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Mean field equations and domains of first kind

Daniele Bartolucci and Andrea Malchiodi

Abstract. In this paper, we are interested in understanding the structure of domains
of first and second kind, a concept motivated by problems in statistical mechanics
and mean field equations. We prove some openness property for domains of first kind
with respect to a suitable topology, as well as some sufficient condition, in terms of
the Fourier coefficients of the Riemann map, for a simply connected domain to be of
first kind. Finally, we show that the set of simply connected domains of first kind is
contractible.

1. Introduction

We are concerned with the mean field equation,8̂<̂
: ��u D �

euR
�
eu

in �;

u D 0 on @�;

.P–/

where � 2R and��R2 is either any open and bounded domain of classC 1 or a bounded
simply connected domain, regular according to the following definition ([10]).

Definition 1.1. Let� be an open and bounded domain,��R2. We say that� is regular
if its boundary @� is of class C 2 but for a finite number of points ¹Q1; : : : ;QN0º � @�,
for each of which the following conditions hold:

(i) The inner angle �j of @� at Qj satisfies 0 < �j ¤ � < 2� ;
(ii) At each Qj , there is an univalent conformal map from Bı.Qj /\� to the complex

plane C such that @� \ Bı.Qj / is mapped to a C 2 curve.

Clearly, any non-degenerate polygon is regular according to this definition.
Next we have the following.

Definition 1.2. Let � � R2 be either an open and bounded domain of class C 1 or a
regular simply connected domain. We say that � is of first kind if .P–/ has no solution
for � D 8� . Otherwise, � is said to be of second kind. The set of domains of first/second
kind will be denoted by AI=AII, respectively.
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This definition is motivated by physical and analytical problems, see [8,9], [6,10] and
more recently [1,3,4,7]. In the framework of the vortex model of an Euler incompressible
flow confined in �, the Robin function 
� is essentially the renormalized free energy of a
single vortex. On domains of first kind, the full range of admissible energiesE 2 .0;C1/
corresponds to minus the inverse statistical temperature � 2 .�1; 8�/, and as E !C1
we have � ! .8�/� and the vorticity of the flow concentrates to a Dirac delta, ıxDq .
It turns out that, in this situation, q is the unique maximum point of the free energy 
�.
In particular, the equivalence of statistical ensembles holds and the entropy is concave
for E 2 .0;C1/. On domains of second kind, the states in the range � 2 .�1; 8�/
describe only a portion of the allowed energy values, say E 2 .0; E8�/, and the peculiar
phenomenon of non equivalence of statistical ensembles holds forE 2 .E8� ;C1/, where
in particular we have � > 8� . As E ! C1, we have �! .8�/C and the vorticity of
the flow concentrates to a Dirac delta, ıxDq , where q is a maximum point of the free
energy 
�. A full region of convexity of the entropy (negative specific heat) is found forE
large enough.

On the other side, solutions of .P–/ can be found as critical points of the functional
J�.u/D

1
2

R
�
jruj2 �� log.

R
�
eu/ onH 1

0 .�/, which is coercive and bounded from below
if � < 8� , and bounded from below but not coercive if � D 8� . Whether or not the
minimizing sequences for � D 8� stay compact depends in a subtle way on the geometry
of the domain. Among other things, it has been shown in [6, 10] that � is of second kind
if and only if J8� admits a minimizer.

Actually, based on the concentration/compactenss behavior of minimizers of J8� , the
concept of domains of first/second kind was first introduced in [8, 9].

It is well known that any disk, say BR D BR.0/, is of first kind and that, in this
particular case, .P–/ admits a solution if and only if � < 8� . Regular polygons are also of
first kind ([10]). Symmetric annuli are known to be of second kind, since a radial solution
of .P–/ exists for any � 2 R in this case, see for example [7,20], while�D BR nBr .x0/,
with x0 ¤ 0, is of first kind if r is small enough ([6]). Actually, this is also an example
of a domain of first kind where .P–/ admits solutions for � > 8� as well. Indeed, for
domains with non-trivial topology, it is well known that for any N � 2 there are solutions
concentrating at N distinct points as �! 8�N [11, 14, 17], as well as solutions for any
� ¤ 8�N or for any � sufficiently large [12, 18], see also [2].

It has been proven in [3] that there exists a universal constant Ic > 4� such that any
convex domain whose isoperimetric ratio I.�/ satisfies I.�/> Ic is of second kind. Also,
ifQa;b is a rectangle whose sides are 1 � a � b <C1, then there exists �c 2 .0; 1/ such
that Qa;b is of second kind if and only if a=b < �c , see [10].

In particular, domains of first kind need not be symmetric. Let us consider a dumbbell
domain �0;d which is the union of two disks B1 and B2 of radii 0 < r1 � r2, connected
by any smooth thin tube of width d > 0. It has been shown in [10] that if r1 < r2, then
for d small enough �0;d 2 AI, while if �0;d is symmetric with respect to the y axis and
r1 D r2, then �0;d 2 AII.

Remark 1.3. By the above discussion, the condition of a domain to be of first or second
kind is not conformally invariant. However, we recall that .P–/ is scale invariant, that is,
u.x/ is a solution of .P–/ in � if and only if u.ıx/ is a solution of .P–/ in 1

ı
�. Therefore

� 2 AI=AII if and only if 1
ı
� 2 AI=AII for some ı > 0.
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We are interested here in a better understanding of the structure of the set of domains
of first/second kind. Indeed, besides the above-mentioned application [9], this is relevant
also for other problems where, for domains of first kind, one can describe the qualitative
behavior of global branches of solutions, see [5, 7] for recent results in this direction.

Let us recall that, as shown in [10] and [6], domains of first (second) kind are closed
(open) in the C 1-domain topology. These results rely on an equivalent characterization
based on the geometric quantityA�, see (1.4) and Theorem A below. LetG�.x; p/ denote
the Green function of �� with Dirichlet boundary conditions, uniquely defined by²

��G�.x; p/ D ıp in �;
G�.x; p/ D 0 on @�;

and set

(1.1)

´
R�.x; p/ D G�.x; p/C

1

2�
log jx � pj;


�.p/ D R�.p; p/:

Hence 
� denotes the Robin function relative to �, that satisfies

(1.2) lim
p!@�


�.p/ D �1:

In view of (1.2), we see that 
� admits at least one critical point, which is its maximum
point. Clearly, q is a critical point of 
� if and only if q is a critical point of R.x; q/ with
respect to the x variable, i.e.,

(1.3) rx
�.x/jxDq D 2 rxR�.x; q/jxDq D 0:

Let us define

(1.4) �A�.q/ D lim
"!0

Z
�nB".q/

e8�.R�.x;q/�
�.q// � 1

jx � qj4
�

Z
� c

1

jx � qj4
�

Here B".q/ denotes the ball of center q and radius ": also, as we will always convene
later on, the standard integration measure has been omitted. Note that, in a neighborhood
of q, we have

(1.5) e8�.R�.x;q/�
�.q// � 1 D

1;2X
i;j

aij .xi � qi /.xj � qj /CO.jx � qj
3/;

where, since R�.x; q/ is harmonic in �, a11 C a22 D 0. In particular, because of (1.5),
the limit in (1.4) always exists and A� is finite.

According to some results in [6, 10], we have the following.

Theorem A. A domain � of class C 1 is of first kind if and only if 
� admits a unique
maximum point q and A�.q/ � 0.

A simply connected and regular domain � is of first kind if and only if 
� admits a
unique maximum point q and A�.q/ � 0.

In particular, in both cases, if 
� admits a critical point q such that A�.q/ � 0, then q
is the unique maximum point, it is a non-degenerate critical point of 
� and � is of first
kind.
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Although not stated in this form in the cited references, still Theorem A is a trivial con-
sequence of the results obtained therein. We remark that the proof of Theorem A crucially
relies on the uniqueness and non-degeneracy of solutions of .P–/ for � D 8� , see [10]
and [6]. If we miss the regularity assumptions in the claim about �, then we do not know
much about this point and in particular about the validity of Theorem A.

Next we focus on the case where� is simply connected and use complex notation. For
a fixed q 2 �, let us denote by D D ¹z 2 C W jzj < 1º and by gq W� 7! D the Riemann
map satisfying gq.q/ D 0, g0q.q/ > 0. Let fq WD 7! � be the inverse map, which satisfies
fq.0/ D q and gq D f �1q W� 7! D. Next, setting w D fq.z/, we find that

R�.w;q/DG�.w;q/C
1

2�
log jw � q j D�

1

2�
log
jgq.w/j

jw � q j
D

1

2�
log
jfq.z/ � fq.0/ j

jzj
;

and it is well known that the Robin function takes the form

(1.6) 
�.w/ D R�.w;w/ D
1

2�
log

.1 � jgq.q/j
2/

jg0q.w/j
D

1

2�
log .1 � jzj2/ jf 0q.z/j:

Next, let us consider the power series relative to fq ,

(1.7) fq.z/ D q C a1z C

C1X
nD2

an z
n; jzj < 1;

where we used that a1 D f 0q.0/ > 0, since by assumption g0q.q/ > 0. Therefore we see
that


�.q/ D
1

2�
log.ja1j/;

and

(1.8)
@

@z
R�.z; q/

ˇ̌̌
zDq
D

a2

4�a21
D
a2

4�
;

whence (1.3) is equivalent to a2 D 0. At this point, one can prove (see [10]) that

(1.9) D�.q/ WD ja1jA�.q/ D �ja1j
2
C

C1X
nD3

n2

n � 2
janj

2;

which is well defined and convergent since a2 D 0 and j�j D �
PC1
nD1 njanj

2 by the area
theorem. We will use when needed the fact that D� and A� share the same sign without
further comments. In particular, any bounded and simply connected domain admits a
Riemann map whose series expansion takes the form

(1.10) fq.z/ D q C a1z C

C1X
nD3

an z
n; jzj < 1; a1 > 0;

where q is a critical point of 
�.
For a pair �;�0 of class C 1(C 0;1), we will denote by d1.�;�0/.d0;1.�;�0// the

distance in the C 1(C 0;1)-domain topology, see Section 2 for more details.
We then have the following result.
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Theorem 1.4. (i) Let � be a domain of first kind of class C 1 with A�.q/ < 0. Then there
exists "0 > 0 such that if �0 satisfies d1.�;�0/ < "0, then �0 2 AI and A�0.q0/ < 0.

(ii) Let � be a simply connected and regular domain of first kind with A�.q/ < 0.
Then there exists "0 > 0 such that if �0 is a simply connected and regular domain and
d0;1.�;�0/ < "0, then �0 2 AI and A�0.q0/ < 0.

It is interesting that AI \ ¹A�.q/ < 0º is open in the C 1-topology. Obviously, the
problem is more subtle for the C 0;1-domain topology. Indeed, our proof of Theorem 1.4
crucially relies on Theorem A, that is, on a characterization of domains of first kind which
unfortunately is not known for a general domain of class C 0;1.

Our next result is a coefficient-based sufficient condition that defines an open region
of starlike domains in AI which contains all disks. Let � be a simply connected domain,
let q be a critical point of 
�, and let fq be the Riemann map defined in (1.10). Let us
denote by �I the subset of those � such that � D fq.D/ with fq as in (1.10) and

(1.11)
C1X
nD3

n janj < ja1j;

and by @�I the subset of those � such that

(1.12)
C1X
nD3

n janj D ja1j:

Then we have the following.

Theorem 1.5. If � 2 �I , then� is starlike, of class C 1 and of first kind withD�.q/ < 0.
In particular, if �2 �I and ¹anºn2N are the coefficients of (1.10), then for any continuous
(with respect to the `1-topology) map a.t/D .a1; 0;a3.t/;a4.t/; : : : /, t 2 Œ0;1�, satisfying
an.0/ D 0, an.1/ D an and jan.t/j � janj for any n � 3, then

f .z; t/ D q C a1z C

C1X
nD3

an.t/z
n; jzj � 1; t 2 Œ0; 1�;

is a jointly continuous family of univalent and starlike maps f .z; t/, z 2 D, t 2 Œ0; 1� such
that �t D f .D; t / satisfies �t 2 �I for any t , �0 D q C a1D, �1 D �. Therefore, in
particular �t is of first kind and D�t

.q/ < 0 for any t 2 Œ0; 1�.
Moreover, the same conclusion holds for �t with t 2 Œ0; 1/, whenever � 2 @�I is

regular and if at least one jan.t/j is strictly increasing in a left neighborhood of t D 1.

Please observe that since (1.11) implies that � is of class C 1, it also follows from
Theorem 1.4 that �I is open. However, the interest of Theorem 1.5 relies in the fact that,
as already mentioned above, it is not true that any starlike or either convex domain is of
first kind.

Actually, since by the area formula the formal series built with an.t/ as in The-
orem 1.5, that is,

D�.q/ D �ja1.t/j
2
C

C1X
nD3

n2

n � 2
jan.t/j

2;
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is convergent, then it is tempting to try to adopt the same argument to prove the path-
connectedness of the full set of either C 1 or regular domains of first kind. Unfortunately,
this argument fails in general. Indeed, on one side if we miss (1.11) then it is not anymore
guaranteed that f .D/ is either C 1 or even just regular in the sense of Definition 1.1. For
example, as observed in [10], f3.z/ D z C 1

3
z3 is univalent in D and satisfies D�.0/ DPC1

nD3
n2

n�2
janj

2 � ja1j
2 D 9ja3j

2 � ja1j
2 D 0,

PC1
nD3 njanj D 3ja3j D 1 D ja1j, but at

the same time f 03.˙i/ D 0 and the domain f3.D/ 2 @�I has cusps (inner angle 2�) at
its boundary points ˙2

3
i 2 @�. In particular, f3.D/ is not regular and then we cannot

apply Theorem A above, whence the full argument breaks down. Actually, we see in this
way that (1.11) is sharp as far as we are concerned with the regularity of the domain.
However, (1.11) is not necessary for a domain to be of first kind, as we illustrate with an
explicit example in Appendix III.

On the other side, it is neither true that if

D�.q/ D �ja1.t/j
2
C

C1X
nD3

n2

n � 2
jan.t/j

2

is negative then f as in (1.10) is univalent. For example, the sequence

a D .1; 0; t=3; t=4; 0; 0; : : : /

corresponds to the holomorphic function f .z/D zC t
3
z3C t

4
z4, which for t 2 Œ7=10;4=5�

is readily seen to be not univalent in D, althoughD�.0/ is convergent and strictly negative.
However, we can show that a particularly simple choice of the an.t/’s in Theorem 1.5

does the job for any simply connected domain of first kind. We recall that a domain �
is said to be analytic if @� D f .@D/ for some f univalent in a full open neighborhood
of D. Then we have the following.

Theorem 1.6. Let � be a simply connected domain of first kind, either regular or of
class C 1, and let fq be the Riemann map normalized as in (1.10). Then

(1.13) f .z; t/ D tq C
fq.tz/ � q

t
; jzj � 1; t 2 Œ�1; 1�;

is jointly continuous in D � Œ�1; 1�, jointly analytic in .z; t/ 2 D � t 2 .�1; 1/, �t D
f .D; t / is an analytic domain for any t 2 Œ0; 1/ and satisfies �t 2 AI for any t 2 Œ0; 1�,
�1 D � and �0 D D.

In particular, the set of simply connectedC 1 domains of first kind is contractible, while
the set of simply connected regular domains of first kind is simply connected with respect
to the C 0;1-topology.

What the proof shows is that f .z; t/ defines a deformation retract of the identity in the
subspace of C 1 domains of first kind. As remarked right after Theorem 1.4, the situation
for regular domains is more delicate, which is why we come up with a weaker result in this
case. In conclusion, as a consequence of Theorems 1.4 and 1.6, we have the following,

Corollary 1.7. The set of simply connected domains of first kind of class C 1 is a con-
tractible set with non empty interior with respect to the C 1-topology.
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The set of regular and simply connected domains of first kind is a simply connected set
with respect to the C 0;1-topology.

It is an interesting open problem to understand how the topology of AI is affected by
the topology of the underlying domains.

This paper is organized as follows. In Section 2 we define the distances and topologies
used in the introduction and list some known results which will be needed in the sequel.
In Section 3 we prove Theorem 1.4. In Section 4 we prove Theorems 1.5 and 1.6. Some
technical results and an example are discussed in the Appendices.

2. Preliminaries

Let us now introduce some useful definitions and distances between domains.

Definition 2.1. A domain� is of class C k.C 0;1/, k � 2, if for each x0 2 @� there exist a
ball B D Br .x0/ and a one-to-one mapˆWB 7! U �R2 such thatˆ 2 C k.B/.C 0;1.B//,
ˆ�1 2 C k.U /.C 0;1.U // and the following holds:

ˆ.� \ B/ � R2C and ˆ.@� \ B/ � @R2C:

It is well known (see for example [15]) that this is equivalent to the existence of r > 0
and M > 0 such that, given any ball B D Br .x0/, x0 2 R2 then, after suitable rotation
and translations, it holds

� \ B D ¹.x1; x2/ W x2 < �.x1/º \ B and @� \ B D ¹.x1; x2/ W x2 D �.x1/º \ B;

for some � 2 C k.R/.C 0;1.R// whose norm is not larger than M .

We will also need some classical results about extensions up to the boundary of
Riemann maps.

Remark 2.2. If f WD ! � is univalent and if @� is the support of any rectifiable Jordan
curve, then f admits a continuous and univalent extension on D, see for example The-
orem 9.1 in [23]. Moreover, if � is of class C 1, then, in view of Definition 2.1, it is not
difficult to see that @� admits a C 1-parametrizationw.t/, t 2 Œ0; 2��, such thatw0.t/¤ 0,
t 2 Œ0; 2��. As a consequence, see Theorem 3.5 in [22], f 0 admits a continuous extension
on D, with f 0.z/ ¤ 0 in D.

Next we will use the following definition of distance in the set M1.�/ of bounded C 1

domains which are C 1-diffeomorphic to a given bounded domain �. This is a particular
case of a more general definition first introduced in [19], see also [15]. For �1, �2 2
M1.�/, we define
(2.1)

d1.�1; �2/ D inf
° NX
kD1

.khk � IkC 1 C kh
�1
k � IkC 1/ j h1 ı h2 ı � � � ı hN .�1/ D �2

±
;

where I WR2 ! R2 is the identity and the infimum is taken over N 2 N and all C 1-
diffeomorphisms hk WR2 ! R2 such that Dj .hk.x/ � x/! 0 as jxj ! C1, j D 0; 1.
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Equipped with this metric, M1.�/ is complete and separable. A neighborhood of
�1 2M1.�/ in the induced topology contains a neighborhood of the form

¹H.�1/ WH 2C
1.R2IR2/; kH � IkC 1 < "; D

j .H.x/� x/! 0; jxj!C1; j D 0;1º;

which in turn contains a ball ¹�2 W d1.�2; �1/ < ıº, for some ı > 0, see Appendix A.2
in [15] for proofs. This is the distance d1 and theC 1-domain topology which we refer to in
Theorems 1.4 and 1.6, and Corollary 1.7. In particular, the set of all open and bounded
domains of class C 1 splits into equivalence classes with respect to the relation �1 v �2
, �2 D h.�1/ for some C 1-diffeomorphism h. Obviously, one of these equivalence
classes is the subset of simply connected domains of class C 1.

Concerning simply connected and regular domains (see Definition 1.1), we first ob-
serve that, in view of Remark 2.2, any such a domain� can be mapped one-to-one onto D
via a Riemann map f WD!�, which admits a one-to-one and continuous extension on D.
Let Qj 2 @� be any corner and assume without loss of generality that Qj D 0 D f .1/.
Then, by Theorem 3.9 in [22], either �j D �˛ 2 .0; �/, and then jf 0.z/j � C jz � 1j1�˛

for z 2 D \Br .1/, or �j D �˛ 2 .�; 2�/, and then jf .z/j=jz � 1j � C jz � 1j˛�1 for z 2
D \ Br .1/, for suitable r > 0. Therefore, it is not difficult to see that any regular domain
is in particular of class C 0;1 in the sense defined above. As a consequence, the distance of
any two regular domains, which we will denote by d0;1.�1; �2/, can be defined just by
replacing C 1 with C 0;1 in (2.1). A generalization of the notion introduced in [19], with
a proof of the fact that d0;1 is indeed a well defined metric, can be found in Chapter 3
of [13].

3. Proof of Theorem 1.4

In this section we prove Theorem 1.4, first discussing (ii). The proof of (i) when � is
simply connected follows exactly by the same argument but it is easier, and we omit it
here to avoid repetitions. Then we will be back to (i) for general connected but not simply
connected domains � of class C 1.

We can assume without loss of generality that q D 0 and in particular, by Remark 1.3,
that a1 D f 0q.0/ D 1. By Remark 2.2, the Riemann map (1.10) can be extended to a
continuous and univalent map fq.D/ D � which then takes the form

fq.z/ D z C

C1X
nD3

an z
n; z 2 D:

We argue by contradiction. If the claim were false, then we could find a sequence of
regular domains �k such that d0;1.�;�k/! 0 in the C 0;1-topology and �k 2 AII for
any k. Let 
�k denote the Robin function of �k . Since d0;1.�;�k/! 0 and each �k is
regular, then it is not difficult to see that �k ! � in the sense of Caratheodory’s kernel
convergence [23]. Therefore, for any k large enough, since q D 0 is an interior point of�,
then we have qD 02�k and then we can define yfkWD!�k to be a sequence of univalent
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maps which satisfy yfk.D/ D �k and hence

yfk.z/ D ba1;k z C
C1X
nD2

ban;k zn; z 2 D; ba1;k > 0; 8 k 2 N:

By the Caratheodory kernel theorem ([23], Theorem 1.8), we conclude that yfk ! fq
locally uniformly and then also in C 3loc.D/.

Next observe that, by Theorem A, q D 0 D fq.0/ is the unique and non-degenerate
maximum point of 
�. As a consequence of (1.6), we see that 
�k ! 
� in C 2loc.D/ and
then, for k large enough, 
�k has a unique and non-degenerate maximum point, which we
denote by qk and satisfies qk ! q D 0. At this point, we can define

(3.1) fk;qk .z/ D qk C a1;k z C

C1X
nD2

an;k z
n; z 2 D; a1;k > 0; 8 k;

to be the sequence of univalent functions which satisfies fk;qk .D/ D �k , fk;qk .0/ D qk
and f 0

k;qk
.0/ > 0. As a consequence of (1.8), we find that a2;k D 0. In particular, by using

once more the kernel theorem, we find that fk;qk ! fq locally uniformly in D.
Next, let us recall that a sequence of compact domains Uk is said to be uniformly

locally connected if for every " > 0 there exists ı > 0 such that, if ak ; bk 2 �k and
jak � bkj < ı, there exists connected compact sets Bk � Uk such that ak ; bk 2 Bk and
diam.Bk/ < ". Since d0;1.�;�k/! 0 and each �k is regular, then it can be shown that:

Claim: �k is uniformly locally connected.
See Appendix I for a proof of this fact.
Therefore, by Theorem 9.11 in [23], we conclude that fk;qk ! fq uniformly in D.

Thus, since kfk;qk � fqk1 ! 0, then by Cauchy’s representation formula we find that

sup
n2N
jan;k � anj � kfk;qk � fqk1 ! 0; as k !C1:

At this point, since D�.q/ < 0, we have

lim
N!C1

lim
k!C1

NX
nD3

n2

n � 2
jan;kj

2
D

C1X
nD3

n2

n � 2
janj

2
D ja1j

2
� � D 1 � �;

for some � 2 .0; 1/, while on the other side, by the uniform convergence of an;k , we find
that

1 � � D lim
k!C1

lim
N!C1

NX
nD3

n2

n � 2
jan;kj

2
D lim
k!C1

C1X
nD3

n2

n � 2
jan;kj

2

� lim
k!C1

ja1;kj
2
D 1;

where the last inequality follows from Theorem A, which implies that, since�k 2AII for
any k, then

C1X
nD3

n2

n � 2
jan;kj

2 > ja1;kj
2 for any k.
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This contradiction shows that there exists "0 >0 such that if�0 is regular and d0;1.�;�0/
< "0, then �0 2 AI.

Taking a smaller "0 if necessary, the same argument shows that D�0
.q0/ < 0 as well

and we skip this part of the proof to avoid repetitions.
We are left with the proof of (i) in the case when � is not simply connected.
We will denote by C > 0 a uniform positive constant whose value may change from

line to line. By Theorem A, � has a unique and non-degenerate maximum point q.
If the claim were false, then we could find a sequence of C 1 domains �k such that
d1.�;�k/! 0 and �k 2 AII for any k. Let Rk.x; y/ be the regular part of the Green
function for �k as defined in (1.1), and let 
k be its Robin function. It can be shown, see
Appendix II, that for any fixed y 2 � we have

(3.2) Rk.x; y/! R�.x; y/ in C 3loc.�/

and

(3.3) 
k ! 
� in C 2loc.�/:

Therefore, for k large, 
k will have a unique and non-degenerate maximum point
qk ! q. We can assume for the moment without loss of generality that qk D 0 for any k.
By assumption, for fixed k, we have,

Ak.0/ WD lim
"!0

Z
�knB".0/

e8�.Rk.x;0/�
k.0// � 1

jxj4
�

Z
� c

1

jxj4
> 0;

and then, in particular,
lim inf
k!C1

Ak.0/ � 0:

We will obtain a contradiction by showing that there exists � > 0 small enough such that

(3.4) lim sup
k!C1

Ak.0/ � ��:

Clearly, there exists d > 0 small enough such that Bd .0/���k for any k large. By (1.5)
we have

e8�.Rk.x;0/�
k.0// � 1 D

1;2X
i;j

ak;ij xi xj C ck.x/; x 2 Bd .0/;

where
ak;ij D @xi ;xjRk.x; 0/! @xi ;xjR.x; 0/ D aij ; i; j D 1; 2;

and by (3.2), the reminders ck satisfy

jck.x/j � C jxj
3; for k large:
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As a consequence, for any " � d=4, we find thatˇ̌̌ Z
Bd .0/nB".0/

e8�.Rk.x;0/�
k.0// � 1

jxj4

ˇ̌̌
�

ˇ̌̌ Z
Bd .0/nB".0/

P
ak;ijxixj C ck.x/

jxj4

ˇ̌̌
D

ˇ̌̌ Z
Bd .0/nB".0/

2ak;12x1x2 C ck.x/

jxj4

ˇ̌̌
D

ˇ̌̌ Z
Bd .0/nB".0/

ck.x/

jxj4

ˇ̌̌
� Cd; for k large;(3.5)

where we used the symmetry of the domain and the fact that, since Rk.x; 0/ is harmonic
in �, ak;11 C ak;22 D 0 for any k. To simplify the evaluation, let us set

hk.x/ D
e8�.Rk.x;0/�
k.0// � 1

jxj4
; x 2 �k ; h.x/ D

e8�.R�.x;0/�
�.0// � 1

jxj4
; x 2 �:

Since Rk.x; qk/! R�.x; q/ locally uniformly in �, and 
k.qk/! 
k.q/, then, for
any open and relatively compact subset y� �� �, we have

(3.6) y� �� �k ; for k large, and
Z
y�nBd .qk/

hk.x/!

Z
y�nBd .q/

h.x/; k !C1:

Since the symmetric difference �k��! ; as k !C1, then for any ı > 0 we can
choose an open and relatively compact subset y�ı as in (3.6) which also satisfies

�k n y�ı � B2ı.@�k/ and � n y�ı � B2ı.@�/ for k large;

and then, in particular,Z
.�knBd .qk//n.y�ınBd .qk//

jhk.x/j �

Z
B2ı .@�k/

jhk.x/j � C j@�kjı; for k large;(3.7) Z
.�nBd .q//n.y�ınBd .q//

jh.x/j �

Z
B2ı .@�/

jh.x/j � C j@�jı; for k large;(3.8)

where we used the uniform bound

(3.9) jhk.x/j � C; x 2 B2ı.@�k/ \�k ;

see Appendix II. Thus we can estimate as follows:Z
�knB".qk/

hk.x/ �

Z
�nB".q/

h.x/

�

Z
Bd .qk/nB".qk/

jhk.x/j C

Z
Bd .q/nB".q/

jh.x/j

C

Z
.�knBd .qk//n.y�ınBd .qk//

jhk.x/j C

Z
.�nBd .q//n.y�ınBd .q//

jh.x/j

C

ˇ̌̌ Z
y�ınBd .qk/

hk.x/ �

Z
y�ınBd .q/

h.x/
ˇ̌̌

� Cd C Cı C
ˇ̌̌ Z
y�ınBd .qk/

hk.x/ �

Z
y�ınBd .q/

h.x/
ˇ̌̌
;(3.10)
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where we used (3.5), (3.7) and (3.8). At this point, let us fix � > 0 such that A�.q/D�5�
and then choose ı and d such thatCd CCı <� . For any ı and d fixed in this way, by (3.6)
we have ˇ̌̌ Z

y�ınBd .qk/

hk.x/ �

Z
y�ınBd .q/

h.x/
ˇ̌̌
< �;

for any k large enough. In particular, for k large we also haveˇ̌̌ Z
�c
k

1

jx � qkj4
�

Z
�c

1

jx � qj4

ˇ̌̌
< �:

Finally, we can choose "0 > 0 small enough to guarantee thatZ
�nB".q/

h.x/ �

Z
�c

1

jx � qj4
� �4�;

for any " < "0. Plugging these estimates together with (3.10), we conclude thatZ
�knB".qk/

hk.x/ �

Z
�c
k

1

jx � qkj4
�

Z
�nB".q/

h.x/ �

Z
�c

1

jx � qj4
C 3� � ��;

for any k large enough and for any " < "0. As a consequence, we conclude that (3.4) holds,
which is the desired contradiction.

4. Proofs of Theorems 1.5 and 1.6

In this section we prove Theorems 1.5 and 1.6.

Proof of Theorem 1.5. By Remark 1.3, we can assume without loss of generality that a1D
f 0q.0/ D 1, and after a translation, we can also assume that q D 0. Therefore (1.10) takes
the form

fq.z/ D z C

C1X
nD3

an z
n; jzj < 1:

It is well known (see for example [23], p. 44) that if
PC1
nD2 njanj � 1, then f 0q has

positive real part and fq is univalent and starlike in D. Therefore, since a2 D 0, by (1.11)
fq is in fact univalent and starlike. Setting h.�/ D fq.ei� /, � 2 Œ0; 2��, we have

h.�/ D ei� C

C1X
nD3

an e
in� ;

and once more (1.11) shows that the real and imaginary parts of h have continuous first
derivatives in Œ0; 2�� satisfying kh0k1 � 2. On the other hand, we also have

jh0.�/j � 1 �

C1X
nD3

n janj > 0;
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once more by (1.11). Therefore h.�/ is a C 1 curve and then in particular� is of class C 1.
Since

PC1
nD3 njanj < 1, then

C1X
nD3

n2

n � 2
janj

2
�

C1X
nD3

n2 janj
2 < 1:

Therefore D�.q/ < 0, and hence � 2 AI by Theorem A.
In particular, we have shown that any � 2 �I is a C 1 domain of first kind with

D�.q/ < 0. Now we define

f .zI t / D z C

C1X
nD3

an.t/z
n; jzj < 1; t 2 Œ0; 1�;

where each an.t/ is continuous in Œ0; 1�, an.0/D 0, an.1/D an and jan.t/j � janj for any
n � 3. It is easy to see that �t D f .D; t / 2 �I for any t . In particular, by Remark 2.2,
f admits a continuous and univalent extension f .D; 1/ D � and f .D; 0/ D q C D, as
claimed.

Finally, if � 2 @�I , then the same argument shows that �t D f .D; t / 2 �I for any
t 2 Œ0; 1/, whenever at least one jan.t/j is strictly increasing for t ' 1�, and the conclusion
follows in this case as well.

Proof of Theorem 1.6. Let fq be the Riemann map of � normalized as in (1.10). By
Remark 1.3, we can assume without loss of generality that a1 D f 0q.0/ D 1. Obviously,
f .tz/ is univalent in D for any t 2 .0; 1�, and so is .f .tz/ � q/=t , which takes the form

(4.1)
f .tz/ � q

t
D z C

C1X
nD3

an t
n�1 zn:

Since @�t D f .¹jzj D tº/, t < 1, then �t is analytic for any t 2 .0; 1/. Also,

D�t .0/ D

C1X
nD3

n2

n � 2
janj

2 t2 � ja1j
2
�

C1X
nD3

n2

n � 2
janj

2
� ja1j D D�.0/ � 1;

which by Theorem A shows that�t 2AI for any t . Since the domain� is at least regular,
then, by Remark 2.2, fq admits a continuous extension to D. Thus the series in (4.1)
converges for t D ˙1 and z 2 @D, and then, for fixed t 2 .�1; 1/, it is totally convergent
in ¹jzj � rº for any r 2 .0; 1/, and for fixed z 2 D it is totally convergent in ¹jt j < ıº,
for any ı 2 .0; 1/. Therefore, f .z; t/ is a separately analytic function in D � .�1; 1/. By
the Abel theorem, the series converges uniformly in D � Œ�1; 1� to a continuous function.
Then f .z; t/ is continuous in D � Œ�1; 1�. However, it is well known that a separately
analytic and jointly continuous function is jointly analytic (see e.g. [16], Theorem 2.2.1),
whence f .z; t/ is a jointly analytic in D � .�1; 1/. The first part of the claim readily
follows since f .z; 0/ D z and f .z; 1/ D fq.z/.

Next, let A1 denote the topological space of C 1 simply connected domains endowed
with the C 1-topology, with A1;I the subset of domains of first kind, and let H .D/ denote
the space of holomorphic functions in D. Define the map F WH .D/ � Œ0; 1�! H .D/ as

F.f; t/ D f .�; t /;
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with f .z; t/ as in (1.13) above. The induced map F WA1 ! A1 takes the form

F .�; t/ D �t D f .D; t /;

and obviously we have

F .�; 0/ D �0 D D and F .�; 1/ D �1 D �:

Therefore I WD F .�; 1/ is the identity map in A1 and in particular, by the first part of the
claim, F .�; t/ 2 A1;I for any t 2 Œ0; 1�. We claim that the restriction F WA1;I � Œ0; 1�!

A1;I is a deformation retract of the identity in the given topology, which proves that A1;I
is contractible. By Remark 2.2, we see that f 0 admits a continuous extension on D with
f 0.z/ ¤ 0 on D. Since obviously d1.�0;D/ D 0 and d1.�1; �/ D 0, then to establish
the claim it will be enough to prove that d1.�t ; �/ is continuous in Œ0; 1�. We will prove
a statement which easily implies the claim, namely that

d1.t/ WD sup
z2D

jf .z; t/ � zj C sup
z2D

jf 0.z; t/ � 1j

is continuous in Œ0; 1�. We argue by contradiction and assume that there exist t0 2 Œ0; 1�
and sequences tn;i ! t0 2 Œ0; 1�, i D 1; 2, such that jd1.tn;2/� d1.tn;1/j � "0, for some
"0 > 0 and any n. Clearly we can find sequences zn;i and wn;i , i D 1; 2, which are
maximizers of the corresponding absolute values, such that for any n,

d1.tn;i / D jf .zn;i ; tn;i / � zn;i j C jf
0.wn;i ; tn;i / � 1j; i D 1; 2:

Passing to suitable subsequences, we can assume without loss of generality that zn;i! zi;0
and wn;i ! wi;0, i D 1; 2, where obviously zi;0 and wi;0 are maximizers of the corres-
ponding absolute values for t D t0. Consequently, as n!C1, we would find that

"0 � jd1.tn;2/ � d1.tn;1/j

�
ˇ̌
jf .zn;2; tn;2/ � zn;2j C jf

0.wn;2; tn;2/ � 1j � jf .zn;1; tn;1/ � zn;1j

� jf 0.wn;1; tn;1/ � 1j
ˇ̌

!
ˇ̌
jf .z2; t0/ � z2j C jf

0.w2; t0/ � 1j � jf .z2; t0/ � z2j � jf
0.w2; t0/ � 1j

ˇ̌
D jd1.t0/ � d1.t0/j D 0;

which yields the desired contradiction.
Finally, let A0;1 denote the set of simply connected and regular domains with met-

ric d0;1, with A0;1;I the subset of domains of first kind and with �W S1 ! A0;1;I any
continuous loop of the form �.s/ D f .zI s/, z 2 D, s 2 S1, where each f .�I s/ is nor-
malized as in (1.10) with qs D f .0I s/. Then, by the first part of the statement, the map
F WH .D/ � Œ0; 1� � S1 7! H .D/ given by

F.�; t; s/ D tqs C
f .�; t I s/ � qs

t
; .t; s/ 2 Œ0; 1� � S1;

induces in A0;1;I a continuous deformation of �.S1/D F .D; 1IS1/ to D D F .D; 0IS1/.
In other words, any loop �.S1/ in A0;1;I can be deformed continuously to D, which shows
that A0;1;I is simply connected.
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A. Appendix I

In this appendix we prove the claim used in the proof of Theorem 1.4 (ii), that is: if
a sequence �k of regular and simply connected domains satisfies d0;1.�; �k/ ! 0,
where � is regular and simply connected, then �k is uniformly locally connected.

We argue by contradiction and suppose that �k is not uniformly locally connected.
Then 9 "0 > 0 such that 9ak ; bk 2 �k such that jak � bkj < 1=k and ¹ak ; bkº ª Bk
for any compact and connected subset Bk � �k such that diam.Bk/ < "0. Since �k is
uniformly bounded, then passing to a subsequence if necessary, we can assume without
loss of generality that there exists z0 2 C such that ak ! z0 and bk ! z0. By the kernel
convergence and since ak ; bk 2 �k , then z0 2 � and we are left with two possibilities:
either z0 2 � or z0 2 @�. We can easily exclude the first case, since then any closed disk
Br .z0/ with r small enough would contain both ak and bk and satisfy Br .z0/ � �k , for
any k large enough, which is a contradiction.

If z0 2 @�, since the domain is regular, then we have two possibilities: either the
boundary is locally C 2 near z0, or z0 D Q, where Q is one of the vertex points on @�.
We discuss only the second case. The proof of the regular case follows exactly by the
same argument but it is easier, and we omit it here to avoid repetitions. After suitable
translations, we can assume that z0 D Q D 0 2 �1 \ �2, with � the inner angle of �1
and �2 at 0, and where �j are the C 2 connected components of @� near 0. Since � is
regular, then we can find an univalent map f WBı.0/ \�! C such that Bı.0/ \ @� is
mapped to a C 2 curve.

Taking a smaller ı if necessary and composing with a suitable univalent map, we can
assume without loss of generality that f .0/D 0, f .Bı.0/\ @�/D ¹w 2C jw 2 .�1; 1/º
and f .Bı.0/\�/ � ¹w 2 C j arg.w/ 2 .0; �/º, where�ı D Bı.0/\� is a simply con-
nected set. Since ak ! 0, then ak 2 Bı.0/ for k large enough, and since by assumption f
is continuous and univalent in Bı.0/, then f .ak/! f .0/ D 0. Clearly, the same holds
for bk ! 0 and so f .bk/ ! 0, and for any r there exists �r such that if k > �r then
f .ak/; f .bk/ 2 Br .0/. In particular, since each �k is regular and converges to � in the
kernel sense, then we can choose r0 small enough such that Uk;r D f �1.Br .0// \�k is
connected for any r � r0. Since each Uk;r is a compact subset of�k and diam.Uk;r /! 0

as r ! 0, we conclude that ak ; bk are contained in a connected compact subset of �k ,
whose diameter is smaller than "0 for any k, which is the desired contradiction.

B. Appendix II

In this Appendix we prove (3.2), (3.3), (3.9), that is, that for any fixed y 2 � we have

(B.1) Rk.x; y/! R�.x; y/ in C 3loc.�/

and

(B.2) 
k ! 
� in C 2loc.�/;

and that moreover hk satisfies the uniform bound

(B.3) jhk.x/j � C; x 2 B2ı.@�k/ \�k :
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Proof of (B.1). We can assume without loss of generality that y D 0. Clearly, since by
assumption �k ! � in the C 1-topology, we have that 0 2 �k for any k large enough.
Let Gk.x; y/ be the Green function for �k and let Rk.x; y/ be its regular part. Since
d1.�k ; �/! 0, then for any ı > 0 we have that @�k � Bı.@�/ for any k large, and in
particular there exist tk ! 0C, and, for each k, "k > 0 and a one-to-one map

ˆk W B2ı.�/ � Œ0; 1�! Bı.�/

that satisfies

ˆk.x; t/ D x C tVk.x/C o.t/; t 2 Œ0; tk C "k/;

ˆk 2 C
1.B2ı.�/ � Œ0; 1�I Bı.�//; kVkkC 1.B2ı .�/I Bı .�// � C;

lim
t!0C

sup
x2B2ı .�/

jo.t/j
t
D 0;

and
ˆk.�; 0/ D �; ˆk.�; tk/ D �k :

Let�k.t/Dˆk.�; t/, let t 2 Œ0; tk C "k/, and letG�k.t/
.x;y/ be the corresponding Green

function. At this point, we can apply a result in [15] (Example 3.4) which shows that the
map t 7! G�k.t/

.x; y/ is differentiable for x ¤ y and in particular that the Hadamard
variational formula holds: for t 2 Œ0; tk C "k/,

@

@t
G�k.t/

.x; y/ D �

Z
@�k.t/

@G�k.t/

@�z
.x; z/

@G�k.t/

@�z
.z; y/ hVk.z/; �zi d�.z/;

for ¹x; yº 2 �k.t/, see also [21]. Here �z is the unit outer normal to �k.t/. Let BR D
BR.z/ be any relatively compact disk in � such that 0 … BR. Clearly, for k large we have
BR [ ¹0º � �k.t/, 8 t 2 Œ0; tk C "k/, and then we can write

Gk.x; 0/ D G�.x; 0/C
� @
@t
G�k.t/

.x; 0/
�
tD0
tk C ox.tk/; x 2 BR;

where � @
@t
G�k.t/

.x; 0/
�
tD0
D �

Z
@�

@G�

@�z
.x; z/

@G�

@�z
.z; 0/ hVk.z/; �zi d�.z/;

and ox.tk/ is an infinitesimal quantity which satisfies

(B.4) 8x 2 BR; lim
k!C1

jox.tk/j
tk

D 0:

Since � is of class C 1, then

sup
z2@�

ˇ̌̌@G�

@�z
.x; z/

@G�

@�z
.z; 0/ hVk.z/; �zi

ˇ̌̌
� CR;



Mean field equations and domains of first kind 1083

where CR depends only by R and�. As a consequence, we conclude in particular that for
any x 2 BR, it holds

jGk.x; 0/ �G�.x; 0/j � CR tk.1C ox.1//! 0; as k ! 0:

At this point we observe that, for any smooth domain�1 lying in the interior of� and
satisfying 0 … @�1, we have that Rk.x; 0/ is the unique solution of²

��Rk.x; 0/ D 0 in �1;
Rk.x; 0/ D Gk.x; 0/C

1
2�

log.jxj/ on @�1;

and R�.x; 0/ is the unique solution of²
��R�.x; 0/ D 0 in �1;
R�.x; 0/ D G�.x; 0/C

1
2�

log.jxj/ on @�1:

Since @�1 is compact, it can be covered with a finite number of balls BRj .zj /, zj 2 @�,
j D 1; : : : ;N , such that 0 … BRj .zj /. As a consequence,Rk.x; 0/�R�.x; 0/ is harmonic
in �1 and

jRk.x; 0/ �R�.x; 0/j � C1;x tk ! 0; as k !C1;

where C1;x D maxj ¹CRj º.1 C ox.1//. Therefore Rk.x; 0/ � R�.x; 0/ converges to 0
pointwise on @�1 and then also in Cmloc.�1/ for any m � 1. Since �1 is arbitrary, the
proof of (B.1) is completed.

Proof of (B.2). We first observe that

(B.5) Rk.x; y/! R�.x; y/ in C 3loc.� ��/:

Indeed, from (B.1), and since Rk.x; y/ D Rk.y; x/, we have that, for fixed x 2 �,
Rk.x; y/! R�.x; y/ in C 3loc.�/. Then, since Rk.x; y/ is harmonic, it is not difficult to
check that (B.5) holds.

As a consequence, since


k.x/ � 
�.x/ D Rk.x; x/ �R�.x; x/ D lim
y!x

.Rk.x; y/ �R�.x; y//;

then, passing to the limit as k !C1, we see that because of (B.5) we can exchange the
limits to conclude that 
k.x/! 
�.x/ pointwise and in particular locally uniformly in�.
The same argument works for the derivatives, since for example

r.
k.x/ � 
�.x// D 2r.Rk.x; x/ �Rk.x; x//;

which concludes the proof of (B.2).

Proof of (B.3). Since infk dist.0; @�k/ � d > 0, by (B.2) we are reduced to prove that, for
any ı > 0 small enough, we have

Rk.x; 0/ � C; x 2 B2ı.@�k/ \�k :

But this is obvious sinceRk.x;0/ is harmonic in�k and satisfies 2�Rk.x;0/D� log.jxj/
for x 2 @�k . Therefore

2�Rk.x; 0/ � sup
x2@�

.� log.jxj// � � log d

for any x 2 B2ı.@�k/ \�k , whenever ı > 0 satisfies 3ı < d .
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C. Appendix III

We discuss an example which shows that (1.11) is not necessary for a domain � to be of
first kind. It is also shown that, increasing each jan.t/j along certain paths, one can get
well inside AII. Indeed, let us consider the following family of functions:

f .zI t / D z C t
2

3

z3

3
C t

1

3

z5

5
; jzj � 1; t 2

h
0;
5

2

i
;

which satisfies
C1X
nD3

n janj D 3 ja3.t/j C 5 ja5.t/j D t

and

D�.0/ D

C1X
nD3

n2

n � 2
jan.t/j

2
� ja1.t/j

2
D
13

27
t2 � 1:

Some elementary numerics shows that for t 2 Œ0; 5=2�, f .z; t/ is univalent and maps D
onto a C 1 and symmetric (with respect to the x and y axis) domain �t D f .D; t / such
that, putting t0 D 3

p
3=13 ' 1; 44, it holds:

• if t � t0, then �t 2 AI;
• if t 2 .t0; 3=2�, then �t 2 AII but it is starlike and 
�t has a unique maximum point;
• if t 2 .3=2; 5=2�, �t 2 AII, 
�t has two maximum points and, for t close enough

to 5=2, �t is a dumbbell shaped non-starlike domain.
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