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A McKay bijection for projectors

Gabriel Navarro

Abstract. If F is a saturated formation of groups, we define a canonical subset
IrrF0.G/ of the irreducible complex characters of a finite solvable groupG. IfH is an
F-projector ofG, we show that jIrrF0.G/j D jIrr.NG.H/=H 0/j, whereH 0 D ŒH;H�
is the derived subgroup ofH . In particular, if F is the class of p-groups, this reproves
the solvable case of the celebrated McKay conjecture.

1. Introduction

One of the main problems in the representation theory of finite groups is the McKay
conjecture. This asserts that if G is a finite group, Irr.G/ is the set of the irreducible
complex characters of G, p is a prime, and P is a Sylow p-subgroup of G, then

jIrrp0.G/j D jIrrp0.NG.P //j ;

where Irrp0.G/ is the set of � 2 Irr.G/ whose degree �.1/ is not divisible by p. In other
words, important global information of a finite group can be calculated locally.

The main contribution of this paper is to provide a conceptual framework which allows
for a vast generalization of this conjecture for solvable groups. (In this paper, all finite
groups are solvable.)

In the 1960’s, after the discovery by R. Carter of the Carter subgroups of any finite
solvable group, the theory of formations was developed by R. Carter, K. Doerk, W. Gas-
chütz, B. Huppert, T. Hawkes and many others. Recall that a class of groups F is a
formation if it is closed under quotients, and whenever G=N; G=M 2 F for some finite
group G, then G=.N \M/ 2 F. The canonical examples of formations are the classes of
finite p-groups, �-groups (if � is a set of primes), or of nilpotent groups. But of course,
there are many others. One of the principal ideas was to generalize Sylow and Hall sub-
groups and unify these with the recent discovery of Carter. Indeed, if F is saturated (that
is, G 2 F if and only if G=ˆ.G/ 2 F, where ˆ.G/ is the Frattini subgroup of G), then
it was proved that every finite solvable group G possesses a unique conjugacy class of the
so called F-projectors. If F is the class of p-groups, these are the Sylow subgroups of G;
if F is the class of �-groups, these are the Hall �-subgroups of G; if F is the class of
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nilpotent groups, these are the Carter subgroups of G. Other interesting examples of sat-
urated formations (and therefore with F-projectors) are the class of supersolvable groups,
or the class of nilpotent groups of bounded nilpotency class. The F-projectors of a finite
solvable group G are easy to define: these are the subgroups H of G such that whenever
N G G, then HN=N is a maximal F-subgroup of G=N .

The principal objective of this paper is to define, for a given saturated formation F, a
canonical subset IrrF0.G/ � Irr.G/ of the irreducible complex characters of every finite
solvable group G. If F is the class of all finite groups, we will show that IrrF0.G/ D

Lin.G/, the set of linear characters of G; if p is a prime and F is the class of p-groups,
then IrrF0.G/ D Irrp0.G/, the set of the irreducible characters of G of degree not divisible
by p (hence, our notation F0); if � is a set of primes and F is the class of �-groups,
then IrrF0.G/ is the set of irreducible characters � whose degree is a � 0-number (that is,
no prime p dividing �.1/ is in �); and finally, if F is the class of nilpotent groups, then
we will show that IrrF0.G/ is the set of head characters of G, recently introduced by
I. M. Isaacs in [5], and that have inspired the results in this paper.

Our main theorem is the following. (Recall that the derived subgroup of H , usually
denoted by H 0 or ŒH;H�, is the smallest normal subgroup of H with abelian quotient.)

Theorem A. If F is a saturated formation, G is a solvable group, andH is an F-projec-
tor of G, then

jIrrF0.G/j D jNG.H/=H 0j :

In particular, if k.G/ is the number of conjugacy classes of G, then k.NG.H/=H 0/ �
k.G/.

Of course, if F is the class of p-groups, then Theorem A gives another proof of the
McKay conjecture for solvable groups. (We shall comment on this proof at the end of
the paper.) If F is the class of nilpotent groups, then H D NG.H/ is a Carter subgroup
of G, and Theorem A reproves Isaacs result ([5]) that the number of head characters of G
is jH=H 0j. As we shall show in Theorem B below, we also have that IrrF0.NG.H// D
Irr.NG.H/=H 0/, if H is an F-projector of G.

Example: if F is the class of supersolvable groups and G D GL2.3/, we shall show
below thatH D D12 is an F-projector ofG,H D NG.H/,H=H 0 D C2 � C2, and the F0-
characters ofG are the two linear characters ofG together with the two faithful irreducible
characters of G of degree 2. These two latter characters have field of values Q.i

p
2/, so

we cannot expect, for this F, a canonical bijection IrrF0.G/! Irr.NG.H/=H 0/ (since a
canonical bijection would respect field of values of corresponding characters). If F is the
class of 2-groups, on the other hand, M. Isaacs did construct a canonical bijection in [2].

As we shall explain in Section 4, our strategy to define IrrF0.G/ is the following: given
an F-projector H of G, we shall construct a chain of subgroups

G D U0 > U1 > � � � > Um D NG.H/ ;

which is uniquely determined by H . We shall define IrrF0.Um/ D Irr.NG.H/=H 0/, and
then, recursively, use IrrF0.Ui / to define IrrF0.Ui�1/. In each step, we will check that
jIrrF0.Ui /j D jIrrF0.Ui�1/j. We shall prove that IrrF0.G/ does not depend on H , and this
will prove our main result.
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Our F0-characters behave as expected. For instance, the following is the corresponding
Itô’s theorem.

Theorem B. Suppose that F is a saturated formation, G is a solvable group, and H is
an F-projector of G. Then

IrrF0.G/ D Irr.G/

if and only if H is a normal abelian subgroup of G.

Further properties of F0-characters will be explored in another paper. It is possible
that some of our results can be extended to some other classes of groups, perhaps even
outside solvable groups (as it happens if F is the class of p-groups, because of the McKay
conjecture). We shall not make this attempt here.

2. Reviewing formations

Recall that a class of groups F is a formation if it is closed under quotients, and whenever
G=N;G=M 2F for some finite groupG, thenG=.N \M/ 2F. A formation is saturated
if and only if G=ˆ.G/ 2 F implies that G 2 F, where ˆ.G/ is the Frattini subgroup
of G. Given a finite group G, we denote by GF the smallest normal subgroup of G such
that G=GF 2 F. A maximal F-subgroup H of G is a subgroup H in F such that if
H < M < G, then M 62 F.

In this paper, we are only interested in saturated formations of solvable groups. For the
reader’s convenience, we have decided to collect all the facts that we need in this paper
in the following theorem, which we state in the way that is convenient for us. All these
results can be found in [1].

Theorem 2.1. Let F be a saturated formation, and let G be a solvable group.

(a) There exists a unique G-conjugacy class of subgroups H of G such that HN=N
is F-maximal for every N G G. .These subgroups are called the F-projectors
of G:/ In particular, if G=N 2 F, then G D HN .

(b) IfH is an F-projector of G and N G G, thenHN=N is an F-projector of G=N .

(c) If H is an F-projector of G and H � U � G, then H is an F-projector of U . In
particular, if N G G, then NG.HN/D NNG.H/, and ifH G GG, thenH G G.

(d) Suppose that N G G, U=N is an F-projector of G=N and H is an F-projector
of U . Then H is an F-projector of G.

(e) Suppose that K D GF is abelian. If H is an F-projector of G, then G D KH
and K \H D 1.

(f) If G 2 F and p divides jGj, then every p-group is contained in F.

(g) Let N be a nilpotent normal subgroup of G. Let H be F-maximal such that
G D HN . Then H is an F-projector of G.

(h) If K;L G G and H is an F-projector of G, then KH \ LH D .K \ L/H .

Proof. Parts (a) to (d), and an introduction to the subject, can be found in Section 9.5
of [7]. The remaining parts lie deeper in the theory. Part (e) is Theorem IV.5.18 of [1].
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Next, we prove part (f). By Lemma IV.4.2 of [1], the cyclic group Cp of order p is in F.
Therefore so it is Cp � � � � � Cp . If P is a p-group, then P=ˆ.P / 2 F, and therefore
P 2 F. Part (g) is III.3.14 of [1]. Part (h) is Theorem IV.5.4. of [1].

Corollary 2.2. Suppose thatG is solvable,K G G is nilpotent,H is an F-projector ofG,
KH D G, and K \H D 1. If U � G is such that KU D G and K \ U D 1, then U is
G-conjugate to H .

Proof. We have thatU ŠG=K 2F. LetU �X �G be F-maximal inG. ThenXK DG.
Since K is nilpotent, we have that X is an F-projector of G by Theorem 2.1(g). Then
jX j D jH j and necessarily U D X , and U and H are G-conjugate.

3. Characters and formations

For the rest of this paper, F stands for a saturated formation. For characters, we use the
notation in [4] (and [6]). Hence, if N G G and � 2 Irr.N /, then Irr.Gj�/ is the set of
the irreducible characters of G that lie over � (that is, � 2 Irr.Gj�/ if and only if � is
a constituent of the restriction �N ). By Frobenius reciprocity, Irr.Gj�/ is the set of the
irreducible constituents of the induced character �G . If X � Irr.N /, then we shall write

Irr.GjX/ D
[
�2X

Irr.Gj�/ :

Finally, if A acts by automorphisms on G, we denote by IrrA.G/ the set of irreducible
A-invariant characters of G.

The Isaacs restriction lemma is elementary but quite useful.

Lemma 3.1 (Isaacs). Suppose that G is a finite group, K and L are normal subgroups
ofG, andM � G such thatG DKM andK \M D L. If � 2 Irr.K/ isG-invariant and
�L 2 Irr.L/, then restriction defines a bijection Irr.Gj�/! Irr.M j�L/.

Proof. See, for instance, Lemma 2.7 of [3].

The following is a key lemma in this paper. IfG is a finite group, we denote by Lin.G/
the group of its linear characters.

Lemma 3.2. Suppose that G is solvable and letH be an F-projector of G. LetK;L G G
such thatK �L andKH andLH are normal subgroups of G. Suppose that � 2 Irr.LH/
lies over some � 2 Irr.KH/ such that �K 2 Irr.K/. Then �L 2 Irr.L/.

Proof. By Theorem 2.1(c), we have that H is an F-projector of LH . Thus we may
assume that LH D G. Let N D L \ KH G G. By hypothesis, �N 2 Irr.N /. Let I D
IG.�N / be the stabilizer of �N in G, which containsKH . Now if x 2 I , then �x D �x�,
for some unique linear �x 2 Irr.KH=N/, by Gallagher’s Corollary 6.17 of [4]. Since
ŒKH; L� � N , we have that �W I ! Lin.KH=N/ is a group homomorphism with ker-
nel V containing KH . Now, I=V Š Im.�/. Also, Im.�/ D Lin.KH=W /, for some
N � W G KH , by using Problem 2.7 of [4], applied to the abelian groupKH=.KH/0N .
Then Im.�/ Š KH=W Š H=.W \H/ 2 F, and therefore I=V 2 F. Thus I D HV ,
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because H is an F-projector of I (again by Theorem 2.1(c)). Since H � V , it follows
that V D I . Hence, I � IG.�/ � IG.�N / D I . In particular, L \ I D IL.�N /. Now,
let � 2 Irr.I j�/ be the Clifford correspondent of � over �. By Isaacs’ restriction lemma,
we have that �I\L 2 Irr.I \ L/. Now, using the Clifford correspondence, we have that
�L D .�

G/L D .�L\I /
L 2 Irr.L/, as desired.

Corollary 3.3. Suppose that G is solvable, has a normal F-projector H , and H normal-
izesL�G. Let � 2 Irr.HL/. If � lies over some linear � character ofH , then �L 2 Irr.L/.

Proof. We may assume that G D LH . Then, �H\L is irreducible, and the corollary fol-
lows from Lemma 3.2.

We shall need the deep theory of fully ramified sections of solvable groups. Recall that
if K G G, ' 2 Irr.K/ is G-invariant, and 'G D e� for some � 2 Irr.G/, then it is said
that ' is fully ramified in G. For properties of character triple isomorphisms, we refer the
reader to Chapter 11 of [4] (or Chapter 5 of [6]).

Theorem 3.4. Suppose that G is solvable, K; L G G such that K=L is a non-central
chief factor of G. Suppose that ' 2 Irr.L/ is G-invariant and fully ramified in K. Write
'K D e� , for some � 2 Irr.K/. Then there exists a complement U of K=L in G such that
.G; K; �/ and .U; L; '/ are isomorphic character triples .with the natural isomorphism
G=K ! U=L as the group isomorphism associated/.

Proof. By using character triples, it is no loss to assume that L � Z.G/. Now, Theorem
A of [3] asserts that there is a bijection � W Irr.U j'/! Irr.Gj�/ such that ��.1/ D e�.1/.
All the work to prove Theorem A in [3] (and its extension Theorem B) reduces to proving
that � extends to G0 D K Ì .U=L/, the semidirect product. This is the content of The-
orem 6.1 of [3], applied to the group G0. Once this is proved, using Theorem 5.3 of [3], it
is easy to check that there is a bijection � W Irr.U j'/! Irr.Gj�/ such that ��.1/ D e�.1/.
Now, the construction of � in Theorem 5.3 of [3] in fact yields a character triple isomorph-
ism (using Lemmas 11.26 and 11.27 of [4]).

Theorem 3.5. Suppose that G is a finite solvable group. Assume that K=L is abelian,
where K; L are normal in G. Let H=L be an F-projector of G=L, U D NG.H/, and
assume that KH G G and K \ U D L.

(a) If � 2 Irr.K/ is H -invariant, then there is a unique H -invariant ' 2 Irr.L/
under � .

(b) If ' 2 Irr.L/ isH -invariant, then there is a uniqueH -invariant � 2 Irr.K/ over '.
From now on, fix ' and � , as before.

(c) Let T be the stabilizer of � in G, and let I be the stabilizer of ' in U . Then
T \ U D I and .T; K; �/ and .I; L; '/ are isomorphic character triples .with
the natural group isomorphism associated/. Also, all the G-conjugate characters
of � and all the U -conjugate characters of ' are H -invariant.

(d) We have that � extends to KH if and only if ' extends to H .

(e) We have that jIrr.Gj�/j D jIrr.U j'/j.
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(f) If � is the set of extensions of � to KH and „ is the set of extensions of ' to H ,
then

jIrr.Gj�/j D jIrr.U j„/j :

(g) If we write ' D � 0, then we have that the map � 7! � 0 is a bijection IrrH .K/!
IrrH .L/.

Proof. We first prove that G D KU and G=L D .K=L/ Ì .U=L/. Moreover, U=L is the
unique complement of K=L up to G-conjugacy.

SinceHK=K is an F-projector ofG=K (Theorem 2.1(b)), we have thatGDNG.KH/
D KNG.H/ (using Theorem 2.1(c)). So KU D G. Since G=K is isomorphic to U=L,
notice that .KH \U/=L is a (normal) F-projector of U=L. SinceH=L is an F-projector
of U=L by Theorem 2.1(c), we have thatH DKH \U . Observe too that CK=L.H/D 1.
Otherwise, ifL�W �K, ŒW=L;H��L, thenW=L normalizesH=L, but then it is con-
tained in NG=L.H=L/ D U=L. Since K \ U D L, then W D L.

Now we prove that U=L is the only complement of K=L up to G-conjugacy. First
recall that H=L is an F-projector of KH=L by Theorem 2.1(c). Let V=L be another
complement of K=L in G. Then .V \ KH/=L is a complement of K=L in KH=L.
By Corollary 2.2, we have that V \ KH=L is an F-projector of KH=L. Thus, there
is k 2 K such that V \ KH=L D H k=L. Replacing V by V k

�1
, we may assume that

KH \ V D H . Then H D KH \ V G V and V � U . Then V D U because both are
complements to K=L.

Next, we show that certain 5-tuples of groups satisfy the hypothesis on .G;K;L;H;U /.
These are .T;K;L;H;T \U/ (wheneverKH � T �G), and .G;K;M;MH;MU/ and
.MU;M;L;H;U /, whenever L �M �K andM G G. This is straightforward to prove.
To check that MU D NG.MH/, use that NG=L..M=L/.H=L// D .M=L/NG=L.H=L/,
applying Theorem 2.1(c).

Finally, we claim that IrrH .K=L/D1. This is equivalent to proving thatKD ŒK;H�L.
Otherwise, suppose thatM D ŒK;H�L<K. ThenM G G, CK=M .H/DK=M . This con-
tradicts the fact that .G;K;M;MH;MU/ satisfies the hypothesis implies that CK=M .H/
D 1 (as we showed in the second paragraph of this proof).

(a) By working in the stabilizer IG.�/ of � in G (that contains KH ), we may assume
that � is G-invariant. Suppose that '1; '2 are H -invariant under � . By Clifford’s the-
orem, '1 D .'2/k for some k 2K. ThenH � IKH .'1/D IKH .'2/k . HenceH;H k�1 �

IKH .'2/. Now, H and H k�1 are F-projectors of IKH .'2/, and therefore, there is t 2
IKH .'2/ such that H k�1 D H t . Since t 2 KH , we can write t D hk1 for some h 2 H
and k1 2 IK.'2/. ThusH k1k DH and k1k 2NK.H/. Then k1k 2L, and '2D .'2/k1k D
.'2/

k D '1.
To prove that �L has an H -invariant irreducible constituent, by working by induction

on jK W Lj, we may assume thatK=L is a chief factor of G. Since � is G-invariant, by the
going down theorem (Theorem 6.18 of [4]), we may assume that � is induced from some
character of L. Let ' 2 Irr.L/ be any constituent of �L. Let T be the stabilizer of ' in G.
Since � is G-invariant, we have that TK D G, by Clifford’s theorem. Since 'K D � , we
have that T \ K D L (by Problem 6.1 of [4]). By the third paragraph in this proof, we
have that U D T g for some g 2 G. Therefore H stabilizes 'g .
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(b) By working in IU .'/K, we may assume that ' is U -invariant. Then U � IG.'/
D T . Since induction defines a canonical bijection Irr.T \ Kj'/! Irr.Kj'/, we may
assume that ' is G-invariant. Now, by Lemma 2.2 of [8], there is a unique subgroup
L�W �K such that every irreducible constituent  of 'W extends ' and isK-invariant.
In fact, every such  2 Irr.W / is fully ramified with respect to K=W . By uniqueness,
notice that W is U -invariant, and therefore W G G. If  2 Irr.W j'/, then K D e� and
�W D e , for a unique � 2 Irr.K/. Therefore  is H -invariant if and only if � is H -
invariant. Working by induction on jK WLj, we may assume thatW DK, that is, ' extends
to K. Now, by using character triples, we may assume that L � Z.G/ and ' is faithful.
It is enough to show that 'N has some H -invariant extension �. Indeed, if �1 2 Irr.K/
is another H -invariant extension, then �1 D �� for a unique (and therefore H -invariant)
character ofK=L. But we know that IrrH .K=L/D 1. Again, by induction on jK W Lj, we
may assume that K=L is a chief factor of G, so that K=L is an abelian p-group for some
prime p.

Now, sinceK=L is abelian, ' extends toK and ' is linear and faithful, we have thatK
is abelian. Since K=L is a p-group, then by using that 'p0 has a canonical extension
to K (using Corollary 6.27 of [4]), we may assume that 'p0 D 1. (Here, we are writing
' D 'p'p0 , where 'p has order a power of p, and 'p0 has order not divisible by p.) Thus,
we are assuming that L is a cyclic p-group and that K is an abelian p-group. Let H1 be
an F-projector ofH . ThenH1 is an F-projector group ofG, by Theorem 2.1(d). Now, by
Theorem 2.1(e), the F-residual U0 of KH , complements H1. Since KH G G, we have
thatU0 G G. ThusKH DU0H1. Notice thatH DLH1. Now,LD .L\U0/� .L\H1/,
and since L is a cyclic p-group, then either L \ U0 D 1 or L \H1 D 1. In the first case,
K D U0 � L, and 1U0 � ' is the H -invariant extension that we are looking for. Hence
we may assume that L \H1 D 1. Then H D L �H1. Suppose first that F contains the
p-groups. Then H=H1 2 F, and H=L 2 F, so H 2 F. Since H1 is F-maximal in KH ,
we have that H D H1. Thus L D 1, and we are done, since we choose � to be the trivial
character of K, in this case.

Finally, suppose that F does not contain the p-groups. By Theorem 2.1(f), we have
thatH1 is a p0-group. ThenLDCK.H1/ (using that CK=L.H/D 1). By Fitting’s lemma,
we have thatK D ŒK;H1��L. Now, ŒK;H1� G G (becauseH1 G U ) and � D 1ŒK;H1� � '
is H1-invariant, and thus H -invariant.

(c) If u 2 U and h 2 H , then uhu�1 2 H , and therefore �uhu
�1
D � , and thus

we deduce that �u is H -invariant. In the same way, 'u is H -invariant. Therefore, if
u 2 IU .�/, then u 2 IU .'/ by uniqueness, and conversely. Since T D KIU .�/, we con-
clude that T \ U D I . To prove (c), we may assume that � is G-invariant and ' is
U -invariant. By the transitivity of character triple isomorphisms (Corollary 11.25 of [4]),
we may assume that K=L is a chief factor of G. By the going down theorem, we have
that either �L D ', 'K D � , or that �K D e� with e2 D jK W Lj. In the latter case, we
apply Theorem 3.4. In the first case, we have that if K � X � G, then restriction defines
a bijection

Irr.X j�/! Irr.X \ U j'/ :

It is clear that this affords a character triple isomorphism between .G;K;�/ and .U;L;'/.
Finally, if 'K D � , then U D IG.'/, and if K � X � G, then, by the Clifford corres-
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pondence, we have that induction defines a bijection

Irr.X \ U j'/! Irr.X j�/ :

This also affords a character triple isomorphism between .U;L; '/ and .G;K; �/.
Now, parts (d) and (e) are consequences of (c) using the Clifford correspondence maps

Irr.T j�/! Irr.Gj�/ and Irr.I j'/! Irr.U j'/.
(f) Let � 2 Irr.Gj�/ and let  2 Irr.T j�/ be the Clifford correspondent of �. Suppose

that � lies over some extension of � . Since KH G G, by Clifford’s theorem, we have that
every irreducible constituent of �KL restricts irreducibly to L. Now, let � 2 Irr.KL/ be
under  . Hence, � lies under �, and therefore restricts irreducibly to K. Since �K D e� ,
we have that �K D � . We see that the Clifford correspondence defines a bijection

Irr.T j�/! Irr.Gj�/:

The same happens with
Irr.I j„/! Irr.U j„/:

Now, the character triple isomorphism in (c) gives us a bijection

Irr.I j„/! Irr.T j�/ :

(g) It easily follows using parts (a) and (b).

As we have done in the proof of Theorem 3.5, we shall write that .G; K; L; H; U /
satisfies the group theoretical hypothesis of Theorem 3.5.

4. F0-characters

We assume again in this section that F is a saturated formation. Let G be a finite solv-
able group, and let fix H an F-projector of G. We let K be the unique smallest normal
subgroup of G such that KH G G. Notice that K exists by Theorem 2.1(h). We also use
the notation K D GFn . We notice that K is uniquely determined by G. (Indeed, if H1 is
any other F-projector of G, then H D H

g
1 for some g 2 G, and KH G G if and only

if KH1 G G. In fact, in this case, KH D KH1.) In particular, K is characteristic in G.
Note thatK D 1 if and only ifH G G. Also note that G D KNG.H/, sinceKH G G (by
Theorem 2.1(c)).

Our first goal is to define a uniquely defined 5-tuple .G; K; L; LH; U / satisfying
Theorem 3.5, where U D LNG.H/. We shall prove that U < G if and only if H is not
normal in G. (All this is done in Lemma 4.1 below.) Since H is an F-projector of U
and NG.H/ � U , we can repeat this process in U , and eventually produce a chain of
subgroups

G D U0 > U D U1 > � � � > Um�1 > Um D NG.H/;

which are uniquely determined by H . We will define

IrrF0.Um/ D Irr.NG.H/=H 0/
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as the set of the irreducible characters � of NG.H/ that contain the derived subgroup H 0

in their kernel. Afterwards, we will recursively define IrrF0.Ui�1/, using the definition of
IrrF0.Ui /. In particular, this defines

IrrF0.G/ :

In each step, we will show that

jIrrF0.Ui /j D jIrrF0.Ui�1/j :

Hence IrrF0.G/ D IrrF0.U0/ will be defined.
If instead of H we choose Hg , for some g 2 G, it will become clear that the corres-

ponding series would be

G D U0 > .U1/
g > � � � > .Um�1/

g > .Um/
g
D NG.Hg/;

with
IrrF0..Ui /

g/ D IrrF0.Ui /
g :

(Here, if ˛ 2 Irr.X/ and g 2 G, then ˛g is the unique irreducible character of Xg such
that ˛g D .xg/ D ˛.x/ for x 2 X .) The proof of Theorem A will be then established.

We use the following.

Lemma 4.1. Let G be a finite solvable group, letH be an F-projector of G, and letK D
GFn . LetLDK 0 be the derived subgroup ofL. If U DLNG.H/, then .G;K;L;HL;U /
satisfies the hypotheses of Theorem 3.5. Furthermore, U DG if and only ifH G G, which
happens if and only if K D 1. Also, we have that KH \ U D HL and CK=L.H/ D 1.

Proof. By definition of the derived subgroup, we have thatK=L is abelian. SinceK D L0,
we have that L G G. By Theorem 2.1(b), we have that HL=L is an F-projector of G=L.
By Theorem 2.1(c), we have that U D NG.HL/. By the definition of K, we have that
KH G G. It only remains to show that K \ U D L. To do that, we are going to use The-
orem 2.1(e). Hence, it suffices to show thatK=LD .KH=L/F. WriteW=LD .KH=L/F.
Notice thatW G G, sinceKH G G andW=L is characteristic inKH=L. SinceKH=K Š
H=H \K 2F, we have thatW=L�K=L. Now we have thatKH=W 2F, by definition.
Since H is an F-projector of KW (by Theorem 2.1(c)), using Theorem 2.1(a) we have
thatWH D KH G G. SinceK is the smallest normal subgroup of G such thatKH G G,
then we conclude that W D K, as desired. Finally, notice that G D U if and only if
K D L, which happens if and only if K D 1, which happens if and only if H is normal
in G. For the final part, since G=K is isomorphic to U=L, we have that U=L has a unique
normal F-projector H=L. The image of the natural isomorphism G=K ! U=L sends
the F-projector of G=K onto the F-projector of U=L. Thus KH \ U D HL. Finally, if
W=L D CK=L.H/, then

W=L � NG=L.HL=L/ \K=L D U=L \K=L D 1 ;

as desired.

The following is Theorem A of the introduction.
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Theorem 4.2. Let G be a solvable group, and let H be an F-projector of G, where F is
a saturated formation. Then

jIrrF0.G/j D Irr.NG.H/=H 0/j :

Proof. We construct a family of subgroups Ui , Ki and Li of G (uniquely determined
by H ) in the following way. By Lemma 4.1 (and using its notation), we let

.U0; K0; L0; L0H;U1/ D .G;K;L;LH;U / :

We have that U1 D L0NG.H/. Thus H is an F-projector of U1 (using Theorem 2.1(c)).
Also, U1 D U0 if and only if U0 D NG.H/. If U1 < U0 (that is, if NG.H/ < U0), then
we repeat the process, and apply Lemma 4.1 to U1 and H , to produce

.U1; K1; L1; L1H;U2/ :

Therefore K1 D .U1/Fn , L1 D .K1/0, and U2 D L1NU1.H/ D L1NG.H/ � U1. Again,
U1 D U2 if and onlyK1 D 1, which happens if and only if U1 D NG.H/. By Lemma 4.1,
we have that .U1; K1; L1; L1H;U2/ satisfies the hypothesis of Theorem 3.5, and H is an
F-projector of U1. If U2 < U1 (that is, if NG.H/ < U1), then we continue this process
and construct .U2; K2; L2; L2H; U3/, where U3 D L2NG.H/. We repeat this process
until we arrive to the smallestm such that Um D NG.H/. That is, using Lemma 4.1, when
we arrive to the smallest m such that Km D 1.

Notice that in each step, the 5-tuple .Ui ;Ki ;Li ;LiH;UiC1/ satisfies the hypothesis of
Theorem 3.5, where UiC1 D LiNG.H/, and each of its components is uniquely determ-
ined by H . In particular, every Ui , Ki and Li are NG.H/-invariant. Also, Li D .Ki /

0,
UiC1 < Ui if and only if NG.H/ < Ui , and this happens for i D 0; : : : ;m� 1. Again, by
Lemma 4.1, notice that KiH \ UiC1 D LiH . Since, UiC1 D LiNG.H/, then UiC1=Li
has a normal F-projector LiH=Li . Therefore, .UiC1/Fn D KiC1 � Li .

Once we have dealt with the part on groups, we finally arrive to the part on characters.
We define

IrrF0.Um/ D IrrF0.NG.H// D Irr.NG.H/=H 0/ :

We claim that IrrF0.Um/ satisfies the conditions (a), (b) and (c) below:
(a) If  2 Irr.KmH/ lies under some � 2 IrrF0.Um/, then Km is irreducible.

We have that Km D 1, and, of course, (a) is true because  is linear.
(b) Let�m�1 be the set of the irreducible constituents of �Lm�1 , where � 2 IrrF0.Um/.

Let Xm�1 be the set of irreducible characters  of Lm�1H such that Lm�1 D � 2 �m�1.
Then every � 2 �m�1 is H -invariant and extends to Lm�1H , �m�1 and Xm�1 are Um-
invariant, and

IrrF0.Um/ D Irr.UmjXm�1/ :

Let ı 2 IrrF0.Um/, let � 2 Irr.Lm�1H/ under ı, and let � 2 Irr.Lm�1/ be under �.
Notice that � lies over some linear character ofH (because ı does). By Corollary 3.3, we
have that �Lm�1 D � . Hence, � 2 Xm�1, and therefore

IrrF0.Um/ � Irr.UmjXm�1/ :
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Now let  2 Irr.UmjXm�1/. Hence  lies over some  2 Irr.Lm�1H/ such that Lm�1 D
� 2 �m�1. Now � is an irreducible constituent of �Lm�1 , for some � 2 IrrF0.Um/. Let
� 2 Irr.Lm�1H/ be over � under �. So we know that � lies over some linear � 2
Irr.H/. Thus �Lm�1 D � by Corollary 3.3. By Gallagher, we have that  D ��, where
� 2 Irr.Lm�1H=Lm�1/ is a linear character. Now,  lies over �H�, which is linear. Thus
 2 Irr.NG.H/=H 0/ D IrrF0.Um/.

Since �m�1 is clearly Um-invariant, it follows that Xm�1 is Um-invariant. This con-
cludes the proof of (b).

By the definition, we also have that:
(c) jIrrF0.Um/j D jIrr.NG.H/=H 0/j.
In this paragraph, we construct IrrF0.Um�1/ from IrrF0.Um/, using Theorem 3.5. Re-

call that
.Um�1; Km�1; Lm�1; Lm�1H;Um/

satisfies the hypothesis of Theorem 3.5. By Theorem 3.5 , there is a natural bijection

0
W IrrH .Km�1/! IrrH .Lm�1/

such that � extends to Km�1H if and only if � 0 extends to Lm�1H . Therefore, for each
' 2 �m�1, there is a unique H -invariant � 2 Irr.Km�1/ lying over  , that extends to
Km�1H . Let

�0m�1 D ¹ 2 IrrH .Km�1/ j  0 2 �m�1º :

Let X 0m�1 D ¹� 2 Irr.Km�1H/ such that �Km�1 2 �
0
m�1º: Both �0m�1 and X 0m�1 are

NG.H/-invariant. We let

IrrF0.Um�1/ D Irr.Um�1 j X 0m�1/ :

Notice that if � 2 IrrF0.Um�1/ and � 2 Irr.Km�1H/ lies under �, then �Km�1 is irreducible
(and H -invariant), by construction. (So it satisfies condition (a) with respect to m � 1.)
Notice that �0m�1 is simply the set of irreducible constituents of �Km�1 such that � 2
IrrF0.Um�1/. (Recall that if � 2 Irr.Km�1/ isH -invariant, then all NG.H/-conjugates are
H -invariant too.)

Suppose that A D ¹'1; : : : ; 'kº is a complete set of representatives of the NG.H/-
action on �m�1. Then A0 D ¹'01; : : : ; '

0
k
º is a complete set of representatives of the

NG.H/-action on �0m�1. If

Bi D ¹� 2 Irr.Lm�1H/ j �Lm�1 D 'iº and B 0i D ¹� 2 Irr.Km�1H/ j �Km�1 D '
0
iº;

it follows that

IrrF0.Um�1/ D
[
i

Irr.Um�1jB 0i / and IrrF0.Um/ D
[
i

Irr.UmjBi /

are disjoint unions. By Theorem 3.5, we have that

jIrrF0.Um�1/j D jIrrF0.Um/j :
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Suppose now that we have constructed IrrF0.Uk/, satisfying the following conditions
(a), (b) and (c), below. We canonically construct IrrF0.Uk�1/, satisfying the corresponding
conditions (for the index k � 1).

(a) Let � 2 IrrF0.Uk/. If  2 Irr.HKk/ lies under �, then Kk is irreducible.

Notice then that since Kk � Lk�1 G Uk , HKk G Uk , and Lk�1H G Uk , if � 2
Irr.Lk�1H/ lies under �, we have that �Lk�1 is irreducible by Lemma 3.2.

Let �k�1 be the set of the irreducible constituents �Lk�1 , for � 2 IrrF0.Uk/. If  2
�k�1, then we know that  is H -invariant and  extends to Lk�1H . Let Xk�1 D ¹� 2
Irr.Lk�1H/ j �Lk�1 2 �k�1º.

(b) We have that
IrrF0.Uk/ D Irr.Uk jXk�1/ :

(c) We have that
jIrrF0.Uk/j D jIrr.NG.H/=H 0/j :

Now, let �0
k�1
D ¹ 2 Irr.Kk�1/ jH -invariant such that  0 2 �k�1º, we let X 0

k�1
D

¹� 2 Irr.Kk�1H/ such that �Kk�1 2 �
0
k�1
º: Finally, we define

IrrF0.Uk�1/ D Irr.Uk�1 j X 0k�1/ :

Notice that �0
k�1

is the set of all the irreducible constituents of �Kk�1 such that � 2
IrrF0.Uk�1/.

We claim that IrrF0.Uk�1/ satisfies our set of conditions:
(a) If � 2 IrrF0.Uk�1/ and  2 Irr.HKk�1/ lies under �, then Kk�1 is irreducible.

Recall thatKk�1 is the smallest normal subgroup of Uk�1 such thatKk�1H G Uk�1).
Now,Kk�1�Lk�2,Kk�1H G Uk�1 and it follows by Lemma 3.2, that if � 2 Irr.Lk�2H/
lies under � 2 IrrF0.Uk�1/, then �Lk�2 is irreducible.

Let �k�2 be the set of irreducible constituents of �Lk�2 , where � 2 IrrF0.Uk�1/, and
let Xk�2 be the set of all extensions of the characters of �k�2 to Lk�2H . We claim that
the following holds:

(b) IrrF0.Uk�1/ D Irr.Uk�1 jXk�2/ :
Indeed, if � 2 IrrF0.Uk�1/ and � 2 Irr.Lk�2H/ lies under �, we have shown in the

previous paragraph that �Lk�2 is irreducible. Thus � 2 Xk�2, and � 2 Irr.Uk�1 jXk�2/.
Conversely, let  2 Irr.Uk�1 jXk�2/ and let � be an irreducible constituent of  Lk�2H .
Then � 2Xk�2 and �Lk�2 D � 2�k�2. Therefore, there is � 2 IrrF0.Uk�1/ such that � is
below �. Let � 2 Irr.Lk�2H/ below � and over � . Then we know that �Lk�2 D � (by the
paragraph proving (a)). Hence, we have that�D�� for some linear �2Irr.Lk�2H=Lk�2/,
by Gallagher. Also, � lies over � 2 X 0

k�1
, because � 2 IrrF0.Uk�1/ D Irr.Uk�1 j X 0k�1/.

Therefore � lies over �Kk�1H� 2 X
0
k�1

because Kk�1 is in the kernel of �. Hence  2
Irr.Uk�1jX 0k�1/ D IrrF0.Uk�1/.

Finally, using Theorem 3.5 and (b), we also have that:
(c) jIrrF0.Uk�1/j D jIrrF0.Uk/j :

This finishes the proof of the theorem.
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Let us extract, from the first and the last step in our construction of the set IrrF0.G/,
the following statement for further use.

Theorem 4.3. LetG be a solvable group, let F be a saturated formation, and letH be an
F-projector. LetK be the smallest normal subgroup of G such thatKH G G, let LDK 0,
and let U D LNG.H/. Denote by 0W IrrH .K/! IrrH .L/ the natural bijection established
in Theorem 3.5 (g).

(a) If H G G, then IrrF0.G/ D Irr.G=H 0/.
(b) We have that IrrF0.G/ D Irr.GjY /, where Y is the set of the irreducible charac-

ters � of KH such that �K D  is irreducible, and  0 2 Irr.L/ lies under some
 2 IrrF0.U /. In particular, if � 2 IrrF0.G/, then all the irreducible constituents
of �K are H -invariant.

(c) Suppose that � 2 IrrF0.G/ and let N G G with K � N . Then every irreducible
constituent of �NH restricts irreducibly to N .

Proof. We use the notation in Theorem 4.2.
(a) If H G G, then m D 0, Um D G, and, in this case, we have defined

IrrF0.G/ D IrrF0.Um/ D Irr.NG.H/=H 0/ D Irr.G=H 0/ :

(b) The first part is exactly the content of our construction in the case k D 1, that is,
from U D U1, to G D U0. If � 2 IrrF0.G/, then some irreducible constituent � 2 Irr.K/
of �K isH -invariant, by the first part. Since G DKNG.H/, all the G-conjugates of � are
in fact NG.H/-conjugate. Now, if x 2 NG.H/ and h 2H , then xhx�1 2H and therefore
.�x/h D �x .

(c) Let � 2 IrrF0.G/, let � 2 Irr.NH/ be under �, and let � 2 Irr.KH/ be under �.
By part (a), we know that �K 2 Irr.K/. Now, apply Lemma 3.2 in the group NH .

The following is Theorem B.

Theorem 4.4. Let G be a finite solvable group, let F be a saturated formation, and letH
be an F-projector. Then IrrF0.G/ D Irr.G/ if and only if H is normal and abelian.

Proof. If H is normal and abelian, then NG.H/=H 0 D G, and the theorem follows from
Theorem 4.3(a).

Assume now that IrrF0.G/ D Irr.G/. Let K be the smallest normal subgroup such
that KH G G. Assume that K > 1, and let L D K 0. We know that CK=L.H/ D 1 by
Lemma 4.1. Let � 2 Irr.K/, and let � 2 Irr.G/ be over � . By hypothesis, we have that
� 2 IrrF0.G/. By Theorem 4.3(b), we know that all the irreducible constituents of �K
areH -invariant. In particular, all the irreducible characters ofK=L areH -invariant. Thus
CK=L.H/ D K=L, contrary to the assumption. Therefore, K D 1, H G G, and Irr.G/ D
IrrF0.G/ D Irr.G=H 0/, by Theorem 4.3(a). We conclude that H 0 D 1, that is, that H is
abelian.

Theorem 4.5. If F is the class of p-groups, then IrrF0.G/ is exactly the set of the irredu-
cible characters of G of degree not divisible by p.
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Proof. We argue by induction on jGj. Let P 2 Sylp.G/. The smallest normal subgroupK
of G such that KP is normal in G is Op0p.G/. Now, let L D K 0. Notice that K=L is a
p0-group. Let U D NG.P /L.

Suppose that � 2 Irr.G/ has p0-degree. By degrees, we have that �U has some p0-
degree irreducible constituent  . By induction,  2 IrrF0.U /. Let � 2 Irr.LP / be under  .
Since LP G U , we have that � has p0-degree. Thus �L D ' 2 Irr.L/, by Corollary 11.29
of [4]. Now, �KP has some irreducible constituent � 2 Irr.KP / over '. Since �K is
irreducible, it follows that � D '0 is the unique P -invariant character over '. We have
that � 2 IrrF0.G/ by Theorem 4.3(b). Conversely, suppose that � 2 IrrF0.G/. By The-
orem 4.3(b), � lies over some � 2 Irr.KP / such that �KP D � 2 Irr.K/, and ' D � 0 lies
under some  2 IrrF0.U /. By induction,  has p0-degree. Then ' has p0-degree by Clif-
ford’s theorem, and so does � , � and �, by two applications of Corollary 11.29 of [4].

Notice that we cannot exactly modify the proof in Theorem 4.5 if we consider the
class F of �-groups, instead of p-groups: if U is a subgroup of a solvable group G and
� 2 Irr.G/ has � 0-degree, it is false that �U has a � 0-degree irreducible constituent. (For
instance, take � D ¹5º0 and G D E W SL2.3/, where E is an extra-special 5-group of
order 53 and exponent 5.) The argument in the second part of the proof of Theorem 4.5
does show that IrrF0.G/ � Irr� 0.G/, where Irr� 0.G/ is the set of the irreducible characters
such that �.1/ is a � 0-number. We have that jIrr� 0.G/j D jIrr.NG.H/=H 0/j, by the main
theorem of [10]. Since jIrr.NG.H/=H 0/j D jIrrF0.G/j by Theorem A, we do conclude
that IrrF0.G/ D Irr� 0.G/.

Theorem 4.6. If F is the class of nilpotent groups and G is solvable, then IrrF0.G/ is the
set of Isaacs head characters.

Proof. In the language of [5], our construction provides a Carter chain G D U0 > � � � >
Um D C , such that IrrF0.G/ is the image of the Isaacs associated injection f WLin.C /!
Irr.G/. Now, f .Lin.C // D IrrF0.G/ does not depend on the Carter chain, and this is the
set of Isaacs head characters (using Theorem 5.3 of [5]).

Of course, if F is the class of all finite groups and G is solvable, then G is itself an F-
projector and IrrF0.G/D Irr.G=G0/ is the set of linear characters ofG, by Theorem 4.3(a).

Let us now review the G D GL2.3/ example that we pointed out in the introduction.
Let F be the class of supersolvable groups. Then the unique conjugacy class of subgroups
of G isomorphic to D12 is the conjugacy class of F-projectors of G. Let H � G be one
of those. Now, the proper normal subgroups of G are ¹1;Z.G/;Q8; SL2.3/º. Hence, the
smallest normal subgroupK of G such that G=K has a normal F-projector isK D Q8. In
fact, G=K D S3 is supersolvable, so G D KH . Also,K 0 D LD Z.G/, andK \H D L.
Now, H D NG.H/, and H 0 \ L D 1, since H 0 is a Sylow 3-subgroup of G. Thus, if
Irr.H=H 0/D ¹1;�2; �3; �4º, then, say the two first, restrict trivially toZ, and the remain-
ing two, �3 and �4, extend the unique non-trivial irreducible character � 2 Irr.Z/. Since
�K D 2� , �0 D � , and then IrrF0.Gj�/ are the two extensions of � to G. In the other case,
.1Z/

0 D 1K , and IrrF0.Gj1K/ are two linear characters of G.
In order to investigate further properties of F0-characters, it seems convenient to find

ways to relax the rather rigid algorithm that we have used to define them, as for instance,
Isaacs does with its head characters in [5] using H -composition series of G, if H is a
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Carter subgroup of G. We believe that our F0-characters can be described in terms of
NG.H/-composition series, but we do not attempt this here.

Also, there are some questions on head characters and zeros of characters in [5] (raised
by this author) which might have some interest. With the generality in this paper, it is not
true that if � 2 IrrF0.G/ and h 2H , whereH is an F-projector, then �.h/¤ 0. (As it does
happen if F is the class of p-groups: see Corollary 4.20 of [6].) For instance, if F is the
class of ¹2; 3º groups andG D C6wr C5, then IrrF0.G/D Irr.G/ andG has an irreducible
character of degree 5 that vanishes on an element of order 6.

As we have mentioned, Theorem 4.5 together with Theorem A gives a proof of the
McKay conjecture for solvable groups. The first proof of the McKay conjecture for solv-
able groups was given by T. R. Wolf in [9]. This proof, however, relied on very deep results
of Dade. The standard proof of the p-solvable case nowadays is due to T. Okuyama and
M. Wajima, and can be found in [6]. The proof that we present here can be obtained as a
combination of the proofs of [3] with [2], if we let F be the class of p-groups.

Finally, since all finite groups in this paper are solvable (in order to consider many
classes of groups at the same time), our proof of Theorem A does not take care of the
p-solvable case of the McKay conjecture, or of the �-separable case of the McKay con-
jecture for Hall �-subgroups (proven in [10]). Hence, it is possible that our Theorem A
can be extended to other classes of groups.
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