© 2021 Real Sociedad Matemática Española Published by EMS Press and licensed under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license

On stable rank of H^∞ on coverings of finite bordered Riemann surfaces

Alexander Brudnyi

Abstract. We prove that the Bass stable rank of the algebra of bounded holomorphic functions on an unbranched covering of a finite bordered Riemann surface is equal to one.

1. Formulation of main results

Let S' be a (not necessarily connected) unbranched covering of a finite bordered Riemann surface S. In this paper we continue the study initiated in [\[3\]](#page-8-0) of the algebra $H^{\infty}(S')$ of bounded holomorphic functions on S'. (We write $H^{\infty} := H^{\infty}(\mathbb{D})$, where $\mathbb{D} \subset \mathbb{C}$ is the open unit disk.) It was shown in our previous work that algebras $H^{\infty}(S')$ and H^{∞} share many common properties (e.g., they are Hermite, their maximal ideal spaces are two-dimensional with vanishing second Čech cohomology groups, etc., see $[3-5]$ $[3-5]$ $[3-5]$ for the corresponding results). The purpose of this paper is to prove that these algebras have also the same Bass stable rank. The latter notion is defined as follows.

Let A be an associative ring with unit. For a natural number n let $U_n(A)$ denote the set of *unimodular* elements of $Aⁿ$, i.e.,

$$
U_n(A) = \{(a_1, \ldots, a_n) \in A^n : Aa_1 + \cdots + Aa_n = A\}.
$$

An element $(a_1, \ldots, a_n) \in U_n(A)$ is called *reducible* if there exist $c_1, \ldots, c_{n-1} \in A$ such that $(a_1 + c_1a_n, \ldots, a_{n-1} + c_{n-1}a_n) \in U_{n-1}(A)$. The *stable rank* sr(A) is the least n such that every element of $U_{n+1}(A)$ is reducible. The concept of the stable rank introduced by Bass [\[1\]](#page-8-2) plays an important role in some stabilization problems of algebraic K-theory. Following Vaserstein [\[13\]](#page-9-0), we call a ring of stable rank 1 a B -ring. (We refer to this paper for some examples and properties of B-rings.)

In [\[11\]](#page-9-1), Treil proved the following result.

Theorem A. Let $f, g \in H^\infty$ be such that $|| f ||_{H^\infty} \leq 1$, $||g||_{H^\infty} \leq 1$ and

(1.1)
$$
\inf_{z \in \mathbb{D}} (|f(z)| + |g(z)|) =: \delta > 0.
$$

²⁰²⁰ Mathematics Subject Classification: Primary 30H50; Secondary 46J10.

Keywords: Bass stable rank, B-ring, bounded holomorphic function, unbranched covering, elementary matrix.

Then there exists a function $G \in H^\infty$ *such that the function* $\Phi = f + gG$ *is invertible in* H^{∞} , and moreover $||G||_{H^{\infty}} < C$ and $||\Phi^{-1}||_{H^{\infty}} < C$, where the constant C depends $only on δ .$

(Here and below for a normed space B its norm is denoted by $\|\cdot\|_B$.)

By the Carleson corona theorem, condition [\(1.1\)](#page-0-0) is satisfied if and only if $(f, g) \in$ $U_2(H^{\infty})$. Hence, Treil's theorem implies that H^{∞} is a B-ring.

Theorem [A](#page-0-1) was used by Tolokonnikov [\[10\]](#page-9-2) to prove that algebras $H^{\infty}(U)$ are Brings for finitely connected domains and for some Behrens domains U . Since then, no other classes of Riemann surfaces U for which $H^{\infty}(U)$ are B-rings were known. In the present paper, we prove the following extension of Theorem [A.](#page-0-1)

Theorem 1.1. Let S' be an unbranched covering of a finite bordered Riemann surface S. Let $f, g \in H^{\infty}(S')$ be such that $|| f ||_{H^{\infty}(S')} \leq 1$, $||g||_{H^{\infty}(S')} \leq 1$ and

(1.2)
$$
\inf_{z \in S'} (|f(z)| + |g(z)|) =: \delta > 0.
$$

Then there exists a function $G \in H^{\infty}(S')$ such that the function $\Phi = f + gG$ is invertible in $H^{\infty}(S')$, and moreover $\max \{ ||G||_{H^{\infty}(S')} , ||\Phi^{-1}||_{H^{\infty}(S')} \} \leq C$, where the constant C *depends only on* δ *and* S *.*

By the corona theorem for $H^{\infty}(S')$ (see Corollary 1.6 in [\[3\]](#page-8-0)), condition [\(1.2\)](#page-1-0) is satisfied if and only if $(f, g) \in U_2(H^{\infty}(S'))$. Hence, Theorem [1.1](#page-1-1) implies:

Theorem 1.2. $H^{\infty}(S')$ is a B-ring.

Remark 1.3. It is known that every B-ring is *Hermite* (see, e.g., Theorem 2.7 in [\[13\]](#page-9-0)), i.e., any finitely generated stably free right module over the ring is free (equivalently, any rectangular left-invertible matrix over the ring can be extended to an invertible matrix). Let $J \subset H^{\infty}(S')$ be a closed ideal and $H_J^{\infty} := \{c + f : c \in \mathbb{C}, f \in J\}$ be the unital closed subalgebra generated by J. Then Corollary [1.2](#page-1-2) implies that H_J^{∞} is a B-ring (see, e.g., Theorem 4 in [\[12\]](#page-9-3)); hence, it is Hermite. This gives a generalization of Theorem 1.1 in [\[4\]](#page-8-3) proved by a different method.

Let $M_n(H^{\infty}(S'))$ be the algebra of $n \times n$ matrices with entries in $H^{\infty}(S')$ regarded as the subspace of bounded linear operators on $(H^{\infty}(S'))^n$ equipped with the operator norm. We apply Theorem [1.1](#page-1-1) to the problem of reducing a matrix with entries in $SL_n(H^{\infty}(S')) \subset M_n(H^{\infty}(S'))$ (the subset of matrices with determinant 1) to the identity matrix by addition operations, that is, representing a matrix by the product of elementary matrices (i.e., those that differ from the identity matrix by at most one non-diagonal entry).

Theorem 1.4. *Every matrix in* $SL_n(H^{\infty}(S'))$ *of norm* $\leq M$ *is a product of at most* $(n-1)(\frac{3n}{2}+1)$ elementary matrices whose norms are bounded from above by a con*stant depending only on* M*,* n *and* S*.*

The proof of Theorem [1.1](#page-1-1) is based on Theorem [A](#page-0-1) and some results of the author presented in [\[5\]](#page-8-1) and [\[6\]](#page-8-4), along with some topological results. In the next section we collect some results required for the proof of Theorem [1.1.](#page-1-1) The proof is given in Section [4.](#page-6-0)

2. Auxiliary results

2.1. Let $\mathfrak{M}(A)$ denote the maximal ideal space of a commutative complex unital Banach algebra A, i.e., the set of nonzero homomorphisms $A \rightarrow \mathbb{C}$ equipped with the *Gelfand topology*. In this part we present some facts about the maximal ideal space $\mathfrak{M}(H^{\infty}(S'))$, where $r: S' \to S$ is a (not necessarily connected but second-countable) unbranched covering of a bordered Riemann S, see Section 2 of [\[4\]](#page-8-3) and Section 4 of [\[5\]](#page-8-1) for details.

Recall that $H^{\infty}(S')$ separates points of S' and the map $\iota: S' \to \mathfrak{M}(H^{\infty}(S'))$ sending $x \in S'$ to the evaluation functional $\delta_x \in (H^{\infty}(S'))^*$ at x embeds S' into $\mathfrak{M}(H^{\infty}(S'))$ as an open dense subset – the corona theorem for $H^{\infty}(S')$.

The covering $r: S' \to S$ can be viewed as a fiber bundle over S with a discrete (at most countable) fiber F. Let $E(S, \beta F)$ be the space obtained from S' by taking the Stone– Čech compactifications of fibres under r . It is a normal Hausdorff space and r extends to a continuous map $r_E: E(S, \beta F) \to S$ such that $(E(S, \beta F), S, r_E, \beta F)$ is a fibre bundle on S with fibre βF and S' is an open dense subbundle of $E(S, \beta F)$. Each $f \in H^{\infty}(S')$ admits an extension $\hat{f} \in C(E(S, \beta F))$, and the algebra formed by such extensions separates points of $E(S, \beta F)$. Thus *t* extends to a continuous injection $\hat{i}: E(S, \beta F) \to \mathfrak{M}(H^{\infty}(S'))$, $(\hat{i}(\xi))(f) := \hat{f}(\xi).$

In what follows, we identify $E(S, \beta F)$ with its image under $\hat{\iota}$. Also, for $K \subset S$ we set $K' := r^{-1}(K)$, $K_E := r_E^{-1}(K)$ and for a subset U of a topological space we denote by \hat{U} , \overline{U} and ∂U its interior, closure and boundary.

It is well known that S can be regarded as a domain in a compact Riemann surface R such that $R \setminus \overline{S}$ is the finite disjoint union of open disks with analytic boundaries. Let $A(S) \subset H^{\infty}(S)$ be the subalgebra of functions continuous up to the boundary. We denote by \hat{r} : $\mathfrak{M}(H^{\infty}(S')) \to \overline{S}$ the continuous surjective map induced by the transpose of the homomorphism $A(S) \to H^{\infty}(S')$, $f \mapsto f \circ r$. Then $E(S, \beta F)$ coincides with the open set $\hat{r}^{-1}(S)$ and $\hat{r}|_{E(S,\beta F)} = r_E$.

Let $U \subset R$ be an open set such that $V := U \cap \overline{S} \neq \emptyset$. Then $\hat{r}^{-1}(V)$ is an open subset of $\mathfrak{M}(H^{\infty}(S'))$ and due to the corona theorem, $\overset{\circ}{V} := r^{-1}(\overset{\circ}{V})$, where $\overset{\circ}{V} := U \cap S$, is an open dense subset of $\hat{r}^{-1}(V)$.

Proposition 2.1. Each $f \in H^{\infty}(\overset{\circ}{V})$ admits an extension $\hat{f} \in C(\hat{r}^{-1}(V))$.

Proof. We reduce the statement to some known results.

We have to extend f continuously to each point $\xi \in \hat{r}^{-1}(V)$. The set $\hat{r}^{-1}(V)$ is the disjoint union of the open set $\hat{V}_E = \hat{r}^{-1}(\hat{V})$ and the set $\hat{r}^{-1}(V \cap \partial S)$. So we consider two cases.

Case 1. $\xi \in \hat{r}^{-1}(\hat{V})$.

Let $O \subset \hat{V}$ be an open simply connected neighbourhood of $\hat{r}(\xi)$. By the definition of the bundle $E(S, \beta F)$, the set $O_E = r_E^{-1}(O)$ is homeomorphic to $O \times \beta F$ and this homeomorphism maps $O' = r^{-1}(O)$ biholomorphically onto $O \times F$. Then Lemma 3.1 of [\[2\]](#page-8-5) implies that $f|_{O'} \in H^{\infty}(O')$ admits an extension $\hat{f} \in C(O_E)$ as required (because O_E is an open neighbourhood of ξ).

Case 2. $\xi \in \hat{r}^{-1}(V \cap \partial S)$.

Let $\hat{r}(\xi)$ belong to a connected component ν of ∂S . By the definition of S, there are a relatively open neighbourhood $A_{\nu} \subset \overline{S}$ of γ and a homeomorphic map $A_{\nu} \to A := \{z \in$ $\mathbb{C}: c < |z| \le 1$, $c > 0$, which maps γ onto the unit circle $\mathbb{S} \subset \mathbb{C}$ and is holomorphic on $\overset{\circ}{A}_{\gamma}$. Without loss of generality, we identify A_{ν} with A and γ with S. Then since $V \cap A \neq \emptyset$, there is a relatively open subset $\Pi \subset V \cap A$ which is a rectangle in polar coordinates with one side of the boundary on S such that $\hat{r}(\xi) \in \Pi$. Repeating literally the arguments of the proof of Proposition 4.2 in [\[5\]](#page-8-1), we obtain that each function from $H^{\infty}(\hat{\Pi}')$ admits a continuous extension to $\hat{r}^{-1}(\Pi)$. Since the latter is an open neighbourhood of ξ , this gives the required extension of f to ξ . We leave the details to the readers.

Remark 2.2. Since \hat{V}' is dense in $\hat{r}^{-1}(V)$, the above extension preserves supremum norm. Then the transpose of the restriction homomorphism $H^{\infty}(S') \to H^{\infty}(\overset{\circ}{V})$, $f \mapsto$ $f|_{\tilde{V}}$, induces a continuous map $s_V: \mathfrak{M}(H^{\infty}(\tilde{V}')) \to \mathfrak{M}(H^{\infty}(S'))$ with image $\hat{r}^{-1}(\bar{V})$ one-to-one on $s_V^{-1}(\hat{r}^{-1}(V))$.

2.2. A compact subset $K \subset \mathfrak{M}(H^{\infty}(S'))$ is said to be *holomorphically convex* (with respect to the algebra $H^{\infty}(S')$ if for every $\xi \notin K$ there is $f \in H^{\infty}(S')$ such that

$$
\max_{K} |\hat{f}| < |\hat{f}(\xi)|;
$$

here $\hat{f} \in C(\mathfrak{M}(H^{\infty}(S')))$ is the Gelfand transform of f.

A holomorphically convex subset $Z \subset \mathfrak{M}(H^{\infty}(S'))$ is called a *hull* if there is a proper ideal $I \subset H^{\infty}(S')$ such that

$$
Z = \{ \xi \in \mathfrak{M}(H^{\infty}(S')) : \hat{f}(\xi) = 0 \quad \forall f \in I \}.
$$

The algebra $H^{\infty}(S')$ is a B-ring if and only if for every hull $Z \subset \mathfrak{M}(H^{\infty}(S'))$ the $map \ C(\mathfrak{M}(H^{\infty}(S')) , \mathbb{C}^{*}) \to C(Z, \mathbb{C}^{*}), \ \mathbb{C}^{*} := \mathbb{C} \setminus \{0\},$ induced by restriction to Z is *onto*, see [\[7\]](#page-8-6).

In the next two lemmas, $S = \mathbb{D}$ and $S' = S \times F$ for some $F \subset \mathbb{N}$.

Lemma 2.3. If $K \subset \mathfrak{M}(H^{\infty}(S'))$ is holomorphically convex, then for every $g \in C(K, \mathbb{C}^*)$, *there exists* $\tilde{g} \in C(\mathfrak{M}(H^{\infty}(S')), \mathbb{C}^*)$ such that $\tilde{g}|_K = g$.

Proof. According to Lemma 5.3 in [\[6\]](#page-8-4), the homomorphism of the Cech cohomology groups $H^1(\mathfrak{M}(H^{\infty}(S')),\mathbb{Z}) \to H^1(K,\mathbb{Z})$ induced by the restriction map to K is surjective. In turn, by the Arens–Royden theorem, $H^1(K, \mathbb{Z})$ and $H^1(\mathfrak{M}(H^{\infty}(S')), \mathbb{Z})$ are connected components of topological groups $C(K, \mathbb{C}^*)$ and $C(\mathfrak{M}(H^{\infty}(S')), \mathbb{C}^*)$, respectively. Hence, for each $g \in C(K, \mathbb{C}^*)$, there is $g_1 \in C(\mathfrak{M}(H^{\infty}(S')), \mathbb{C}^*)$ such that $g \cdot (g_1^{-1})|_K = e^h$ for some $h \in C(K)$. Let $\hat{h} \in C(\mathfrak{M}(H^{\infty}(S')))$ be an extension of h (existing by the Titze–Urysohn theorem). Then $\tilde{g} = g_1 e^{\tilde{h}}$ is the required extension of g. \blacksquare

Lemma 2.4. Suppose $K \subset \mathfrak{M}(H^{\infty}(S'))$ is holomorphically convex and $Z \subset \mathfrak{M}(H^{\infty}(S'))$ is a hull. Then $\widetilde{K} \cup Z \subset \mathfrak{M}(H^\infty(S'))$ is holomorphically convex.

Proof. Let $\xi \notin K \cup Z$. By the hypothesis, there exist $f, g \in H^{\infty}(S')$ such that $\hat{f}(\xi) =$ $\hat{g}(\xi) = 1$ and

$$
\max_{K} |f| =: c < 1, \quad g|_{Z} = 0.
$$

Let $M := \max_{K} |g|$. We choose $n \in \mathbb{N}$ such that $c^{n} M < 1$. Then for $h := f^{n} g \in H^{\infty}(S')$ we have

$$
\max_{K\cup Z} |\hat{h}| \le c^n M < 1 = |\hat{h}(\xi)|.
$$

This shows that the set $K \cup Z$ is holomorphically convex.

2.3. The proof of Theorem [1.1](#page-1-1) relies on the following result.

Let a connected compact Hausdorff space X be such that there are a closed cover $(X_j)_{j=1}^m$ of X and continuous maps $s_j : \mathfrak{M}(H^\infty(\mathbb{D} \times F)) \to X, F \subset \mathbb{N}, 1 \le j \le m$, satisfying

(i) $X_j \subset s_j(\mathfrak{M}(H^{\infty}(\mathbb{D} \times F)))$ and s_j is one-to-one on $s_j^{-1}(X_j)$, $1 \le j \le m$;

(ii) for every $J \subset \{1, \ldots, m\}$ and $i \notin J$, the subset

$$
s_i^{-1}((\cup_{j\in J}X_j)\cap X_i)\subset \mathfrak{M}(H^\infty(\mathbb{D}\times F))
$$

is holomorphically convex.

Proposition 2.5. Suppose $Z \subset X$ is such that for every j the set $s_j^{-1}(Z)$ is a hull. Then *for every* $g \in C(Z, \mathbb{C}^*)$, there exists $\tilde{g} \in C(X, \mathbb{C}^*)$ such that $\tilde{g}|_Z = g$.

Proof. We set $Z_j := s_j^{-1}(Z)$, $1 \le j \le m$. Assume that $Z \cap X_j \neq \emptyset$. Then s_j^* $j^*g :=$ $g \circ s_j \in C(Z_j, \mathbb{C}^*)$. Since Z_j is a hull, the Treil theorem [\[11\]](#page-9-1) implies that there is $g_j \in C(\mathfrak{M}(H^\infty(\mathbb{D}\times F)), \mathbb{C}^*)$ which extends s_j^* j^*g . Hence, due to (i), $\tilde{g}_j := g_j \circ s_j^{-1} |_{X_j} \in$ $C(X_j, \mathbb{C}^*)$ and extends $g|_{Z \cap X_j}$. If $Z \cap X_j = \emptyset$, we define $\tilde{g}_j = 1$.

We order the sets of the cover $(X_i)_{i=1}^m$ as follows. Choose some $X_{i_1} \subset \{X_1, \ldots, X_m\}$. If X_{i_p} is already chosen, we choose $X_{i_{p+1}}$ so that

$$
X_{i_{p+1}} \cap (\cup_{j=1}^p X_{i_j}) \neq \emptyset.
$$

This is possible because X is connected. We extend g by induction on the indices of the order.

For $j = 1$ we set $\tilde{g} = \tilde{g}_{i_1}$ on X_{i_1} . Suppose that \tilde{g} is already defined on $\bigcup_{j=1}^p X_{i_j}$. Let us define it on $\cup_{j=1}^{p+1} X_{i_j}$. To this end let

$$
g_{p,p+1} := \tilde{g} \cdot \tilde{g}_{i_{p+1}}^{-1}
$$
 on $(\bigcup_{j=1}^{p} X_{i_j}) \cap X_{i_{p+1}} =: K$.

By (ii), $s_{i_{p+1}}^{-1}(K) \subset \mathfrak{M}(H^{\infty}(\mathbb{D} \times F))$ is holomorphically convex and since by the hypothesis $Z_{i_{p+1}}$ is a hull, Lemma [3.1](#page-6-1) implies that $s_{i_{p+1}}^{-1}(K) \cup Z_{i_{p+1}}$ is a holomorphically convex subset of $\mathfrak{M}(H^{\infty}(\mathbb{D} \times F))$. Moreover, s_i^* . $i_{p+1}^*(g_{p,p+1}) \in C(s_{i_{p+1}}^{-1}(K), \mathbb{C}^*)$ and equals 1 on $s_{i_{p+1}}^{-1}(K) \cap Z_{i_{p+1}}$ if the latter is nonvoid. Then it can be extended to a function in $C(s_{i_{p+1}}^{-1}(K) \cup Z_{i_{p+1}}, \mathbb{C}^*)$ equal to 1 on $Z_{i_{p+1}} \neq \emptyset$). Due to Lemma [2.3,](#page-3-0) the extended

 \blacksquare

function can be further extended to a function from $C(\mathfrak{M}(H^{\infty}(\mathbb{D} \times F)), \mathbb{C}^*)$. Composing this extension with $s_{i_{p+1}}^{-1}|_{X_{i_{p+1}}}$, we obtain an extension $\tilde{g}_{p,p+1} \in C(X_{i_{p+1}}, \mathbb{C}^*)$ of $g_{p,p+1}$ equal to 1 on $Z \cap X_{i_{p+1}}^{i_{p+1}}$ if this set is not empty. Let us define

$$
\tilde{g}|_{X_{i_{p+1}}} := \tilde{g}_{i_{p+1}} \cdot \tilde{g}_{p,p+1}.
$$

Then $\tilde{g}|_{X_{i_{p+1}}}$ extends $g|_{Z \cap X_{i_{p+1}}}$ and

$$
\tilde{g}|_{X_{i_{p+1}}} \cdot \tilde{g}^{-1}|_{\cup_{j=1}^p X_{i_j}} = \tilde{g}_{i_{p+1}} \tilde{g}_{p,p+1} \tilde{g}^{-1} = 1 \quad \text{on} \quad \left(\cup_{j=1}^p X_{i_j}\right) \cap X_{i_{p+1}},
$$

i.e., [\(2.1\)](#page-5-0) gives the required extension of $\tilde{g}|_{\bigcup_{j=1}^p X_{i_j}}$ to $\bigcup_{j=1}^{p+1} X_{i_j}$. This completes the proof of the induction step and hence of the proposition.

2.4. We apply Proposition [2.5](#page-4-0) to $X = \mathfrak{M}(H^{\infty}(S'))$, where S' is an unbranched covering of a finite bordered Riemann surface S. To construct the required cover (X_i) of X in this case, we prove the following topological result.

Lemma 2.6. *There is a finite cover* $(U_j)_{j=1}^m$ *of* \overline{S} *by compact subsets homeomorphic* to $\bar{\mathbb{D}}$ such that each U_i is contained in an open simply connected set $V_i \subset R$ with simply connected intersection $V_i \cap S$, each U_i intersects with at most two other sets of the family, *and each non-void* $U_i \cap U_j$ *is homeomorphic to* $I := [0, 1]$ *.*

Proof. Since \overline{S} is triangulable, we may regard it as a two dimensional polyhedral manifold. It follows from the Whitehead theorem (Theorem (3.5) in [\[14\]](#page-9-4)) that there are a (finite) one-dimensional polyhedron $L \subset \overline{S}$ with sets of edges E_L and vertices V_L and a piecewise linear strong deformation retraction $F: \overline{S} \times I \to S$ of \overline{S} onto L which maps ∂S onto L such that

(a) $F^{-1}(x, 1) \subset \overline{S}$ is a connected polyhedron homeomorphic to a *star tree* with internal vertex x of degree 2 if either $x \in \mathcal{E}$ for some $e \in E_L$ or $x \in V_L$ is of degree ≤ 2 , and of degree > 2 if $x \in V_L$ is of degree > 2, and this homeomorphism maps $F^{-1}(x, 1) \cap \partial S$ onto the set of external vertices of the tree.

(b) If $e \in E_L$, then $F^{-1}(\hat{e}, 1) \cap \partial S$ is the disjoint union of two sets homeomorphic to I .

Let $E_L := \{e_1, \ldots, e_m\}$. We define

$$
U_i := \overline{F^{-1}(\mathcal{E}_i, 1)}, \quad 1 \le i \le m.
$$

Then every U_i is a polyhedral submanifold of \overline{S} homeomorphic to \overline{D} with the boundary formed by some arcs in ∂S along with some subsets of $F^{-1}(v_{i_j}, 1)$, $j = 1, 2$, homeomorphic to I; here $v_{i_1}, v_{i_2} \in V_L$ are endpoints of e_i . Clearly every non-void intersection $U_i \cap U_j \subset F^{-1}(e_i \cap e_j, 1)$ is homeomorphic to I. Moreover, it is readily seen that each U_i is contained in an open simply connected subset $V_i \subset R$ with simply connected intersection $V_i \cap S$ because \overline{S} is the strong deformation retract of some of its open neighbourhoods in R (see, e.g., Theorem (3.3) in [\[14\]](#page-9-4)).

3. Proof of Theorem [1.2](#page-1-2)

Proof. We retain notation of Lemma [2.6.](#page-5-1) We set

$$
\Gamma_i = \overline{\partial U_i \setminus \partial S} \quad \text{and} \quad W_i := V_i \cap S, \quad 1 \le i \le m.
$$

Then Γ_i consists of two connected components homeomorphic to I and W_i is an open simply connected subset of S. By the definition, $\Gamma_i \subset \overline{W}_i$.

Let $A(W_i) \subset H^{\infty}(W_i)$ be the subalgebra of functions continuous up to the boundary. We denote by $\hat{r}_i \colon \mathfrak{M}(H^{\infty}(W_i')) \to \overline{W}_i$ the continuous surjective map induced by the transpose of the inclusion homomorphism $r_i: A(W_i) \to H^\infty(W'_i)$, $f \mapsto f \circ r_i$.

Let K be either Γ_i or its connected component. We set

$$
\widetilde{K} := \hat{r}_i^{-1}(K).
$$

Lemma 3.1. The set $\widetilde{K} \subset \mathfrak{M}(H^{\infty}(W_i'))$ is holomorphically convex.

Proof. By our construction, the open set $V_i \setminus K$ is connected. By the Riemann mapping theorem, there is a biholomorphic map ψ_i of V_i onto D. Then D $\psi_i(K)$ is a connected open subset of $\mathbb D$. Therefore the compact set $\psi_i(K) \subset \mathbb C$ is polynomially convex, see, e.g., [\[9\]](#page-9-5), Chapter III, Lemma 1.3. Hence, $K \in V_i$ is holomorphically convex with respect to the algebra $H^{\infty}(V_i)$ and so it is holomorphically convex in $\overline{W}_i \ (\in V_i)$ with respect to the algebra $A(W_i)$. Since \hat{r}_i is a surjection onto \overline{W}_i and $\tilde{K} \subset \mathfrak{M}(H^{\infty}(W'_i))$ is the preimage of K , it is holomorphically convex.

Since $W'_i := r^{-1}(W_i)$ is biholomorphic to $D \times F$, where F is the fibre of the unbranched covering $r: S' \to S$, algebras $H^{\infty}(W_i')$ and $H^{\infty}(\mathbb{D} \times F)$ are isomorphic. We denote by $s_i: \mathfrak{M}(H^{\infty}(\mathbb{D} \times F)) \to \mathfrak{M}(H^{\infty}(S'))$ the continuous map induced by the transpose of the composition of the restriction homomorphism $H^{\infty}(S') \to H^{\infty}(W'_i)$ and the isomorphism $H^{\infty}(W'_i) \to H^{\infty}(\mathbb{D} \times F)$. Then due to Remark [2.2,](#page-3-1) the image of s_i is $\hat{r}^{-1}(\overline{W}_i)$ and s_i is one-to-one on $s_i^{-1}(\hat{r}^{-1}(V_i \cap \overline{S})).$

We set $X_i := \hat{r}^{-1}(U_i)$, $1 \le i \le m$. Then $(X_i)_{i=1}^m$ is a closed cover of $\mathfrak{M}(H^{\infty}(S'))$ sat-isfying condition (i) of Proposition [2.5,](#page-4-0) i.e., s_i is one-to-one on $s_i^{-1}(X_i)$ (as $U_i \subset V_i \cap \overline{S}$).

Moreover, for every $J \subset \{1, ..., m\}$ and $i \notin J$, the set $(\bigcup_{j \in J} X_j) \cap X_i$ is either void or the preimage under \hat{r} of Γ_i or its connected component. Hence, due to Lemma [3.1,](#page-6-1) $s_i^{-1}((\cup_{j\in J} X_j) \cap X_i) \subset \mathfrak{M}(H^\infty(\mathbb{D} \times F))$ is holomorphically convex, i.e., $(X_i)_{i=1}^m$ satisfies condition (ii) of Proposition [2.5](#page-4-0) as well.

Finally, if $Z \subset \mathfrak{M}(H^{\infty}(S'))$ is a hull, then $Z_i := s_i^{-1}(Z)$ is a hull for $H^{\infty}(\mathbb{D} \times F)$. Hence, every function $g \in C(Z, \mathbb{C}^*)$ has an extension $\tilde{g} \in C(\mathfrak{M}(H^{\infty}(S')), \mathbb{C}^*)$, by Pro-position [2.5.](#page-4-0) But this is equivalent to the fact that $H^{\infty}(S')$ is a B-ring, see Section 2.2 above.

The proof of the theorem is complete.

4. Proofs of Theorems [1.1](#page-1-1) and [1.4](#page-1-3)

Proof of Theorem [1.1](#page-1-1). Without loss of generality, we may assume that S' is a connected unbranched covering of S.

П

Let $f, g \in H^{\infty}(S')$ be such that $|| f ||_{H^{\infty}(S')} \leq 1, ||g||_{H^{\infty}(S')} \leq 1$ and

(4.1)
$$
\inf_{z \in S'} (|f(z)| + |g(z)|) =: \delta > 0.
$$

Due to Theorem [1.2,](#page-1-2) there exists a function $G \in H^{\infty}(S')$ such that the function $f + gG$ is invertible in $H^{\infty}(S')$. By $\mathcal{G}_{f,g,\delta,S'}$ we denote the class of such functions G. We must prove that

$$
(4.2) \qquad C = C(\delta, S) := \sup_{f,g,S'} \inf_{G \in \mathcal{G}_{f,g,\delta,S'}} \max \{ \|G\|_{H^{\infty}(S')}, \|(f+g)^{-1}\|_{H^{\infty}(S')} \}
$$

is finite. (Here the supremum is taken over all functions f, g satisfying the above hypotheses and all connected unbranched coverings S' of S .)

Let $\{S_i'$ $\{f_i\}_{i\in\mathbb{N}}, \{g_i\}_{i\in\mathbb{N}}, f_i, g_i \in H^\infty(S_i'),$ be sequences satisfying assumptions of the theorem such that

(4.3)
$$
C = \lim_{i \to \infty} \inf_{G \in \mathcal{G}_{f_i, g_i, \delta, S'_i}} \max \{ ||G||_{H^{\infty}(S'_i)}, ||(f_i + g_i G)^{-1}||_{H^{\infty}(S'_i)} \}.
$$

The disjoint union $S' := \bigcup_{i \in \mathbb{N}} S'_i$ i_i is clearly an unbranched covering of S and functions $f, g \in H^{\infty}(S')$ defined by the formulas

$$
f|_{S_i'} := f_i, \quad g|_{S_i'} := g_i, \quad i \in \mathbb{N},
$$

are of norms ≤ 1 and satisfy condition [\(4.1\)](#page-7-0) on S'. Then due to Theorem [1.2](#page-1-2) there exists a function $G \in H^{\infty}(S')$ such that the function $f + gG$ is invertible in $H^{\infty}(S')$. We set

$$
G_i := G|_{S_i'}, \quad i \in \mathbb{N} \, .
$$

Then due to (4.3) ,

$$
C \leq \sup_{i \in \mathbb{N}} \max \{ ||G_i||_{H^{\infty}(S'_i)}, ||(f_i + g_i G_i)^{-1}||_{H^{\infty}(S'_i)} \}
$$

= max \{ ||G||_{H^{\infty}(S')}, ||(f + gG)^{-1}||_{H^{\infty}(S')} \}.

This completes the proof of the theorem.

Proof of Theorem [1.4](#page-1-3). Since $H^{\infty}(S')$ is a B-ring (by Theorem [1.2\)](#page-1-2), Lemma 9 and Re-mark 10 of [\[8\]](#page-8-7) imply that each matrix $F \in SL_n(H^{\infty}(S'))$ can be presented as a product of at most $(n - 1)$ $(\frac{3n}{2} + 1)$ elementary matrices. Let us show that if

(4.4) kF k^Mn.H1.S0// M;

then these matrices can be chosen so that their norms are bounded from above by a constant depending only on M , n and S .

As before, we may assume that S' is connected. Let $\mathcal{F}_{M,S',n}$ be the class of matrices $F \in SL_n(H^{\infty}(S'))$ satisfying [\(4.4\)](#page-7-2). For every $F \in \mathcal{F}_{M,S',n}$ by $\Pi_{F,M,S',n}$, we denote the set of all possible products of F by at most $(n - 1)(\frac{3n}{2} + 1)$ elementary matrices. By

П

the above arguments, the set $\Pi_{F,M,S',n}$ is non-void. For each $\pi \in \Pi_{F,M,S',n}$, by $\|\pi\|$ we denote maximum of norms of elementary matrices in π . We have to prove that

(4.5)
$$
C = C(S, M, n) := \sup_{S', F \in \mathcal{F}_{M, S', n}} \inf_{\pi \in \Pi_{F, M, S', n}} ||\pi|| < \infty;
$$

here S' runs over all connected unbranched coverings of S .

Let S_i' i' and $F_i \in \mathcal{F}_{M,S_i',n}, i \in \mathbb{N}$, be such that

(4.6)
$$
C = \lim_{i \to \infty} \inf_{\pi \in \Pi_{F_i, M, S'_i, n}} ||\pi||.
$$

It is clear that the disjoint union $S' := \bigcup_{i \in \mathbb{N}} S'_i$ i is an unbranched covering of S and the matrix $F \in H^{\infty}(S')$ defined by the formula

$$
F|_{S_i'} := F_i, \quad i \in \mathbb{N},
$$

belongs to the class $\mathcal{F}_{M,S',n}$. Then there is $\pi \in \Pi_{F,M,S',n}$. Let π_i be the product obtained by the restriction of elementary matrices in π to S_i' , Then each $\pi_i \in \Pi_{F_i,M,S'_i,n}$ and so, due to [\(4.6\)](#page-8-8),

$$
C \leq \sup_{i \in \mathbb{N}} \|\pi_i\| = \|\pi\| < \infty.
$$

This completes the proof of the theorem.

Acknowledgements. I thank the anonymous referee for useful comments improving the presentation of the paper.

Funding. Research supported in part by NSERC.

References

- [1] Bass, H.: K-theory and stable algebra. *Inst. Hautes Études Sci. Publ. Math.* 22 (1964), 5–60.
- [2] Brudnyi, A.: Topology of maximal ideal space of H^{∞} . *J. Funct. Anal.* **189** (2002), no. 1, 21–52.
- [3] Brudnyi, A.: Projections in the space H^{∞} and the corona theorem for subdomains of coverings of finite bordered Riemann surfaces. *Ark. Mat.* 42 (2004), no. 1, 31–59.
- [4] Brudnyi, A.: Grauert- and Lax–Halmos-type theorems and extension of matrices with entries in H^{∞} . *J. Funct. Anal.* **206** (2004), no. 1, 87–108.
- [5] Brudnyi, A.: Projective freeness of algebras of bounded holomorphic functions on infinitely connected domains. To appear in *Algebra i Analiz* 33 (2021), no. 4.
- [6] Brudnyi, A.: Dense stable rank and Runge-type approximation theorem for H^{∞} maps. To appear in *J. Austral. Math. Soc.*, doi: [10.1017/S1446788721000045,](https://doi.org/10.1017/S1446788721000045) 2021.
- [7] Corach, G. and Suárez, F. D.: Extension problems and stable rank in commutative Banach algebras. *Topology Appl.* 21 (1985), no. 1, 1–8.
- [8] Dennis, R. K. and Vaserstein, L. N.: On a question of M. Newman on the number of commutators. *J. Algebra* 118 (1988), no. 1, 150–161.

 \blacksquare

- [9] Gamelin, T. W.: *Uniform algebras*. Prentice–Hall, Englewood Cliffs, NJ, 1969.
- [10] Tolokonnikov, V.: Stable rank of H^{∞} in multiply connected domains. *Proc. Amer. Math. Soc.* 123 (1995), no. 10, 3151–3156.
- [11] Treil, S.: The stable rank of H^{∞} equals 1. *J. Funct. Anal.* **109** (1992), no. 1, 130–154.
- [12] Vaserstein, L. N.: Stable range of rings and dimension of topological spaces. *Functional Anal. Appl.* 5 (1971), 102–110.
- [13] Vaserstein, L. N.: Bass's first stable range condition. *J. Pure Appl. Algebra* 34 (1984), no. 2-3, 319–330.
- [14] Whitehead, J. H. C.: The immersion of an open 3-manifold in Euclidean 3-space. *Proc. London Math. Soc. (3)* 11 (1961), 81–90.

Received October 6, 2020. Published online June 29, 2021.

Alexander Brudnyi

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada; abrudnyi@ucalgary.ca