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On stable rank of H 1 on coverings of finite bordered
Riemann surfaces

Alexander Brudnyi

Abstract. We prove that the Bass stable rank of the algebra of bounded holomorphic
functions on an unbranched covering of a finite bordered Riemann surface is equal
to one.

1. Formulation of main results

Let S 0 be a (not necessarily connected) unbranched covering of a finite bordered Riemann
surface S . In this paper we continue the study initiated in [3] of the algebra H1.S 0/
of bounded holomorphic functions on S 0. (We write H1 WD H1.D/, where D � C is
the open unit disk.) It was shown in our previous work that algebras H1.S 0/ and H1

share many common properties (e.g., they are Hermite, their maximal ideal spaces are
two-dimensional with vanishing second Čech cohomology groups, etc., see [3–5] for the
corresponding results). The purpose of this paper is to prove that these algebras have also
the same Bass stable rank. The latter notion is defined as follows.

Let A be an associative ring with unit. For a natural number n let Un.A/ denote the set
of unimodular elements of An, i.e.,

Un.A/ D ¹.a1; : : : ; an/ 2 A
n
W Aa1 C � � � C Aan D Aº :

An element .a1; : : : ; an/ 2 Un.A/ is called reducible if there exist c1; : : : ; cn�1 2 A such
that .a1C c1an; : : : ; an�1C cn�1an/ 2Un�1.A/: The stable rank sr.A/ is the least n such
that every element of UnC1.A/ is reducible. The concept of the stable rank introduced by
Bass [1] plays an important role in some stabilization problems of algebraic K-theory.
Following Vaserstein [13], we call a ring of stable rank 1 a B-ring. (We refer to this paper
for some examples and properties of B-rings.)

In [11], Treil proved the following result.

Theorem A. Let f; g 2 H1 be such that kf kH1 � 1, kgkH1 � 1 and

(1.1) inf
z2D

.jf .z/j C jg.z/j/ DW ı > 0:
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Then there exists a function G 2 H1 such that the function ˆ D f C gG is invertible
in H1, and moreover kGkH1 � C and kˆ�1kH1 � C , where the constant C depends
only on ı.

(Here and below for a normed space B its norm is denoted by k � kB .)
By the Carleson corona theorem, condition (1.1) is satisfied if and only if .f; g/ 2

U2.H
1/. Hence, Treil’s theorem implies that H1 is a B-ring.

Theorem A was used by Tolokonnikov [10] to prove that algebras H1.U / are B-
rings for finitely connected domains and for some Behrens domains U . Since then, no
other classes of Riemann surfaces U for which H1.U / are B-rings were known. In the
present paper, we prove the following extension of Theorem A.

Theorem 1.1. Let S 0 be an unbranched covering of a finite bordered Riemann surface S .
Let f; g 2 H1.S 0/ be such that kf kH1.S 0/ � 1, kgkH1.S 0/ � 1 and

(1.2) inf
z2S 0

.jf .z/j C jg.z/j/ DW ı > 0:

Then there exists a functionG 2H1.S 0/ such that the functionˆD f C gG is invertible
in H1.S 0/, and moreover max

®
kGkH1.S 0/; kˆ

�1kH1.S 0/

¯
� C , where the constant C

depends only on ı and S .

By the corona theorem for H1.S 0/ (see Corollary 1.6 in [3]), condition (1.2) is satis-
fied if and only if .f; g/ 2 U2.H1.S 0//. Hence, Theorem 1.1 implies:

Theorem 1.2. H1.S 0/ is a B-ring.

Remark 1.3. It is known that every B-ring is Hermite (see, e.g., Theorem 2.7 in [13]),
i.e., any finitely generated stably free right module over the ring is free (equivalently, any
rectangular left-invertible matrix over the ring can be extended to an invertible matrix).
Let J � H1.S 0/ be a closed ideal and H1J WD ¹c C f W c 2 C; f 2 J º be the unital
closed subalgebra generated by J . Then Corollary 1.2 implies that H1J is a B-ring (see,
e.g., Theorem 4 in [12]); hence, it is Hermite. This gives a generalization of Theorem 1.1
in [4] proved by a different method.

Let Mn.H
1.S 0// be the algebra of n � n matrices with entries in H1.S 0/ regarded

as the subspace of bounded linear operators on .H1.S 0//n equipped with the oper-
ator norm. We apply Theorem 1.1 to the problem of reducing a matrix with entries in
SLn.H1.S 0//�Mn.H

1.S 0// (the subset of matrices with determinant 1) to the identity
matrix by addition operations, that is, representing a matrix by the product of elementary
matrices (i.e., those that differ from the identity matrix by at most one non-diagonal entry).

Theorem 1.4. Every matrix in SLn.H1.S 0// of norm � M is a product of at most
.n � 1/.3n

2
C 1/ elementary matrices whose norms are bounded from above by a con-

stant depending only on M , n and S .

The proof of Theorem 1.1 is based on Theorem A and some results of the author
presented in [5] and [6], along with some topological results. In the next section we collect
some results required for the proof of Theorem 1.1. The proof is given in Section 4.
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2. Auxiliary results

2.1. Let M.A/ denote the maximal ideal space of a commutative complex unital Banach
algebra A, i.e., the set of nonzero homomorphisms A! C equipped with the Gelfand
topology. In this part we present some facts about the maximal ideal space M.H1.S 0//,
where r WS 0 ! S is a (not necessarily connected but second-countable) unbranched cov-
ering of a bordered Riemann S , see Section 2 of [4] and Section 4 of [5] for details.

Recall that H1.S 0/ separates points of S 0 and the map �WS 0!M.H1.S 0// sending
x 2 S 0 to the evaluation functional ıx 2 .H1.S 0//� at x embeds S 0 into M.H1.S 0// as
an open dense subset – the corona theorem for H1.S 0/.

The covering r W S 0 ! S can be viewed as a fiber bundle over S with a discrete (at
most countable) fiber F . LetE.S;ˇF / be the space obtained from S 0 by taking the Stone–
Čech compactifications of fibres under r . It is a normal Hausdorff space and r extends to a
continuous map rE WE.S;ˇF /! S such that .E.S;ˇF /;S; rE ;ˇF / is a fibre bundle on S
with fibre ˇF and S 0 is an open dense subbundle of E.S;ˇF /. Each f 2H1.S 0/ admits
an extension Of 2 C.E.S; ˇF //, and the algebra formed by such extensions separates
points ofE.S;ˇF /. Thus � extends to a continuous injection O�WE.S;ˇF /!M.H1.S 0//,
.O�.�//.f / WD Of .�/.

In what follows, we identify E.S; ˇF / with its image under O�. Also, for K � S we
set K 0 WD r�1.K/, KE WD r�1E .K/ and for a subset U of a topological space we denote
by VU , NU and @U its interior, closure and boundary.

It is well known that S can be regarded as a domain in a compact Riemann surface R
such that R n NS is the finite disjoint union of open disks with analytic boundaries. Let
A.S/�H1.S/ be the subalgebra of functions continuous up to the boundary. We denote
by Or WM.H1.S 0//! NS the continuous surjective map induced by the transpose of the
homomorphism A.S/! H1.S 0/, f 7! f ı r . Then E.S; ˇF / coincides with the open
set Or�1.S/ and Or jE.S;ˇF / D rE .

Let U � R be an open set such that V WD U \ NS ¤ ;. Then Or�1.V / is an open subset
of M.H1.S 0// and due to the corona theorem, VV 0 WD r�1. VV /, where VV WD U \ S , is an
open dense subset of Or�1.V /.

Proposition 2.1. Each f 2 H1. VV 0/ admits an extension Of 2 C. Or�1.V //.

Proof. We reduce the statement to some known results.
We have to extend f continuously to each point � 2 Or�1.V /. The set Or�1.V / is the

disjoint union of the open set VVE D Or�1. VV / and the set Or�1.V \ @S/. So we consider
two cases.

Case 1. � 2 Or�1. VV /.

Let O � VV be an open simply connected neighbourhood of Or.�/. By the definition of
the bundleE.S;ˇF /, the setOE D r�1E .O/ is homeomorphic toO � ˇF and this homeo-
morphism maps O 0 D r�1.O/ biholomorphically onto O � F . Then Lemma 3.1 of [2]
implies that f jO 0 2 H1.O 0/ admits an extension Of 2 C.OE / as required (because OE
is an open neighbourhood of �).
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Case 2. � 2 Or�1.V \ @S/.
Let Or.�/ belong to a connected component  of @S . By the definition of S , there are a

relatively open neighbourhood A � NS of  and a homeomorphic map A ! A WD ¹z 2

C W c < jzj � 1º, c > 0, which maps  onto the unit circle S�C and is holomorphic on VA .
Without loss of generality, we identify A with A and  with S. Then since V \ A ¤ ;,
there is a relatively open subset… � V \A which is a rectangle in polar coordinates with
one side of the boundary on S such that Or.�/ 2 …. Repeating literally the arguments of
the proof of Proposition 4.2 in [5], we obtain that each function from H1. V…0/ admits a
continuous extension to Or�1.…/. Since the latter is an open neighbourhood of � , this gives
the required extension of f to �. We leave the details to the readers.

Remark 2.2. Since VV 0 is dense in Or�1.V /, the above extension preserves supremum
norm. Then the transpose of the restriction homomorphism H1.S 0/! H1. VV 0/, f 7!
f j
VV 0

, induces a continuous map sV WM.H1. VV 0//!M.H1.S 0// with image Or�1. NV /
one-to-one on s�1V . Or�1.V //.

2.2. A compact subset K � M.H1.S 0// is said to be holomorphically convex (with
respect to the algebra H1.S 0/) if for every � 62 K there is f 2 H1.S 0/ such that

max
K
j Of j < j Of .�/jI

here Of 2 C.M.H1.S 0/// is the Gelfand transform of f .
A holomorphically convex subsetZ �M.H1.S 0// is called a hull if there is a proper

ideal I � H1.S 0/ such that

Z D ¹� 2M.H1.S 0// W Of .�/ D 0 8f 2 I º:

The algebra H1.S 0/ is a B-ring if and only if for every hull Z �M.H1.S 0// the
map C.M.H1.S 0//;C�/! C.Z;C�/, C� WD C n¹0º, induced by restriction to Z is
onto, see [7].

In the next two lemmas, S D D and S 0 D S � F for some F � N.

Lemma 2.3. If K�M.H1.S 0// is holomorphically convex, then for every g2C.K;C�/,
there exists Qg 2 C.M.H1.S 0//;C�/ such that QgjK D g.

Proof. According to Lemma 5.3 in [6], the homomorphism of the Čech cohomology
groups H 1.M.H1.S 0//;Z/! H 1.K;Z/ induced by the restriction map to K is sur-
jective. In turn, by the Arens–Royden theorem, H 1.K; Z/ and H 1.M.H1.S 0//; Z/
are connected components of topological groups C.K;C�/ and C.M.H1.S 0//;C�/,
respectively. Hence, for each g 2 C.K;C�/, there is g1 2 C.M.H1.S 0//;C�/ such that
g � .g�11 /jK D e

h for some h2C.K/. Let Qh2C.M.H1.S 0/// be an extension of h (exist-
ing by the Titze–Urysohn theorem). Then Qg D g1e

Qh is the required extension of g.

Lemma 2.4. SupposeK�M.H1.S 0// is holomorphically convex andZ�M.H1.S 0//

is a hull. Then K [Z �M.H1.S 0// is holomorphically convex.
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Proof. Let � 62 K [ Z. By the hypothesis, there exist f; g 2 H1.S 0/ such that Of .�/ D
Og.�/ D 1 and

max
K
jf j DW c < 1; gjZ D 0:

LetM WDmaxK jgj. We choose n 2N such that cnM < 1. Then for h WD f ng 2H1.S 0/
we have

max
K[Z
j Ohj � cnM < 1 D j Oh.�/j:

This shows that the set K [Z is holomorphically convex.

2.3. The proof of Theorem 1.1 relies on the following result.
Let a connected compact Hausdorff space X be such that there are a closed cover

.Xj /
m
jD1 of X and continuous maps sj WM.H1.D � F // ! X , F � N, 1 � j � m,

satisfying
(i) Xj � sj .M.H1.D � F /// and sj is one-to-one on s�1j .Xj /, 1 � j � m;
(ii) for every J � ¹1; : : : ; mº and i 62 J , the subset

s�1i ..[j2JXj / \Xi / �M.H1.D � F //

is holomorphically convex.

Proposition 2.5. Suppose Z � X is such that for every j the set s�1j .Z/ is a hull. Then
for every g 2 C.Z;C�/, there exists Qg 2 C.X;C�/ such that QgjZ D g.

Proof. We set Zj WD s�1j .Z/, 1 � j � m. Assume that Z \ Xj ¤ ;. Then s�j g WD
g ı sj 2 C.Zj ; C

�/. Since Zj is a hull, the Treil theorem [11] implies that there is
gj 2 C.M.H1.D�F //;C�/ which extends s�j g. Hence, due to (i), Qgj WD gj ı s�1j jXj 2
C.Xj ;C

�/ and extends gjZ\Xj . If Z \Xj D ;, we define Qgj D 1.
We order the sets of the cover .Xi /miD1 as follows. Choose some Xi1 � ¹X1; : : : ;Xmº.

If Xip is already chosen, we choose XipC1 so that

XipC1 \ .[
p
jD1Xij / ¤ ;:

This is possible because X is connected. We extend g by induction on the indices of the
order.

For j D 1 we set Qg D Qgi1 on Xi1 . Suppose that Qg is already defined on [pjD1Xij . Let

us define it on [pC1jD1Xij . To this end let

gp;pC1 WD Qg � Qg
�1
ipC1

on
�
[
p
jD1Xij

�
\XipC1 DW K:

By (ii), s�1ipC1.K/ �M.H1.D �F // is holomorphically convex and since by the hypo-
thesis ZipC1 is a hull, Lemma 3.1 implies that s�1ipC1.K/[ZipC1 is a holomorphically con-
vex subset of M.H1.D �F //. Moreover, s�ipC1.gp;pC1/ 2 C.s

�1
ipC1

.K/;C�/ and equals
1 on s�1ipC1.K/ \ ZipC1 if the latter is nonvoid. Then it can be extended to a function in
C.s�1ipC1.K/ [ ZipC1 ;C

�/ equal to 1 on ZipC1 .¤ ;/. Due to Lemma 2.3, the extended
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function can be further extended to a function from C.M.H1.D�F //;C�/. Composing
this extension with s�1ipC1 jXipC1 , we obtain an extension Qgp;pC1 2 C.XipC1 ;C

�/ of gp;pC1
equal to 1 on Z \XipC1 if this set is not empty. Let us define

(2.1) QgjXipC1 WD QgipC1 � Qgp;pC1:

Then QgjXipC1 extends gjZ\XipC1 and

QgjXipC1 � Qg
�1
j[
p
jD1Xij

D QgipC1 Qgp;pC1 Qg
�1
D 1 on

�
[
p
jD1Xij

�
\XipC1 ;

i.e., (2.1) gives the required extension of Qgj[pjD1Xij to [pC1jD1Xij . This completes the proof
of the induction step and hence of the proposition.

2.4. We apply Proposition 2.5 to X DM.H1.S 0//, where S 0 is an unbranched covering
of a finite bordered Riemann surface S . To construct the required cover .Xj / of X in this
case, we prove the following topological result.

Lemma 2.6. There is a finite cover .Uj /mjD1 of NS by compact subsets homeomorphic
to ND such that each Ui is contained in an open simply connected set Vi � R with simply
connected intersection Vi \ S , each Ui intersects with at most two other sets of the family,
and each non-void Ui \ Uj is homeomorphic to I WD Œ0; 1�.

Proof. Since NS is triangulable, we may regard it as a two dimensional polyhedral man-
ifold. It follows from the Whitehead theorem (Theorem (3.5) in [14]) that there are a
(finite) one-dimensional polyhedron L � NS with sets of edges EL and vertices VL and a
piecewise linear strong deformation retraction F W NS � I ! S of NS onto L which maps @S
onto L such that

(a)F �1.x;1/� NS is a connected polyhedron homeomorphic to a star tree with internal
vertex x of degree 2 if either x 2 Ve for some e 2 EL or x 2 VL is of degree � 2, and of
degree > 2 if x 2 VL is of degree > 2, and this homeomorphism maps F �1.x; 1/ \ @S
onto the set of external vertices of the tree.

(b) If e 2 EL, then F �1. Ve; 1/ \ @S is the disjoint union of two sets homeomorphic
to I .

Let EL WD ¹e1; : : : ; emº. We define

Ui WD F �1. Vei ; 1/; 1 � i � m:

Then every Ui is a polyhedral submanifold of NS homeomorphic to ND with the boundary
formed by some arcs in @S along with some subsets of F �1.vij ; 1/, j D 1; 2, homeo-
morphic to I ; here vi1 ; vi2 2 VL are endpoints of ei . Clearly every non-void intersection
Ui \ Uj � F

�1.ei \ ej ; 1/ is homeomorphic to I . Moreover, it is readily seen that
each Ui is contained in an open simply connected subset Vi � R with simply connec-
ted intersection Vi \ S because NS is the strong deformation retract of some of its open
neighbourhoods in R (see, e.g., Theorem (3.3) in [14]).
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3. Proof of Theorem 1.2

Proof. We retain notation of Lemma 2.6. We set

�i D @Ui n @S and Wi WD Vi \ S; 1 � i � m:

Then �i consists of two connected components homeomorphic to I and Wi is an open
simply connected subset of S . By the definition, �i � W i .

Let A.Wi / � H1.Wi / be the subalgebra of functions continuous up to the bound-
ary. We denote by Ori WM.H1.W 0i //! W i the continuous surjective map induced by the
transpose of the inclusion homomorphism ri WA.Wi /! H1.W 0i /, f 7! f ı ri .

Let K be either �i or its connected component. We set

zK WD Or�1i .K/:

Lemma 3.1. The set zK �M.H1.W 0i // is holomorphically convex.

Proof. By our construction, the open set Vi nK is connected. By the Riemann mapping
theorem, there is a biholomorphic map  i of Vi onto D. Then D n i .K/ is a connected
open subset of D. Therefore the compact set  i .K/ � C is polynomially convex, see,
e.g., [9], Chapter III, Lemma 1.3. Hence, K b Vi is holomorphically convex with respect
to the algebra H1.Vi / and so it is holomorphically convex in W i .b Vi / with respect to
the algebraA.Wi /. Since Ori is a surjection ontoW i and zK �M.H1.W 0i // is the preimage
of K, it is holomorphically convex.

Since W 0i WD r�1.Wi / is biholomorphic to D �F , where F is the fibre of the un-
branched covering r W S 0 ! S , algebras H1.W 0i / and H1.D �F / are isomorphic. We
denote by si WM.H1.D�F //!M.H1.S 0// the continuous map induced by the trans-
pose of the composition of the restriction homomorphism H1.S 0/! H1.W 0i / and the
isomorphism H1.W 0i / ! H1.D �F /. Then due to Remark 2.2, the image of si is
Or�1.W i / and si is one-to-one on s�1i . Or�1.Vi \ NS//.

We setXi WD Or�1.Ui /, 1� i �m. Then .Xi /miD1 is a closed cover of M.H1.S 0// sat-
isfying condition (i) of Proposition 2.5, i.e., si is one-to-one on s�1i .Xi / (as Ui � Vi \ NS ).

Moreover, for every J � ¹1; : : : ; mº and i 62 J , the set .[j2JXj / \ Xi is either void
or the preimage under Or of �i or its connected component. Hence, due to Lemma 3.1,
s�1i

�
.[j2JXj / \ Xi

�
�M.H1.D �F // is holomorphically convex, i.e., .Xi /miD1 satis-

fies condition (ii) of Proposition 2.5 as well.
Finally, if Z �M.H1.S 0// is a hull, then Zi WD s�1i .Z/ is a hull for H1.D �F /.

Hence, every function g 2 C.Z;C�/ has an extension Qg 2 C.M.H1.S 0//;C�/, by Pro-
position 2.5. But this is equivalent to the fact that H1.S 0/ is a B-ring, see Section 2.2
above.

The proof of the theorem is complete.

4. Proofs of Theorems 1.1 and 1.4

Proof of Theorem 1.1. Without loss of generality, we may assume that S 0 is a connected
unbranched covering of S .
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Let f; g 2 H1.S 0/ be such that kf kH1.S 0/ � 1, kgkH1.S 0/ � 1 and

(4.1) inf
z2S 0

.jf .z/j C jg.z/j/ DW ı > 0:

Due to Theorem 1.2, there exists a function G 2 H1.S 0/ such that the function f C gG
is invertible in H1.S 0/. By Gf;g;ı;S 0 we denote the class of such functions G. We must
prove that

(4.2) C D C.ı; S/ WD sup
f;g;S 0

inf
G2Gf;g;ı;S 0

max
®
kGkH1.S 0/; k.f C gG/

�1
kH1.S 0/

¯
is finite. (Here the supremum is taken over all functions f; g satisfying the above hypo-
theses and all connected unbranched coverings S 0 of S .)

Let ¹S 0i ºi2N and ¹fiºi2N ; ¹giºi2N , fi ; gi 2H1.S 0i /, be sequences satisfying assump-
tions of the theorem such that

(4.3) C D lim
i!1

inf
G2Gfi ;gi ;ı;S

0
i

max
®
kGkH1.S 0i /; k.fi C giG/

�1
kH1.S 0i /

¯
:

The disjoint union S 0 WD ti2N S
0
i is clearly an unbranched covering of S and functions

f; g 2 H1.S 0/ defined by the formulas

f jS 0i WD fi ; gjS 0i WD gi ; i 2 N;

are of norms � 1 and satisfy condition (4.1) on S 0. Then due to Theorem 1.2 there exists
a function G 2 H1.S 0/ such that the function f C gG is invertible in H1.S 0/. We set

Gi WD GjS 0i ; i 2 N :

Then due to (4.3),

C � sup
i2N

max
®
kGikH1.S 0i /; k.fi C giGi /

�1
kH1.S 0i /

¯
D max

®
kGkH1.S 0/; k.f C gG/

�1
kH1.S 0/

¯
:

This completes the proof of the theorem.

Proof of Theorem 1.4. Since H1.S 0/ is a B-ring (by Theorem 1.2), Lemma 9 and Re-
mark 10 of [8] imply that each matrix F 2 SLn.H1.S 0// can be presented as a product
of at most .n � 1/.3n

2
C 1/ elementary matrices. Let us show that if

(4.4) kF kMn.H1.S 0// �M;

then these matrices can be chosen so that their norms are bounded from above by a con-
stant depending only on M , n and S .

As before, we may assume that S 0 is connected. Let FM;S 0;n be the class of matrices
F 2 SLn.H1.S 0// satisfying (4.4). For every F 2 FM;S 0;n by …F;M;S 0;n, we denote the
set of all possible products of F by at most .n � 1/.3n

2
C 1/ elementary matrices. By
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the above arguments, the set …F;M;S 0;n is non-void. For each � 2 …F;M;S 0;n, by k�k we
denote maximum of norms of elementary matrices in � . We have to prove that

(4.5) C D C.S;M; n/ WD sup
S 0;F 2FM;S 0;n

inf
�2…F;M;S 0;n

k�k <1I

here S 0 runs over all connected unbranched coverings of S .
Let S 0i and Fi 2 FM;S 0i ;n, i 2 N, be such that

(4.6) C D lim
i!1

inf
�2…Fi ;M;S

0
i
;n

k�k:

It is clear that the disjoint union S 0 WD ti2N S
0
i is an unbranched covering of S and the

matrix F 2 H1.S 0/ defined by the formula

F jS 0i WD Fi ; i 2 N;

belongs to the class FM;S 0;n. Then there is � 2…F;M;S 0;n. Let �i be the product obtained
by the restriction of elementary matrices in � to S 0i . Then each �i 2 …Fi ;M;S

0
i ;n

and so,
due to (4.6),

C � sup
i2N
k�ik D k�k <1:

This completes the proof of the theorem.
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