Dshillcamn; 209y
(H3) (s,t)eA

+ I Dseellce@nLoray) < A’ < oo
The next theorem is the key to the main purpose of this paper.

Theorem 3.5. Let T € (0,1], g > 2p =4 and Cﬁt = Cf”,O(QT; L?(R2)). Under Assump-
tions 2.2 and 3.4, the following BSPDE:

T T
(3.5) e (x) = / (Lsus + £)(x)ds — / vs(x) - AW},
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has an F,-adapted solution (u,v) € Cf’","“ X ij"‘, provided that | € C;"’to(QT; L1(Q))
and Df € C;:”ZO(QT; L?P(Q; H)). Moreover; there is a constant C, that only depends
onn,d, p,q,a Aand N, such that

lullcage + Iollczse < C (1 lees opsracay + o 1D filleenier: RO )
’ ’ t)eEA

Proof. We divide the proof into four steps.
Step 1. Let

Ar =1 leevoriray + oy I1Ds fillca@n;r2r @ray)s

and let w be the unique solution to equation (2.1) in ij“’o(QT; L9(R2)). Below we show

that for each (x, ), w;(x) is Malliavin differentiable, and that D w satisfies the following
L7 (2; H)-valued equation:

T
(3.6) Dw, = / (L, Dw, + G,)dr,
t

where G, = Df, + (0;; w,Daij + 0; wiDbi + wy - Dcy). To do this, we consider the
following L7 (2; H)-valued PDE:

T T
(3.7 Dw; = / L,(Dw,)dr —|—/ G, dr =0.
t !
By Assumptions 2.2 and 3.4, and Theorem 2.3, we get

”w”ij""O(QT;Lq(Q)) < C||f||cg’f(QT;Lq(Q)) < CAy,

and

ij
Z”D“ leeoor:L2r(@: )
i,]

" Z”Dbl lesocorirarimy + 1P¢lceporiLor@imy < o
1
Recalling that g > 2p > 4, Holder’s inequality yields

”G”CaO(QT ray < CAr.

Due to Theorem 2.3 (with # = H therein), there exists a unique solution Dw €
C2Fe%(Qr; LP(Q: H)) of (3.7). Thus, for any h € H, D"w, := (Dw,, h) satisfies

T T
(3.8) i)hw,—/ Lr(i)hwr)dr:/ (Gy, h) dr
t t

(3.9) 1D wllc2te + D" wlcy, < ClhlmAy.
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Next we show that Dé’wt(x) (see (3.4) for the definition) converges to i)hw,(x) in
L7 (L2), and as a consequence, we have Dw;(x) = Dw,(x). By the definition of Dé’w,
one sees

T
DMy, —/ [tena? 3ij DMw, + tepbl ; DMw, + tepe, DMw, ] dr
(3.10) ! .
= / [Dg’fr + D"V 35w, + Dbio;w, + D! crwy|dr.
t

Noting that for any F ¢ D7 and h € H,

(ten F — F) _

(3.11) DhF =
&

&
8_1/ t9n D" F d6,
0

we get that for any ¢’ € [p,2p),
q/

BIDE (0= DEL I = [ [ won (D" 00 = PP e,

< sup [ltgn(D" fr(x) = D" fr )Ty -

0<f<e

Due to Girsanov’s theorem,

dPo ;)] T >
9o = &(6h) :=exp (9/ h, dW, — 07/ |hr|2 dr).
0 0

dP
Hence,
E|D; f;(x) = D f(nI? < sup E[|D" f,(x) — D" f,(»)|9 € (6h)]
0<f<e
< sup E[|D"f,(x) — D" f,(y)P)% - E[€ 5 ()]~ %
0<6<e

< C”Dfr”‘éa(Rn;sz(Q;H)) |h|[11-1 |x - y|aq ,
where we have used the following fact in the last inequality:

K2

EEX(6h) = E&(kOh) exp( — L |h|%,) <C..

2

Thus,

sp 102 1 llces opepe @y < ClHHIDS | oo

12 . :
£€(0,1) e (QT:L2P (23H))

Similarly, for any ¢” € (1,2p),

h h h
S<l(l>p1) [1Dsallcenioria @y + 1PeblcedoriLa @y + I1P% erllces or:rer@n] < C-
50, \ \ ,

Choosing ¢’ = pand ¢” = % € (p.2p), and noticing that ”wllcﬁj""’(QT;Lq(Q)) < CAy,
by Holder’s inequality, we get

(3.12) sup || Di‘f + Dfaij dijw + Dg’biaiw + Df cwHC“’,O(QT;LP(Q)) <

ClhlgAy.
£€(0,1) x
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Since tgpa, Tepb, e satisfy (Hyp) and (H»), by (3.10), (3.12) and Theorem 2.3, we have

(3.13) sup (||D£’w||c)g;fa + Do, wlice,) < Clhlu Ay
e€(0,1) ’

Let wa = Dé’w — D"w. Next we want to prove that 8£’wt(x) — 0in L?(R2), for each
(x,t) € Qr. By definition,
3:88w 4+ L;8"w = —(D! f — D" f)

a1 —[(Dra" — Dha')d;;w + (Db — D*b')o;w + (D — DM e)w]

3
- 8(Dé’aij 3;; D"w + Db 3; D"w + D!'c D'w) =: —ZFs’i,

i=1

i.e., 87w isa L? ()-valued solution to (2.1) with f replaced by Ff := Y"7_, F&'. Estim-
ates (3.9) and (3.13) yield

(3.15) sup (||5§w||cﬁa + 10,82 wllce,) < ClhlaAy.
£€(0,1) ’

By (3.14), for each R > 0, we have
0: (8 wxr) + Le(8]wxr) + F° 1
— (24" 3;8"wd; xr + 8" wa' 8;; y g + 8whi; xr) = 0.
where ygr(x) = y(x/R). Due to our assumptions and (3.15),
|2a 9;8"wd; xr + 8hwa¥ 0 v + wab;'a,-“)||cgt < ClhlaAs/R.
So by Theorem 2.3, for any «’ € (0, ),

(3.16) I8¢ wxrllcare < CIF xRl + ClhluAs/R.

Thanks to Lemma 3.3, for each (x,t) € Qr, Ff’l(x) = Dé’f,(x) — Dl fi(x) = 0
in L27(2). By (3.11) and the continuity of Df: Q7 + L?P(Q2; H), one can verify that the
map Q71 3 (x,t) —~ Dg’ f1(x) € LP(R2) is equivalent continuous. So by the Arzela—Ascoli
theorem, for any sequence &, — 0 (n — 00), there exists a subsequence &,, — 0 (k — 00)
such that for all R > 0, F®yp — 0in C)‘C",,t with some &’ € (0, ). Similarly, we have
Fé2yp — 0and F3yp — 0in C%, as k — oo. Thus, limsup, o[l F® xRl cor = 0.

3 X,t
So by (3.16), for any Ry > O,
. h . . h .
llr?:EPIISS WXRoll gz < Jim llrgljgpll5s WRl g2t < Jim C/R =0,
which implies Dé’w,(x) — D"w;(x) - 0 in LP (). Again by Lemma 3.3, for each

(x,1) € O, we have w,; (x) € D' and Dw, (x) = Dw;(x) € Cx1*°(Q1; LP(Q: H)).
Estimate (3.6) follows by the definition of Dw.
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Step 2. For any (s,t) € Ar, let w] (x) be the solution to the following equation:
T
w;y = / (Lrwi + g7)dr,
t
where g¥ 1= (Dsaif)a,-,- wy + (Dsbﬁ)aiwr + (Dscr)wy + Dy f;. By Holder’s inequality,

I8°llcz, < 105 flessiopinran + 19lcziesoqsaanan ( 1Psa" lessioriaznian
7

* Z”Dsbl lesocorizary + ”DSC”C?,;"(QT;LWQ)))

l
S C”f”C,‘j;,O(QT;Lq(Q)) +C « tS)UGPAT”Dsft||C°‘(R";LP(Q)) < CAy.

Theorem 2.3 yields

(3.17) sup ([|9:w*lce, + ||wx||cx2;ra) < Clg’llce, < CAy.
s€[0,T] ’

Step 3. In this step, we prove that the function wj (x) constructed in Step 2 is a version
of Dyw;(x). Let

A ={w:we ij'“, dow e CYLh wlae = ||w||CXthra + ||3zw||c;’(,~
By linearity and Theorem 2.3, the solution map of (2.1),
T:CY, 3 frweA”,

is Lipschitz continuous. Since [0, 7] 5 s > g* € C¥, is measurable, s — w* is measurable
from [0, T'] to A*. For any ¢ € C°((0, T); R%), define

T T
w? = / o(s) -w'ds, g¥= / o(s) - g% ds.
0 0
Then, one sees that w? satisfies
T
wf = [ Lot gty
t

On the other hand, noticing that D w is the unique solution to (3.6), we have

T T
WDMM=1(MWDMM+WgMﬂW=1(MWDmm+ﬁNh

So w? = (¢, Dw), which implies s — w?* is a version of Dw.

Step 4. In this step, we prove the C2+% regularity estimate for v. Define u;(x) =
E’w; (x). Theorem 2.3 and Lemma A.4 yield

lullczte < Iwllcase < Cllfllcg, < CAy.
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Let w;(x) := —[L,ws(x) + f;(x)]. By Step 1, w € Cf’}O(QT;Dl’I’). Note that
w(x) = wolx) + /Ot Wy (x) ds.
Thanks to Lemma 3.2, for each (x,¢) € O,
u;(x) = E'w; (x) = Ewp(x) + /Ot ESg(x)ds + /Ot E* W, 4 (x) - dWs,
where W; ;(x) = Dswo(x) + fé Dy (x)dr forall (x,7) € Qr and s € [0, T] a.e. Since
W (x) = Dywo(x) + /0 Dy, () dr = / " DulLowy + £l dr

T T
= / [L,Dswr+gi](x)dr = / [Lyw)+g)](x) = wi(x), se€[0,T]ae.,

we get
t t
u) =) = [ ELowe+ 0 ds+ [ Bl aw,
0 0
t t
= ug(x) —/ (Lsus + f5)(x)ds +/ E‘wi(x) - dW;.
0 0
Since ur(x) = 0, we have
T T
w0 = [ Lot L@ as— [ B o
0 0
Combining the above two equations, we obtain

T T
w) = [ Lo+ S ds— [ Bl an.
t t

Let vg(x) = w$(x). Then the above identity implies that (u,, v;) = (E'w,, E'w!) is a
solution to (3.5). Moreover,

(3.17)
[vllc2+e = sup IE W} || c2vemniLr@y < Sup ||ws||cﬁa < CAf < 0.
: 0<t<T s€[0,T] :
So we complete our proof. ]

Let o € C2(R") be such that [ ¢ = 1, and gm(x) := m"o(mx). For any function
g R" > R™ set g™ := g * pm.
The following corollary of Theorem 3.5 is standard.

Corollary 3.6 (Stability). Assume a, b and c satisfy Assumptions 2.2 and 3.4. Let w}

(respectively (u™, v'™)) be the solution to (2.1) (respectively (3.5)) in C ff“ (respectively

C2H* x CFF®) with a, b, c, f replaced by a™,b™, c™, f™. Then for any B € (0, ), it
holds that

[0:(w —w™)llop + [w—w"[| 206 + T Hw—w"|co -0 asm— oo,
x,t x,t x,t

lu —u™ || c2r8 + v = 0" j208 = 0 asm — oo,
x,t Xt
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4. SDEs with random singular coefficients

In this section, we give the proof for our main result.

Proof of Theorem 1.2. We first point out that it is enough to prove the well-posedness
of (1.1) for ¢ € [0, T /2], where T is a universal constant depending only on n, o, A, p.

(a) Pathwise uniqueness. Assume that X; is a solution to (1.1). We prove the unique-
ness by using a Zvonkin type transformation. With a slight abuse of notation, we denote

Cf,z = C)’i’to(QT; L?(2;R™)), where m is an integer that can change in different places.
Recall that L, = af 9; i+ b;'a,-. We consider the following BSPDE:

(41) du, + (Ltu, + bt) dr = Vg * dW[, UT(X) =0.
By our assumptions and Theorem 3.5, (4.1) has an F,-adapted solution (u;, v;) and
4.2 ||u||C)?J[ra + ||U||C§¢a < 00.

Since u; = E'w;, w; solves
hw+Liw+b=0, wr(x)=0

and

esssup (sup [[bi(,@)llce + sup [ Dsbi(,@)lce) < oo.
weR tef0,T] (s,t)eAT

By Remark 2.5, we have

esssup sup (||w,(-,a))||cz+a+T_1||wt(-,a))||ca) < Cesssup sup ||b:(-, w)]|ce.
weR tel0,T] weQ tel0,T]

Interpolation inequality and the above estimate yield

esssup sup ||us(-, w)|ct <esssup sup ||w:(-,w)||c1 < Cr,
we  te€[0,T] we  te€[0,T]

where C7 — 0as T — 0. Below we fix T = T'(n,®, A, p) > 0 so that

1
esssup sup [[u (-, )|lcr < =+
weQ te[0,T] 2

Let ¢;(x) = x + u,(x). Then

4.3) <esssup sup [|[Vo;(x,w)|Le <

weQ 0<t<T

N =
N W

So, for almost all w € 2, ¢;(-, ) is a stochastic C 2+e_differential homeomorphism
from R” to R”. By the definition of ¢,

deps (x) = —(Lous(x) + by(x))dt + v (x) - AWy = dus(x) = dg,(x) + dm,(x),
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where

t t
Gd ) = /0 (Lots () + b)) ds. my(x) = /0 us (x) AW

We want to show that ¢, g, u, v and X are regular enough to apply the It6—Wenzell
formula (see Lemma A.7). Since ||v ||Cz;ra < 00, we have

E[VZv,(x) — Vv, (y)|?

|*?

sup
t€[0,T];x#y |X -y

Note that p > n/w, so forany 8 € (n/p, o) and N > 0, by Garsia—Rademich-Rumsey’s
inequality,

Vo7 (x) — Vv, (y)|\?
sup E( sup - )
tefo,T] x,yEBy |x — | »
I v p
<Cy sup E / / V2v:(x) d+zz(y)| dxdy)
tef0,7] “JBy JBy |x — y|e+Pp

SCN/ / |x — y|4HePr < cy.
By /By

Combining this and the fact that sup, o, 77 E|V?v,(0)|? < oo, we get

sup E( sup |V2v,(x)|p) <00, VN >0.

t€[0,T] x€ByN
Moreover, one can also prove
4.5) sup E||vt||22(BN) <oo, VN >0.
t€l0,T]

Recall that g,(x) and m,(x) are defined in (4.4). Let
! @1
00 = [ a5 2 () = o) = i (o,
0
By Burkholder-Davis—Gundy’s inequality, for each k = 0, 1, 2,
k k P Lok k k172
E|VEm,(x) = Vm,(y)|” < CE[/ |VEus(x) — VEus ()| ds]
0
t
< CE [ [P4u,(0) = V¥ ()17 ds < Clx =y [V5ol 2y,
0 *

which together with (4.2) implies

Inllczse < C(lullczsa + vl c21e)-



SDEs with random and irregular coefficients 969

By the definition of 7,

19enllcs, = ligles, < Lo +blics, < C(Iullczsa + Iblcs,)-
Thanks to Lemma A.3, forany 8 € (n/p,a) and 6 = 1/2 + (. — B)/2 € (1/2,1), we
have

6 1-6
19l < ClomlEg InlEte.

By the same procedure used for proving (4.5), we have
& p 1/p 1/p 6
6] [ s as], o 17 = DB =l ] < vl —nl?. 6 a/2.).

On the other hand, E| X, — X,2|P/ < Clty —t,|?'/2, where p’ = p/(p—1).S0 p,g. v, X
satisfy all the conditions in Lemma A.7. Using (A.7), we get

gy (X;) = —Louy(X;) — be(X,) dr + vF(X,) dwf
+ [BH(X)0i i (X1) + af (X0) 950 (X)) + 0ivf (X))o} (X )] di
+ 0ip (X)) o1F (Xy) AW
= 3,05 (X)) ol% (X,) dt + 8:dr (X)) 0% (X)) dWE + vk (X;) dWE.
Set
Y = ¢ (Xy), gt()’) = aiUfG:k °¢t_l(J’) and 0,(y) = [V:0r + v4] °¢t_1(J’)~

By the above calculations, one sees that
t t
4.6) Y, =Y +/ bs(Ys) ds —|—/ o5 (Yy) dWs.
0 0

Thanks to Lemma A.2, b and & are B x P-measurable. For any x,y € By andt € [0,T],
by the definitions of b and &, we have

1b:(0)] + 15:(0)] < CK}Y,
162 (x) = b ()] + 15, (x) = 5, (»)] < CKY |x =y,
where KV := lusllczsy) + lvellczsy)- It is not hard to see that KN is progressive
measurable and satisfies
r N N @5
E/ K, dr <T sup EK;" < oo.
0 t€l0,T]

Thanks to Theorem 1.2 of [9], equation (4.6) admits a unique solution, which implies X,
is unique up to indistinguishability.

(b) Existence. Let b]" = b; * 9, and let X" be the solution to

t t
4.7) xr =X0+/ b;”(x;")ds+/ os(X™)dW,, 1 €[0,T).
0 0
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We claim that X" converges to a process X; uniformly on compacts in probability (ucp
convergence, in short). Let (4™, v™) be the pair of functions constructed in Theorem 3.5
satisfying

du + [a¥ au™ + (B dul 4+ b dr = v - dW,.
Like before, we can find a uniform constant 7' = T'(n,«, A, p) > 0 such that | Vu}*|| Lo <
1/2. Define ¢ (x) 1= x + u™(x), Y/" := ¢™(X™) and Z™™ := Y™ — Y. Again by
[t6—Wentzell’s formula, we have

t
Zmm =y Y =l (Xe) —ul (Xo) + /0 B (X — B (X)) ds

t
+ [ - g oaw,
0
where

ki - ~m . _
R A N O A (O LR A EX A
By 1t6’s formula, for any stopping time 7 < T,

AT
2 ’ ’ ~ ~_ ’
|ZIT " = [uf (Xo) — uf' (Xo)]* + 2/0 zZmm Byt = b (Y )] ds

INT
4.8) + / w[a) (Y — o7 (Y| [er (") — &) (Ysm’)]* ds + maz,
0
where ,
m, = 2/ zmm [Emymy —Fm ()] dws.

N
Forany N,k € N, let K{"™ = |[ul*|c2(y) + IV |l c2(By)-

Nk = 1nf 1nf /(K N2 ds >k}
and
oV = inf inf{r = 0:|Y"| > N/2} AT, ok = N A N,
m
Forallx,y € Byj, and t € [O,UN’k], we have

(4.9) sup (157 (x) = b ()| + 157" (x) — 5" ()]) < Cilx — yl.
me

Since for each (x,7) € By % [0, T], (¢7")~'(x) € By, we obtain that for any x € By/»
andt € [O,rN’k],

|5 (x) — B ()] < |[8; 07" 01 o (¢") 7 (x) — [9:0]" F 0¥ o (¢ 7 ()]
+ (80 F otk o (¢ ) — (80 Kotk o (9" ) T ()|
< c||Vv:"—w;”’||Lw<BN)+c||v:"’||cz<BN>|<¢:")—1(x)—(qs;"’)—l(xn
S CI" =™ cayy + ClIV™ llc2y) sup 16 (v) — ™ ()]

Y€BN

< Cr(lum —u™ |l e2gmyy + 10— 0™ [l c2(8y))-
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Similarly, for each x € By, and ¢ € [0, VA,

57" (x) =& ()] < Cre(llu} —ul" [ c2qmy) + V] =07 lc2y))-

By Theorem 3.5, Corollary 3.6 and the same procedure used for proving (4.5), we have

N p
sup  EIK"V 1P = sup  E(|ulllcasy) + 10 c2sy))” < 00
t€[0,T],meN t€[0,T],meN

and

lim  sup E(llu; —ui' [c2my) + lve — 7' lc2a =0.

S ( t (Bn) t ( N))
Thus,
(4.10) lim Y =7, 1lim oV =T

k—o00 N—>o00

and

. ~ ~ ’ p ~ ~_ p _
(4.11) m,rlr}/rgooE(”Otm - Utm ||L°°(BN/2) + ”b:n - b;n ”Loo(BN/Z)l[O,UNsk](t)) =0

Lett = VK in (4.8). Using (4.9), we have

(
|Zt/\trNk ’ ’”0 (Xo) —ug' (X0)|

A Nk
+ G / 22| (12 4 B = B o8y ) d
0
N,k

tAO
’ ~ ~m’ 2
+ Ck/o (1Z&™ 1+ 15" = 85" ILooByyn)” ds + myagnk

!
< lul —uft |17 + Ck/ |ZS/\UNk| ds + m, \gnik
N,k

INO
FC [ B =B By + 157 = 5 sy ) 0.
0
By Gronwall’s inequality and (4.11), we get
/ 2 ’
E|[(Z™" )5 vk < Crllug —ug lI7

T
@.12)  + CkE/ (135" = 35" oo (B + 155" = B 17008y ) Lo,y (5) ds
0

@.11)
— 0 asm,m — oo.

On the other hand,
X7 — X | = (@) @ (X)) — (@) @M (XM ))] < 2[¢M (XY — (X))

S 20X — ¢ (X 4 209 (X)) — pM (X))
(4.13) <20 —u™ || +21Y — Y.
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Combining (4.12) and (4.13), we get

lim E sup | X"

tAGNE t/\oNk |
m,m'=00  ;¢[0,T]

<2 lim E sup lu? —ul" || oo +2mr1'3,niooE(Zm’m );MM,{ =0.

m,m’ —o0 +€[0,T]

Noting that

lim lim o™* = lim o
N—>o00 k—o0 N—o0

4.10
N (=) T,

we obtain
lim P( sup XM — XM | > g)) —0, Ve>0.

m,m'—00  \tel0,T/2]

This implies that there is a continuous process {X}:e[o,7/2] such that X — X in the
sense of ucp. Hence,

t t
| ocxmaw. = [oxpam. viep.r/a,
0 0

and foreach t € [0,T/2] and € > O,

P()/t b (X™) ds —/t bs(XS)ds‘ > a)
0

< P( sup  [B™(X™) — b(X™)| > ) + P( sup by (X™) — by (X,)| ds > g)
t€l0,T/2] t€l0,7/2]

< P(||bm —b|lLeor) > f) +P( sup | X — X% > i) — 0, asm — oo.
2 1€[0,7/2] 2A

Taking limits on both sides of (4.7), one sees that X is a solution to (1.1). [

A. Appendix
In this section, we give some lemmas used in the previous sections. The following basic
result is useful.

Lemma A.1. Let f € L'(R"; 8) + L>®(R"; B).

(1)  (Bernstein’s inequality) For any k =0,1,2, ..., there is a constant C =C(n,k)>0
such that forall j = —1,0,1,...,

V¥4 fllo < €294, fllo:
(2) Foranya € (0,1), there is a constant C = C(a,n) > 1 such that

C™' sup 274 fllo < I fllce < € sup 208 f lo-

j=z—1 jz=

One can find the proof of above lemma in [1] for 8 = R. We present its Banach-valued
version below for the reader’s convenience.
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Proof. Forany j =0,1,2,..., we have fR" hj(z)dz = ¢;(0) = 0, so

18, = | [ e =nlro) = ey
- | /R 2RI (= DI O) — Sy
<C|flice / 2"h(22)|z|* dz = 27| f e,
-

which implies )
sup 270 A fllo < Call fllce.

j=z—1

On the other hand,
) ‘,:Z_l 8700, =| /IR TN = fx = idy|
o /B FOEf(x) — f(x —27%2)]dz H3
+| /B T - flr—27F)dz|

<osnw s [ 00Ny 2000 [ 5T 0001,

2ke

Letting k — oo and then ¢ — 0, we obtain that for each f € Cp(R"”; 8) and x € R”,
fx) =2 ;51 A f(x). Thus, for any K > 0,

1f)—fDs < Y 1A f)=AfDMs < |x=y] D IVAfllo+2 D 1A f o

j=z—1 —-1<<K j>K
< Co (Jx — y[2079K + c27%K) sup 2%7||A; £ lo.
j=—1

For any |x — y| < 1, by choosing K = —log,(]x — y|), we obtain

[f(x) = f)lg < Calx —yI* Sup 2%118; f o,
jz=

completing the proof. ]

Suppose f:R"” — R” is a continuous homeomorphism on R”; its inverse map is
denoted by f~!. Our next auxiliary lemma is used in the proof of Theorem 1.2.

Lemma A.2. Suppose (S;S) is a measurable space. Let F: (S x R"*; § x B) — (R";B).

(1) Assume X is another measurable map from (S;§) to (R"; B). Then the map
a +— F(a, X(a)) is measurable from (S; §) to (R"; B).
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(2) Forany L > 0, define
Hp :={f :R" - R"| f is a continuous homeomorphism and
L7x =y < 1f(x) = fO)I < Llx = yl}.
IfF:(S xR"; S x B) - (R"; B) and for eacha € S, F(a,-) € Hy, then the map
F71:SxR" 3 (a,x) — [FY(a,)](x) € R
is § x B/B measurable.

Proof. (1) This conclusion is trivial since the map a > (a, X(a)) is § /8 x B measurable.
(2) Define
Sx) —g)
d(fg) = sup L8]

., VfgeH..
e 4

It is easy to verify that Hy is a metric space equipped with the metric d. For any f € Hp,
and ¢ > 0, by the continuity of x — F(a, x), we get

{a :d(F(a,-), ) <e}= ﬂ {a:%l_{(q”<rs}63.
q€Q"; 1
reQnl[o,1)

So the map F:(S,S) — (Hr,B(HL:d)) is measurable. Obviously, the map
Inv:H, > f+— f'eH,
is well-defined. Now assume d( f,,, f) — 0. Given x € R”, call y = f~!(x). Then
) = @I =1 o fO) = £l o fu)]
S LIf() = faOW) < LA + [yDd(fn, 1)

By definition of Hy,,
1S = fO1 = L7y,

which implies
x| =[£I = L7yl = fO)].
So
1 @) = fH 01 < LA+ LFO) + LIxDd(fu, ) < Cro(1+ XD (fa, f),

which implies d(f,71, ™) < Cr.rd(fu. f) — 0. Thus, the map Inv: H; — H is con-
tinuous. Hence, the map F ! := Inv o F from (S, §) to (Hr, B(Hy)) is also measurable.
As a consequence, the map

F71:SxR" 3 (a,x) — [Invo F(a,-)](x) € R"

is § x B/B measurable. |
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Roughly speaking, the above lemma shows that if (a, x) — F(a, x) is measurable,
then (a,x) = F~!(a,-)(x) is also measurable.

The following interpolation lemma is used several times in our paper.

Lemma A.3. Let 0 < yg <y < yawithy, ¢ Nandlet 0 := (y2 — y1)/(y2 — yo) € (0,1).
Write Q7 = R" x [0, T] and let B be a Banach space. Then there is a constant C > 0
such that, for all f € Cy2 with 0, f € C;’Ot

(A.1) I fo = fullen < Clt — 1) ||3zf|| 7 IIfIICyz
Proof. First of all, for any ¢ € [0, 1], we have

Ifillen < ClLfillEr I F1IESS-

Forany 0 <ty <t; <T, B €(0,0) and ¢ > 1/0, by the Garsia—Rademich-Rumsey
inequality, we have

I = follen / / W= fillen o
to

|[1_to|ﬂq 1 t_s|1+ﬂq

5]
1-6 1
// Ife — fsncyo Ife = £ill829 e — 5|71 P4 ds dr

1-6
/to /0 |1+/3q ds dt) ”atf”CVo ”u”(cfzt )a

— Clt1 — to|fa—Ba+1 3, u (1—6')11,
|t1 — 1o | fllcyo l ”c;?,
which gives (A.1). [

Lemma A.4. Suppose 8 = 0, K is a real Hilbert space and ct =c# (R™; LP(2; #)).
Assume G is a subalgebra of F. Then

(A2) IBCX D gs < 1]
Moreover, for any k € N with k < 8,
(A.3) VEE(X(1)[9) = E(VFX(x)[9).

Proof. We only prove (A.2) when 8 € (0, 1). Denote EY9 X(-) := E(X(-)|G). By Jensen’s
inequality,

E[ESX(x) —E9X(y)|5 < E[E%X(x) — X(»)|s]” < E[E|X(x) — X(»)|5]
= E|X(0) = X0l < [x =y X175,

which yields

B9 Xy = sup X B0V
ce

< Xl
x,yeR4 lx — | G
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For (A.3), we only give the proof for k = 1. Again by Jensen’s inequality,
[E9X(x +h) —E9X(x) — [E9VX(X)] - h|;, < EI[X(x 4+ h) — X(x) = VX(x) - h .
Thus,
E[E9X(x + h) —E9X(x) — [ESVX(x)] - h|%,
SEEJ(|X(x + h) — X(x) — VX(x) - h|},)
= |X(x + h) —X(x)—VX(x)-h\% —0 ash — oo,
which gives the desired result. ]

Lemma A.5. Suppose f:R" x Q — R™ is B x F measurable and f € C'(R";D!?).
Then V f € C(R*;DY?) and
VDf = DV .

Proof. We assume n = m = 1 for simplicity. For any x € R, by definition,

oo 1) = LEFDZIOED 10y 00

On the other hand, since Df € C'(R; L? (2, H)), we have

Df(x + 99) — DI @Iy (Df ) (6 — 0).

By the closability of the Malliavin derivative, we get Dy f(x) = 9 Df(x) € D7 and

Dax,@f(x) =

0) —
oo = timint [ LEEDTE e m

DLp

For any F € D!2, we have the following remarkable Clark-Ocone formula:

1 d 1
(Ad) F =E(F)+/ E'D,F-dW, = E(F)+Z/ E(DFF|F,)dW}.
0 k=1 0

The identity (A.4) implies the following simple lemma.
Lemma A.6. Suppose F € DV2. Then, for eacht € [0, 1],

(AS) EthEF—i-/IESDSF-dWS.
0
Proof. By Clark—Ocone’s formula,
my =EF—|—/OIESDSF- dWg
is a F;-martingale with m; = F. Thus,

t
E'F =E'm, =m, = EF +/ ESD,F - dW,. .
0
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The following lemma, which is a modification of Theorem 1.1 in [13], is needed in
our proof of main result. A similar result for distributional valued processes can be found
in [10].

Lemma A.7 (It6—Wentzell’s formula). Let (2, F, F;, P) be a standard filtered probabil-
ity space satisfying the common conditions. Let p, p’ € [1,00| with 1/p + 1/p’ = 1 and
a1,z € (0, 1) withay + ap > 1. Suppose X; = (X}, .., X™) are continuous semimartin-
gales and let ¢¢(x) be a random field continuous in (x,t) € Q almost surely. Assume ¢
and X satisfy

(1) foreacht € [0,1], R" 5 x > ¢¢(x) € Ris C? continuous a.s.,

(2) foreach x € R", t — ¢;(x) is a continuous F;-semimartingale represented as

t t
(A6) 6:(x) = do(x) + /0 gs(x) ds + /0 ok (x) dmk,

d

where m', ... ,m?% are continuous martingales, and the random fields g and v are locally

bounded and
(a) foreachx € R* t +— g;(x) andt — v;(x) are F;-adapted processes;
(b) foreacht €10,1], x — v,(x) is Clas.;

(¢c) foreacht €[0,1], x — g;(x) is continuous, and

1% p
E sup ‘V/ gs(x)ds‘ Spov |t — 12|*1P,
h

X€By

’ ’
E|Xt1/\‘rN - th/\‘rN|p SP’N |t1 - lZlazp s

where ty = inf{t > 0:|X;| > N}.

Then we have

dey(X;) = g(X,) dr +vE(X,)dm¥ + 9,4, (X,) dX!
(A7) 1 o .
+ 5 0 $e (X d(XT X7+ 007 (Xo) dim®, XT),.

Proof. The proof is similar to that of Theorem 1.1 in [13]. Without loss of generality, we
can assume | X;| is bounded by a constant N. For any t > 0, lett; = It/n,l =0,...,n.
Define s(n) :=t[sn/t]/n and X} := X;(,). Then,

n—1 n—1
1 (X1) — do(Xo) = Z (B2, (X)) — be, (Xy))] + Z (D10 (Xepp)) — be, (Xop)]

1=0 =0
=1"+1.

By (A.6) and the definition of X",

LIRS

n—1
n=3 |
1=0"1

n—lgyy t t
gs(th)ds—i-Z/ vk (X, dm* = / gs(X")ds +/ vk (x™) dmk.
1=07U 0 0
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Since gs(X7) — g5(Xs), vs(X]) — vs(X;) as,, and g and v are uniformly bounded in
[0,1] x By, we obtain

t t
I{‘L/ gS(Xs)ds+/ vf(Xs)dmlsc asn — oo.
0 0

By Taylor expansion,

1y Za ¢,,+1(X,,)<X,M—X,,)+ Za,]qs,,ﬂ(szxxt,ﬂ XiHxi, —xi)

1=0
=: I3y + 13,
where §; are some random variables between X, and X, +1- 1t is standard to show that

1 [ . .
13 = 5/0 0ijds (Xs) d(X', X7)s asn — oo.

For 17, we rewrite it as

n—1 n—1
I3y =) 0y (X)X = X+ Y [0idhu,, (Xiy) — iy (X)X}, — X))
i=0 =0
=: 131 + L.
Like before,

t
]2nui>/ Dis(X)dXI, asn — oo,
0

Again by (A.6),
n—1 )
B,=> a,.( /t gs (X)) ds)(X,Hl - X})
1=0 !
n—1
+y ( /t
1=0 !

By our assumption (c) and Holder’s inequality,

[/ES]

0; Vg (th)dm )(X —Xl)— 12121 + 12122

[ZES]

1 pil/p ’ ’
E|IZ, ] <§ :[E sup ‘V/t g ds| | [E|X,, — Xq 7]
1+1

X€BN
n—1
< Z 1o — |11 <pm@rm2tl L0 ask — oo.
1=0

It is standard to show
P ! ,
112 — / 30X (Xy)d(m*, XT)s  ask — oo.
0

Combining all the above calculations, we obtain (A.7). [
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