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Sharp upper bounds on the length of the shortest closed
geodesic on complete punctured spheres of finite area

Antonia Jabbour and Stéphane Sabourau

Abstract. We establish sharp universal upper bounds on the length of the shortest
closed geodesic on a punctured sphere with three or four ends endowed with a com-
plete Riemannian metric of finite area. These sharp curvature-free upper bounds are
expressed in terms of the area of the punctured sphere. In both cases, we describe the
extremal metrics, which are modeled on the Calabi–Croke sphere or the tetrahedral
sphere. We also extend these optimal inequalities for reversible and non-necessarily
reversible Finsler metrics. In this setting, we obtain optimal bounds for spheres with
a larger number of punctures. Finally, we present a roughly asymptotically optimal
upper bound on the length of the shortest closed geodesic for spheres/surfaces with
a large number of punctures in terms of the area.

1. Introduction

This article deals with universal upper bounds on the length of the shortest closed geodesic
on surfaces with a complete Riemannian metric of finite area. The existence of a closed
geodesic on a closed surface with a Riemannian metric follows from a minimization
process using Ascoli’s theorem in the nonsimply connected case, and from Birkhoff’s
minmax principle in the simply connected case. For noncompact surfaces with a com-
plete Riemannian metric, closed geodesics may not exist (the Euclidean plane yields an
obvious example). However, it was proved by Thorbergsson [38] for surfaces with at least
three ends and by Bangert [5] for surfaces with one or two ends that every noncompact
surface † with a complete Riemannian metric of finite area has a closed geodesic. This
allows us to introduce

scg.†/ D inf ¹length.
/ j 
 is a closed geodesic of †º:

Note that in higher dimension the existence of a closed geodesic on a closed Riemannian
manifold has been established by Fet and Lyusternik [28] (see also [27]), but whether
closed geodesics exist or not on any complete noncompact Riemannian n-manifold of
finite volume with n � 3 is an open question; see Question 2.3.1 in [9].
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In this article, we are interested in finding good (if possible optimal) curvature-free
upper bounds on scg.†/ for every surface † with a complete Riemannian metric of finite
area A. For every nonsimply connected closed surface, it was independently proved by
Hebda [20] and Burago–Zalgaller [8] that scg.†/ �

p
2

p
area.†/. In this case, opti-

mal bounds are only known for the torus (Loewner, 1949, unpublished, see [22]), the
projective plane (Pu, 1952, [31]) and the Klein bottle (Bavard, 1986, [6]); see also Sec-
tions 5 and 6 for a brief presentation of the extremal inequalities. For the sphere, it was
proved by Croke [12] that scg.†/� 31

p
area.†/. This bound was subsequently improved

in [29], [34] and [32], where the current best bound with 31 replaced with 4
p
2 is due to

Rotman [32]. It is conjectured that the global maximum for the length of the shortest
closed geodesic among Riemannian metrics with fixed area on the sphere is attained by
the Calabi–Croke sphere (see [12, 13]), which would yield

(1.1) scg.S2/ � 21=2 31=4
p

area.S2/:

Recall that the Calabi–Croke sphere is defined as the piecewise flat sphere with three con-
ical singularities of angle 2�=3 obtained by gluing two copies of an equilateral triangle
along their boundaries. Though this conjecture remains wide open, it was proved by Bala-
cheff [3] that the Calabi–Croke sphere is a local maximum (see also [35] for an alternate
proof extending to the Lipschitz distance topology). No conjecture is available for other
surfaces, except in genus 3, where Calabi constructed nonpositively curved piecewise
flat metrics with systolically extremal-like properties; see [10, 36] (and [37] for related
systolic-like properties in genus 2). Under a nonpositive curvature assumption, extremal
systolic inequalities have been established for the genus 2 surface and the connected sum
of three projective planes; see [24] and [25]. In both cases, the extremal nonpositively
curved metrics are piecewise flat with conical singularities. It was later proved that this
structure is common to all extremal nonpositively curved surfaces; see [26]. Extremal sys-
tolic inequalities in a fixed conformal class have been investigated in relation with closed
string field theory; see [18, 19, 30] for the most recent contributions and the references
therein.

For noncompact surfaces † with a complete Riemannian metric of finite area, it was
also shown by Croke [12] that scg.†/� 31

p
area.†/ (without any curvature assumption).

This bound has recently been improved by Beach and Rotman [7], where the constant 31
is replaced with 4

p
2 for surfaces with one puncture and with 2

p
2 for surfaces with at

least two punctures. The authors also conjectured that the optimal bound for a punctured
sphere with at most three punctures is the same as that for the sphere; see (1.1).

In this article, we show that this conjecture is true for spheres with exactly three punc-
tures and prove an optimal bound for spheres with four punctures. These are the only new
optimal universal upper bounds on the length of the shortest closed geodesic obtained dur-
ing the almost 35 years since Bavard’s inequality on the Klein bottle [6]. We also improve
the best known upper bounds for spheres with a higher number of punctures. More pre-
cisely, we have the following.

Theorem 1.1. Let † D S2 n ¹x1; : : : ; xkº be a k-punctured sphere with a complete Rie-
mannian metric of finite area. Then the following holds:
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(1) If k D 3, then there exists a noncontractible figure-eight geodesic 
 on † such that

(1.2) length.
/ < 21=2 � 31=4
p

area.†/:

Furthermore, this inequality is optimal.

(2) If k � 4, then there exists a noncontractible closed geodesic 
 on † such that

(1.3) length.
/ < 2 � 3�1=4
p

area.†/:

Furthermore, this inequality is optimal when k D 4.

The extremal metric on the three-punctured sphere in (1.2) is modelled on the Calabi–
Croke sphere by attaching three cusps of arbitrarily small area around its singularities.
This can be done keeping the curvature nonpositively curved.

The extremal metric on the four-punctured sphere in (1.3) is modelled on the tetrahe-
dral sphere by attaching four cusps of arbitrarily small area around its singularities. Here,
the tetrahedral sphere is defined as the piecewise flat sphere with four conical singularities
of angle � given by the regular tetrahedron. This can also be done keeping the curvature
nonpositively curved.

A version of this theorem holds true for complete Finsler punctured spheres of finite
Holmes–Thompson area; see Section 2 for a brief account on reversible and non-neces-
sarily reversible Finsler metrics and the Holmes–Thompson volume.

For reversible Finsler metrics, we have the following.

Theorem 1.2. Let † D S2 n ¹x1; : : : ; xkº be a k-punctured sphere with a complete
reversible Finsler metric of finite area. Then the following holds:

(1) If k D 3, then there exists a noncontractible figure-eight geodesic 
 on † such that

(1.4) length.
/ < 2�1=2 � 31=2 � �1=2
p

area.†/:

(2) If k � 4, then there exists a noncontractible closed geodesic 
 on † such that

(1.5) length.
/ < �1=2
p

area.†/:

Furthermore, this inequality is optimal when k 2 ¹4; : : : ; 6º.

Contrary to (1.2), the inequality (1.4) on the three-punctured sphere is not necessarily
optimal. The extremal metric on the four-punctured sphere in (1.5) is modelled on the
sphere S2 obtained by gluing two copies of the square Œ0; 1� � Œ0; 1� endowed with the
`1-metric along their boundary, with four cusps of arbitrarily small area attached around
the four vertices of the squares. Note that the four vertices of the squares and the two cen-
ters of the squares are at distance 1

2
scg.S2/ D 1 from each other. Similarly, the extremal

metrics on the five- and six-punctured spheres in (1.5) are obtained by attaching one or
two extra cusps of arbitrarily small area around the centers of the squares.

For non-necessarily reversible Finsler metrics, we have the following.

Theorem 1.3. Let † D S2 n ¹x1; : : : ; xkº be a k-punctured sphere with a complete non-
necessarily reversible Finsler metric of finite area. Then the following holds:
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(1) If k D 3, then there exists a noncontractible figure-eight geodesic 
 on † such that

(1.6) length.
/ < 21=2 � �1=2
p

area.†/:

(2) If k � 4, then there exists a noncontractible closed geodesic 
 on † such that

length.
/ < 2 � 3�1=2 � �1=2
p

area.†/:

Contrary to Theorem 1.1 and Theorem 1.2, the inequalities in this theorem are not nec-
essarily optimal. In Section 6, we present further optimal inequalities on punctured tori,
punctured projective planes and punctured Klein bottle with a few ends, where the num-
ber of ends (interestingly) depends whether the metric is Riemannian, reversible Finsler
or non-reversible Finsler. These inequalities immediately follow from the corresponding
optimal bounds for the underlying closed surfaces.

Table 1 below gives an approximation of the the constant c# (optimal in some cases)
for the inequality

scg.†/ � c#

p
area.†/;

where † is a k-punctured sphere with a complete metric of finite area in the Riemannian,
reversible Finsler and non-necessarily reversible Finsler cases when k D 3 or 4.

c# Riemannian reversible Finsler non-reversible Finsler

k D 3 21=2 � 31=4 ' 1:861::: 2�1=2 � 31=2 � �1=2 ' 2:170::: 21=2 � �1=2 ' 2:506:::

k D 4 2 � 3�1=4 ' 1:519::: �1=2 ' 1:772::: 2 � 3�1=2 � �1=2 ' 2:046:::

Table 1. Value of the constant c# for the k-punctured sphere.

We conclude by proving a roughly asymptotically optimal upper bound on the length
of the shortest noncontractible closed geodesic on spheres with a large number of punc-
tures; see Theorem 7.2 for a more general statement for genus g surfaces with k punctures.

Theorem 1.4. Let † D S2 n ¹x1; : : : ; xkº be a k-punctured sphere with a complete Rie-
mannian metric of finite area, where k � 3. Then there exists a noncontractible closed
geodesic 
 on † such that

length.
/ � 4
p
2

r
area.†/
k

�

Furthermore, the upper bound is roughly asymptotically optimal in k.

Similar upper bounds hold true both in the reversible and non-necessarily reversible
Finsler cases (albeit with a different multiplicative constant).

The proofs of our optimal bounds, namely Theorem 1.1, Theorem 1.2 and Theo-
rem 1.3, do not rely on the conformal length method used in [22], [31] and [6] to establish
optimal systolic inequalities. Instead, we exploit ramified covers from the torus to the
sphere (the first one was introduced in [33] and used in [2] and [35] in the same context)
to connect the extremal properties of the punctured spheres with the extremal equilateral
flat torus in Loewner’s systolic inequality; see Theorem 5.3.
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2. Finsler metrics and Holmes–Thompson volume

This section aims at introducing the notions of Finsler metrics and Holmes–Thompson
volume. Let us recall the definition of a Finsler metric.

Definition 2.1. A Finsler metric on a manifold M is a continuous function F W TM !
Œ0;1/ on the tangent bundle TM of M which is smooth outside the zero section of TM
and whose restriction Fx WD FjTxM to each tangent space TxM is a (possibly asymmetric)
norm, that is,

(1) Subadditivity: Fx.uC v/ � Fx.u/C Fx.v/ for every u; v 2 TxM ;
(2) Homogeneity: Fx.tu/ D tFx.u/ for every u 2 TxM ;
(3) Positive definiteness: Fx.u/ > 0 for every nonzero u 2 TxM .

A Finsler metric is reversible if Fx.�u/ D Fx.u/ for every x 2M and u 2 TxM .
The length of a piecewise smooth curve 
 W Œ0; 1�!M is defined as

length.
/ D
Z 1

0

F.
 0.t// dt;

and the distance between two points x and y in M is the infimal length of a curve 
 in M
joining x to y.

We will consider the following notion of volume.

Definition 2.2. The Holmes–Thompson volume of an n-dimensional Finsler manifold M
is defined as the symplectic volume of its unit co-ball bundle B�M � T �M divided by
the volume �n of the Euclidean unit ball in Rn. That is,

vol.M/ D
1

�n

Z
B�M

1

nŠ
!nM ;

where !M is the standard symplectic form on T �M .

The Holmes–Thompson volume of a Finsler manifold is bounded from above by its
Hausdorff measure, with equality if and only if the metric is Riemannian; see [15]. Note
also that the Holmes–Thompson volume of a Riemannian manifold agrees with its Rie-
mannian volume.

3. Degree-three ramified cover from the torus onto the Calabi–Croke
sphere

Consider the piecewise flat sphere .S2; g0/ with three conical singularities x1, x2, x3
obtained by gluing two copies of a flat unit-side equilateral triangle along their boundaries.
The sphere .S2; g0/ is referred to as the Calabi–Croke sphere.

By the theory of coverings [14], there exist a degree-three cover �0WT2! S2 ramified
over the three vertices x1, x2, x3 of S2, and a deck transformation map �0WT2 ! T2

fixing only the ramification points of �0WT2 ! S2 with �30 D idT2 and �0 ı �0 D �0.
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The ramified cover �0WT2! S2 can also be constructed in a more geometrical way as
follows. First, cut the sphere along the two minimizing arcs of g0 joining x1 to x2 and x1
to x3. This yields a parallelogram with all sides of unit length. Then, glue three copies
of this parallelogram along the two sides between x3 and the two copies of x1 to form a
hexagon; see Figure 1. By identifying the opposite sides of this parallelogram, we obtain
an equilateral flat torus T2. The isometric rotation, defined on the hexagon, centered at x3
and permuting the parallelograms, passes to the quotient and induces a map �0WT2! T2.
This map gives rise to a degree-three ramified cover �0WT2 ! S2.

x3

x1x1

x1

x2 x2

x2

Figure 1. Degree-three ramified cover of the Calabi–Croke sphere.

Thus, the Calabi–Croke sphere can be described as the quotient of an equilateral flat
torus by the deck transformation map �0WT2 ! T2.

Given a Riemannian metric with conical singularities on S2, we will endow T2 with
the metric pulled back by �0WT2 ! S2 and its universal cover R2 with the metric pulled
back by the composite map

R2 ! T2
! S2:

Since the degree of the Riemannian ramified cover �0WT2! S2 is equal to three, we have

(3.1) area.T2/ D 3 area.S2/:

Remark 3.1. The degree-three ramified cover �0WT2 ! S2 was first introduced in [33]
in relation with extremal properties of the Calabi–Croke sphere regarding the length of the
shortest closed geodesic. It was later used in [3] to show that the Calabi–Croke sphere is
a local extremum for the length of the shortest closed geodesic among metrics with fixed
area. A different proof which does not require the uniformization theorem, but still makes
use of the degree-three ramified cover �0WT2 ! S2, can be found in [35].

4. Degree-two ramified cover from the torus onto the tetrahedral
sphere

Consider the piecewise flat sphere .S2; g1/ with four conical singularities x1, x2, x3
and x4 given by the unit-side regular tetrahedron. The sphere .S2; g1/ is referred to as
the tetrahedral sphere.

By the theory of coverings, there exist a degree-two cover �1WT2! S2 ramified over
the four vertices x1, x2, x3, x4 of S2, and a deck transformation map �1WT2! T2 fixing
only the ramification points of �1WT2 ! S2 with �21 D idT2 and �1 ı �1 D �1.



Sharp bounds on the length of the shortest closed geodesic 1057

The ramified cover �1WT2 ! S2 can also be constructed in a more geometrical way
as follows. First, cut the sphere along the three minimizing arcs of g1 joining x1 to x2,
x1 to x3 and x1 to x4. This yields an equilateral triangle with side length two. Then, glue
two copies of this triangle along the side passing through x4 to form a parallelogram; see
Figure 2. By identifying the opposite sides of this parallelogram, we obtain an equilateral
flat torus T2. The symmetry, defined on the parallelogram, centered at x4 and switching
the two equilateral triangles, passes to the quotient and induces a map �1WT2! T2. This
map gives rise to a degree-two ramified cover �1WT2 ! S2.

x4

x1

x1 x1

x1
x2

x2

x3x3

Figure 2. Degree-two ramified cover of the tetrahedral sphere.

Thus, the tetrahedral sphere .S2; g1/ can be described as the quotient of an equilateral
flat torus by the deck transformation map �1WT2 ! T2.

Given a Riemannian metric with conical singularities on S2, we will endow T2 with
the metric pulled back by �1WT2 ! S2 and its universal cover R2 with the metric pulled
back by the composite map

R2 ! T2
! S2:

Since the degree of the Riemannian ramified cover �1WT2! S2 is equal to two, we have

(4.1) area.T2/ D 2 area.S2/:

5. Proof of the main theorem

In this section, we recall some basic results in systolic geometry and prove the main theo-
rem of this article, both in the Riemannian case and in the Finsler case.

Definition 5.1. Let M be a surface with a complete (Riemannian or Finsler) metric. The
systole of M is defined as

sys.M/ D inf ¹length.
/ j 
 is a noncontractible loop of M º:

When M is closed, the systole is attained by the length of a noncontractible closed
geodesic referred to as a systolic loop of M .

We will also need the following extension of the notion of systole.

Definition 5.2. Let M be a surface with k punctures and p marked points x1; : : : ; xp ,
endowed with a complete (Riemannian or Finsler) metric. A loop of M is admissible if
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it lies in M 0 D M n ¹x1; : : : ; xpº and is not homotopic in M 0 to a point, a multiple of a
noncontractible simple loop of a cusp, or a multiple of some small circle around a marked
point xi . The marked homotopy systole of M is the infimal length of the admissible loops
of M . It is denoted by sys�.M/.

Let us recall Loewner’s systolic inequality in the Riemannian case (unpublished),
see [22], in the reversible Finsler case, see [35], and in the non-necessarily reversible
case, see [1].

Theorem 5.3 ([1, 22, 35]). Let T2 be a torus. Then the following statements hold true.

(1) For every Riemannian metric on T2,

(5.1) sys.T2/ � 21=2 � 3�1=4
p

area.T2/;

with equality if and only if T2 is an equilateral flat torus.

(2) For every reversible Finsler metric on T2,

(5.2) sys.T2/ � 2�1=2 � �1=2
p

area.T2/;

with equality if T2 is a square flat torus endowed with the `1- or `1-metric.

(3) For every non-necessarily reversible Finsler metric on T2,

(5.3) sys.T2/ � 21=2 � 3�1=2 � �1=2
p

area.T2/;

with equality if T2 is homothetic to the quotient of R2, endowed with the non-sym-
metric norm whose unit disk is the triangle with vertices .1; 0/, .0; 1/ and .�1;�1/,
by the lattice Z2.

We can now proceed to the proof of the main theorem.

Proof of Theorem 1.1. Consider the case (1). Let † be a 3-punctured sphere with a com-
plete Riemannian metric of finite area.

Take three cylindrical ends NC1, NC2, NC3 of †. For every i D 1; : : : ; 3, take a cylindrical
end Ci � NCi with

(5.4) d.Ci ; @ NCi / > 2
1=2
� 31=4

p
area.†/:

Collapse every end Ci to a point xi . This gives rise to a sphere S2 with a Riemannian
metric with three singularities x1, x2, x3. Note that area.S2/ < area.†/.

Consider the degree-three ramified cover �0WT2!S2 with branched points x1, x2, x3
described in Section 3. Denote by pi the preimage of xi under �0W T2 ! S2 for i D
1; : : : ; 3. Endow T2 with the singular pullback Riemannian metric. The metric on T2 can
be smoothed out in the neighborhood of its singularities, keeping the area and the systole
fixed. By Loewner’s inequality (5.1) and the relation (3.1), there exists a noncontractible
closed geodesic 
 on T2 with

(5.5) length.
/ � 21=2 � 31=4
p

area.S2/:
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The loop 
 does not pass through any singularity pi . Otherwise, by the distance esti-
mate (5.4) giving a lower bound on the distance between the center pi of the quotient
disk Di D NCi=Ci and its boundary, and the length upper bound (5.5), the loop 
 passing
through pi would lie in the topological disk Di of T2.

This would contradict the noncontractibility of 
 in T2. Thus, the systolic loop 

projects to a closed geodesic of S2 n ¹x1; x2; x3º �† under �0WT2! S2. By Lemma 7.1
in [35], this closed geodesic is a figure-eight geodesic of S2 (with exactly one singular-
ity xi in each of the three domains of S2 it bounds). This concludes the proof of the
case (1) in Theorem 1.1.

In the case (2), the proof is similar. Start with a 4-punctured sphere † with a com-
plete Riemannian metric of finite area. Take four cylindrical ends C1, C2, C3, C4 of †
of small area located far away from the core of the surface. Collapse the cylindrical ends
into points xi . This gives rise to a sphere S2 with a Riemannian metric with four singu-
larities xi . Consider the degree-two ramified cover �1WT2 ! S2 with branched points xi
described in Section 4. By Loewner’s inequality (5.1) and the relation (4.1), there exists a
noncontractible closed geodesic 
 on T2 with

length.
/ � 2 � 3�1=4
p

area.S2/:

As before, the systolic loop 
 does not pass through a ramification point of �1WT2!S2

and projects to a closed geodesic1 of S2 n ¹x1; x2; x3; x4º � †. This concludes the proof
of the case (2) in Theorem 1.1.

In both cases, the extremal metrics are described in the introduction right after Theo-
rem 1.1.

Remark 5.4. In the Finsler case, we simply need to replace Loewner’s inequality (5.1)
with (5.2) for reversible Finsler metrics, and with (5.3) for non-necessarily reversible
Finsler metrics. This leads to the Finsler version of the main theorem given by Theo-
rem 1.2 and Theorem 1.3. The only minor novelty is when k D 5 or 6. In this case, we
take k cylindrical ends Ci of† of small area located far away from the core of the surface,
and collapse the cylindrical ends into points xi . Consider the degree-two ramified cover
�1WT2 ! S2 branched only at four points x1; : : : ; x4 as previously. Apply the Finsler
version of Loewner’s inequality and observe that the systolic loops of T2 do not pass
through the preimages ��11 .xi / of the singularities of S2 and project to closed geodesics
of S2 n ¹x1; : : : ; xkº � † as required.

Remark 5.5. Contrary to the Riemannian case, the extremal (reversible or non-reversible)
Finsler metric on T2 does not pass to the quotient under the deck transformation groups
of �0WT2 ! S2, which explains why the inequalities (1.4) and (1.6) may not be optimal.
The same occurs for the extremal non-reversible Finsler metric on T2 with the deck trans-
formation group of �1WT2 ! S2. However, the extremal reversible Finsler metric on T2

does pass to the quotient under the deck transformation group of �1WT2 ! S2. In this
case, the inequality (1.5) is optimal and the approximating metrics are described in the
introduction right after Theorem 1.2.

1Arguing as in Lemma 7.1 of [35], one can show that the systolic loop 
 of T2 projects either to a simple
closed geodesic surrounding exactly two branched points of S2 on each side, or to a figure-eight geodesic with
exactly one or two branched points in each of the three domains of S2 it bounds.
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Remark 5.6. One may wonder if our technique can be applied to other ramified cov-
ers T2 ! S2 in order to derive sharp upper bounds on the length of the shortest closed
geodesics on other Riemannian punctured spheres†. At the heart of the matter is the prop-
erty that the extremal equilateral flat metric on T2 should induce an extremal Riemannian
metric on † but also on S2 with marked points/branched points xi corresponding to the
ends of †. In particular, the marked homotopy systole of S2 should be greater or equal to
the systole of T2. This implies that the ramification points pi of T2 must be at distance
at least 1

2
sys.T2/ from each other. Thus, the open disks D.pi ; 14 sys.T2// must be dis-

joint. Since the area of each of these flat disks is equal to �
16

sys.T2/2, we deduce that the
number of ramification points of T2 does not exceed

area.T2/
�
16

sys.T2/2
D
8

�

p
3 D 4:4:::

Therefore, the number of ramification points is at most 4. In conclusion, our method to find
extremal Riemannian metrics based on Loewner’s inequality on the torus cannot apply to
punctured spheres with more than 4 ends.

6. Extremal metrics on noncompact surfaces

In this section, we present other examples of noncompact surfaces admitting sharp upper
bounds on the length of their shortest closed geodesic.

Proposition 6.1. Let M be a closed surface with a systolically extremal (Riemannian or
Finsler) metric. Denote by † DM n ¹x1; : : : ; xkº the surface M with k punctures. Then
every complete (Riemannian or Finsler) metric on † satisfies

(6.1) sys�.†/ � c.M/
p

area.†/;

where c.M/ D sys.M/=
p

area.M/.

Proof. To prove this upper bound on sys�.†/, simply collapse small enough and far
enough cylindrical ends Ci of †. The resulting surface M 0 (where the metric is smoothed
out) is homeomorphic to M and satisfies sys�.†/ � sys.M 0/ and area.M 0/ � area.†/.
Since the metric on M is systolically extremal, we clearly have c.M 0/ � c.M/ and the
desired result immediately follows.

The inequality (6.1) is not optimal when k is large, see Theorem 7.2, but it is for small
values of k. For this, one needs to find k points on M at distance at least 1

2
sys.M/ from

each other. Compare with Remark 5.6.
For instance, we can consider the extremal (Riemannian or Finsler) metrics on the

torus as follows; see Theorem 5.3. The equilateral flat torus (see Theorem 5.3.(1)) admits 4
such points; see Figure 3a. Attaching cusps of arbitrarily small area around these 4 points,
we construct an almost extremal Riemannian metric on the torus with k punctures, where
k � 4. Similarly, the square flat torus with the `1-metric (see Theorem 5.3.(2)) admits 8
such points; see Figure 3b. As previously, we can construct an almost extremal reversible
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Finsler metric on the torus with k punctures, where k � 8. Finally, the square torus with
the extremal non-reversible Finsler metric (see Theorem 5.3(3)) admits 9 points whose
distance, back and forth, between any pair of them is at least sys.T2/; see Figure 3c. (Note
that the asymmetric distance between two of these points might be less than 1

2
sys.T2/ but

the distance in the opposite direction makes up for it and their sum is at least sys.T2/.)
As previously, we can construct an almost extremal non-reversible Finsler metric on the
torus with k punctures, where k � 9.

(a) Riemannian (b) reversible Finsler (c) non-reversible Finsler

Figure 3. Separated points on the torus.

The same construction applies to the projective plane where the extremal metric is
given by the canonical metric both in the Riemannian and Finsler cases; see [31] and [21].
More precisely, we can construct an almost extremal metric on the projective plane with k
punctures, where k � 3.

This construction also applies to the Klein bottle where the extremal metric is known
both in the Riemannian and reversible Finsler settings. Specifically, the extremal Rieman-
nian Klein bottle is obtained by attaching along their boundary two copies of the Mobius
band defined as the quotient of the �

4
-neighborhood of the equator on the standard sphere

by the antipodal map; see [6]. While the extremal Finsler Klein bottle is the square flat
Klein bottle with the `1-metric; see [11]. Thus, we can construct an almost extremal met-
ric on the Klein bottle with k punctures, where k � 4 in the Riemannian case and k � 8
in the reversible Finsler case.

7. Surfaces with many punctures

In this section, we show a roughly asymptotically optimal upper bound on the length of
the shortest closed geodesic on a surface with a large number of punctures.

We will need the following result, which can be found in Lemma 6.5 of [4].

Lemma 7.1. Let M be a closed surface with a Riemannian metric and k marked points
x1; : : : ; xk , with k � 3. Fix R 2 .0; 1

4
sys�.M/�. Then there exists a closed Riemannian

surface NM such that

area. NM/ � area.M/;(7.1)

sys�. NM/ D sys�.M/;(7.2)

area ND.R/ � 1
2
R2;(7.3)

for every disk ND.R/ of radius R in NM .
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The following result implies Theorem 1.4 when g D 0.

Theorem 7.2. Let † be a surface of genus g with k punctures, endowed with a complete
Riemannian metric of finite area. Then

sys�.†/ � C
log.g C 2/p
g C k C 1

p
area.†/;

where C is an explicit universal constant.

Proof. Take k cylindrical ends Ci � † far away from the core of † so that

(7.4) d.Ci ; Cj / > sys�.†/

for every i ¤ j , and

(7.5) length.˛/ > sys�.†/

for every arc ˛ of † with endpoints in Ci inducing a nontrivial class in �1.†; Ci /.
Collapse every end Ci to a point xi . Denote by M the resulting closed surface with k

marked points x1; : : : ; xk . The Riemannian metric on† induces a metric onM that can be
smoothed out in the neighborhood of the singularities xi , keeping the area and the marked
homotopy systole fixed. Note that area.M/ � area.†/.

Claim 7.3. We have
sys�.†/ � sys.M/:

Proof. Let us show that length.
/ � sys�.†/ for every noncontractible loop 
 of M .
By (7.4), we can assume that the loop 
 passes through at most one singularity of M ,
otherwise we are done. We can further assume that the loop 
 does not pass through any
singularity xi ofM . Otherwise, it would admit an arc ˛�†with endpoints inCi inducing
a nontrivial class in �1.†;Ci / as a lift under the quotient map†!M . By (7.5), we would
be done. Thus, the loop 
 of M also lies in †. Furthermore, the loop 
 is noncontractible
in †, even after collapsing the ends of †. It follows that 
 is an admissible loop of †.
Therefore, length.
/ � sys�.†/.

The roughly asymptotically optimal systolic inequality for closed surfaces of large
genus [16,17] (see also [2] and [23] for alternate proofs) applied toM , combined with the
relations sys�.†/ � sys.M/ and area.M/ � area.†/, shows that

(7.6) sys�.†/ � C
0 log.g C 2/
p
g C 1

p
area.†/

for some explicit universal constant C 0. This proves the theorem when k D 0.
Now, consider the closed surface NM obtained by applying Lemma 7.1 to the closed

surface M with its k marked points, with R D 1
4

sys�.M/. Observe that

d NM .xi ; xj / �
1

2
sys�.M/:
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Otherwise we could find a figure-eight curve on NM of length less than sys�.M/, in the
neighborhood of the segment Œxi ; xj �, surrounding both xi and xj . This would contradict
the relation (7.2).

It follows that the open disks ND.xi ; 14 sys�.M// of NM are disjoint. Combined with the
inequality (7.1), we derive

area.†/ � area. NM/ �

kX
iD1

area ND.xi ; 14 sys�.M//:

Now, by (7.3), we have

area ND.xi ; 14 sys�.M// �
1

32
sys�.M/2:

Hence,

(7.7) sys�.†/ �
4
p
2

p
k

p
area.†/:

Now, if k�10 gC1

log.gC2/2 , then k� 1
10

gCkC1

log.gC2/2 and the desired upper bound on sys�.†/

follows from (7.7). Otherwise, if k � 10 gC1

log.gC2/2 , then
p
g C 1 � 1

10

p
g C k C 1 and

the desired upper bound follows from (7.6).

Remark 7.4. Theorem 7.2 extends to Finsler metrics. Indeed, given a non-necessarily
reversible Finsler metric F on †, we can replace F with a reversible Finsler metric F 0

defined by F 0.v/D F.v/C F.�v/. Then we replace F 0 with the continuous Riemannian
metric g whose unit disk agrees with the inner Loewner ellipsoid associated to the unit tan-
gent disk of F 0. By construction, sys�.†;F /� sys�.†;g/ and area.†;g/� �area.†;F /
for some explicit universal constant �. (We refer to the proofs of Corollary 4.12 and The-
orem 4.13 in [1] for the details.) Thus, we can apply Theorem 7.2 to the Riemannian
metric g and immediately derive a similar upper bound on the length of the shortest closed
geodesic of F in terms of the Holmes–Thompson area of F (with a different multiplicative
constant).
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