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Norm-attaining lattice homomorphisms

Sheldon Dantas, Gonzalo Martínez-Cervantes,
José David Rodríguez Abellán and Abraham Rueda Zoca

Abstract. In this paper we study the structure of the set Hom.X;R/ of all lattice
homomorphisms from a Banach lattice X into R. Using the relation among lattice
homomorphisms and disjoint families, we prove that the topological dual of the free
Banach lattice FBL.A/ generated by a set A contains a disjoint family of cardinality
2jAj, answering a question of B. de Pagter and A. W. Wickstead. We also deal with
norm-attaining lattice homomorphisms. For classical Banach lattices, as c0, Lp- and
C.K/-spaces, every lattice homomorphism on it attains its norm, which shows, in
particular, that there is no James theorem for this class of functions. We prove that,
indeed, every lattice homomorphism onX and C.K;X/ attains its norm wheneverX
has order continuous norm. On the other hand, we provide what seems to be the first
example in the literature of a lattice homomorphism which does not attain its norm.
In general, we study the existence and characterization of lattice homomorphisms
not attaining their norm in free Banach lattices. As a consequence, it is shown that no
Bishop–Phelps type theorem holds true in the Banach lattice setting, i.e. not every lat-
tice homomorphism can be approximated by norm-attaining lattice homomorphisms.

1. Introduction

It is well known that in a Banach space E, the set of all continuous linear functionals
fromE into R determines almost totally the structure of E as a Banach space. As a matter
of fact, by the Hahn–Banach theorem, the norm of any element x 2 E can be calculated
as the supremum over all continuous functionals in the unit ball BE� of the topological
dual space E� of E. On the other hand, James’ theorem [26] states that a Banach space is
reflexive if and only if every functional in the dual attains its norm. Moreover, Bishop and
Phelps [12] proved that every functional can be approximated by functionals which attain
their norms. In the Banach lattice setting, it is natural to consider that the role of linear
continuous functionals is played by lattice homomorphisms, i.e., the linear continuous
functionals which, in addition, respect lattice operations. In this paper, we wonder what
can be deduced about a Banach lattice from its set of lattice homomorphisms.

Since the James and Bishop–Phelps theorems, the theory of norm-attaining functionals
were intensively studied. In fact, this theory has been widely extended to different contexts
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besides linear functionals. Indeed, among others, some authors considered it in the context
of linear operators (see [13, 25, 27, 30, 36, 38, 39]); others studied norm-attaining bilin-
ear mappings (see [4, 8, 18]); and more recently, several problems on norm-attainment of
homogeneous polynomials and Lipschitz maps were considered (see [5, 9] and [15–17],
respectively). In the context of homomorphisms on Banach lattices, we should highlight
the recent paper [33], where a James type theorem was proved for positive linear func-
tionals on some Banach lattices (see [33], §6). Notice that positive linear functionals
are functionals which respect the order in the Banach lattice, but they do not need to
respect the lattice operations; in this paper we focus on the much more restrictive subclass
of the set of positive linear functionals x� on X� for which, moreover, both equalities
x�.x _ y/ D x�.x/ _ x�.y/ and x�.x ^ y/ D x�.x/ ^ x�.y/ hold for every x; y 2 X
(i.e., the subclass of lattice homomorphisms). Whereas it is simple to provide an example
of a positive linear functional not attaining its norm in a Banach lattice, finding a not
norm-attaining lattice homomorphism becomes a delicate problem. Indeed, as far as we
know, we present in this paper the first examples of such elements.

Let us describe the content of this paper. Section 2 is devoted to present some notation
and necessary background. We will be working with the free Banach lattices FBL.A/
generated by a set A with no extra structure as well as the (more general) Banach lattices
FBLŒE� generated by a Banach space E. We prove some elementary results that will be
useful to solve some problems throughout the article.

In Section 3, we provide some general results on the structure of Hom.X;R/ and
its relation with disjoint families, which allow us to answer a question posed by B. de
Pagter and A. W. Wickstead in [20]. Moreover, we show that every separable Banach
lattice embeds into a Banach lattice whose set of lattice homomorphisms is trivial, i.e., a
Banach lattice X for which Hom.X;R/ D ¹0º.

In Section 4, motivated by [33], we wonder whether there is a James type theorem
for Hom.X;R/. For classical Banach lattices (as c0, Lp.�/-, and C.K/-spaces), the set
Hom.X;R/ is very small, in the sense that, not just a James type theorem does not hold,
but also that every homomorphism attains its norm. Also in this section we prove that
every lattice homomorphism on X and C.K; X/ attains its norm whenever X has order
continuous norm.

In Section 5, using free Banach lattices we are able to present the first examples of
lattice homomorphisms which do not attain their norm. In particular, we show that if E
is an L1-space, a separable L1-predual or a Lipschitz-free Banach space over a metric
space with cluster points, then Hom.FBLŒE�;R/ contains a lattice homomorphism which
does not attain its norm. Moreover, we characterize lattice homomorphisms attaining their
norm on FBLŒE� whenever E is an isometric predual of `1.A/ or is isometric to `1.A/ for
some infinite set A. These results allow us to show that no Bishop–Phelps theorem holds
in the class of Banach lattices, i.e., that there are lattice homomorphisms which cannot be
approximated in norm by norm-attaining lattice homomorphisms.

2. Background and notation

Let us present all the necessary background material so that the paper can be fully access-
ible. Throughout the paper, all the Banach spaces and Banach lattices are considered to
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be real. IfX;Y are Banach lattices, we say that T WX! Y is a Banach lattice homomorph-
ism, or simply, a lattice homomorphism, if it is a linear bounded operator preserving the
lattice operations, that is, T .x ^ y/ D T .x/ ^ T .y/ and T .x _ y/ D T .x/ _ T .y/ for
every x; y 2 X . By a lattice homomorphism on X we mean a functional in X� which also
preserves suprema and infima. We denote by BX the unit ball of X and by SX the unit
sphere of X .

Given a non-empty set A with no extra structure, the free Banach lattice generated by
the set A is a Banach lattice F together with a bounded map �WA! F with the property
that for every Banach lattice X and every bounded map T WA ! X , there is a unique
Banach lattice homomorphism OT WF ! X such that T D OT ı � and k OT k D kT k. In other
words, the following diagram commutes:

A

�

��

T // X

F

OT

88

Let us clarify here that the norm of T is given by sup ¹kT .a/k W a 2 Aº, while the norm
of OT is the usual one for Banach spaces. We refer the reader to the seminal paper [20]
for more background on free Banach lattices generated by a set. On the other hand, the
concept of a Banach lattice freely generated by a given Banach space E was recently
introduced by A. Avilés, J. Rodríguez, and P. Tradacete in [11]. This provides a new tool
for better understanding the relation between Banach spaces and Banach lattices. The free
Banach lattice generated by a Banach space E is a Banach lattice F together with a
bounded operator �WE ! F with the property that for every Banach lattice X and every
bounded operator T WE! X , there is a unique Banach lattice homomorphism OT WF ! X

such that T D OT ı � and k OT k D kT k. In other words, the following diagram commutes:

E

�

��

T // X

F

OT

88

This definition generalizes the notion of a free Banach lattice generated by a setA. Indeed,
the free Banach lattice generated by a setA can be naturally identified with the free Banach
lattice generated by the Banach space `1.A/ (see Corollary 2.9 in [11]).

It is possible, though, to give an explicit description of the free Banach lattice FBL.A/
as a space of functions. Indeed, for a 2 A, let ıaW Œ�1; 1�A! R be the evaluation function
given by ıa.x�/ D x�.a/ for every x� 2 Œ�1; 1�A. For f W Œ�1; 1�A ! R, define the norm

kf kFBL.A/ D sup
° nX
iD1

jf .x�i /j W n 2 N; x�1 ; : : : ; x
�
n 2 Œ�1; 1�

A; sup
a2A

nX
iD1

jx�i .a/j � 1
±
:

Then, the free Banach lattice generated byA is the Banach lattice generated by the set ¹ıa W
a2Aº inside the Banach lattice of the functions in RŒ�1;1�

A
with finite norm k � kFBL.A/,

endowed with the norm k � kFBL.A/, the pointwise order and the pointwise operations. The
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natural identification of A in FBL.A/ is given by the map �WA! FBL.A/ defined by
�.a/ D ıa for every a 2 A. Since every function in FBL.A/ is a uniform limit of such
functions, they are all continuous (in the product topology) and positively homogeneous
(i.e., f .�x�/ D �f .x�/ for every x� 2 Œ�1; 1�A and every 0 � � � 1).

Analogously, for the free Banach lattice FBLŒE�, it is also possible to give an explicit
description of it. For x 2 E, let ıx WE�!R be the evaluation function given by ıx.x�/D
x�.x/ for every x� 2 E�. For a function f WE� ! R, define

kf kFBLŒE� D sup
° nX
iD1

jf .x�i /j W n 2 N; x�1 ; : : : ; x
�
n 2 E

�; sup
x2BE

nX
iD1

jx�i .x/j � 1
±
:

Then, the free Banach lattice generated by E is the Banach lattice generated by the set
¹ıx W x 2 Eº inside the Banach lattice of the positively homogeneous functions in RE

�

with finite norm k � kFBLŒE�, endowed with the norm k � kFBLŒE�, the pointwise order and
the pointwise operations. Here, positively homogeneous means that f .�x�/D �f .x�/ for
every x� 2 E� and every � � 0. The natural identification of E in FBLŒE� is given by the
map �WE! FBLŒE� defined by �.x/D ıx for every x 2E (let us notice that it is a linear
isometry between E and its image in FBLŒE�). Moreover, all the functions in FBLŒE� are
w�-continuous when restricted to the closed unit ball of BE� (see Lemma 4.10 in [11]).

We will need the following definition.

Definition 2.1. Let E be a Banach space and f WE� ! R be a function in FBLŒE�. We
will say that f depends on finitely many coordinates if there exists a finite subset E0 � E
such that f .x�/ D f .y�/ whenever x�jE0 D y

�jE0 .

Let us notice that each ıx depends only on one coordinate, namely the element x itself.
Since every function in FBLŒE� can be approximated by a finite lattice linear combination
of ıx’s, we can highlight the following remark.

Remark 2.2. Every function in FBLŒE� can be approximated by a function which de-
pends on finitely many coordinates. Consequently, every function in FBLŒE� depends on
countably many coordinates.

We will be working with the set of all lattice homomorphisms on a Banach lattice X
denoted by Hom.X;R/. Let us notice that this subset is not a linear subspace of X�;
indeed, in general, the sum of two lattice homomorphisms is no longer a lattice homo-
morphism, which gives us a big difference between the category of Banach lattices and lat-
tice homomorphisms and the category of Banach spaces and linear functionals. Moreover,
the set Hom.X;R/ is a w�-closed subset of X�. If E is a normed space, we say that
x� 2 E� attains its norm or it is norm-attaining, if there is x0 2 SE such that jx�.x0/j D
kx�kD supx2SE jx

�.x/j. We denote by NA.E;R/ the set of all norm-attaining functionals
on E�.

Let us finish this section by presenting some basic definitions and results on almost
isometric ideals in Banach spaces. We will be using these tools intensively in Section 5.
Let E be a Banach space. A subspace Z of E is said to be an almost isometric ideal
(ai-ideal, for short) inE if for each " > 0 and for each finite-dimensional subspace F �E
there exists a linear operator T WF ! Z satisfying



Norm-attaining lattice homomorphisms 985

(1) T .x/ D x for each x 2 F \Z, and
(2) .1 � "/kxk � kT .x/k � .1C "/kxk for each x 2 F .
If T satisfies only (1) and the right-hand side of (2), we say that Z is an ideal in E

(see [23]). Let us notice that, in the context of almost isometric ideals, the principle of
local reflexivity means exactly that E is an ai-ideal in E�� for every Banach space E. We
will need the following result.

Theorem 2.3 (Theorem 1.4 in [2]). Let E be a Banach space and Z an almost isometric
ideal in E. Then, there is a linear isometry 'WZ� ! E� such that

'.z�/.z/ D z�.z/

holds for every z 2 Z and z� 2 Z� and satisfying that, for every " > 0, every finite-
dimensional subspace F0 of E and every finite-dimensional subspace F1 of Z�, we can
find an operator T WF0 ! Z satisfying

(1) T .x/ D x for every x 2 F0 \Z,

(2) .1 � "/kxk � kT .x/k � .1C "/kxk for every x 2 F0, and

(3) f .T .x// D '.f /.x/ for every x 2 F0 and every f 2 F1.

Following the terminology of [1], the isometry ' is called an almost isometric Hahn–
Banach extension operator. Notice that if 'WZ� ! E� is an almost isometric Hahn–
Banach extension operator, then '�WE�� ! Z�� is a norm-one projection (see e.g. The-
orem 3.5 in [28]). Finally, we use the following theorem, whose proof follows the lines of
the main theorem of [37], in the proof of Theorem 5.6.

Theorem 2.4 (Theorem 1.5 in [1]). Let E be a Banach space, Y � E a separable sub-
space ofE, andW �E� a separable subspace of E�. Then there exist a separable almost
isometric ideal Z in E containing Y and an almost isometric Hahn–Banach extension
operator 'WZ� ! E� such that '.Z�/ � W .

3. The structure of Hom.X; R/ and disjoint families

We start this section by giving some structural results on the set Hom.X;R/, where X is
a Banach lattice. In particular, we focus on the relation between lattice homomorphisms
and disjoint families. This relation will appear in a natural way through the concept of
atoms. In particular, we will have that linearly independent lattice homomorphisms are
disjoint. One of the consequences of this fact will be the failure of the lattice analogue of
the Bishop–Phelps theorem (see Theorem 5.12 in Section 5).

For an element x� in the Banach lattice X�, it is worth mentioning, although straight-
forward, that in general we have that x�.x _ y/ 6D x�.x/ _ x�.y/. For example, on the
Banach lattice c0 with its natural order structure, we have that

.e�1 C e
�
2 /.e1 _ e2/ D 2 6D 1 D .e

�
1 C e

�
2 /.e1/ _ .e

�
1 C e

�
2 /.e2/;

where .ei ; e�i / is the biorthogonal system of c0. Analogously, it is possible to show that
x�.x ^ y/ D x�.x/ ^ x�.y/ does not hold in general. Indeed, it follows from the Riesz–
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Kantorovich formulae that

x�.x ^ y/ D inf¹y�.x/C .x� � y�/.y/ W 0 � y� � x�º; and
x�.x _ y/ D sup¹y�.x/C .x� � y�/.y/ W 0 � y� � x�º;

whenever x� is a positive element in X�.
As we have already mentioned in the previous section, we will be interested in the set

Hom.X;R/, where the identities x�.x _ y/ D x�.x/ _ x�.y/ and x�.x ^ y/ D x�.x/ ^
x�.y/ hold to be true. We refer the reader to Section 1.3 of [32] for a detailed background
on lattice homomorphisms.

It is clear that any lattice homomorphism x� on a Banach lattice X is positive (i.e.,
x�.x/ � 0 for every positive x 2 X ). In fact, an element x� 2 X� with x� > 0 (i.e., x�

is positive and x� ¤ 0) is a lattice homomorphism if and only if x� is an atom in X� (see
Section 2.3, Exercise 6, in [3]). Recall that an element x > 0 in a Banach lattice X is an
atom if and only if x � u � 0 implies that u D ax for some scalar a � 0. Due to this
characterization, we have the following result, which will be used in Proposition 3.7 later
on. Let us recall that x and y are said to be disjoint whenever jxj ^ jyj D 0.

Lemma 3.1. Let X be a Banach lattice and let x�; y� 2 Hom.X;R/. Then, x� and y�

are linearly dependent or disjoint.

Proof. Since x� and y� are lattice homomorphisms, we have x�; y� � 0. We can suppose
that x� and y� are non-null. Set z� D jx�j ^ jy�j D x� ^ y�. Since 0 � z� � x� and x�

is an atom, there exists a1 2 R such that z� D a1x
�. Analogously, there exists a2 2 R

such that z� D a2y�. Thus, jx�j ^ jy�j D a1x� D a2y�, and the conclusion follows.

Corollary 3.2. Let X be a Banach lattice and let x�; y� 2 Hom.X;R/ be linearly inde-
pendent. Then kx� � y�k � max¹kx�k; ky�kº.

Proof. By the previous lemma, both elements are disjoint (and positive). In particular, the
positive part of x� � y� is x� and the negative part is y�. Thus, we have that jx� � y�j D
x� C y� and, therefore,

kx� � y�k D kjx� � y�jk D kx� C y�k � max¹kx�k; ky�kº;

where in the last inequality we have used that both x� and y� are smaller than x�C y�.

For classical Banach lattices X with their usual order and norm, we have that the set
Hom.X;R/ is very small as described in Example 3.3. In what follows, ıx WC.K/! R
is the evaluation function on x in a C.K/-space. Item (i) can be easily computed using
the equivalence between non-null lattice homomorphisms and atoms, item (ii) is proved
in Lemma 4.23 of [3], and item (iii) follows from the fact that the dual of every atomless
Banach lattice with order continuous norm is also atomless (see Lemma 2.31 in [3]).

Example 3.3. Let X be c0 or p̀ , letK be a compact Hausdorff topological space, and let
1 � p <1.
(i) Hom.X;R/ D ¹�e�n W � � 0; n 2 Nº.

(ii) Hom.C.K/;R/ D ¹�ıx W � � 0; x 2 Kº.

(iii) Hom.LpŒ0; 1�;R/ D ¹0º.
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Let K be a compact Hausdorff topological space and X a Banach lattice. The Banach
space of all continuous functions fromK into X , denoted by C.K;X/, is a Banach lattice
when endowed with the pointwise order, that is, f � g if and only if f .x/� g.x/ for every
x 2 K. These spaces play an important role in the theory of Banach lattices. Notice that,
although every separable Banach space embeds into C.Œ0; 1�/, this result is no longer true
when we restrict to the class of separable Banach lattices and lattice embeddings. Instead,
it was proved in [29] that the Banach lattice C.�; L1Œ0; 1�/ is injectively universal for
the class of separable Banach lattices, i.e., any separable Banach lattice embeds lattice
isometrically into C.�; L1Œ0; 1�/, where � is the Cantor set. The following lemma is a
consequence of Theorem 2.2 in [14].

Lemma 3.4. Let X be a Banach lattice and K a compact Hausdorff topological space.
Then, for every non-null ' 2 Hom.C.K; X/;R/, there exist a unique a 2 K and x� 2
Hom.X;R/ such that '.f / D x�.f .a// for every f 2 C.K;X/.

Proof. It follows from Theorem 2.2 in [14] that there exists a unique a 2 K such that
'.f / D '.1˝ f .a// for every function f 2 C.K;X/, where 1˝ f .a/ denotes the con-
stant function equal to f .a/. Notice that OX D ¹1˝ x 2 C.K;X/ W x 2 Xº is a sublattice
isometric to X . Indeed, i WX ! OX defined by i.x/ D 1˝ x is a lattice isometry. Thus,
x� WD 'j OX ı i 2 Hom.X;R/ and

'.f / D '.1˝ f .a// D '.i.f .a/// D x�.f .a//

for every f 2 C.K;X/.

The next corollary shows the drastic failure of the lattice version of the Hahn–Banach
theorem; every separable Banach lattice X can be embedded into a Banach lattice Y
in which no non-null lattice homomorphism in Hom.X;R/ can be extended to a lattice
homomorphism in Hom.Y;R/.

Corollary 3.5. Let X be a Banach lattice such that Hom.X;R/ D ¹0º. Then,

Hom.C.K;X/;R/ D ¹0º:

In particular, every separable Banach lattice embeds lattice isometrically into a Banach
lattice on which there are no nontrivial homomorphisms.

Proof. The first part follows from the previous lemma, whereas the second part follows
from the fact that Hom.L1Œ0; 1�;R/ D ¹0º and Theorem 1.1 in [29].

We finish this section considering free Banach lattices. Let E be a Banach space.
For x� 2 E�, we denote by ıx� W FBLŒE�! R the evaluation function on FBLŒE� given
by ıx�.f / D f .x�/ for every f 2 FBLŒE�. Analogously, if A is a non-empty set and
x� 2 Œ�1; 1�A, ıx� WFBL.A/! R is the evaluation function on FBL.A/.

Proposition 3.6. Let E be a Banach space and let A be a non-empty set.

(i) Hom.FBL.A/;R/ D ¹�ıx� W � � 0; x� 2 Œ�1; 1�Aº .see Theorem 5:5 in [20]/.
(ii) Hom.FBLŒE�;R/ D ¹ıx� W x� 2 E�º .see Corollary 2:7 in [11]/.
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Let us now use Lemma 3.1 to deal with disjoint families in FBL.A/� and FBLŒE��.
Motivated by the study of free and projective objects, disjoint families in free Banach lat-
tices were studied in [20] and, more recently, in [10]. It was proved in [20] that disjoint
families in FBL.A/ can only be at most countable (this was proved in a more general
way in [10], where the authors showed that the free Banach lattice FBLŒE� satisfies the
� -bounded chain condition (see Theorem 1.2 in [10])), although FBL.A/� always con-
tains a disjoint family of cardinality jAj. Question 12.8 in [20] asks how large disjoint
families in FBL.A/� can be. Thanks to the advances made on the understanding of free
Banach lattices during the past few years and the relation between lattice homomorph-
isms and disjoint families, we will easily show that, indeed, there are disjoint families of
cardinality 2jAj.

Let E be a Banach space. Then, it is immediate that ıx� ; ıy� 2 FBLŒE�� are linearly
independent whenever x�;y� 2E� are linearly independent. Moreover, if 0¤ x�D�ay�

with a > 0, then ıx� and ıy� are also linearly independent, since both are nonzero, and if
x 2 E is any element for which x�.x/ > 0, we have that ıx�.ıx _ 0/ D x�.x/ > 0 but

ıy�.ıx _ 0/ D y
�.x/ _ 0 D

�
�
1

a
x�.x/

�
_ 0 D 0:

Thus, by Lemma 3.1, the set ¹ıx� W x� 2 SE�º is a disjoint family of cardinality jSE� j and
the next proposition follows.

Proposition 3.7. Let E be a Banach space. Then, FBLŒE�� contains a disjoint family of
cardinality jSE� j.

We use Proposition 3.7 to answer Question 12.8 in [20].

Theorem 3.8. If A is an infinite set, then FBL.A/� contains a disjoint family of cardinal-
ity 2jAj. Moreover, there is no disjoint family of cardinality larger than 2jAj.

Proof. We have that FBL.A/ D FBLŒ`1.A/� (see Corollary 2.9 in [11]). By Proposi-
tion 3.7, FBL.A/� contains a disjoint family of cardinality jS`1.A/j D 2

jAj. Let us prove
now that jFBL.A/�j � 2jAj. Indeed, let OA be the smallest subset of FBL.A/ containing A,
and closed under the operations ^ and _ and finite linear combinations with coefficients
in Q. Let R W FBL.A/� ! R OA be the restriction map given by R.f �/ D f �j OA for every
f �2 FBL.A/�. Since OA is dense in FBL.A/, we have that R is injective. Thus, we have
that

jFBL.A/�j � jR OAj D j.2N/
OA
j D j2N� OA

j D 2j
OAj
D 2jAj:

4. Banach lattices on which every lattice homomorphism attains its
norm

In this section, we give some sufficient conditions so that the set Hom.X;R/ is a subset of
NA.X;R/, that is, every lattice homomorphism on X attains its norm. From the descrip-
tion given in Section 3 (see Example 3.3), we have that every lattice homomorphism
defined on a classical Banach lattice attains its norm. The examples of items (i) and (iii)
are all examples of Banach lattices with order continuous norm. The norm of a Banach
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lattice X is said to be order continuous if inf¹kxk W x 2 Aº D 0 whenever A � X is a
downward directed set such that inf.A/ D 0. We refer the reader to Section 2.4 of [32] for
a detailed background on Banach lattices with order continuous norm. In particular, we
will use that a Banach lattice has order continuous norm if and only if every monotone
order bounded sequence is convergent (see Theorem 2.4.2 in [32]). Recall that a sequence
.xn/n2N in a Banach latticeX is order bounded if there are x;y 2X such that x � xn � y
for every n 2 N. In the next theorem we show that every lattice homomorphism on a
Banach lattice with order continuous norm attains its norm.

Theorem 4.1. LetX be a Banach lattice with order continuous norm. Then, Hom.X;R/�
NA.X;R/.

Proof. Let x�WX!R be a lattice homomorphism different from zero. Take any sequence
.xn/n2N � BX such that x�.xn/ converges to kx�k. Changing xn to jxnj if it is necessary,
we can assume that each xn is positive and x�.xn/ > 0 for every n 2 N. Consider the
sequence .yn/n2N given by the formula

yn D
^
k�n

�
kx�k

x�.xk/
xk

�
for every n 2 N:

Notice that .yn/n2N is a positive decreasing sequence, so it is order bounded (by y1 and
the vector zero). By Theorem 2.4.2 in [32], it converges to some y 2 X . Moreover, it
follows from the monotonicity of the norm that

kyk �
 kx�k
x�.xn/

xn

 D kx�k

x�.xn/
kxnk �

kx�k

x�.xn/

for every n 2 N. Since kx�k=x�.xn/ converges to 1, we conclude that y 2 BX . We claim
that jx�.y/j D kx�k. Indeed, this is immediate since

x�.yn/ D x
�
� ^
k�n

�
kx�k

x�.xk/
xk

��
D

^
k�n

�
kx�k

x�.xk/
x�.xk/

�
D kx�k

for every n 2 N and y is the limit of .yn/n2N . Thus, x� 2 NA.X;R/, as desired.

A natural class of Banach lattices generalizing the class of Banach lattices with order
continuous norm is the class of � -Dedekind complete Banach lattices. Recall that a Banach
lattice is said to be � -Dedekind complete if every order bounded sequence in it has a
supremum or an infimum. We do not know whether the previous theorem can be exten-
ded to � -Dedekind complete Banach lattices. The main difficulty is that, although lattice
homomorphisms respect lattice operations, they might not respect infinite suprema and
infima, as we can see in the next example.

Example 4.2. TakeK D N [ ¹1º the one point compactification of the natural numbers
with the discrete topology. Then, ı1 2C.K/� is a lattice homomorphism by Example 3.3.
Take fn D �¹1;:::;nº the characteristic function of the set ¹1; : : : ; nº. Then, .fn/n2N is
an increasing sequence. Moreover, the supremum

W
n2N fn exists and it is the constant

function 1. Nevertheless,_
n2N

ı1.fn/ D 0 ¤ 1 D ı1.1/ D ı1

� _
n2N

fn

�
:
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Notice that every � -Dedekind complete Banach lattice without order continuous norm
contains a subspace isomorphic to `1 (see Proposition 1.a.7 in [31]). In particular, every
separable � -Dedekind complete Banach lattice has order continuous norm. Now, bearing
in mind that every dual Banach lattice is � -Dedekind complete (see the comment below
Definition 1.a.3 in [31]), we get the following.

Corollary 4.3. Hom.X;R/ � NA.X;R/ whenever X is a separable dual Banach lattice
or, in general, a dual Banach lattice not containing a subspace isomorphic to `1.

On the other hand, the class of Banach lattices with order continuous norm general-
izes the class of Kantorovich–Banach spaces (KB-space, for short). These are the Banach
lattices in which every norm bounded monotone sequence is norm convergent. This class
of Banach lattices coincides with the class of Banach lattices not containing a sublattice
isomorphic to c0 (see Theorem 2.4.12 in [32]) or, equivalently, a subspace isomorphic
to c0 (see the Remark in page 35 of [31]). Thus, the class of KB-spaces generalizes in turn
the class of reflexive Banach lattices.

The most natural examples of Banach lattices without order continuous norm are
C.K/-spaces. In order to show that Theorem 4.1 also holds for this class, we consider
the more general class of Banach lattices of the form C.K; X/, where K is a compact
Hausdorff topological space and X is a Banach lattice. The following characterization
follows from Lemma 3.4.

Proposition 4.4. Let X be a Banach lattice and K a compact Hausdorff topological
space. Then, Hom.C.K;X/;R/�NA.C.K;X/;R/ if and only if Hom.X;R/�NA.X;R/.

Proof. Suppose first that there exists x� 2 Hom.X;R/ not attaining its norm. Take any
a 2 K. Then, the formula 'x�.f / D x�.f .a// for every f 2 C.K; X/ defines a lattice
homomorphism. Since 'x�.1˝ x/D x�.x/ for every x 2X , it follows that k'x�kDkx�k.
Moreover, since f .K/� BX for every function f , it is immediate that 'x� does not attain
its norm.

Now suppose that there is ' 2 Hom.C.K;X/;R/ which does not attain its norm. By
Lemma 3.4, there exists x� 2 Hom.X;R/ and a 2 K such that '.f / D x�.f .a// for
every function f 2 C.K;X/. By a similar argument, k'k D kx�k and x� does not attain
its norm.

We summarize the main results obtained in this section in the following corollary.

Corollary 4.5. Hom.X;R/ � NA.X;R/ and Hom.C.K;X/;R/ � NA.C.K;X/;R/ in
the following cases :
(a) X is a KB-space or, equivalently, X does not contain a subspace isomorphic to c0.

(b) X is lattice isometric to c0.�/ for some set � or, more generally, whenever X has
order continuous norm.

(c) X is a dual lattice not containing `1.

Remark 4.6. Notice that the examples of the previous corollary include the case when X
is reflexive. For the sake of completeness, we recall the reader that the following assertions
for a Banach lattice X are equivalent (see Theorem 2.4.15 and Proposition 5.4.13 in [32],
and Theorem 4.71 and Theorem 5.29 in [7]):
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(1) X is reflexive;
(2) X and X� are KB-spaces;
(3) X does not contain any subspace isomorphic to c0 or to `1;
(4) X does not contain any sublattice isomorphic to c0 or to `1;
(5) X and X� have the Radon–Nikodým property;
(6) X�� has the Radon–Nikodým property;
(7) `1 is not lattice embeddable in either X or X�;
(8) every positive operator from `1 to X is weakly compact.

Let us finish this section by making a simple but interesting remark about a phe-
nomenon that happens to be true in both categories. It is well known that every compact
operator defined on a reflexive Banach space attains its norm and that reflexive Banach
spaces are exactly those Banach spaces in which every functional attains its norm. We
wonder if the same happens in the Banach lattice setting. Namely, we wonder whether
every compact lattice homomorphism T WX ! Y attains its norm whenever X and Y are
Banach lattices such that Hom.X;R/ � NA.X;R/. We prove that this is the case, at least,
when Y is an abstract M space or, equivalently, Y is lattice isometric to a sublattice of a
C.K/-space (see, for instance, Theorem 1.b.6 in [31]).

Theorem 4.7. Let X be a Banach lattice such that Hom.X;R/ � NA.X;R/ and Y an
abstractM space. Then, every compact lattice homomorphism T WX! Y attains its norm.

Proof. Take .xn/n2N a sequence in BX such that .kT xnk/n2N converges to kT k. More-
over, since T is compact, we can suppose that .T xn/n2N is norm convergent to some
y 2 Y . Notice that kyk D kT k.

Now, notice that in any C.K/-space we have that, for every f 2 C.K/, there is x� 2
Hom.C.K/;R/ such that kx�k D 1 and x�.f / D kf k (just take x� to be any evaluation
functional ıa with a 2 K an arbitrary point where f attains its maximum). Since Y can
be seen as a sublattice of a C.K/-space, this property is inherited by Y . Thus, there is
y� 2 Hom.C.K/;R/ such that ky�k D 1 and y�.y/ D kyk D kT k. Now, notice that
x� D y� ı T 2 Hom.X;R/� NA.X;R/, so there exists x 2 BX such that x�.x/D kx�k.
Notice that x�.xn/D y�.T xn/ converges to y�.y/D kT k and, since y� 2 SY � , it follows
that kx�k D kT k. Thus, x�.x/ D y�.T x/ D kT k and T attains its norm at x.

The next example shows that, in general, the condition that Y is an abstract M space
cannot be dropped.

Example 4.8. Let T W c0 ! `1 be the compact lattice homomorphism defined by the for-
mula

T
� 1X
nD1

�nen

�
D

1X
nD1

�n

2n
en:

Then, although Hom.c0;R/ � NA.c0;R/ and T is a compact lattice homomorphism, it
does not attain its norm.
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5. Lattice homomorphisms which do not attain their norms

Every lattice homomorphism we have been working with so far attains its norm (see Sec-
tion 4 and, in particular, Corollary 4.5). Notice that these cases include all classical Banach
lattices. One may wonder whether, in general, every lattice homomorphism attains its
norm. The class of free Banach lattices, which has arised during the past few years as an
important source of counterexamples when comparing properties of Banach spaces and
Banach lattices, provides a suitable setting to answer negatively this question.

Let us recall that if E is a Banach space and x� 2 E�, then the evaluation function
ıx� W FBLŒE�! R is defined by ıx�.f / WD f .x�/ for every f 2 FBLŒE�. The aims of
this section are threefold. First, we will be interested in answering whether the inclu-
sion Hom.X;R/ � NA.X;R/ holds for an arbitrary Banach lattice X . We will see next
that this is not the case and we give several concrete examples of Banach spaces E such
that there exists a lattice homomorphism on FBLŒE� which does not attain its norm (see
Corollary 5.2). On the other hand, we try to characterize those lattice homomorphisms on
FBLŒE� which attain their norm. Namely, we wonder whether x� 2 NA.E;R/ if and only
if ıx� 2 NA.FBLŒE�;R/ holds true. Finally, as an application, we show that the natural
lattice version of the Bishop–Phelps theorem fails in a drastic way.

We start with the main theorem of the section. This will follow by a combination of
Proposition 5.9, Theorem 5.10, and Theorem 5.11 below.

Theorem 5.1. If E is a Banach space which contains a 1-complemented copy of

(1) `1.A/ for some infinite set A, or

(2) an isometric predual of `1.A/ for some infinite set A,

then there exists x� 2 E� such that ıx� … NA.FBLŒE�;R/.

In particular, we have the following concrete examples of Banach spaces E such that
there exists a lattice homomorphism in Hom.FBLŒE�;R/ which does not attain its norm.

Corollary 5.2. There exists x� 2 E� such that ıx� … NA.FBLŒE�;R/ whenever E is

(1) an infinite-dimensional L1-space for some measure � .e.g., E D `1/ ;
(2) a separable infinite-dimensional isometric predual of an L1-space. In particular,

when E is a C.K/-space with K metrizable ;
(3) if EDX ˚a Y and there exists x�2X� such that ıx�…NA.FBLŒX�;R/, where˚a

denotes an arbitrary absolute sum ;
(4) if E DX b̋˛Y and there exists x� 2X� such that ıx� …NA.FBLŒX�;R/, where ˛

is any uniform cross norm in X ˝ Y ;
(5) if E is the Lipschitz-free space F .M/ for a complete metric space M such that

M 0 ¤ ; or M contains an infinite ultrametric subspace.

Proof. (1) follows from the fact that `1 is 1-complemented in any infinite-dimensional
L1.�/ space for every � (see [6, Lemma 5.1.1]).

(2) follows from the fact that every separable infinite-dimensional isometric predual
of an L1-space contains a 1-complemented subspace isometric to c0 (see Corollary 1.5
in [22]).
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(3) follows because, if E D X ˚a Y , then X is 1-complemented in E (see e.g. [24]
and references therein for background in absolute sums), so the result follows by The-
orem 5.11.

(4) follows because, ifEDX b̋˛Y , thenX is 1-complemented inE (see e.g. Chapter 6
of [35] and references therein for background on cross norms in tensor products), so the
result follows by Theorem 5.11.

Finally, (5) follows by Theorem 1 in [19] and Theorem 5.11.

In order to prove Theorem 5.1, we need some preliminary results. We will be using
the following lemma with no explicit reference from now on.

Lemma 5.3. Let E be a Banach space. If x� 2 E�, then kıx�k D kx�k.

Proof. If x� D 0, then for every f 2 FBLŒE�, we have that ıx�.f / D f .0/ D 0, and in
consequence ıx� D 0.

Let x� 6D 0 and f 2 FBLŒE�. It follows from the definition of the norm in FBLŒE� and
the fact that every f 2 FBLŒE� is positively homogeneous that, since .x�=kx�k/.x/ � 1
for every x 2 BE ,

kf kFBLŒE� �

ˇ̌̌
f
� x�

kx�k

�ˇ̌̌
D

1

kx�k
jf .x�/j;

which implies that jf .x�/j � kx�kkf kFBLŒE�. So,

kıx�k D sup
f 2BFBLŒE�

jıx�.f /j D sup
f 2BFBLŒE�

jf .x�/j � kx�k:

On the other hand, for every x 2 BE , we have

kıx�k � jıx�.ıx/j D jıx.x
�/j D jx�.x/j;

which implies that kıx�k � kx�k.

From the proof of Lemma 5.3 we can extract the following consequence.

Proposition 5.4. LetE be a Banach space. If x�2NA.E;R/, then ıx� 2NA.FBLŒE�;R/.
In particular, if E is reflexive, then every lattice homomorphism on FBLŒE� attains its
norm.

As we have mentioned before, we are interested in the converse of Proposition 5.4,
which we do not know if it holds true for every Banach space E. Let us highlight it as a
conjecture:

Conjecture 5.5. Let E be a Banach space. Then, x� 2 NA.E;R/ if and only if ıx� 2
NA.FBLŒE�;R/.

First, we prove that Conjecture 5.5 is separably determined, that is, if it holds for every
separable Banach space, then it does for every Banach space. For the better understanding
of the proof of it, we send the reader to the very last part of Section 2.

Theorem 5.6. Let E be a Banach space such that Conjecture 5.5 does not hold. Then,
there exists a separable ai-ideal Z in E such that Conjecture 5.5 does not hold.
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Proof. Let us assume that Conjecture 5.5 does not hold. Then, there exists x� …NA.E;R/
with kx�k D 1 and f 2 SFBLŒE� such that ıx�.f / D f .x�/ D 1. We will prove that there
exist a separable ai-idealZ in E, z� 2 Z�, and g 2 FBLŒZ� such that z� 62 NA.Z;R/ and
ız�.g/ D kız�k. This is a combination of Steps 1, 2, and 3 below.

Step 1. There exists a separable ai-idealZ inE and z� 2SZ� such that z� 62NA.Z;R/.
By Remark 2.2, there exists a separable subspace Y � E such that f .x�/ D f .y�/

whenever x�jYDy�jY . Now, using the notation of Theorem 2.4, let us setW WD¹x�º�E�.
Then, we can find a separable ai-ideal Z in E with Y � Z � E and an almost isometric
Hahn–Banach extension operator 'WZ�! E� with x� 2 '.Z�/. Therefore, we have that
x� D '.z�/ for some z� 2 Z�. In particular, kz�k � k'.z�/k D kx�k D 1. On the other
hand, since '.z�/.z/ D z�.z/ for every z 2 Z and z� 2 Z�, and ' is an isometry, for
every z 2 BZ , we get that

z�.z/ D '.z�/.z/ D x�.z/ < kx�k D kz�k:

This gives that kz�k � 1 and it cannot attain its norm.

Step 2. There exists gWZ� ! R with kgkFBLŒZ� D 1 such that ız�.g/ D kız�k D 1.
Define g WD f ı 'WZ�!R. Let us prove that kgkFBLŒZ� D kf kFBLŒE� D 1 and that g

attains its norm at z�. Indeed, let z�1 ; : : : ; z
�
n 2Z

� be such that supz2BZ
Pn
iD1 jz

�
i .z/j � 1.

This is equivalent to the fact that k
Pn
iD1 �iz

�
i kZ� � 1 holds for every choice of signs

�i 2 ¹�1; 1º. Given any choice of signs �1; : : : ; �n 2 ¹�1; 1º, we get that nX
iD1

�i'.z
�
i /

E�
D

'� nX
iD1

�iz
�
i

�
E�
� k'k

 nX
iD1

�iz
�
i


Z�
� 1:

Since �1; : : : ; �n are arbitrary, we deduce that supx2BE
Pn
iD1 j'.z

�
i /.x/j � 1. Now,

nX
iD1

jg.z�i /j D

nX
iD1

jf .'.z�i //j � kf kFBLŒE� D 1:

This proves that kgkFBLŒZ� � 1. On the other hand,

ız�.g/ D g.z
�/ D f .'.z�// D f .x�/ D 1:

Step 3. The function g in Step 2 belongs to FBLŒZ�.
We will prove that g is in the closed vector lattice generated by the ız’s with z 2 Z.

First, let us notice that for every z 2 Z and z� 2 Z�, we have that

(5.1) .ız ı '/.z
�/ D '.z�/.z/ D z�.z/ D ız.z

�/:

This means that the function �WRE
�

! RZ
�

given by

�.h/ D h ı '

satisfies that if khkFBLŒE� <1, then k�.h/kFBLŒZ� � khkFBLŒE�. Also, by using (5.1), we
have that �.ız/ D ız ı ' D ız 2 FBLŒZ� holds for every z 2 Z. Furthermore, by defini-
tion, � is linear and preserves suprema and infima. This implies that if h is an element in
the vector lattice generated by ¹ız W z 2 Zº, then �.h/ D h ı ' 2 FBLŒZ�.
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Now, since f depends on the coordinates of Y � Z, we can take a sequence .fn/n2N

in the vector lattice generated by ¹ıy W y 2 Y º such that fn ! f in FBLŒE�. Since, for
every n 2 N, fn is in the vector lattice generated by ¹ız W z 2 Zº, we get that �.fn/ D
fn ı ' 2 FBLŒZ� holds for every n 2 N. Let us notice that fn ı ' is a Cauchy sequence
in FBLŒZ�. Indeed, given n; k 2 N, we get that

k.fn ı '/ � .fk ı '/kFBLŒZ� D k.fn � fk/ ı 'kFBLŒZ� � kfn � fkkFBLŒE�;

from where the Cauchy condition follows since .fn/n2N � FBLŒE� is Cauchy. By com-
pleteness, fn ı '! Qg for some Qg 2 FBLŒZ�. To finish the proof, we prove that g D Qg. To
this end, let us see that g.z�/ D Qg.z�/ holds for every z� 2 Z�. Given z� 2 Z�, we get
that

Qg.z�/ D lim
n
.fn ı '/.z

�/ D lim
n
fn.'.z

�// D f .'.z�// D .f ı '/.z�/;

where we have used both that fn ı '! Qg in FBLŒZ� and that fn! f in FBLŒE�. Hence,
g D f ı ' D Qg 2 FBLŒZ�, as desired.

In what follows, we are giving a wide list of Banach spaces that satisfy Conjecture 5.5.
In fact, we are presenting Banach spaces which have the following property.

Definition 5.7. A Banach space E has property (P) if for every x� 62 NA.E;R/, the set

C WD ¹y� 2 E� W jx�.x/j C jy�.x/j � kx�k for every x 2 BE º

satisfies that x� is in the w�-closure of RCC WD ¹�y� W � > 0; y� 2 C º.

Although artificial at a first sight, it turns out that Banach spaces with property (P )
satisfy Conjecture 5.5.

Lemma 5.8. Let E be a Banach space with property .P /. Then, x� 2 NA.E;R/ if and
only if ıx� 2 NA.FBLŒE�;R/.

Proof. By Proposition 5.4, we just need to prove that if x� 62 NA.E;R/, then ıx� 62
NA.FBLŒE�;R/. Indeed, let x� 62 NA.E;R/. Suppose, without loss of generality, that
kx�k D 1. Consider the set

C WD ¹y� 2 E� W jx�.x/j C jy�.x/j � kx�k for every x 2 BE º:

If ıx� is norm-attaining, then there is f 2 FBLŒE� with kf kFBLŒE� D 1 such that ıx�.f /
D f .x�/D kıx�k D kx

�k D 1. Since f .x�/D 1, f isw�-continuous on BE� , andE has
property .P /, there is y� 2 C such that f .y�/ > 0. Thus, for every x 2 BE , jx�.x/j C
jy�.x/j � 1, and it follows from the definition of the norm k � kFBLŒE� that

kf kFBLŒE� � jf .y
�/j C jf .x�/j > jf .x�/j D 1;

which is a contradiction.
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Let us remark that any separable non-reflexive Banach space can be renormed to fail
property .P /. Indeed, if E is separable, it can be endowed with an equivalent norm which
makes E� strictly convex (see the proof of Theorem 8.13 in [21]). Now, if E� is strictly
convex, every point of the sphere is an extreme point. The non-reflexivity of E guarantees
that there are points on the sphere of E� which are extreme but do not attain its norm.
Finally, notice that C ¤ ¹0º for a point x� in the sphere if and only if x� is not an extreme
point.

On the other hand, we have some Banach spaces satisfying property .P /.

Proposition 5.9. Let A be an infinite set. Then, `1.A/ has property .P /. In particular,
x� 2 NA.`1.A/;R/ if and only if ıx� 2 NA.FBLŒ`1.A/�;R/.

Proof. Let x� 2 `1.A/D `1.A/� with kx�k D 1. Suppose that it does not attain its norm.
Let us prove that, given any finite set F � A, we can find y� 2 `1.A/ and � > 0 such
that kx� ˙ y�k � 1 and �y�.t/ D x�.t/ holds for every t 2 F . This is enough in view
of the w�-topology on `1.A/. To this end, let F � A be an arbitrary finite set. Since x�

does not attain its norm, we have that supt2F jx
�.t/j D ˛ < 1. Now, define y� 2 `1.A/

by

y�.t/ WD

²
.1 � ˛/x�.t/ if t 2 F I

0 otherwise.

Let us prove that kx� ˙ y�k D supt2A jx
�.t/ ˙ y�.t/j � 1. For this, we consider two

cases.
(1) If t … F , then we get that y�.t/ D 0 and so

jx�.t/˙ y�.t/j D jx�.t/j < kx�k D 1:

(2) If t 2 F , then we get that jx�.t/j � ˛ and so

jx�.t/˙ y�.t/j � ˛ C .1 � ˛/jx�.t/j � 1:

Hence, taking supremum in A, we have kx� ˙ y�k � 1. Finally, taking � WD 1
1�˛

, for any
t 2 F we have that �y�.t/ D �.1 � ˛/x�.t/ D x�.t/, as desired.

Isometric preduals of `1.A/, for A an infinite set, satisfy Conjecture 5.5. Indeed, this
is a consequence of the fact that isometric preduals of `1 have property .P /, as we can see
in the following theorem.

Theorem 5.10. Let E be an isometric predual of `1.�/ for some infinite set � . Then an
element x� 2 NA.E;R/ if and only if ıx� 2 NA.FBLŒE�;R/ .in other words, E satisfies
Conjecture 5.5/.

Proof. We show first that, by Theorem 5.6, we can suppose that � is a countable set,
so E is an isometric predual of `1. Indeed, suppose that Z is a separable ai-ideal in E.
By the proof of [34, Theorem 1], Z is a separable isometric predual of L1.�/ for some
measure .�; †; �/. Moreover, Z� embeds into E� by Theorem 2.3, so Z� inherits the
Radon–Nikodým property from E�. Thus, Z� is separable and has the Radon–Nikodým
property. This implies that Z� D `1; in other words, � is purely atomic. Indeed, assume
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by contradiction that there exists some subset A with 0 < �.A/ and such that �jA does
not contain any atom. Then the mapping

L1.�/ ! L1.�jA/˚1 L1.�j�nA/

f 7�! .f�A; f��nA/

is an onto linear isometry, so L1.�/ contains an isometric copy of L1.�jA/, and L1.�jA/
fails the Radon–Nikodým property because it is easy to see that its unit ball does not have
any extreme point, which entails a contradiction with the fact that Z� D L1.�/ has the
Radon–Nikodým property. This contradiction proves that Z� D `1.

Let .e�n/
1
nD1 be the Schauder basis ofE� isometrically equivalent to the usual `1-basis,

i.e., for every n 2 N and scalar sequences .ai /niD1, nX
iD1

ai e
�
i

 D nX
iD1

jai j:

Denote by Fn the closed span of ¹e�1 ; : : : ; e
�
nº. Suppose that x� 2 E� does not attain its

norm. Without loss of generality, we may suppose that kx�k D 1. Then, x� has infinite
support. Indeed, this follows from the following claim, which may have its own interest.

Claim: Let E be a Banach space. Suppose that E� is isometric to `1.N/. If x� 2 E� is
finitely supported, then x� 2 NA.E;R/.

By Corollary 4.1 in [22], there exists a w�-continuous contractive projection Qn
from E� onto Fn such that En WDQ�nF

�
n satisfies that En � EnC1 for every n, each En is

isometric to `n1, and
S1
nD1En is dense in E. Suppose that x� 2 E� is finitely supported.

So, for some n 2 N, we have that x� D
Pn
jD1 aj e

�
j 2 Fn with aj 2 R for j D 1; : : : ; n.

This implies that Qn.x�/ D x�. Given x 2 E, if J WE ! E�� denotes the embedding
of E into E��, we have that

x�.x/ D J.x/.x�/ D J.x/.Qn.x
�// D .J.x/ ıQn/.x

�/ D x�.Q�nJ.x//:

This shows that, for a fixed x 2 E, the action of x� at x is the same as the action of x�

at Q�nJ.x/. Since kQnk D 1 and BQ�nF �n D BEn is compact, we conclude that x� must
attain its norm and this proves the claim.

Now, set x� D
P1
jD1 aj e

�
j with aj 2 R for every j 2 N. We will prove that x� is

in the w�-closure of the set RCC D ¹�y� W � > 0; y� 2 C º, where C is the set defined
in Definition 5.7. In order to do this, for each n 2 N we construct elements y� 2 C as
follows.

If
P
k�n jakj D 0, we just take y�D 02C . Suppose now that

P
k�n jakj>0. Since x�

has infinite support, there is m > n such that am 6D 0. Since x� 2 E� and

1 D kx�k D
 1X
jD1

aj e
�
j

 D 1X
jD1

jaj j;

we can pick m big enough so that

jamj D �
X
k�n

jakj
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for some � 2 .0; 1/. Set

y� WD �
X
k�n

ake
�
k � ame

�
m 2 E

�:

Then,

kx� C y�k D
 1X
kD1

ake
�
k C

X
k�n

�ake
�
k � ame

�
m

 D �X
k�n

ake
�
k C

X
k 6Dm

ake
�
k


� jamj C

X
k 6Dm

jakj D

1X
kD1

jakj D kx
�
k D 1;

and

kx��y�k D
 1X
kD1

ake
�
k �

X
k�n

�ake
�
k C ame

�
m


D

.1 � �/X
k�n

ake
�
k C

X
k>n
k 6Dm

ake
�
k C 2ame

�
m


D .1 � �/

X
k�n

jakj C
X
k>n
k 6Dm

jakj C 2jamj D
X
k 6Dm

jakj � �
X
k�n

jakj C 2�
X
k�n

jakj

D

X
k 6Dm

jakj C �
X
k�n

jakj D
X
k 6Dm

jakj C jamj D

1X
kD1

jakj D kx
�
k � 1:

This implies that y� 2 C .
Let us end by proving, using the element y� as defined above, that x� is in the w�-

closure of the set RCC . To this end, pick a w�-open set

W WD ¹z� 2 E� W jx�.xi / � z
�.xi /j < " for 1 � i � kº

for certain x1; : : : ; xk 2 E. Since
S
n2N En is dense in E, we can assume that xi 2 En

for a large enough n 2 N and for every i 2 ¹1; : : : ; kº. Pick y� 2 C and 0 < � < 1 such
thatQn.x�/ D 1

�
Qn.y

�/ as constructed before. Given i 2 ¹1; : : : ; kº, we have that, since
xi 2 En D Q

�
nF
�
n , then xi D Q�n.xi /. Hence,

1

�
y�.xi /D

1

�
y�.Q�n.xi //D

1

�
Q�n.xi /.y

�/D
1

�
.J.xi / ıQn/.y

�/DJ.xi /
� 1
�
Qn.y

�/
�

DJ.xi /.Qn.x
�// D Q�n.xi /.x

�/ D x�.Q�n.xi // D x
�.xi /:

Since i was arbitrary, we get that 1
�
y� 2 W , so we are done.

In order to be completely ready to prove Theorem 5.1, we need a last result.

Theorem 5.11. Let E be a Banach space and assume that F is a 1-complemented sub-
space of E. Suppose that there exists y� 2 F � such that ıy� 62 NA.FBLŒF �;R/. Then,
there exists x� 2 E� such that ıx� 62 NA.FBLŒE�;R/.
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Proof. Let y� 2 F � such that ıy� does not attain its norm. Assume, without loss of
generality, that ky�k D 1. Consider a norm-one projection P W E ! F . Let us define
x� WD P �.y�/ 2 E�. Notice that x� 2 SE� since ky�k D 1 and F is 1-complemented.

Claim: ıx� does not attain its norm.

On the contrary, let us assume that ıx� attains its norm. Then, there exists f 2 SFBLŒE�
such that f .x�/D f .P �.y�//D .f ıP �/.y�/D 1. We will show that f ıP � 2 FBLŒF �
and kf ı P �kFBLŒF � � 1, which will imply that ıy� attains its norm and this will give the
desired contradiction.

We prove first that f ı P � has finite norm on FBLŒF �. Indeed, let y�1 ; : : : ; y
�
k
2 F �

be such that supy2BF
Pk
iD1 jy

�
i .y/j � 1. Then,

sup
x2BE

kX
iD1

j.P �y�i /.x//j D sup
x2BE

kX
iD1

jy�i .P.x//j D sup
y2BF

kX
iD1

jy�i .y/j � 1:

Hence,
kX
iD1

j.f ı P �/.y�i /j D

kX
iD1

jf .P �y�i /j � kf kFBLŒE� D 1;

which proves that f ı P � 2 RY
�

has finite norm and that it is smaller than or equal to 1.
On the other hand, .f ı P �/.y�/ D f .x�/ D 1 by assumption.

Let us finally prove that f ı P � 2 FBLŒF �. To this end, take .fn/n2N a sequence
depending on finitely many coordinates in FBLŒE� such that fn ! f . Notice that fn ı
P � 2 FBLŒF �. Indeed, given any x 2 E and y� 2 F � it follows that

.ıx ı P
�/.y�/ D ıx.P

�.y�// D P �.y�/.x/ D y�.P.x// D ıP.x/.y
�/;

which means that ıx ı P � D ıP.x/. This proves that fn ı P � 2 FBLŒF � holds for every
n 2 N. Now, an argument involving Cauchy condition on the sequence .fn/n2N similar
to the one in Theorem 5.6 implies that f ı P � 2 FBLŒF �.

We finish the paper by showing that there is no Bishop–Phelps type theorem for
lattice homomorphisms. Recall that the Bishop–Phelps theorem states that the set of norm-
attaining functionals in a dual Banach space is norm-dense. In the Banach lattice setting
the situation is extremely opposite; we cannot approximate any not norm-attaining lattice
homomorphism by norm-attaining lattice homomorphisms.

Theorem 5.12. Let X be a Banach lattice and let x� 2 Hom.X;R/ be a lattice homo-
morphism in SX� which does not attain its norm. Then, kx� � y�k � 1 for any y� 2
Hom.X;R/ \ NA.X;R/.

Proof. Since y� attains its norm whereas x� does not, both lattice homomorphisms are
linearly independent. By Corollary 3.2, we have kx� � y�k � kx�k D 1.

In conclusion, we have seen that on several free Banach lattices there exist lattice
homomorphism which do not attain their norm. As far as we know, these are the first
examples of not norm-attaining lattice homomorphisms in the literature. We wonder if
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the existence of a lattice homomorphism which does not attain its norm on a Banach
lattice X implies that X contains some kind of free structure. In particular, we wonder
if X contains an isomorphic copy of a free Banach lattice FBLŒE� whenever there exists
x� 2 Hom.X;R/ which does not attain its norm.
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