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Quasi-regular Sasakian and K-contact structures
on Smale–Barden manifolds

Alejandro Cañas, Vicente Muñoz, Matthias Schütt and Aleksy Tralle

Abstract. Smale–Barden manifolds are simply-connected closed 5-manifolds. It is
an important and difficult question to decide when a Smale–Barden manifold admits
a Sasakian or a K-contact structure. The known constructions of Sasakian and K-con-
tact structures are obtained mainly by two techniques. These are either links (Boyer
and Galicki), or semi-regular Seifert fibrations over smooth orbifolds (Kollár). Re-
cently, the second named author of this article started the systematic development
of quasi-regular Seifert fibrations, that is, over orbifolds which are not necessarily
smooth. The present work is devoted to several applications of this theory. First,
we develop constructions of a Smale–Barden manifold admitting a quasi-regular
Sasakian structure but not a semi-regular K-contact structure. Second, we determine
all Smale–Barden manifolds that admit a null Sasakian structure. Finally, we show
a counterexample in the realm of cyclic Kähler orbifolds to the algebro-geometric
conjecture by Muñoz, Rojo and Tralle that claims that for an algebraic surface with
b1 D 0 and b2 > 1 there cannot be b2 smooth disjoint complex curves of genus g > 0
spanning the (rational) homology.

1. Introduction

Sasakian and K-contact geometries are topics of great interest for researchers in the fields
of differential geometry, algebraic geometry and topology. The main object is defined as
follows. Consider a contact co-oriented manifold .M; �/ with a contact form �. We say
that .M; �/ admits a Sasakian structure .M; g; �; �; J / if:
• there exists an endomorphism J W TM ! TM such that J 2 D � IdC� ˝ �, for the

Reeb vector field � of �,
• J satisfies the conditions d�.JX; J Y / D d�.X; Y /, for all vector fields X; Y and
d�.JX;X/ > 0 for all non-zero X 2 ker �,

• the Reeb vector field � is Killing with respect to the Riemannian metric g.X; Y / D
d�.JX; Y /C �.X/�.Y /;

• the almost complex structure I on the contact cone C.M/ D .M � RC; t2g C dt2/
defined by I.X/ D J.X/;X 2 ker �; I.�/ D t @

@t
; I.t @

@t
/ D �� , is integrable.
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If one drops the condition of the integrability of I , one obtains a K-contact structure.
The seminal book [5] shows several important directions of research and still unsolved

problems related to manifolds endowed with such structures. One can mention the prob-
lems of existence of K-contact/Sasakian structures, and the research program of study-
ing topological properties of manifolds endowed with these. Recent papers, see [3, 4,
8–11, 14, 23–25], contribute to the topological program. Existence questions were ana-
lyzed in the foundational papers of Kollár [18, 19], who showed that studying Sasakian
manifolds essentially amounts to constructing Seifert bundles over Kähler or symplectic
orbifolds. This technique proved to be very efficient and resulted, for example, in sub-
stantial progress in understanding the Smale–Barden manifolds with Sasakian structures,
see [8, 22, 23, 25]. However, several important problems are still not solved, essentially
because the known results [18, 19, 23, 25] are obtained for a smaller class of semi-regular
Sasakian or K-contact structures, that is, determined by Seifert bundles over smooth orbi-
folds. These bundles are called semi-regular. If one allows for more general singularities,
one comes to the notion of a quasi-regular Seifert bundle. The first development of this
more general theory was begun by the second author of this article in [22]. In the present
paper, we further develop the construction techniques for quasi-regular Sasakian or K-
contact structures and compare them with the semi-regular case.

A 5-dimensional simply connected manifold M is called a Smale–Barden manifold.
These manifolds are classified by their second homology group over Z and the so-called
Barden invariant [1, 35]. In more detail, let M be a compact smooth oriented simply
connected 5-manifold. Let us write H2.M;Z/ as a direct sum of cyclic group of prime
power order:

(1.1) H2.M;Z/ D Zk ˚
�
˚
p;i

Zc.p
i /

pi

�
;

where k D b2.M/. Choose this decomposition in a way that the second Stiefel–Whitney
class map w2WH2.M;Z/ ! Z2 is zero on all but one summand Z2j . The value of j
is unique, it is denoted by i.M/, and is called the Barden invariant. The fundamental
question arises, which Smale–Barden manifolds admit K-contact or Sasakian structures.
In [25], the second and the fourth author of this article obtained classification results for
Smale–Barden manifolds with semi-regular Sasakian structures. Thus, one of the aims of
this work is to analyze the topic “quasi-regular versus semi-regular Sasakian manifolds”.
In particular, we ask the following question.

Question 1.1. Are there Smale–Barden manifolds which carry quasi-regular Sasakian
structures but do not carry semi-regular Sasakian structures?

We answer this question in the positive in Theorem 4.3. Moreover, the examples that
we provide also satisfy that they do not admit semi-regular K-contact structures. In gen-
eral, we have the following chain of inclusions:

¹Sasakian semi-regularº � ¹Sasakian quasi-regularº
\ \

¹K-contact semi-regularº � ¹K-contact quasi-regularº

In [8], we have constructed the first Smale–Barden manifold which is K-contact semi-
regular but not Sasakian semi-regular. By Corollary 3.8, we have a Sasakian quasi-regular
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which is not Sasakian semi-regular. The rightmost inclusion is open (see Question 1.2
below). In Theorem 4.3 of this article, we show an example of a manifold with a Sasakian
quasi-regular structure which does not admit K-contact semi-regular structures, so all
other inclusions are strict.

The following problem was posed by Boyer and Galicki [5]:

Question 1.2. Are there Smale–Barden manifolds with K-contact but no Sasakian struc-
tures?

The answer to this question is still not known, although substantial progress has been
achieved in [23], and the answer in the class of semi-regular Seifert bundles was found
in [8], where it is constructed a Smale–Barden manifold with a semi-regular K-contact
structure that does not admit a semi-regular Sasakian structure. The key to the construc-
tion of such a semi-regular K-contact manifold M is to find a simply-connected smooth
symplectic 4-manifold X with a collection of embedded disjoint symplectic surfaces Di
of positive genus gi > 0 which span the homology H2.X;Q/. The manifold M is the
Seifert bundle over X . Such M does not admit a semi-regular Sasakian structure because
such configuration of complex curves is not admissible in a complex surface. Actually,
in [23] we find the following conjecture.

Conjecture 1.3. There does not exist a smooth complex surfaceX with b1D 0 and b2 >1
such that there are smooth disjoint complex curvesDi of positive genus gi > 0which span
the homology H2.X;Q/.

Some cases where the conjecture holds appear in [8, 23], which are enough for giv-
ing the examples of manifolds not admitting semi-regular Sasakian structures. To find
a full answer to Question 1.2 (that is, in the quasi-regular case), one needs to develop
the techniques of constructing symplectic and Kähler non-smooth orbifolds with second
homology spanned by symplectic surfaces or complex curves of positive genus. Examples
of such orbifolds and the corresponding Seifert bundles are constructed in Section 3. In
particular, we show that Conjecture 1.3 does not hold if we assume X to be a complex
cyclic orbifold (Theorem 3.2).

Our last objective is to settle the problem of the existence of null Sasakian structures
on Smale–Barden manifolds. Recall that the Reeb vector field � on a co-oriented contact
manifold .M; �/ determines a 1-dimensional foliation F� called the characteristic foli-
ation. If we are given a Sasakian manifold .M; g; �; �; J /, then one can define the basic
Chern classes ck.F�/ of F� , which are elements of the basic cohomology H 2k

B .F�/ (see
Theorem/Definition 7.5.17 in [5]). We say that a Sasakian structure is positive (negative)
if c1.F�/ can be represented by a positive (negative) definite 1-form. A Sasakian structure
is called null if c1.F�/ D 0. If none of these cases persists, it is called indefinite.

In [5] it is shown that if a Smale–Barden manifoldM admits a null Sasakian structure,
thenM is homeomorphic to the connected sum of at most 21 copies of S2 �S3. Moreover,
the authors prove that any M D #k.S2 � S3/ with 2 � k � 21 admits a null Sasakian
structure, except, possibly, b2.M/ D 2 and b2.M/ D 17. The following question is left
open in [5].

Question 1.4 (Open Problem 10.3.2 in [5]). Find examples of null Sasakian structures on
#2.S2 � S3/ and #17.S2 � S3/, or show that none can exist.
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Notice that this question is motivated by applications to �-Einstein Sasakian geo-
metry [6]. Since the transverse geometry of the characteristic foliation F� is Kähler, one
can understand Sasakian geometry in analogy with Kähler geometry. In particular, a null
Sasakian structure can be understood as a transversal Calabi–Yau structure. Therefore,
manifolds with null Sasakian structures are odd-dimensional analogues of the Calabi–Yau
spaces. Also, every null Sasakian structure can be deformed to an �-Einstein structure
(see [6] for a discussion of possible applications in physics).

The case #17.S2 �S3/was settled in [12] using a generalization of the initial approach
of Boyer and Galicki via Seifert bundles over weighted surface complete intersections in
weighted projective spaces [16, 29]. Our approach is different and enables us to provide
a complete solution of the problem. This solution illustrates our general techniques. We
answer Question 1.4 in the positive:

Theorem 1.5. Any M D #k.S2 � S3/, 2 � k � 21, admits a null Sasakian structure.

Note that the formulation of Theorem A in the introduction of [12] is incorrect, the
correct formulation should be “#k.S2 � S3/ with 3 � k � 21 admits a null Sasakian
structure".

Our basic reference containing elliptic surfaces, complex surfaces, and desingulariza-
tion process is [13].

2. Preliminaries on Seifert bundles

We freely use the notion of cyclic orbifolds [5,18,19,22]. Our basic reference will be [22].

Definition 2.1 ([22]). A cyclic singular symplectic (Kähler) manifold is a symplectic cyc-
lic 4-orbifold whose isotropy set is of dimension zero (that is, a finite set P of points,
called the singular set).

For a cyclic singular symplectic 4-manifold, a singular point is an isolated isotropy
point x 2 P � X . A local model around x is of the form C2=Zd , where � D exp.2�i=d/
acts as � � .z1; z2/ D .�e1z1; �e2z2/, where gcd.e1; d / D gcd.e2; d / D 1. We will write
d D d.x/.

Definition 2.2 ([22]). A sing-symplectic surface is a symplectic 2-orbifold D � X such
that if x 2 D is a singular point, then D is fixed by the isotropy subgroup. Two sing-
symplectic surfacesD1 andD2 intersect nicely if at every intersection point x 2D1 \D2
there is an adapted Darboux chart .z1; z2/ centered at x such that D1 D ¹.z1; 0/º and
D2 D ¹.0; z2/º in a model C2=Zd , where Zd < U.1/ � U.1/.

One can construct cyclic symplectic or Kähler orbifolds using the result below.

Proposition 2.3 ([22]). Let X be a cyclic singular 4-manifold with the set of singular
points P . LetDi be embedded sing-symplectic surfaces intersecting nicely, and take coef-
ficients mi > 1 such that gcd.mi ; mj / D 1 if Di and Dj have a non-empty intersection.
Then there exists an orbifold X with isotropy surfaces Di of multiplicities mi , and singu-
lar points x 2 P of multiplicity m D d.x/

Q
i2Ix

mi , Ix D ¹i j x 2 Diº:

Our basic tool is a Seifert bundle over a sing-symplectic orbifold.
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Definition 2.4. Let X be a cyclic, oriented n-orbifold. A Seifert bundle over X is an ori-
ented .nC 1/-dimensional manifoldM equipped with a smooth S1-action and a continu-
ous map � WM ! X such that for an orbifold chart .U; QU ;Zm; '/, there is a commutative
diagram

.S1 � QU/=Zm
Š

�����! ��1.U /??y �

??y
QU=Zm

Š
�����! U;

where the action of Zm on S1 is by multiplication by � D exp.2�i=m/ and the top dif-
feomorphism is S1-equivariant.

The basic invariant of the Seifert bundle is the orbifold first Chern class.

Definition 2.5. For a Seifert bundle � WM ! X , we define its first Chern class as follows.
Let l D lcm.m.x/ jx 2X/. Denote byM=l the quotient ofM by Zl � S

1. ThenM=l!
X is a circle fiber bundle with the first Chern class c1.M=l/ 2 H 2.X;Z/. Define

c1.M/ D
1

l
c1.M=l/ 2 H

2.X;Q/:

Definition 2.6. We say that an element a in a free abelian group A is primitive if it cannot
be represented as a D kb, with a non-trivial b 2 A, k 2 N.

Here is the main construction tool of this paper.

Theorem 2.7 (Lemma 39 in [22]). Let .X; !/ be a cyclic symplectic 4-orbifold with
a collection of embedded symplectic surfaces Di intersecting nicely, and integer num-
bers mi > 1, with gcd.mi ; mj / D 1 whenever Di \Dj 6D ;. Assume that there are local
invariants .mi ; ji ; jx/, x 2 P . Let bi be integers such that jibi � 1 .mod mi /, and let
m D lcm.mi /. Then there is a Seifert bundle � WM ! X such that

(1) it has the first orbifold Chern class c1.M/D Œ O!� for an orbifold symplectic form O!,

(2) if
P
i
bim
mi
ŒDi � 2 H

2.X � P;Z/ is primitive and the second Betti number satisfies
b2.X/ � 3, then we can further have that c1.M=m/ 2 H 2.X � P;Z/ is primitive.

This combines with the following basic result for characterizing K-contact and Sasa-
kian structures.

Theorem 2.8 (Theorems 7.5.1 and 7.5.2 in [5]). Let .M; g; �; �; J / be a quasi-regular
Sasakian manifold. Then the space of leaves X of the foliation determined by the Reeb
field � has a natural structure of a cyclic Kähler orbifold, and the projectionM ! X is a
Seifert bundle. Conversely, if .X; !/ is a Kähler cyclic orbifold and M is the total space
of the Seifert bundle determined by the class Œ!�, thenM admits a quasi-regular Sasakian
structure.

In the same way, one can characterize quasi-regular K-contact manifolds considering
symplectic orbifolds instead of Kähler ones, see Theorems 19 and 21 in [23].

Note that by [30], any manifold which admits a Sasakian or K-contact structure, admits
a quasi-regular one. Therefore, since we are interested in the existence questions, we can
and we will assume that we are dealing with quasi-regular structures.
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Finally, let us formulate a result which guarantees that the Seifert bundle M ! X

constructed in Theorem 2.7 has H1.M;Z/ D 0.

Theorem 2.9 (Theorem 36 in [22]). Suppose that � WM ! X is a quasi-regular Seifert
bundle over a cyclic orbifold X with isotropy surfaces Di and set of singular points P .
Let m D lcm.mi /. Then H1.M;Z/ D 0 if and only if

(1) H1.X;Z/ D 0,

(2) H 2.X;Z/!˚H 2.Di ;Zmi / is surjective,

(3) c1.M=m/ 2 H 2.X � P;Z/ is a primitive class.

Moreover, H2.M;Z/ D Zk ˚
�
˚
i

Z2gimi

�
, with gi D genus of Di and k C 1 D b2.X/.

We will interchangeably follow notation and terminology of [5] and [18, 19]. If X is
a cyclic orbifold with singular set P and a family of surfaces Di , we will say that we are
given a divisor [iDi , with multiplicities mi > 1. The formal sum � D

P
i .1 �

1
mi
/Di

will be called the branch divisor. By definition, the orbifold fundamental group �orb
1 .X/

is defined as
�orb
1 .X/ D �1.X � .� [ P //=h

mi
i D 1i;

where hmii D 1i denotes the following relation on �1.X � .P [ �//: for any small
loop i around a surface Di in the branch divisor, one has mii D 1 (see Section 2 in [7]).
We will systematically use without notice the following exact sequence (see the general
formulation in Theorem 4.3.18 of [5]) . If M ! X is a Seifert fibration, then there is an
exact sequence

� � � ! �1.S
1/ D Z! �1.M/! �orb

1 .X/! 1:

It follows that ifH1.M;Z/ D 0 and �orb
1 .X/ D 1, then M must be simply connected. We

will use this observation without further notice.

3. Examples of Kähler cyclic orbifolds

The following appears in [2], Section III.5.

Lemma 3.1. Consider the action of the cyclic group Zm on C2 given by .z1; z2/ 7!
.�z1; �

rz2/, where � D e2�i=m, 0 < r <m, and gcd.r;m/D 1. Write a continuous fraction

m

r
D Œb1; : : : ; bl � D b1 �

1

b2 �
1

b3� ���

�

The resolution of C2=Zm has an exceptional divisor formed by a chain of smooth rational
curves of self-intersections �b1;�b2; : : : ;�bl .

Conversely, let X be a smooth surface containing a chain of smooth rational curves
E1; : : : ;El of self-intersections�b1;�b2; : : : ;�bl , with all bi � 2, intersecting transvers-
ally (so that Ei \EiC1 are nodes, i D 1; : : : ; l � 1). Let � WX ! NX be the contraction of
E D E1 [ : : : [ El . Then NX has a cyclic singularity at p D �.E/, with an action given
by Lemma 3.1. Moreover, ifD is a curve intersecting transversally a tail of the chain (that
is, either E1 or El at a non-nodal point), then the push down curve ND D �.D/ is a sing-
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complex curve (as in Definition 2.2). This follows from Theorem 4.4 in [27]. In Fig-
ure 7 of [27], we see that the strict transform D1 of ¹z1 D 0º intersects transversally the
divisorE1 and not the other divisors, and that the strict transformD2 of ¹z2D 0º intersects
transversally the divisor El , and not the other divisors in the chain.

Our aim now is to construct a Kähler cyclic orbifold with the second homology gen-
erated by elliptic curves. This will provide a counterexample to Conjecture 1.3 in the case
where X is assumed to be a complex cyclic orbifold.

Theorem 3.2. For any b � 1, there is a Kähler cyclic orbifold X with b1 D 0, b2 D b
and b disjoint curves, all of genus 1, whose classes span H 2.X;Q/.

Proof. Consider a regular cubic C inside the projective plane CP 2. In particular, it has
genus 1. Consider now the following short exact sequence of sheaves:

0! OCP 2 ! OCP 2.C /! OC .C /! 0:

It is known that h0.OCP 2/D 1, h1.OCP 2/D 0 and h0.OCP 2.C //D h
0.OCP 2.3//D 10.

Therefore, we get the following exact short sequence in cohomology:

0! H 0.OCP 2/! H 0.OCP 2.C //! H 0.OC .C //! 0;

from where we deduce that h0.OC .C // D 9. This implies that the linear system jOC .C /j
has dimension 8. Hence, for any 8 points chosen in C , we can find a cubic C 0 2 jC j which
intersects C at those points.

Take p 2 C and a cubic C 0 such that C � C 0 D 8pC q for some q 2 C . This defines a
map 'WC ! C given by q D '.p/. We look for a fixed point of '. We describe the map
in an alternative way. Fix some base-point p0 2 C . This produces an isomorphism

F W C ! JacC; F.p/ D p � p0;

where Jac C is the Jacobian of degree 0 divisors. Consider the divisor D0 D 8p0 C

'.p0/ 2 jOC .C /j. All divisors 8p C '.p/ are equivalent, hence '.p/ � D0 � 8p, so

F.'.p// D '.p/ � p0 D D0 � 8p � p0

D '.p0/ � p0 � 8.p � p0/ D F.'.p0// � 8F.p/:

Hence
'.p/ D F �1.F.'.p0// � 8F.p//:

As multiplication (by kD�8) and addition in JacC are morphisms, then ' is a morphism.
To find a fixed point p 2 C , we note that '.p/ D p is equivalent to

F.p/ D F.'.p// D F.'.p0// � 8F.p/; i.e., 9F.p/ D F.'.p0//:

The map
m9 W JacC ! JacC; m9.D/ D 9D;

given by multiplication by 9 in the divisors of degree 0, is a map of degree 81 D 92. The
divisor s0 D F.'.p0// has 81 preimages ri 2 JacC , 1 � i � 81. Then pi D F �1.ri / are
the 81 solutions to the equation 9F.pi / D 9ri D s0 D F.'.p0//, that is, to the equation
'.pi / D pi .
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Now fix one of these 81 points, p D pi . Then take a cubic C 0 such that C � C 0 D 9p.
Take sections s; s0 2 H 0.OCP 2.3// with C and C 0 as zero loci. We then get a pencil
jhs; s0ij � jOCP 2.3/j of cubics intersecting at p with multiplicity 9. Choose b regular
cubics inside this pencil, C1; : : : ;Cb . These all have genus 1, self-intersection C 2i D 9 and
any two of them intersect only at p, with multiplicity 9.

Blow-up the plane CP 2, 9 times at p, and denote the resulting surface by eCP 2. That
is, we blow-up at p, then at the intersection point of the strict transforms of the Ci , and
so on. We obtain a chain of 9 rational curves E1; : : : ; E9. All the exceptional divisors
E1; : : : ;E8 have self-intersection E2j D�2, j D 1; : : : ; 8. The last exceptional divisor E9
satisfies E29 D �1, and the strict transforms of the curves C1; : : : ; Cb , that we denote
QC1; : : : ; QCb , are now pairwise disjoint, each of them intersects E9 at one point xi , and

all are disjoint from E1; : : : ; E8. Note that QC 2i D 0, 1 � i � b. Blow-up eCP 2 at the
points x2; : : : ; xb and denote by QX this new surface. Since we obtained QX from CP 2 by
9C .b � 1/ blow-ups, b1. QX/ D 0 and b2. QX/ D 9C b. Denote by QE9 the strict transform
ofE9 and byDi the strict transform of QCi , 2� i � b. Now QE29 D�b,D2

i D�1, 2� i � b,
and QC 21 D 0. It is clear that QC1;D2; : : : ;Db; E1; : : : ; E8; QE9 form a basis of H 2.X;Q/.

Now we contract the chain of .�2/-curves given by E1; : : : ; E8; extended by the
.�b/-curve QE9. By Lemma 3.1, this produces a cyclic singularity. As Œb; 2; .8/: : :; 2�D 9b�8

9
,

the singularity is modelled on C2=Z9b�8 with the action of � D exp.2�i=.9b � 8// via
.z1; z2/ 7! .�z1; �

9z2/. The result is a cyclic orbifoldX with b1.X/D 0, b2.X/D b and b
disjoint curves D1; D2; : : : Db all of genus 1. Here D1 is the push down of QC1 and has
self-intersection D2

1 D
QC 21 C

1
9b�8

D
1

9b�8
> 0.

Remark 3.3. We can simplify the construction in the proof of Theorem 3.2. Take a
cubic C and a point p 2 C which is an inflection. Then let L be the tangent line, and
C 0 D 3L is a cubic and satisfies that C \ 3L D 9p. Now take the pencil generated by
them, jhC; 3Lij. The generic curve is smooth because there is a curve, namely C , that is
smooth. All of them intersect at p with multiplicity 9.

The construction in Theorem 3.2 produces 81 points. As the number of inflections is 9,
there are pencils as in Theorem 3.2 which do not come from inflections.
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Remark 3.4. The surface eCP 2 above is a so-called extremal rational elliptic surface,
i.e., with finite group of sections. Similar constructions can be carried out for any other
extremal rational elliptic surface (as classified in [21]). Then one can always contract
suitable configurations of eight .�2/-curves inside the singular fibres (like E1; : : : ; E8).
The role of E9 is played by some section.

Remark 3.5. On Enriques surfaces, the same arrangement of the singular fibres can be
achieved as on the rational elliptic surfaces in Remark 3.4. The section E9, however, has
to be replaced by a rational curve with b � 1 nodes, serving as a bisection of the elliptic
fibration, which becomes smooth exactly after blowing up the intersection points with
b � 1 regular fibres C2; : : : ; Cb . Such surfaces can be constructed systematically using the
base change approach from [15]. Unlike X below in Proposition 3.6, they will not have
trivial �orb

1 .

We put an orbifold structure on the surfaceX constructed in Theorem 3.2 by assigning
coefficientsmi to eachDi , i D 1; : : : ;b, using Proposition 2.3. Let us compute the orbifold
fundamental group.

Proposition 3.6. We have �orb
1 .X/ D 1.

Proof. Let � W QX ! CP 2 be the result of the successive blow-ups of CP 2, with the tori
QC1;D2; : : : ;Db and exceptional curves E1; : : : ; E8; QE9 and E10; : : : ; E8Cb coming from

the blow-ups at x2; : : : ; xb . We denote

E D E1 [ � � � [E8 [ QE9 [E10 [ � � � [E8Cb :

The curves C1 D �. QC1/, Ci D �.Di /, i D 2; : : : ; b, are smooth cubic curves intersecting
at the point p D �.E/. Denote

D0 D QC1 [D2 [ � � � [Db [E � QX and C D [Ci � CP 2:

Then there is an isomorphism

QX � U.D0/ Š CP 2 � U.C/;

where U.D0/; U.C / denote small tubular neighbourhoods of D0; C , respectively. The
fundamental group of Ci is generated by two loops ˛i ; ˇi . The loops ˛i ; ˇi are homotopic
to j̨ ; ǰ in U.C/ (it is enough to construct Ci close together and generic in the pencil).
Moreover, they are contractible in U.C/. For this it is enough to take a curve C1 close to
a cuspidal curve, the point p well away from the cusp, and all other curves Ci close to C1.

Now consider the blow-down map

$ W QX ! X

and the images D1 D $. QC1/, Di D $.Di /, i D 2; : : : ; b. Recall that D1 contains the
singular point q D$.F /, where F D E1 [ � � � [E8 [ QE9. Let 2 � i � b. The boundary
@U.Di / is generated by ˛i ; ˇi and a loop i around Di . As D2

i D �1, we have �1i D
Œ˛i ; ˇi �. As ˛i ; ˇi is contractible in QX � U.D/, hence in X � U.[Di / D QX � U.D/,
where D D QC1 [D2 [ � � � [Db [ F � D0, since F � E. There is a surjective map

�1. QX � U.D
0// D �1.CP

2
� U.C// �! �1. QX � U.D// D �1.X � U.[Di //:
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Therefore the group �1.X �U.[Di // is generated by a loop aroundD1, and by a loop
going around a neighbourhood of q, which is the image of a loop in @U.F /. The point q is
modeled on a space C2=Zd and the link is a lens space. Let x 2 �1.C2=Zd � ¹qº/Š Zd
be a generator, where d D 9b � 8 > 1 is the order of the singular point. The orbifold
fundamental group of D1 is

�orb
1 .D1/ D h˛1; ˇ1; x j Œ˛1; ˇ1�x D 1; x

d
D 1i:

There is a Seifert fibration S1 ! @U.D1/! D1, which gives an exact sequence

0! Zh1i ! �1.@U.D1//! �orb
1 .D1/! 0:

As D2
1 D 1=d , we have that

�1.@U.D1// D h˛1; ˇ1; x; 1 j Œ˛1; ˇ1�x D 1; x
d
D 1; 1 centrali:

As we mentioned before, ˛1; ˇ1 contract in CP 2 � C . So x D 1 and 1 D xd D 1.
Therefore �1.X � [Di / D 1. The orbifold fundamental group �orb

1 .X/ is the quotient
with the conditions mii D 1. In any case, �orb

1 .X/ D 1.

By Corollary 10.2.11 in [5], a Smale–Barden manifold which admits a K-contact
structure necessarily satisfies the G-K condition, which means that, in terms of the expres-
sion (1.1),

• for every prime p, t .p/ D #¹i j c.pi / > 0º � k C 1,
• i.M/ 2 ¹0;1º; if i.M/ D1 (M non-spin), then t .2/ � k.

In Question 10.2.1 of [5], it is asked whether a Smale–Barden manifold which satisfies
the G-K condition admits a Sasakian structure. Write

t.M/ D max¹t .p/jp primeº � k C 1:

The difficulty to obtain examples increases as we go to the upper bound, since we can
always discard surfaces from the isotropy locus. The examples of [8, 23] are instances
where the upper bound t.M/ D k C 1 is achieved.

Note that the case t D 0 is that of torsion-free Smale–Barden manifolds, where we
only have regular Sasakian structures, and all G-K manifolds admit Sasakian structures.
The next case is t D 1, which is studied in detail in [25]. All G-K manifolds with t D 1
and k � 1 admit semi-regular Sasakian structures, and hence the manifolds admitting
Sasakian and K-contact structures are the same. In the borderline case t D 1; k D 0, the
results in [25] are only partial and touch upon open questions on symplectic 4-manifold
topology.

Write also
c.M/ D

1

2
max¹c.pi /º D max¹giº

in terms of the expression for H2.M;Z/ given in Theorem 2.9. It is hard to get examples
with low c.M/ and t.M/ D k C 1, k D b2.M/. In [8] there is given an example with
c.M/ D 3, and in [22] there appears an example with c.M/ D 2. Theorem 3.2 allows us
to improve the bound.
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Corollary 3.7. There is a simply connected 5-manifold M admitting a .quasi-regular/
Sasakian structure with t.M/ D b2.M/C 1 and c.M/ D 1.

Proof. Let b � 1, and consider the orbifold X constructed in Theorem 3.2. It contains b
disjoint complex curves of genus 1 spanning the homology. Choose a prime p and consider
coefficientsmi D pi . Using Proposition 2.3, we giveX an orbifold structure with isotropy
locus given by the Di with coefficients mi . We assign local invariants bi D 1, so that
Theorem 2.7 allows to choose a Seifert bundle M ! X whose Chern class is an orbifold
Kähler form and c1.M=m/ is primitive. Using Theorem 2.9, we have H1.M;Z/ D 0.
Note that �orb

1 .X/ D 1 by Proposition 3.6, hence �1.X/ D 1 and so H1.X;Z/ D 0. By
Theorem 2.9, we have

(3.1) H2.M;Z/ D Zk ˚
� kC1
˚
iD1

Z2mi

�
;

withmi Dpi and kD b � 1. To see thatM is Smale–Barden, we need to compute �1.M/.
There is an exact sequence Z! �1.M/! �orb

1 .X/ D 1, hence �1.M/ is abelian. As
H1.M;Z/ D 0, it must be �1.M/ D 0. This concludes the result.

Corollary 3.8. The manifold M constructed in Corollary 3.7 is Sasakian quasi-regular
but does not admit a Sasakian semi-regular structure.

Proof. If M admits a Sasakian semi-regular structure, then there is a Seifert fibration
M ! Y , where Y is a smooth Kähler surface. By Theorem 2.9, b1.Y / D 0, b2.Y / D
kC 1D b, and the ramification locus contains a collection of b disjoint complex curvesDi
of genus gi D 1. By Theorem 29 in [8], this is impossible (put differently, Conjecture 1.3
holds in the case of curves of genus 1).

We end up this section by extending the result of Theorem 3.2 to higher genus.

Theorem 3.9. Take d � 3 and g D .d � 1/.d � 2/=2. Then, for any b � 1, there is a
Kähler cyclic orbifold X with b1 D 0, b2 D b and b disjoint curves of genus g. In addi-
tion, X can be constructed in such a way that �orb

1 .X/ D 1.

Proof. Consider, inside the projective plane CP 2, the family of curvesC�, �2C, given by

C� �
®
Œx0; x1; x2� 2 CP 2 jF�.x0; x1; x2/ D x

d�1
0 x2 � x

d
1 C �x

d
2 D 0

¯
:

These are all curves of degree d and, therefore, they have genus g D .d � 1/.d � 2/=2.
Now note that, for � ¤ 0, C� is smooth. Indeed, suppose C� is not smooth at some point
Œx0; x1; x2�. Then 0 D @F�=@x1 D �dxd�11 , from where x1 D 0. Also 0 D @F�=@x0 D
.d � 1/xd�20 x2 from where either x0 D 0 or x2 D 0. Finally, 0 D @F�=@x2 D xd�10 C

d�xd�12 . Then in any case, x0 D 0; x2 D 0.
Now let us see that the curves C�, � ¤ 0, intersect at a single point with multipli-

city d2. Take �1 ¤ �2 and p D Œx0; x1; x2� 2 C�1 \ C�2 . Then

xd�10 x2 � x
d
1 C �1x

d
2 D 0;

xd�10 x2 � x
d
1 C �2x

d
2 D 0:
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From here, we get that �1xd2 D �2x
d
2 , which implies x2 D 0 and subsequently x1 D 0.

Therefore p D Œ1; 0; 0�, and hence C�1 � C�2 D d
2p.

Thus, selecting b curves in the family ¹C�º�¤0, we get b smooth curves C1; : : : ; Cb
of genus g, each pair of them intersecting at the point p0 D Œ1; 0; 0� with multiplicity d2.
Now the same argument as that in the proof of Theorem 3.2 produces the Kähler cyclic
orbifold X with b1 D 0, b2 D b and b disjoint curves D1; : : : ;Db of genus g.

The proof of Proposition 3.6 works also in this case. We only need to choose the
curves C� close to each other (with numbers � very close together), so that the homo-
topy classes on each C� can be pushed to @U.C�0/, for a fixed �0. Take now a basis
˛1; ˇ1; : : : ; ˛g ; ˇg of �1.C�0/. This basis can be given by loops well away from p0.
These can be contracted in CP 2 � C�0 , because they can be defined by vanishing cycles
in a suitable Lefschetz fibration in which C�0 is a fiber.

As in Corollary 3.7, the orbifold in Theorem 3.9 serves to construct a simply connected
5-manifold M admitting a (quasi-regular) Sasakian structure with

(3.2) H2.M;Z/ D Zk ˚
� kC1
˚
iD1

Z2gmi

�
;

withmi D pi and k D b � 1 � 0, and g D .d � 1/.d � 2/=2 any triangular number. This
manifold has t.M/ D b2.M/C 1 and c.M/ D g.

4. Quasi-regular vs semi-regular

Let us give an easy example of a quasi-regular Sasakian Smale–Barden manifold that
cannot be semi-regular K-contact, which improves on Corollary 3.8.

Proposition 4.1. There is a cyclic Kähler orbifold NY with b2 D 1 and an embedded
curve D of genus g D 2.

Proof. Let Y D H2 be the Hirzebruch surface with invariant n D 2, that is,

Y D P .OCP 1 ˚OCP 1.2//;

which is a CP 1-bundle over CP 1. The zero section � has �2 D 2. Let f be the fiber.
Therefore the section at infinity �1 � � � 2f has �21 D �2. The canonical class is
KY D �2� and the ample cone is generated by h�; f i.

We take a curve D � 2� C f . This has genus 2 and D2 D 12. It can be taken to be
smooth. Let us give explicit equations. In the affine part Xo D X � �1, which is the total
space of the line bundle OCP 1.2/ over CP 1, we have a tautological coordinate y. Let x
be the affine coordinate of the basis. Then we take the equation

y2x C a.x/y C b.x/ D 0;

where a 2H 0.CP 1;O.3//, b 2H 0.CP 1;O.5//. It intersects the section �1 at one point
x D 0, y D1, and every fiber at two points. The condition to be smooth in the affine part
is that the discriminant �.x/ D a.x/2 � 4b.x/x has no double roots. At the point at
infinity, we can take the coordinate 1=y, to see that the curve is smooth there.
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Now we contract �1 and we get a cyclic orbifold NY with a point of order 2. The
projected curve ND becomes a genus 2 curve going through the singular point.

Lemma 4.2. The orbifold fundamental group of the manifold in Proposition 4.1 is trivial
if the isotropy coefficient of ND is an integer m with gcd.m; 6/ D 1.

Proof. Consider the curvesD and S D �1 in Y DH2. Let  and ı be the loops aroundD
and S , and let ˛1, ˇ1, ˛2 and ˇ2 be the standard generators of �1.D/. Then  and ı
commute since S and D intersect transversally at one point. Now in @U.D/, we have
12 D Œ˛1; ˇ1� Œ˛2; ˇ2�, using that D2 D 12, and  is central. Also ı2 D 1 in @U.S/. The
loops ˛i ; ˇi contract in Y , since it is simply-connected, hence it can be written in terms
of  and ı in �1.Y � .D [ S//. Therefore �1.Y � .D [ S// D �1. NY � ND/ is generated
by commuting loops  and ı with 12 D 1, ı2 D 1.

The orbifold fundamental group �orb
1 . NY / is a quotient of such group, by imposing the

conditions ı2 D  , m D 1, where m is the isotropy coefficient of ND. This implies the
result.

Theorem 4.3. There is a quasi-regular Sasakian Smale–Barden manifold which is not
semi-regular K-contact.

Proof. Apply Theorem 2.7. Take an integermD m1 with gcd.m; 6/D 1 and local invari-
ant b1 D 1. Then use the Seifert bundleM ! NY with c1.M/D b1

m1
ŒD1�D

1
m
ŒD1�. This is

an orbifold Kähler form, henceM is Sasakian. The class c1.M=m/D ŒD1� is primitive in
H 2.X � P;Z/, since it pairs with the class � � 2f 2 H2.X � P;Z/ giving 1. Therefore
we can apply Theorem 2.9 to prove that H1.M;Z/ D 0 and

H2.M;Z/ D Z4m :

Using Lemma 4.2, we prove that �1.M/ D 1 and hence M is a Smale–Barden manifold.
The manifold M just constructed is quasi-regular Sasakian. It cannot be semi-regular
K-contact, since in Proposition 17 of [25] it is proved that this can only happen for g D 2
being a triangular number. But this is not the case.

5. Rational symplectic 4-manifolds

The purpose of this section is to show that (at least some of) the manifolds constructed
in Section 3 cannot be semi-regular K-contact. This gives an example of quasi-regular
Sasakian Smale–Barden M that is not K-contact semi-regular in the case b2.M/ > 0

(that is, not rational homology spheres). However, the proof is more technical than that
of Theorem 4.3, since it uses Gromov–Witten and Seiberg–Witten theory for symplectic
4-manifolds.

Definition 5.1 (Definition 2.2 in [20]). For a minimal symplectic 4-manifold .X;!/, letK
be the symplectic canonical class. We define the Kodaira dimension as

�.X; !/ D

8̂̂<̂
:̂
�1 if K � Œ!� < 0 or K2 < 0;
0 if K � Œ!� D 0 and K2 D 0;
1 if K � Œ!� > 0 and K2 D 0;
2 if K � Œ!� > 0 and K2 > 0:
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Corollary 5.2. If .X;!/ is a symplectic 4-manifold with b1 D 0 and K � Œ!� < 0, then X
is rational .that is, symplectomorphic to a rational algebraic surface/.

Proof. By Theorem 2.4 in [20], if .X; !/ is minimal (that is, if it does not contain an
embedded symplectic sphere S with S2 D �1, K � S D �1), then �.X; !/ D �1 if and
only if it is rational or ruled. If b1 D 0 and X is ruled, then it is an S2-bundle over S2,
that is, a Hirzebruch surface, which is rational.

If .X; !/ is non-minimal, then there is a minimal symplectic manifold .X 0; !0/ and a
blow-up map � WX ! X 0. Suppose that � is a single blow-up (the general case is done by
repeating the argument). Note that b1.X 0/ D 0. Let E be the exceptional divisor, and let
K;K 0 be the canonical classes. ThenK DK 0CE and Œ!�D Œ!0�� ˛ŒE�, for some ˛ > 0.
Then K 0 � Œ!0� D K � Œ!� � ˛ < 0. Hence X 0 is rational, and so X is also rational.

Lemma 5.3. Let .X; !/ be a compact symplectic 4-manifold, and let D be a symplectic
surface with ŒD�2 > 0. Then there is a symplectic form !0 so that Œ!0� D Œ!�C �ŒD�, for
any � > 0.

Proof. By the symplectic tubular neighbourhood theorem, we can assume that a neigh-
bourhood of D modelled in a complex manifold, that is U � L, where � WL! D is a
holomorphic line bundle of degreemD ŒD�2 > 0. We take the complex structure J on L.
The boundary of a unit circle bundle S.L/ in L is a Sasakian manifold with a contact
form � such that d� D ��.!D/. Let r be the radial coordinate of L (we have fixed a
hermitian metric). The form

ˇ D d.1
2
r2�/ D rdr ^ �C 1

2
r2!D

is a Kähler form for the cone, that is Kähler for L except that it vanishes over the zero
section. Note that r2� is a well-defined form on L, so ˇ is exact.

Take a perturbation ofD as follows. We take a trivialization of S.L/ over all ofD but
a point p0, we lift to construct D01 over D � ¹p0º at r D ", Then the boundary of D01 is
the fiber S.Lp0/ withm positive turns. We close it withD02 which ism copies of B".Lp0/,
and introduce the cycle D0 D D01 [D

0
2. Then

0 D

Z
D0
ˇ D

Z
D01

1
2
"2!D C

Z
B".0/

mrdr ^ d� D 1
2
"2 area.D/ � "2�m:

In particular, we note that dr ^ d� < 0 in the fiberwise direction.
Now take a bump function �.r/ which is non-increasing, �.r/ � 1 for small r and

�.r/ � 0 for large r . Then take

� D d.�.r/�/ D �0.r/dr ^ �C � !D :

As �0.r/ � 0, this form is J -compatible semi-positive and compactly supported. The first
term is positive since dr ^ � < 0. Note that this is not exact because �.r/� does not extend
over D. Now take ! C ��, for � > 0, which solves the problem.

Theorem 5.4. If .X; !/ is a compact symplectic 4-manifold with b1.X/ D 0, and D is a
symplectic surface with ŒD�2 > 0 and K �D < 0, then X is rational.
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Proof. By Lemma 5.3, there is a symplectic form !0 with Œ!0�D Œ!�CNŒD�, for N > 0.
Now

K � Œ!0� D K � Œ!�CN K � ŒD� < 0

for N � 0 large enough. Now by Corollary 5.2, .X; !0/ must be rational.

Corollary 5.5. Suppose that X is a symplectic 4-manifold with b1.X/ D 0, and with
disjoint surfacesDi of genus 1 and spanning the homologyH2.X;Q/. ThenX is rational.

Proof. As X is symplectic, then bC � 1. So there must be one of the surfaces, say D1,
with D2

1 > 0. As D1 is a torus, then K �D1 D �D2
1 < 0. Apply now Theorem 5.4.

Proposition 5.6. Suppose thatX is a symplectic 4-manifold with b1D 0, and with disjoint
surfaces Di of genus 1 and spanning the homology H2.X;Q/. Then b2 ¤ 2.

Proof. Suppose that b2D 2. By Corollary 5.5,X is rational, hence it must be a Hirzebruch
surface Hn, n � 0. Let D1 and D2 be the disjoint symplectic genus 1 curves. Then

D1 �D2 D 0 and D1 � .K CD1/ D 0

imply, by inspection of the intersection matrix, that

D1 CD2 CK D 0:(5.1)

Let �; f be the basis ofH2.X;Z/ given by the special section � and the fiber f of the
fibration, with

�2 D �n; � � f D 1; f 2 D 0:

ThenK D �2� � .nC 2/f . WriteD1 D a� C bf , with a; b 2 Z. InterchangingD1 and
D2 if necessary, we can assume a � 1 by (5.1). The equation D1 �D2 D 0 simplifies to

(5.2) .a � 1/.an � 2b/ D �2a:

Thus a ¤ 0; 1, so a � �1. Since (5.2) is an integer relation, we use gcd.a; a � 1/ D 1

to infer that .a � 1/ j 2, hence a D �1. Then (5.2) gives nC 2b D 1, and hence b � 0.
Consider the Kähler class

Œ!� D x� C yf

with x > 0; y > nx (since the surfaces � and f are symplectic, hence they pair positively
with Œ!�). But then we find

0 < Œ!� �D1 D .nx � y/„ ƒ‚ …
<0

Cbx:

Since b < 0 we obtain the required contradiction.

Remark 5.7. Note that symplectic surfaces in a symplectic 4-manifold can pair negat-
ively. Therefore, we cannot assume that D1 � f � 0 in the proof above, which would
simplify the argument.

Also note that in the complex case, equation (5.1) leads to a contradiction since it
would provide an exact sequence 0!O.K/!O!OD1 ˚OD2! 0. Using thatH 0.K/

D 0 andH 1.K/D 0, we would get thatH 0.O/DH 0.OD1/˚H
0.OD2/DC2, which is

not true. However, for almost complex 4-manifolds there is no analogue of this cohomo-
logy theory.
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Now we complete the proof that the manifold M of Corollary 3.8 is not semi-regular
K-contact for k D 1.

Theorem 5.8. If a Smale–Barden manifoldM hasH2.M;Z/D Z˚
�
˚2iD1Z2

pi

�
, then it

cannot be K-contact semi-regular.

Proof. Suppose that M is K-contact semi-regular. Then there exists a Seifert fibration
� WM ! Y , where Y is a smooth symplectic 4-manifold with b1.Y / D 0, b2.Y / D b D
k C 1 D 2, with a collection of disjoint smooth symplectic embedded surfaces Di of
genus 1, and spanning the homologyH2.Y;Q/. This is impossible by Proposition 5.6.

Remark 5.9. Note that we have no chance to extend Theorem 5.8 to the Smale–Barden
manifold of (3.2) with k D 1 and g > 1. Our proof relies heavily on the rationality of
symplectic 4-manifolds, proved in Corollary 5.5, which hinges on the fact that the surfaces
are of genus 1.

6. Null Sasakian structures

6.1. A description of null Sasakian structures

A smooth K3 surface is a simply connected complex surface with trivial canonical class
KX . The condition KX D 0 is equivalent to the existence of a nowhere vanishing holo-
morphic 2-form !X . To define the orbifold version of this definition, we need orbifold
homology H orb

i .X/ and the orbifold canonical class Korb
X (see Chapter 4 of [5]).

Definition 6.1. An orbifold K3-surface is a cyclic orbifold X such thatH orb
1 .X/ D 0 and

Korb
X D 0.

Proposition 6.2 (Proposition 10.2 in [18]). Let � WM ! .X;� D
P
i .1 �

1
mi
/Di / be a

Seifert bundle with M smooth. Assume that H1.M;Z/ D 0 and that the orbifold .X;�/
is a Calabi–Yau orbifold, that is, KX C � is numerically trivial. Then KX is trivial
.and � D 0/.

In addition,M is simply connected if and only if �orb
1 .X/D 1 by Theorem 9.1 in [18].

Proposition 6.3 (Corollary 10.4 in [18]). Let � WM ! .X;�/ be a 5-dimensional Seifert
bundle,M smooth. Assume thatH1.M;Z/D 0 and that .X;�/ is a Calabi–Yau orbifold.
Then

(1) the minimal resolution of X is a K3-surface,

(2) M is homeomorphic to the connected sum of at most 21 copies of S2 � S3.

Theorem 6.4 (Theorem 10.3.8 in [5]). If a Smale–Barden manifold M admits a null
Sasakian structure, then

(1) any null Sasakian structure is quasi-regular, and, therefore,M admits a structure of
a Seifert bundle over an orbifold K3 surface,

(2) 2 � b2.M/ � 21,
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(3) if b2.M/ D 21, the null structure is regular, that is, the Seifert bundle M ! X is a
smooth principal circle bundle over a K3 surface,

(4) M is spin,

(5) �orb
1 .X/ D 1.

Proof. It follows from Proposition 6.3 and the discussion around it in a straightforward
manner (see Section 10.3.2 in [5]).

Theorem 6.5 (Corollary 10.3.11 in [5] and Theorem A in [12]). Any M D #k.S2 � S3/
with 2 � b2.M/ � 21 admits a null Sasakian structure, except, possibly, b2.M/ D 2.

Proof. The proof for all cases except k D 17 is based on the list of examples of orbi-
fold K3 surfaces in [29]. These are hypersurfaces in weighted projective spaces. In the
case k D 17, the author of [12] goes along the similar lines using the list of weighted com-
plete intersections in [16]. The second Betti numbers are calculated in Example 10.3.10
of [5] and in [12], and it appears that all k can be realized except k D 2.

6.2. Preparatory work to prove Theorem 1.5

In order to construct a null Sasakian structure on a Smale–Barden manifold M with
b2.M/ D 2, we need a cyclic K3 orbifold X with b2.X/ D 3 and with the property
�orb
1 .X/ D 1. This follows from Theorem 2.9. Thus, we begin with a construction of

such an orbifold. We will use the method of lattices going back to Pyatetskii-Shapiro and
Shafarevich [28] and developed in [26] combined with methods of calculation of the fun-
damental groups of smooth parts of K3 surfaces with cyclic singularities (that is, �orb

1 .X/)
from [17,33]. We understand a lattice as a free Z-module endowed with a non-degenerate
symmetric bilinear form with values in Z. If R is a lattice and x; y 2 R, we write x � y for
the value of this form on .x; y/. Assume that ˛ 2 R satisfies ˛2 D �2. Then ˛ determines
an automorphism s˛WR! R by the formula

s˛.x/ D x C .x � ˛/˛ :

Assume that the bilinear form .x; y/! x � y on R is negative definite, and that R
is generated by elements of square .�2/. Then the group generated by all s˛ is the Weyl
group, and free generators of square .�2/ constitute a root system, and one can associate
with R a Dynkin diagram in a standard way (see [26] for a more detailed account). In
particular, it is known that such lattices correspond to the Dynkin diagrams which are
disjoint unions of connected Dynkin diagrams of types Ak ; k � 1, Dl ; l � 4, E6; E7; E8.
Thus, we will call R a root lattice.

Let X be a smooth K3 surface. Then H 2.X;Z/ is an even unimodular lattice with
the intersection form of signature .3; 19/ as the bilinear form in the definition. Consider
complex elliptic surfaces f WX!CP 1 with a sectionO . The Néron–Severi lattice NS.X/
ofX is defined asH 1;1.X/\H 2.X;Z/. For elliptic surfaces over CP 1, NS.X/ coincides
with the Picard lattice Pic.X/. The cohomology classes of O and a generic fiber of f
generate a sublattice Uf of rank 2. Since Uf is a hyperbolic unimodular lattice, there
is a decomposition NS.X/ D Uf ˚Wf for some negative-definite even lattice Wf . The
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Mordell–Weil group MWf of X is understood as NS.X/=T , where T is generated by O
and the fiber components, [32].

In the sequel, we require that X is extremal, that is, the Picard number �.X/ D 20

and the Mordell–Weil group MWf is finite. Such surfaces are classified in [33]. We will
need a more detailed account of this classification. Let Rf be the (finite) set of points
v 2 CP 1 such that f �1.v/ is reducible. For a point v 2 Rf , the notation f �1.v/# means
the union of reducible components of f �1.v/ that are disjoint from O . It has been known
since Kodaira’s work that the cohomology classes of irreducible components of f �1.v/#

form a negative definite root lattice Sf;v . The sum of disjoint components of the Dynkin
diagrams corresponding to Sf;v will be called the type �.Sf;v/ of the lattice. Define the
formal sum of the types of such lattices:

†f D
X
v2Rf

�.Sf;v/;

and denote by Sf the direct sum of Sf;v . Define

eu.†f / D
X
l�1

al .l C 1/C
X
m�4

dm .mC 2/C

8X
nD6

en .nC 2/;

where al , dm and en denote the numbers of the Dynkin diagrams of types Al ,Dm and En
with n D 6; 7; 8, respectively. Denote by �f the union of the zero section and all irredu-
cible components of f �1.v/; v 2 Rf . For a point v 2 Rf , we denote the total fiber of f
over v by

rvX
iD1

mv;i Cv;i ;

where mv;i is the multiplicity of the irreducible component Cv;i of f �1.v/. It is known
that

MWf D Wf =Sf

(cf. Proposition 6.42 in [32] or Lemma 2.5 in [33]).

Theorem 6.6 (Claim 2 on p. 36 of [33]). Assume MWf D 0. Suppose that a configuration
� � �f satisfies the following conditions:

(Z1) the number of v 2 Rf such that Cv;i � � holds for any Cv;i with mv;i D 1 is at
most one,

(Z2) eu.†f / � 23.

Then �1.X � �/ D 1.

6.3. Proof of Theorem 1.5

We begin with a construction of a K3 orbifold with b2.X/ D 3 and �orb
1 .X/ D 1. In [34],

there is a Weierstrass form given for an elliptic K3 surface X 0, with a fibre of Kodaira
type I19, i.e., a cycle of 19 .�2/-curves. Exactly one fibre component, say ‚0, connects
with the zero section of the fibration, which provides another .�2/-curve O . Omitting
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one of the two fibre components adjacent to ‚0, we derive an A19 configuration � of
.�2/-curves given by O; ‚0; ‚1; : : : ; ‚17. This configuration is a part of the basis of
Pic.X 0/, since one can just add the remaining fiber component. Since eu.A19/ D 20 and
MWf D Wf =Sf D 0, we see that X 0 satisfies the conditions .Z1/ and .Z2/ of The-
orem 6.6. Thus, �1.X 0 � �/ D 1.

Contracting the 19 curves O;‚0,‚1; : : : ;‚17 successively, we obtain an orbifold K3
surface X with singularity P of type A19, b2.X/ D 3, and

�1.X
0
� �/ D �1.X � P / D �

orb
1 .X/ D 1:

Now we take a Seifert bundle M ! X with primitive Chern class c1.M/ 2 H 2.X �

P;Z/. This can be arranged by picking first a primitive class in H 2.X � P;Z/, then
constructing the line bundle M ! X � P , and finally extending it as a Seifert bundle
� WM ! X across P . Moreover, we can assure that c1.M/ is a Kähler class, so that
Theorem 2.8 applies to produce a Sasakian structure on M . As clearly H1.X;Z/ D 0,
we have constructed a Seifert bundle satisfying the assumptions of Theorem 2.9. From
these we get H1.M;Z/ D 0, and Theorem 1.5 follows using the fact that �orb

1 .X/ D 1

implies M to be simply connected, so M D #2.S2 � S3/.

Remark 6.7. In [33], the authors use the notation � instead of our � (in this article, � is
a branch divisor).

Remark 6.8. One can also work with other K3 surfaces X 0, such as the one from Re-
mark 4.10 in [33].

6.4. Remarks on the classification of null Sasakian structures

The classification of null Sasakian structures amounts to a classification of orbifold K3
surfaces with cyclic singularities satisfying the conditions �orb

1 .X/ D 1. In general this
may be out of reach; however, in the case #2.S2 � S3/, one needs to classify cyclic
orbifolds X with b2.X/ D 3 and trivial orbifold fundamental group. For example, it is
conceivable that one can classify extremal elliptic K3 fibrations with configurations of
.�2/ curves of type A, using [17,31,33]. For K3 surfaces of degree 2 and 6, this has been
achieved in [37], respectively [36] (without considering fundamental groups).
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