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Partial Gaussian sums and the Pólya–Vinogradov
inequality for primitive characters

Matteo Bordignon

Abstract. In this paper we obtain a new fully explicit constant for the Pólya–Vino-
gradov inequality for primitive characters. Given a primitive character � modulo q,
we prove the following upper bound:ˇ̌̌ X

1�n�N

�.n/
ˇ̌̌
� c
p
q log q;

where c D 3=.4�2/C oq.1/ for even characters and c D 3=.8�/C oq.1/ for odd
characters, with explicit oq.1/ terms. This improves a result of Frolenkov and Sound-
ararajan for large q. We proceed, following Hildebrand, to obtain the explicit ver-
sion of a result by Montgomery–Vaughan on partial Gaussian sums and an explicit
Burgess-like result on convoluted Dirichlet characters.

1. Introduction

It is of high interest to study the upper bound of the following quantity:

S.N; �/ WD
ˇ̌̌ NX
nD1

�.n/
ˇ̌̌
;

with N 2 N and � a non-principal Dirichlet character modulo q. The famous Pólya–
Vinogradov inequality tells us that

S.N; �/�
p
q log q;

and aside for the implied constant, this is the best known uniform result. Granville and
Soundararajan in [9] improved the result for characters of odd fixed order, and further
improvements were obtained by Goldmakher in [8]. The focus is now on the implied
constant of the uniform result, with a distinction between asymptotically explicit and
completely explicit results. The best asymptotic constant can be found in the papers by
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Hildebrand [12] and Granville and Soundararajan [9]. The explicit results have generally
worse leading terms, the exception is for primitive characters of square-free moduli for
which the author and Kerr [2] proved a result that is comparable with the asymptotic one.
There have been many completely explicit results. We will be focussing on primitive char-
acters, as these results can be easily extended to all non-principal characters. All the late
results have the following shape:

(1.1) jS.N; �/j �

´
1
�2
p
q log q C ı1

p
q log log q C ı2

p
q for �.�1/ D 1;

1
2�

p
q log q C ı3

p
q log log q C ı4

p
q for �.�1/ D �1;

with the second constants improving as follows:
• ı1 D 2=�

2; ı2 D 3=4; ı3 D 1=� and ı4 D 1 by Pomerance [16],
• Frolenkov [6] proves that for certain values of ı2 and ı4 it is possible to take ı1 D
ı3 D 0,

• Frolenkov and Soundararajan [7] further improve the result showing that it is possible
to take ı2 D 1=2, for q � 1200, and ı4 D 1, for q � 40.
The improvements above are on the constants of the remainder terms. Our aim is

to improve on the leading constant using Hildebrand’s approach [11], that relies on two
results: an upper bound on partial Gaussian sums due to Montgomery and Vaughan [15]
and the version of the Burgess bound for all non-principal characters from [4].

Our main result is the following theorem, that follows by computations from The-
orem 1.5, see Section 5 for more details.

Theorem 1.1. With � a primitive Dirichlet character modulo q, assuming q � q0 and
with q0 and h1;2.q0; "/ from Tables 1 and 2, we have

jS.N; �/j �

´
2
�2
.3
8
C "/
p
q log q C h1.q0; "/

p
q if �.�1/ D 1;

1
�
.3
8
C "/
p
q log q C h2.q0; "/

p
q if �.�1/ D �1:

We first choose " small, that forces us to take q0 large.
We then choose " near 1=8 to minimize q0.

" log log q0 h1.q0; "/ h2.q0; "/

1
10 22 1660 3315
1
100 209 2397 4789
1

1000 2081 2490 4975
1

10000 20796 2499 4994

Table 1. Small ".

Table 1 and the first two rows of Table 2 improve [7] for the ranges of q given in the
same tables, while the last two rows of Table 2 improve [7] in the ranges of q given in
Table 3 of Section 5. Note that we can obtain Theorem 1.1 for different q0 and ", by The-
orem 1.5. In Table 3 of Section 5, we also give a version of the above result for characters
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" log log q0 h1.q0; "/ h2.q0; "/

1
8 .1 �

1
10 / 19.7 1579 3153

1
8 .1 �

1
100 / 17.99 1510 3015

1
8 .1 �

1
1000 / 17.84 1503 3001

1
8 .1 �

1
10000 / 17.83 1502 3000

Table 2. Large ".

with moduli with the number of divisors d.q/ fixed, an interesting case is certainly when
d.q/ D 2 and the modulus is thus prime.

We start proving the following explicit version of Corollary 1 in [15]. Let B � 1 be a
constant, and let F be the class of all multiplicative functions f WZ! C with

(1.2) jf .n/j � B:

With f 2 F , ˛ real and e.˛/ D exp.2�i˛/, write

S.˛/ D

NX
nD1

f .n/e.n˛/:

Corollary 1.2. Suppose that j˛ � a=qj � q�2, .a; q/ D 1, E � 4 and e3=E � R � q �
N=R. Then

S.˛/ � c1.B;E;R/
N

logN
C c2.B;E;R/

N log3=2.ER/
p
R

;

with the functions c1 and c2 defined in Theorem 1.5.

Note that condition (1.2) simplifies computations compared to
PN
nD1 jf .n/j � B

2N

found in [15].
Proving an explicit version of the Burgess bound in [4] is difficult, but the following

result, that is an explicit Burgess-like result on convoluted Dirichlet characters, is enough
for our purposes.

Theorem 1.3. Let q and k be integers, with q > max¹.100k/4; exp.exp.8//º. Let � be a
primitive character mod q and let  be any character mod k. For any integers M and
N < q we haveˇ̌̌ X

M<n�MCN

 .n/�.n/
ˇ̌̌
� 5kd.q/3=2N 1=2q3=16 .log q log log q/1=2;

with d.�/ the divisor counting function.

If we restrict to q prime, we should be able to improve the above result, but as we
are mainly interested in a result for any q, we will not further exploit this possibility.
Related explicit results can be found in [2], [5] and [22]. Using the above result, we are
able to relax the conditions on ˛ that appear in Corollary 1.2, thus obtaining the following
fundamental result.
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Lemma 1.4. Take any q > exp.exp.8//, x such that q3=8C" � x � q and, fixed a real
 � 2, for any q such that 100.log q/ � q1=4 and E � 4, we have, uniformly for all
primitive characters � modulo q as above,ˇ̌̌X

n�x

�.n/e.˛n/
ˇ̌̌
� c.1; q; ; "/

x

log q
;

with the function c defined in Theorem 1.5.

The problem is now reduced to a computational one: we need to minimize ", q and
c.E; q; ; "/. We now obtain the fundamental Theorem 1.5, see Section 5 for more details,
which give Theorem 1.1 by computations.

Theorem 1.5. Take any q � exp.exp.8//. With � a primitive Dirichlet character of mod-
ulo q, fixed  , if q is such that 100.log q/ < q1=4, with 4 � E � 32 and C the Euler–
Mascheroni constant, we have the following result:

jS.N; �/j �

8̂̂<̂
:̂
2

�2

�3
8
C "

�
p
q log q C h1.E; q; ; "/

p
q; if �.�1/ D 1;

1

�

�3
8
C "

�
p
q log q C h2.E; q; ; "/

p
q; if �.�1/ D �1;

with

h1.E; q; ; "/ D
�2n.q; "/

�2
C j

�
; h2.E; q; ; "/ D

�n.q; "/
�
C j

�
;

where

j D j.E; q; ; "/ D
c.�/

�

� 1

log q
C
5

8
� "

�
c.E; q; ; "/C 1C

.e� � 1 � �/

2�
;

c.�/ D

´
1 if �.�1/ D 1;

2 if �.�1/ D �1;
n.q; "/ D C C log 2C

3

q3=8C"
;

c.E; q; ; "/ D max
°c1.1; E; log q/

3=8C "
C
c2.1; E; log q; q/.log.E log q//3=2

.log q/=2�1
;

15.log q/2C1 .1C 4�.log q/ /
.log q log log q/1=2

q
"=2�

3 log2
2 log logq

�
1C 1

log logqC
4:7626

.log logq/2

� ±;
and where

c1.B;E;R/ D .1C2�/b1.B;E/C B4�
logR
R2

;

c2.B;E;R; q/ D .1C2�/
�
b2.B;E/

�
eC log logRC 2:51

log logR

�1=2
.log.ER//3=2

C b3.B;E;R; q/
�
;
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with

b1.B;E/ D B C .10:93C a1.11:8
p
E C 3:46/C 19:9a3 C a4.12:75

p
EC5:28//B2;

b2.B;E/ D a2B
2

p
2E C 1

log 2
;

b3.B;E;R; q/ D B
2
�7:63
p
E

log.4ER/
.log.ER//3=2

�
1C

log.64=E/C 1
log q

�
C

1:48a6p
log.ER/

C a51:48

s
log.ER=4/

log.ER/
C

a5

log 2
log.R/

.log.ER//3=2
C

a6

log 2
1

.log.ER//3=2

�
;

a1 D 1:59B
2; a2 D

�2

6
B2z; a3 D a5 D 0:95B

2z;

a4 D B
2z; a6 D 1:31B

2z; z D 8
p
2
Y
p>2

s
1C

1

p3 � p2 � 2p
�

We will refer to the above defined functions through the paper. The outline of this
article is as follows. In Section 2 we prove Corollary 1.2, and in Section 3 we prove
Theorem 1.3. We proceed using these two results in Section 4 to prove Lemma 1.4 and
Theorem 1.5. We conclude proving Theorem 1.1 in Section 5.

2. An explicit Montgomery–Vaughan result

We aim to prove the next explicit result, following [15].

Theorem 2.1. Suppose that 4 � q � N , E � 4 and .a; q/ D 1. Then

S.a=q/ � b1.B;E/
N

logN
C b2.B;E/

N

'.q/1=2
C b3.B;E;N=q; q/

p
Nq log3=2EN=q;

uniformly for f 2 F .

We will deduce Corollary 1.2 from Theorem 2.1.
Define �.xI q; a/ as the numbers of primes up to x that are � a .mod q/. An essen-

tial theorem to make the Montgomery–Vaughan result explicit is the following Brun–
Titchmarsh inequality (see Theorem 3.7 in [14]).

Theorem 2.2. Let a and q be coprime integers and let x and y be real numbers with
1 � q < y � x. Then we have

�.x C yI q; a/ � �.xI q; a/ �
2y

'.q/ log y
q

;

for all q � x and where '.�/ is Euler’s totient function.

We introduce a precise enough result on primes from [19].
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Theorem 2.3. For x > 1, we have

�.x/ < 1:25506
x

log x
�

We now introduce a result on the logarithmic integral.

Lemma 2.4. For x > 2, we have

Li.x/ WD
Z x

2

1

log t
dt � 1:37

x

log x
�

Proof. By Lemma 5.9 in [1], we have that

Li.x/ D
Z x

2

1

log t
dt � 1:2

x

log x
for x � 1865:

The result then follows computing Li.x/ logx
x

for 2 < x < 1865.

Note that for our applications, the above results are sharp enough. We now introduce
a result by Siebert [21].

Theorem 2.5. Let a ¤ 0, b ¤ 0 be integers with .a; b/ D 1, 2 − a; b. Then we have, for
x > 1,

(2.1)
X

p�x; apCb2P

1 � 16
Y
p>2

�
1 �

1

p2

� Y
pjab; p>2

p � 1

p � 2

x

log2 x
;

where P denotes the set of all prime numbers.

Note that an improvement on the leading constant in (2.1) would lead to a significant
improvement in the final result.

We now introduce some elementary results. The following upper bounds are obtained
by splitting the sum in two parts, estimating the first with computer aid and the second by
integration. The notation�AD��� means that the upper bound is evaluated choosingAD � � �.

Lemma 2.6. We have

1X
1

1

2n=2
D

1
p
2 � 1

;

blog2N cX
0

2n=2 �

p
2N � 1
p
2 � 1

;

1X
1

p
n

2n=2
�

AX
1

p
n

2n=2
C
2.log 2/AC 4
2A=2.log 2/2

�AD30 4:15;

1X
0

p
nC 1

2n=2
�

AX
0

p
nC 1

2n=2
C
2 log.2/.A/C 4
2A=2.log 2/2

�AD30 5:87;

1X
0

p
nC log2 e
2n=2

�

AX
0

p
nC log2 e
2n=2

C
2 log.2/.A/C 4
2A=2.log 2/2

�AD35 6:34;
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1X
1

logn
n2
�

AX
1

logn
n2
C

logAC 1
A

�AD30 0:94;

X
p�2

.logp/2

p2
�

X
2�p�A

.logp/2

p2
C
.logA/2 C 2 logAC 2

A
�AD15000 0:75;

X
p�2

logp
.p � 1/2

�

X
2�p�A

logp
.p � 1/2

C
log.A/
A � 1

�

�A � 1
A

�
�AD130 1:27;

X
p�2

logp
p.p � 1/

�

X
2�p�A

logp
p.p � 1/

C log
log.A/
A � 1

� log
�A � 1

A

�
�AD130 0:8;

Y
p>2

�
1C

1

p3 � p2 � 2p

�
� e

P
3�p�A

1

p3�p2�2p
Clog

�
A1=2

.AC1/1=3.A�2/1=6

�
�AD500 e

0:1;

X
p;j�2

j logp
pj

�

X
2�p;j�A

j logp
pj

C

X
p�A

A logp C 1
pA logp

C

X
2�j�A

j..j � 1/ logAC 1/
.j � 1/2Aj�1

C
AC 1

.A � 1/AA�1
�AD2000 1:99:

Note that the above bounds in A are meant for A not ‘too small’.

2.1. Reduction to bilinear forms

Note in the following that in the applications we will take B D 1.

Lemma 2.7. Let f be a multiplicative function satisfying (1.2) and let g be any real
valued function. Then for any integer N we haveˇ̌̌ X
1�n�N

f .n/e.g.n//
ˇ̌̌
� .BC3:59B2/

N

logN
C

1

logN

ˇ̌̌ X
1�np�N

f .n/f .p/.logp/e.g.np//
ˇ̌̌
:

Proof. We first note that, from (1.2),ˇ̌̌ X
1�n�N

f .n/ log.N=n/e.g.n//
ˇ̌̌
� BN;

and hence

(2.2)
ˇ̌̌ X
1�n�N

f .n/e.g.n//
ˇ̌̌
�

BN

logN
C

1

logN

ˇ̌̌ X
1�n�N

f .n/.logn/e.g.n//
ˇ̌̌
:

Since logn D
P
mjnƒ.m/, we have

(2.3)
X

1�n�N

f .n/.logn/e.g.n// D
X

1�mn�N

f .mn/ƒ.m/e.g.mn//:
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Our next step is to replace f .mn/ with f .m/f .n/, and thus we bound

(2.4) T D
X
nm�N

ƒ.m/ jf .mn/ � f .m/f .n/j � †1 C†2;

where
†1 D

X
p;k�1

X
n�Np�k

pjn

.logp/ jf .pkn/j;

and
†2 D

X
p;k�1

.logp/ jf .pk/j
X
j�1

X
m�Np�k�j

jf .pjm/j:

Collecting together those terms in †1 such that pkn is exactly divisible by pj and by
partial summation, using (1.2) and Lemma 2.6, we obtain

†1 �
X
p;j�2

.logp/ jf .pj /j.j � 1/
X

m�Np�j

jf .m/j

� B2N
X
p;j�2

jp�j logp � 1:99B2N:

By (1.2),

†2 � B
2N

X
p;j;k�1

p�j�k logp D B2N
X
p�2

logp
�X
j�1

p�j
�2
;

thus
†2 � B

2N
X
p�2

logp
.p � 1/2

and, using Lemma 2.6,
†2 � 0:8B

2N:

Thus
T � 2:79B2N;

and hence by (2.2), (2.3) and (2.4)ˇ̌̌ X
1�n�N

f .n/e.g.n//
ˇ̌̌
� .B C 2:79B2/

N

logN

C
1

logN

ˇ̌̌ X
1�nm�N

f .n/f .m/ƒ.m/e.g.mn//
ˇ̌̌
:(2.5)

Those pairs m, n in which m is of the form pk with k � 2 contribute an amount to the
sum which is bounded by X

p;k�2

jf .pk/j.logp/
X

n�Np�k

jf .n/j:
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By (1.2), this is

� B2N
X
p;k�2

p�k logp D B2N
X
p�2

logp
X
k�2

p�k � B2N
X
p�2

logp
p.p � 1/

�

Now, using Lemma (2.6), we have thatX
p;k�2

jf .pk/j.logp/
X

n�Np�k

jf .n/j � 0:8B2N;

and hence by (2.5) the proof is completed.

2.2. Partition of hyperbola into rectangles

We now partition the summation over the domain 1 � pn � N occurring in Lemma 2.7
into rectangles and their complements. Assume N � q and let

(2.6) Ji D min
®
i C 1; blog2N c � i C 1;

�
1
2

log2.EN=q/
˘¯
;

with 4 � E � 32. Define

Ri D .0; 2i � � .N 2�i�1; N 2�i � .0 � i � log2N/:

In the remaining regions, we place additional rectangles Rijk , for j D 1; 2; : : : ;Ji and for
each j , 2j�1 < k � 2j , defined as

(2.7) Rijk D
�
2iCj =k; 2iCjC1=.2k � 1/

�
�
�
.k � 1/N 2�i�j ; .2k � 1/N 2�i�j�1

�
:

We do this for j D 1; 2; : : : ; Ji . The choice of Ji ensures that each Rijk is a rectangle of
the form .P 0; P 00� � .N 0; N 00�, with

P 00 � P 0 �
1

4
; N 00 �N 0 �

1

4
; .P 00 � P 0/.N 00 �N 0/� q:

Let E denote the set of points .p; n/ with pn � N which do not lie in any Ri or Rijk .
Writing Ri D Pi � Ni , we define Hi D ¹.p; n/ 2 E W n 2 Niº. We then partition the Hi

according to the value of Ji . It is easy to see that

E D E1 [ E2 [ E3;

with

E1 WD
[

i W JiDiC1

Hi ;

E2 WD
[

i W JiDblog2N c�iC1

Hi ;

E3 WD
[

i W JiDb 12 log2.EN=q/c

Hi :
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See the following figure for a graphic example of the partition.

Figure 1. Example of the partition.

Lemma 2.8. Take .a; q/ D 1. The following estimate for the points .p; n/ in E holds:X
E

f .p/f .n/e.pna=q/ logp

� 7:34B2N C B2
7:63
p
E
.Nq/1=2.log.4EN=q//1=2.1C log.64=E/C log q/:(2.8)

Proof. Consider first E1. For a given p, say 2i < p � 2iC1, the number of n for which
.p; n/ 2 E1 is

�

l N

2iCJiC1

m
D

l N

22.iC1/

m
�

lN
p2

m
�
4N

p2
;

for p < 2
p
N , where in the last step we used that by Ji D i C 1 we have N > 22i , that

gives p < 2
p
N . Thus, for

p
N � p < 2

p
N we have dN=p2e < 1 � 4Np�2, and for

p �
p
N we have dN=p2e � 1 � N=p2 C 1 � 2Np�2. Similarly, for a given n, we want

to count primes p for which .p;n/ 2E1. Taken 2Ji�1 < k � 2Ji and using that Ji D i C 1,
we can bound such number as follows:

�

l 2iCJi

k.2k � 1/

m
�

l 2iC1

.2Ji � 1/

m
D

l 2Ji

k.2k � 1/

m
� 2:

Hence, by Cauchy’s inequality,X
E1

jf .p/f .n/j logp �
�X

E1

jf .n/j2
�1=2�X

E1

B2.logp/2
�1=2

� B
�
2
X
n�N

jf .n/j2
�1=2� X

p�2
p
N

4Np�2.logp/2
�1=2

;

which, using Lemma 2.6, is bounded above by 2:45B2N .
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Consider E2. For each pair .p; n/ 2 E2, we see that n � .2N /1=2. This follows from
the fact that, taken 2i < p � 2iCi , we have

n �
N

p
�
N

2i
;

and that Ji D blog2 N c � i C 1 implies N � 22iC1. Furthermore, for a given n, the p
with .p; n/ 2 E2 all lie in an interval of length 4Nn�2. This follows from the fact that,
taken 2Ji�1 < k � 2Ji and N=2iC1 < n � N=2i , such p lie in an interval of length

�
2iCJi

k.2k � 1/
�

2iC1

2Ji � 1
�
2iC1

N

�
1C

1

2Ji � 1

�
�
4N

n2
;

where we used that Ji D blog2N c � i C 1. We thus have that by Theorem 2.2, there are

� 8
N

n2 log 4Nn�2

such p. For a given p, there is at most one n for which .p; n/ 2 E2. This follows from the
fact that such n is in an interval, with one of the extremities open, of size � N

2iCJC1
� 1;

where we used that Ji D blog2N c � i C 1. We thus have, by partial summation,X
n�
p
2N

jf .n/j2
N

n2 log 4Nn�2
� B2

� X
n�
p
N

N

n2 log 4Nn�2
C
.
p
2 � 1/

p
N

log 2

�
� B2N

� 1
p
N log 4

�

Z pN
1

2

x2 log 4Nx�2

� 1

log 4Nx�2
� 1

�
dx C

.
p
2 � 1/

p
N log 2

�
� NB2

� 1

log 4N
C

Li.2
p
N/

4
p
N
C
.
p
2 � 1/

p
N log 2

�
;

which, by Lemma 2.4, is bounded above by 2:37 B
2N

logN and

X
p�N

log2 p � �.N/ log2N � 2
Z N

2

�.x/
2 log x
x

dx � 1:26N logN:

ThusX
E2

jf .p/f .n/j logp �
�X

E2

jf .n/j2
�1=2�X

E2

B2.logp/2
�1=2

� B
� X
n�
p
2N

jf .n/j2 8
N

n2 log 4Nn�2

�1=2� X
p�N

.logp/2
�1=2
� 4:89B2N:

Consider E3. Reasoning similarly to the caseE2, we have the following. For each n, the p
with .p;n/2E3 all lie in an interval of length� 8p

E
.Nq/1=2n�1, so that, by Theorem 2.2,

there are

�
16
p
E

p
Nq

n log 64
E
Nqn�2
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such p. When .p; n/ 2 E3, using that Ji D b12 log2.EN=q/c and 2i < p � 2iC1, we

have
p
E
4
.N=q/1=2 � p � 8p

E
.Nq/1=2. From this and N=2iC1 � n � N=p follows that

p
E
16
.N=q/1=2 � n� 4p

E
.Nq/1=2. Thus the following two sums on p and nwill be restric-

ted to these intervals. Using Theorem 2.3, we haveX
p

logp
p
� 1:26 .1C log.32=E/C log q/

and X
n

jf .n/2j
1

n
� B2 .1C log.64=E/C log q/:

Now, reasoning similarly to the case E1, we have that for each p the number of n for
which .p; n/ 2 E3 is � 8p

E
.Nq/1=2p�1. Therefore,

X
E3

jf .p/f .n/j logp �
�X

E3

jf .n/j2 logN=n
�1=2�

B2
X
E3

logp
�1=2

� B
p
Nq

� 16
p
E

X
n

jf .n/j2
logN=n

n log 64
E
Nqn�2

�1=2� 8
p
E

X
p

logp
p

�1=2
;

and as the above ratio of the logarithms is less than 1
4 log2 log.4EN=q/,X

E3

jf .p/f .n/j logp � B2.Nq/1=2
7:63
p
E
.log.4EN=q//1=2 .1C log.64=E/C log q/:

Combining the above estimates gives (2.8).

2.3. The fundamental estimate

Here we will develop a tool to bound the bilinear forms onto the rectangles defined in the
previous section; in doing this, we follow [15], Section 4.

Lemma 2.9. Let M;X; Y 2 R�1, Q 2 R>1, K 2 N, and for 1 � k � K, let

R.k/ D L.k/ �M.k/;

be a rectangle satisfying

L.k/ � .0;Q�; M.k/ � .0;M�;

and
L.k/ D .Q0.k/;Q00.k/�; M.k/ D .M 0.k/;M 00.k/�;

for some Q0.k/;Q00.k/ and M 0.k/;M 00.k/ satisfying

Q00.k/ �Q0.k/ � X; M 00.k/ �M 0.k/ � Y; M 00.k/ � 2M 0.k/:
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Suppose that L.k/ and similarly M.k/ are disjoint for each 1 � k � K. For any func-
tion f .n/ satisfying (1.2), define

I D

KX
kD1

X
.p;n/2R.k/

f .p/f .n/e.pna=q/ logp:

Then, if .a; q/ D 1 and q � XY , we have

I � B2
�
2:52MQY logQC 128

Y
p>2

�
1C

1

p3 � p2 � 2p

�
MQ

�

��4
62

XY

'.q/
C 0:89X C Y log.eX/C 0:89q log.eXY=q/C

�2

12
q
��1=2

:(2.9)

Proof. Let R D L �M be one of the rectangles R.k/. By Cauchy’s inequality,ˇ̌̌ X
.p;n/2R

f .p/f .n/e.pna=q/ logp
ˇ̌̌2

�

� X
n2M

jf .n/j2
�� X

n2M

ˇ̌̌ X
p2L

f .p/e.pna=q/ logp
ˇ̌̌2�
:(2.10)

We now introduce the smoothing factor

w.n/ D max¹0; 2 � j2n � 2M 0 � Y jY �1º;

such that w.n/ � 1 for n 2M. Note that the above is a variation of the Fejér kernel; we
choose it following Montgomery and Vaughan. Aiming to improve the result, it would
surely be interesting to chose other kernels. We also introduce g.n/ D max¹0; 1 � jnjº
and note that for the Fourier transform of g we have

jbg.t/j D � sin.�t/
�t

�2
:

This allows to compute the Fourier transform of w.n/e.˛n/, with ˛ 2 R, as

(2.11) j4w.n/e.˛n/.t/j D 2Y
� sin.�Y.˛ � t //

�Y.˛ � t /

�2
:

With k � k the distance to the closest integer, it is also easy to see that

(2.12)
X
n2Z

1

.˛ � n/2
�

2

k˛k2
C
�2

3
�

Thus the second factor on the right of (2.10) is bounded above byX
n

w.n/
ˇ̌̌ X
p2L

f .p/e.pna=q/ logp
ˇ̌̌2

D

X
p;p02L

f .p/ f .p0/.logp/.logp0/
X
n

w.n/e..p � p0/na=q/I
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using the Poisson formula, (2.11), (2.12) and that k˛k � 1=2, we obtain

� B2.logQ/2
X

p;p02L

min
°
2Y;

4=�2 C 1=6

Y k .p�p
0/a

q
k2

±
:

By Cauchy’s inequality, and Theorem 2.3,

I � B.logQ/
�X

k

X
n2M

jf .n/j2
�1=2�X

k

X
p;p02L

min
°
2Y;

0:58

Y k .p�p
0/a

q
k2

±�1=2
� B2.logQ/

p
M
�
2:52Y

Q

logQ
C

X
0<h�X

X
p�Q

pChDp0

min
°
2Y;

0:58

Y kha
q
k2

±�1=2
:

Now from Theorem 2.5 we obtain

(2.13) I � B2
�
2:52MQY logQC 16

Y
p>2

�
1 �

1

p2

�
MQV

�1=2
;

where
V D

X
0<h�X

Y
pjh;p>2

p � 1

p � 2
min

°
2Y;

0:58

Y kha
q
k2

±
:

Hence we need to bound V . Now we haveY
pjh;p>2

p � 1

p � 2
D

Y
pjh;p>2

�
1C

2

p2 � p � 2

� Y
pjh;p>2

�
1C

1

p

�
�

Y
p>2

�
1C

2

p2 � p � 2

�X
mjh

1

m
;

so that

V �
Y
p>2

�
1C

2

p2 � p � 2

�� X
m�X

1

m

X
n�X=m

min
°
2Y;

0:58

Y kmna
q
k2

±�
:

The innermost sum is of the form

W D 0:58
1

Y

X
n�Z

min
°
.0:58/�12Y 2;

1

k
bn
r
k2

±
with r D q=.m; q/ and .b; r/ D 1. Using Lemma 14 in [13], this is seen to satisfy

W � min
°
2YZ; 4

p
2.0:58/1=2 .Z C r/

�� 2

0:58

�1=2
Y C r

�
r�1

±
:

Therefore, byX
m�X

.m;q/XY�mq

2XY

m2
C

X
m�X

.m;q/XY>mq

1

m

�8XY
mq

.m; q/C 4:31
X

m
C 8Y C 4:31

q

.m; q/

�

�

X
rjq

X
s>XY

q

2XY

r2s2
C

X
rjq

X
s

8XY

rs2q
C
4:31�2

6
X C 8Y log.eX/C

X
rjq

X
s<XY

q

4:31q

r2s
;
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we obtain

V � 8
Y
p>2

�
1C

2

p2 � p � 2

���4
62
XY '.q/�1 C 0:89X

C Y log.eX/C 0:54
�2

6
q log.eXY=q//C

�2

12
q
�
:

Thus from the above bound, Lemma 2.6 and (2.13), we obtain the desired result.

Note that is easy to see that (2.9) holds also for Q 2 R�1.

2.4. Completion of the proof of Theorem 2.1

Note that in the following argument we will extensively use Lemma 2.6 and refer to the
notation of Theorem 2.1. We will also use that given ai � 0, we have

(2.14)
�X

i

ai

�1=2
�

X
i

a
1=2
i :

We first apply (2.9) to the rectangle Ri and then (2.14). We take

K D 1; X D Q D 2i and Y DM D N 2�i :

Thus

1

B2

ˇ̌̌ X
.p;n/2Ri

f .p/f .n/e.pna=q/ log q
ˇ̌̌
�
p

log 2a1N

r
i

2i
C a2

Np
'.q/

C a3
p

N2i C
p

log 2 a4N

r
i C log2 e

2i
C a5

p
Nq log.N=q/C a6

p
qN :

(2.15)

Next, for each pair i , j with 1 � j � Ji , we apply (2.9) to the family of 2j�1 rectangles
Rijk with 2j�1 < k � 2j . By (2.7), we may take

K D 2j�1; M D N 2�i ; Q D 2iC1; X D 2i�jC1 and Y D
E

2
N 2�i�j :

Thus, by (2.6), XY � q, so that the conditions for (2.9) to hold are satisfied. Hence by
(2.9) and (2.14),

1

B2

ˇ̌̌ X
2j�1<k�2j

X
.p;n/2Rijk

f .p/f .n/e.pna=q/ log q
ˇ̌̌

�
p
E log 2;

�
a1

r
i C 1

2iCj
C a4

r
i C log2 e
2iCj

�
N

C
p
2Ea2

1

2j
Np
'.q/

C a3 2
p

2i�j
p
N C a5

s
2Nq log

�EN
4q

v
�
C a6

p
2Nq:
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By (2.6), Ji � 1
2

log2.EN=q/. Hence, summing over those j with 1 � j � Ji we obtain

1

B2

ˇ̌̌ X
1�j�Ji

X
2j�1<k�2j

X
.p;n/2Rijk

f .p/f .n/e.pna=q/ log q
ˇ̌̌

�
p
E log 2

1
p
2 � 1

�
a1

r
i C 1

2i
C a4

r
i C log2 e

2i

�
N C

p
2Ea2

Np
'.q/

C
2

p
2 � 1

a3
p

2i
p
N C

p
2

2

�
a5

s
Nq log

�EN
4q

�
C a6

p
Nq

�
log2.EN=q/:

Therefore, by (2.15), summing over i with 0 � i � log2N , we can obtain

1

B2

ˇ̌̌̌ X
pn�N
.p;n/62E

f .p/f .n/e.pna=q/ log q
ˇ̌̌̌

�

�
a1.11:8

p
EC3:46/C 19:9a3 C a4.12:75

p
E C 5:28/

�
NCa2

p
E2C 1

log 2
N logN
'.q/1=2

C

� a5
p
2 log 2

s
log.EN=4q/
log.EN=q/

C
a6

p
2 log 2

1p
log.EN=q/

C
a5 log.N=q/

.log.EN=q//3=2

C
a6

.log.EN=q//3=2

�
�
.Nq/1=2

log 2
.log.EN=q//3=2 logN:

This with (2.8) and Lemma 2.7 gives Theorem 2.1.

2.5. Proof of Corollary 1.2

Let S.˛; u/ D
P
n�u f .n/e.n˛/. Then, with S.˛/ WD S.˛;N /, we have

S.˛/ D e..˛ � ˇ/N / S.ˇ;N / � 2�i.˛ � ˇ/

Z N

1

S.ˇ; u/e..˛ � ˇ/u/ du

Suppose that ˇ D b=r with .b; r/ D 1 and r � N . Then, on using that jS.˛; u/j � Br
when u � r and Theorem 2.1 when u > r , we obtain

jS.˛/j �
�
b1.B;E/

N

logN
C
b2.B;E/Np

'.r/
C b3.B;E;N=r//

p
rN .log.EN=r//3=2

�
� .1C 2�.N � r/j˛ � b=r j/C Br22�j˛ � b=r j:(2.16)

Here we use, from Theorem 15 in [19], that for n � 3,

'.n/ >
n

eC log lognC 2:51
log logn

;

with C the Euler–Mascheroni constant.
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If q > N 1=2, then we take b D a and r D q, which gives

S.˛/ � .1C 2�/b1.B;E/
N

logN
C B2� C .1C 2�/

�

�
b2.B;E/

.eC log logRC 2:51
log logR /

1=2

.log.ER//3=2
C b3.B;E;R/

� .logER/3=2
p
R

N:

If q � N 1=2, then by Dirichlet’s theorem there exist b, r such that .b; r/ D 1, r � 2N=q
and j ˛ � b=r j� q=.2rN /. Thus, either r D q or 1 � jar � bqj D rqj.˛ � b=r/� .˛ �
a=q/j � q2=.2N /C r=q � 1=2C r=q, thus in either case r � q=2. Therefore j˛ � b=r j �
N�1 and consequently, by (2.16), Corollary 1.2 follows once more.

3. Explicit Burgess bound for composite moduli

We now prove Theorem 1.3.
The proof of the following is the same as that of Lemma 2.1 in [22], which deals with

the case q D p prime.

Lemma 3.1. For integers q;M;N;U satisfying

N < q and 28 � U �
N

12
;

let Iq.N;U / count the number of solutions to the congruence

n1u1 � n2u2 .mod q/; M � n1; n2 �M CN; 1 � u1; u2 � U; .u1u2; q/ D 1:

We have
Iq.N;U / � 2UN

�NU
q
C log.1:85U /

�
:

It is useful to observe that the proof of Lemma 2.1 in [22] gives the above result as we
added the condition .u1u2; q/ D 1. From a simple application of Eratostene’s sieve, we
obtain the following result.

Lemma 3.2. Given two integers U and q, we haveX
1�u�U
.u;q/D1

1 �
'.q/

q
U � 2�.q/;

where �.�/ counts the number of prime divisors.

Using an idea of Burgess [3], with an improvement of Heath-Brown [10], we have the
following.

Lemma 3.3. Let q; k; V be integers with V < q. For any primitive �.mod q/, we have
qX
�D1

ˇ̌̌ X
v�V

�.�C kv/
ˇ̌̌4
� 16qk2V 2 C 4q1=2k4V 4d.q/6;

where d.�/ is the divisor counting function.
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Proof. Let

S D

qX
�D1

ˇ̌̌ X
v�V

�.�C kv/
ˇ̌̌4
:

Expanding the fourth power and interchanging summation, we have

S �
X

1�m1;:::;m4�kV

ˇ̌̌ qX
�D1

�
� .�Cm1/.�Cm2/
.�Cm3/.�Cm4/

�ˇ̌̌
:

Define
Aj D

Y
i 6Dj

.mj �mi / and Kj D .q; Aj /:

Using Lemma 7 in [3], and arguing as in Burgess [3], Lemma 8, see (10), (11) and (12),
we obtain

(3.1) S � 16qk2V 2 C 8�.q/q1=2
4X

jD1

0X
m1;:::;m4

Kj ;

where
P0 is the sum overallm1; : : : ;m4 � kV , which contains at least 3 distinct elements.

Heath-Brown in [10], Lemma 2, proves that

(3.2)
4X

jD1

0X
m1;��� ;m4�m

Kj � 4m
4d.q/3:

Applying (3.2) to (3.1) and using that 8�.q/ � d.q/3, we thus obtain

S � 16qk2V 2 C 4q1=2k4V 4d.q/6;

which completes the proof.

3.1. Proof of Theorem 1.3

We begin proving the following fundamental result.

Theorem 3.4. Let q and k be integers, let g � 2 be a real number, and letm and h be two
positive real numbers. Let � be a primitive character modulo q and  be any character
modulo k. Assume that

q > max
°�

max
°
29; 2�.q/C1

q

'.q/
C 1

± g

m2 log q log log q

�8
;�12

g

�4
; .max¹1; hºk/4;

� 16 log q
m2 log log q

�8±
:

(3.3)
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Define

v1.m; q/ D
2.1C 2

e logq /

m
;

v2.m; q; g/ D
2 .v1.m; q//

4

g
C
2.log log q/2 log

�
1:85 .v1.m; q//

2 q3=8
logq

g log logq

�
.log q/2

;

v3.m; q; g; h/ D 2g
�
1 �

1

h
�

gq1=4

m2q3=8 log q.log log q/

��1�17v2.m; q; g/
4g3

�1=4
�

�
eC C

2:51

.log log q/2

�
C

2
p
g
�

If v3.m; q; g; h/ � m holds then, for any integers M;N , we have

(3.4)
ˇ̌̌ X
M<n�MCN

 .n/�.n/
ˇ̌̌
� mkd.q/3=2N 1=2q3=16.log q/1=2.log log q/1=2:

Proof. We proceed by induction on N . For any K � m2q3=8 log q.log log q/, we trivially
have ˇ̌̌ X

M<n�MCK

 .n/�.n/
ˇ̌̌
� mkd.q/3=2K1=2q3=16.log q/1=2.log log q/1=2:

Also note that  � is a non-principal character, with modulus � kq, for otherwise  and �
would be induced by the same primitive character; that is impossible as � is primitive
modulo q and we have that q > k from the third inequality in (3.3). We thus have, by the
Pólya–Vinogradov inequality,ˇ̌̌ X

M<n�MCK

 .n/�.n/
ˇ̌̌
� 2

p
kq log kq;

and thus for K > v1.m; q/
2q5=8

logq
log logq , by comparison with (3.4) and using that q > k,

Theorem 1.3 holds. Note that using the Pólya–Vinogradov inequality from [7] would allow
to improve onm, but the above result is good enough for our purposes. This forms the basis
of our induction and we assume (3.4) holds for any sum of length strictly less than N ,
with N such that

(3.5) m2q3=8 log q.log log q/ � N � v1.m; q/2q5=8
log q

log log q
:

Define

U D
j N

gq1=4

k
; V D

jq1=4
k

k
;(3.6)

and note that
UV �

N

gk
�

Note also that U � 1 by the first inequality in (3.3), and that V � 1 by the third inequality
in (3.3).
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For any integer y < N , we haveX
M<n�MCN

 .n/�.n/ D
X

M�y<n�MCN�y

 .nCy/�.nCy/

D

X
M<n�MCN

 .nCy/�.nCy/C
X

M�y<n�M

 .nCy/�.nCy/

�

X
MCN�y<n�MCN

 .nCy/�.nCy/;

and hence X
M<n�MCN

 .n/�.n/ D
X

M<n�MCN

 .nC y/�.nC y/C 2�E.y/;

with E.y/ D maxM j
P
M<n�MCy  .n/�.n/j and for some j� j � 1, different in each

instance. Let U denote the set

U D ¹1 � u � U W .u; q/ D 1º;

and average the above over integers y D kuv with u 2 U and 1 � v � V to get

(3.7)
ˇ̌̌ X
M<n�MCN

 .n/�.n/
ˇ̌̌
�

1

V jUj
jW j C 2

1

V jUj

X
u;v

E.y/;

where
W D

X
M<n�MCN

X
u2U

X
1�v�V

 .nC kuv/�.nC kuv/:

For any u, v we have uvk � N=g, and thus by the induction hypothesis,

(3.8) 2
1

V jUj

X
u;v

E.y/ �
2
p
g
mkd.q/3=2

p
Nq3=16 .log q/1=2.log log q/1=2:

Since  is a character mod k, we have

jW j �
X

M<n�MCN

X
u2U

ˇ̌̌ X
1�v�V

�.nu�1 C kv/
ˇ̌̌
D

qX
�D1

I.�/
ˇ̌̌ X
1�v�V

�.�C kv/
ˇ̌̌
;

where I.�/ counts the number of solutions to the congruence

nu�1 � � .mod q/; M < n �M CN; u 2 U:

By Hölder’s inequality,

jW j4 �
� qX
�D1

I.�/
�2� qX

�D1

I.�/2
�� qX

�D1

ˇ̌̌ X
1�v�V

�.�C kv/
ˇ̌̌4�
:
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We have
qX
�D1

I.�/ D N jUj � NU:

Using Lemma 3.1, since N < q, from (3.5) and the fourth inequality in (3.3), and since
28 � U � N=12, from (3.5) and the first and second inequalities in (3.3), we obtain

Iq.N;U / � 2UN
�NU
q
C log.1:85U /

�
I

this, using (3.5) and recalling (3.6), gives us

qX
�D1

I.�/2 D Iq.N;U / � v2.m; q/UN
� log q

log log q

�2
:

By Lemma 3.3,

qX
�D1

ˇ̌̌ X
1�v�V

�.�C kv/
ˇ̌̌4
� 16qk2V 2 C 4q1=2k4V 4d.q/6:

Recalling (3.6), the above estimates simplify to

qX
�D1

I.�/ �
N 2

gq1=4
;

qX
�D1

I.�/2 � v2.m; q/
N 2

gq1=4

� log q
log log q

�2
;

qX
�D1

ˇ̌̌ X
1�v�V

�.�C kv/
ˇ̌̌4
�
17

4
q3=2d.q/6:

Therefore,

jW j4 �
17v2.m; q/

4g3
N 6q3=4d.q/6

� log q
log log q

�2
:

Note that using (3.5) and the third inequality in (3.3),

UV �
N

gk

�
1 �

k

q1=4
�
gq1=4

N
C
gk

N

�
�
N

gk

�
1 �

1

h
�

gq1=4

m2q3=8 log q.log log q/

�
:

From Lemma 3.2, (3.6), (3.5) and the first inequality in (3.3), we have

(3.9) jUj �
'.q/

2q
U:

Thus using (3.7), (3.8), Theorem 15 in [19] and (3.9), we getˇ̌̌ X
M<n�MCN

 .n/�.n/
ˇ̌̌
� v3.m; q; g; h/kd.q/

3=2N 1=2q3=16.log q/1=2.log log q/1=2:

Now, if v3.m; q; g; h/ � m, we conclude the proof by induction.
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Theorem 1.3 follows by computationally finding g and h such that for small q we have
a small m such that v3.m; q; g; h/ � m. This happens for g D 0:45 and h D 100. Note
that to verify (3.3) we used Theorem 12 of [18] and Theorem 15 in [19].

By [17] and [20], p. 43, we have that for any integer n � 3,

(3.10) log d.n/ �
logn

log logn

�
log 2C

log 2
log logn

C
4:7626 log 2
.log logn/2

�
:

Thus, (3.10) allows to rewrite Theorem 1.3 as follows.

Theorem 3.5. Let q and k be as in Theorem 1.3. Let � be a primitive character mod q
and let  be any character mod k. For any integers M and N < q, we have

(3.11)
ˇ̌̌ X
M<n�MCN

 .n/�.n/
ˇ̌̌
�
5kN 1=2q3=16.log q log log q/1=2

q
�

3 log2
2 log logq

�
1C 1

log logqC
4:7626

.log logq/2

� �

4. Explicit improved Pólya–Vinogradov inequality

The aim of this section is to prove Theorem 1.5 following [11].

4.1. Two important lemmas

We use Corollary 1.2 and Theorem 1.3 to obtain the explicit version of Lemma 2 in [11]
with a certain range for the modulus q.

Proof of Lemma 1.4. Let ", �, q, x and ˛ be fixed and set N D bxc, R D .log q/ . By
q � 105 and  � 2, we easily obtain e3=E � R � N . By Dirichlet’s theorem, there exist
integers r and s, where .r; s/ D 1 and 1 � s � N=R, such thatˇ̌̌

˛ �
r

s

ˇ̌̌
�

1

sN=R
�

If s � R, the result follows from Corollary 1.2, since

c1.1; E/
N

logN
C c2.1; E;R/N

.logR/3=2
p
R

�

��3
8
C "

��1
c1.1; E/C

c2.1; E;R/. log log q/3=2

.log q/=2�1

�
x

log q
;

by the definition of N and R. Now suppose s < R. By partial summation follows thatˇ̌̌X
n�x

�.n/e.N 0=qn/
ˇ̌̌
�

�
1C 2�

ˇ̌̌
˛ �

r

s

ˇ̌̌
x
�

max
u�x
jT .u/j � .1C 4�.log q/ /max

u�x
jT .u/j;

where
T .u/ D

X
n�u

�.n/e
�rn
s

�
:
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By grouping the terms of the sum T .u/ according to the value of .n; s/, we get

T .u/ D
X
dtDs

X
dm�u
.m;t/D1

�.md/e
�rm
t

�
D

X
dtDs

�.d/
X
1�a�t
.a;t/D1

e
�ra
t

� X
m�u=d

mDa.mod t/

�.m/

D

X
dtDs

�.d/

'.t/

X
 mod t

X
1�a�t

e
�ra
t

�
 .a/

X
m�u=d

�.m/ .m/:

Applying (3.11) to the right-hand sum, we obtainˇ̌̌X
n�x

�.n/e.N 0=qn/
ˇ̌̌
�
15.log q/2C1 .1C 4�.log q/ / .log q log log q/1=2

q
"=2�

3 log2
2 log logq

�
1C 1

log logqC
4:7626

.log logq/2

� x

log q
�

Thus Lemma 1.4 follows.

We then need explicit bounds by Pomerance (see Lemmas 2 and 3 in [16]) on two
trigonometric sums.

Lemma 4.1. Uniformly for x � 1 and real ˛, we haveX
n�x

1 � cos.˛n/
n

� log x C C C log 2C
3

x

and X
n�x

j sin.˛n/j
n

�
2

�
log x C

2

�

�
C C log 2C

3

x

�
:

Note that the last terms in the above upper bounds can be improved, but this would
have no effect on our final result.

4.2. Proof of Theorem 1.5

We take � primitive. We start with

�.n/ D
1

d.�/

qX
aD1

�.a/e
�an
q

�
D

1

d.�/

X
0<jaj<q=2

�.a/e
�an
q

�
;

where d.�/ is the Gaussian sum. Summing over 1 � n � N , we obtain

NX
nD1

�.n/ D
1

d.�/

X
0<jaj<q=2

�.a/

NX
nD1

e
�an
q

�
D

1

d.�/

X
0<jaj<q=2

�.a/
e
�
aN
q

�
� 1

1 � e
�
�a
q

� �
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Using 0 < jaj < q=2, it is easy to see that

1

1 � e
�
�a
q

� D q

2�ia
�

P1
jD2

.� 2�iaq /j�2

j Š

�
q

2�ia

�
e
�
�a
q

�
� 1

� ;
and ˇ̌̌̌ 1X

jD2

�
�
2�ia
q

�j�2
j Š

ˇ̌̌̌
�

1X
jD2

�j�2

j Š
D
e� � 1 � �

�2
�

Furthermore, with x D 2�a=q, we observe thatˇ̌̌
�

q

2�ia

�
e
�
�a

q

�
� 1

�ˇ̌̌
D

1

jxj

p
.cos x � 1/2 C .sin x/2;

and considering that the derivative of the right hand side is negative for jxj � � , we obtainˇ̌̌
�

q

2�ia

�
e
�
�a

q

�
� 1

�ˇ̌̌
>
2

�
�

Also, using that for primitive characters jd.�/j D
p
q, it follows that

NX
nD1

�.n/ �

p
q

2�

ˇ̌̌̌ X
0<jaj<q=2

�.a/
�
e.aN

q
/ � 1

�
a

ˇ̌̌̌
C
.e� � 1 � �/

2�

p
q:

Now we split the inner sum in two parts: †1 with 0 < jaj � q1 D q3=8C" and †2 with
q1 < jaj < q=2.

By partial summation and Lemma 1.4, we have

j†2j � 2c.�/
� 1

log q
C
5

8
� "

�
c.E; q; ; "/C 1:

†1 D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
2i

X
1�a�q1

�.a/ sin.2�aN
q
/

a
if �.�1/ D 1;

�2
X

1�a�q1

�.a/
�
1 � cos.2�aN

q
/
�

a
if �.�1/ D �1;

and from Lemma 4.1,

j†1j �

8̂̂<̂
:̂
2
� 2
�

log q1 C
2

�

�
C C log 2C

3

q1

��
if �.�1/ D 1;

2
�

log q1 C C C log 2C
3

q1

�
if �.�1/ D �1:

And thus we obtain the desired result.
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5. Proof of Theorem 1.1

The aim of this section is to obtain a completely explicit and concise version of The-
orem 1.5, thus to prove Theorem 1.1 and Tables 1 and 2, and to prove a version of Table 2
for all q such that d.q/ D U , with U a fixed constant.

To prove Theorem 1.1, we need to optimize Theorem 1.5 in the variables ", q, E
and  , and in doing so we aim to minimize " and q, and at the same time n.q; "/ and
m.E; q; ; "/. We will now start introducing some bounds on these variables and make
some useful comments:
• Choosing  and a lower bound on q we must ensure that p > .100.log q/ /4.
• To minimize the second term of c.E; q; ; "/, we need to choose  in such a way that
.log q/2.log log q/3 � .log q/

• Confronting Theorem 1.5 with equation (1.1), we will assume " < 1=8.
• The above point and the definition of c.E; q; ; "/ implies that

1

16
>

3 log 2
2 log log q

�
1C

1

log log q
C

4:7626

.log log q/2

�
;

which implies q � ee
17:82

.
• It is interesting to note that for any  > 2 we have, for q !1, that

c.E; q; ; "/ �!
8

3
c1.1; E; .log q/ /:

• The above function quickly stabilises on the limit.
• Increasing  reduces the left-hand term of c.E; q; ; "/ and increases the right-hand

term.
• Choosing a small E appears to be optimal.

From Theorem 1.5 and the above observations, Tables 1 and 2 follow by computation.
The optimization problem results, in this case, in a simple solution as we are forced to
take q big to have h1;2.E; q; ; "/ small enough, over this range of q the optimal  is
constant. We obtain that  D E D 4 are optimal.

We will now prove a version of Table 2 for all q such that d.q/ D U , with U a fixed
constant. It is easy to see, by Theorem 1.3 and the proof of Lemma 1.4, that in this case
Theorem 1.5 holds but with d.q/ D U instead of the general upper bound due to Robin.
We will focus on the case where q is a prime, thus U D 2, and choose a small " with
the aim of minimizing q, while keeping the constant limited. The optimization problem is
harder in this case as q can be taken relatively small, thus, after choosing a lower bound
for q, we would have to optimize  for each medium sized q. This means that for each
medium sized q we would need to find the  that minimizes the result and then take the
maximum between all of them. To ease this problem, we can balance q and h1;2 to ensure
that we improve on [7] in the chosen range of q; this leads to two different ranges of q
for h1 and h2, and this will give us a q big enough to make the optimization problem
simpler. We thus obtain Table 3.
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" log log q0 h1.q; "/ � log log q0 h2.q; "/ �

1
8 .1 �

1
10 / 13.4 1579 13.6 3153

1
8 .1 �

1
100 / 15.6 1510 15.9 3015

1
8 .1 �

1
1000 / 17.9 1503 18.2 3001

1
8 .1 �

1
10000 / 20.3 1502 20.5 3000

Table 3. q prime.
It is interesting to note that in the above case, even if h1;2 are the same as in Table 2,

we have lower bounds on q that are significantly smaller compared to the case in which q
is a highly composite number; it is the size of h1;2 that forces q to be big to do better
than [7]. Thus, an improvement on Corollary 1.2 would lead to an important improvement
on the size of q.
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