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Optimal measures for p-frame energies on spheres

Dmitriy Bilyk, Alexey Glazyrin, Ryan Matzke, Josiah Park and
Oleksandr Vlasiuk

Abstract. We provide new answers about the distribution of mass on spheres so as
to minimize energies of pairwise interactions. We find optimal measures for the p-
frame energies, i.e., energies with the kernel given by the absolute value of the inner
product raised to a positive power p. Application of linear programming methods
in the setting of projective spaces allows for describing the minimizing measures
in full in several cases: we show optimality of tight designs and of the 600-cell for
several ranges of p in different dimensions. Our methods apply to a much broader
class of potential functions, namely, those which are absolutely monotonic up to a
particular order.

1. Introduction

An intriguing natural phenomenon is the ubiquitous appearance of certain symmetric
structures and configurations as solutions to optimization problems. In a number of spaces,
highly symmetric configurations of points such as the vertices of the icosahedron on S2 or
the minimal vectors of the Leech lattice ƒ24 on S23 are optimal codes, a type of best
packing configuration [40]. First papers on spherical designs made important connec-
tions between symmetry and optimality through pioneering work on linear programming
bounds [25]. Since these and new developments we now know several configurations,
in addition to being spherical designs and optimal codes, that are also minimizers for a
variety of harmonic energies [1, 37, 38, 65, 66].

For a finite configuration of points on the sphere C � Sd�1 (also known as a code),
the discrete f -potential energies are defined as

(1.1) Ef .C/ D
1

jC j2

X
x;y2C

f .hx; yi/:

(The diagonal terms should be excluded if the kernel f is singular at 1, that is, when
x D y.) Universally optimal point configurations, i.e., collections of points C minimizing
the discrete energies Ef among all point sets of fixed cardinality jC j, for all absolutely
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monotonic functions f on Œ�1; 1/, have been discovered through the linear programming
approach of Cohn and Kumar in [21].

In contrast to the above setting, in the present paper, rather than considering config-
urations of fixed cardinality, we focus on the problem of minimizing energies over all
Borel probability measures, discovering that surprisingly in many situations the minim-
izing measures are discrete. For a kernel function f 2 C Œ�1; 1� and a Borel measure �
on Sd�1, we define the energy integral as

(1.2) If .�/ D

Z
Sd�1

Z
Sd�1

f .hx; yi/ d�.x/ d�.y/:

One is naturally interested in minimizing these energies over � 2 P .Sd�1/, the set of
all Borel probability measures on Sd�1, i.e., finding the equilibrium distribution of unit
mass under the interaction given by the potential function f . This definition is compatible
with the discrete energy (1.1) in the sense that

(1.3) Ef .C/ D If

� 1

jC j

X
x2C

ıx

�
;

and we shall repeatedly abuse the notation when saying that a configuration C minimizes
the energy If , to mean that the corresponding measure in the right-hand side of the above
equation minimizes.

While many classical examples, such as the Riesz energy, feature increasing kernels f
which give rise to energies with repulsive interactions (i.e., f is largest when x D y and
smallest when x and y are antipodal), we will concentrate on the attractive-repulsive
potentials, which decrease at first, but increase eventually, as functions of the geodesic
distance: in other words, a pair of points will repel when close together, but attract when far
apart. Such potentials in Rd appear naturally for self-assembly models in computational
chemistry, emerging collective behavior in population biology, and in many other scientific
models [5, 18, 19, 36, 48, 60, 64].

We will mostly consider attractive-repulsive potentials on the sphere which are sym-
metric and orthogonalizing, so that f .t/ D f .jt j/, f .t/ is increasing for t 2 Œ0; 1�, and f
takes its minimal value at zero. For such potentials, the discrete energy for up to d particles
is minimized by collections of orthogonal vectors. Since in this setting the energy does not
change by replacing any x with �x, where j�j D 1, its analysis naturally lends itself to
the projective space RPd�1, where the potential becomes repulsive, and we adopt this
approach in the technical parts of the paper.

The main examples of the above potentials, which motivate the current paper, are of
the form f .t/ D jt jp , p > 0, which yield the p-frame energies:

(1.4) If .�/ D

Z
Sd�1F

Z
Sd�1F

jhx; yijp d�.x/ d�.y/;

where Sd�1F D ¹x 2 Fd j kxk D 1º: For F DR or C this type of energy has a rich history.
When p D 2 and F D R, the discrete version of this energy, known simply as the

frame energy or frame potential, has been introduced by Benedetto and Fickus [11]: they
showed that global (as well as local) minimizers of this energy are precisely unit norm
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tight frames. These configurations, which explain the nomenclature “frame energy”, play
an important role in signal processing and other branches of applied mathematics and
behave like overcomplete orthonormal bases. A finite collection of vectors C � Fd is a
tight frame, if for any x 2 Fd , and some constant A > 0, one has an analog of Parseval’s
identity holding for C ,

(1.5)
X
y2C

jhx; yij2 D Akxk2:

These objects also minimize the continuous energy If for p D 2, but there are also other
minimizers, such as the surface area, or Haar measure � on Sd�1F , and, more generally,
isotropic probability measures on the sphere, i.e., those measures for whichZ

Sd�1F

jhx; yij2d�.y/ D
1

d

holds for all x 2 Sd�1F .
When p D 4, this energy plays an important role in connection to complex maximal

equiangular tight frames, also known as symmetric, informationally complete, positive
operator-valued measures (SIC-POVMs), i.e., unit norm tight frames in Cd which satisfy
jhx; yij D constant for x ¤ y 2 C and jC j D d2, [49]. The existence of these objects is
the subject of Zauner’s conjecture (see [67]), and much of the numerical evidence for
this conjecture comes from the observation that they minimize the 4-frame energy among
other energies, as projective 2-designs, see e.g. [53]. Since we will later work with minim-
izers over the skew field of quaternions, we mention that in that setting these equiangular
tight frames are conjectured [22] to not always exist. In the real case, the existence of
analogous objects (i.e., tight projective 2-designs) is also mysterious: they may exist only
in dimensions d D .2m� 1/2 � 2, [6,7,25,39], but do not exist for infinitely many values
of m, [9, 45]. In what follows, we demonstrate that when these objects do exist, they also
minimize the p-frame energy for 2 � p � 4.

More generally, for even integers p, these energies were considered in earlier works
[55, 59, 62], and it is known that, for F D R or C, projective k-designs are precisely the
finite configurations which minimize the p D 2k energy. Unit norm tight frames are then
in fact just equivalent to projective 1-designs (see Section 2.3 for precise definitions),
while spherical 2-designs are exactly those unit norm tight frames, whose center of mass
is at the origin. These were constructively shown to exist for d � 2 precisely when the
number of points N satisfies N � d C 1 and N ¤ d C 2 when d is odd [47]. The last
restriction does not apply to unit norm tight frames, and these exist for all N � d , [11].
Surface measure is also known to be a minimizer for p 2 2N: this can be seen either from
the definition of k-designs, or from the fact that the function f is positive definite in this
case (see Proposition 2.3), and was originally proved in the real case in [55].

For p not an even integer, optimal distributions of mass for p-frame energies are much
less studied, to the point of there only being one result on these minimizing measures
readily found in the literature. It states that distributing mass equally on the orthoplex
or cross-polytope, an orthonormal basis and its antipodes, gives the unique symmetric
minimizer, up to orthogonal transformations, for any energy with p 2 .0; 2/. See [27].
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This result (contained in our Theorem 1.1 below as a special case) points to an interest-
ing distinction. When p is even, the p-frame energy has a multitude of both continuous,
e.g. � , and discrete minimizers. However, this is not the case when p is not an even
integer: � is no longer a minimizer, since the function f .t/ D jt jp is not positive definite,
and so the above result, along with our numerical studies, points to existence of discrete
minimizers only.

In this paper we give a first description of minimizers for several dimensions and
some ranges of p. The description relies on the notion of tight designs: designs of high
strength, but with few distinct pairwise distances, see Definition 2.5. We show that if there
exists a tight projective M -design (which in the real case is equivalent to a tight spherical
.2M C 1/-design), then it minimizes the p-frame energy for p 2 .2M � 2; 2M/. The
600-cell, despite not being a tight design, minimizes the p-frame energy for p 2 .8; 10/
among probability measures on S3, as we show in Section 4.

Theorem 1.1. Let f .t/ D jt jp , t 2 Œ�1; 1�.

(i) If there exists a tight spherical .2M C 1/-design C � Sd�1, then the measure

� D
1

jC j

X
x2C

ıx

is a minimizer of the p-frame energy If with 2M � 2�p� 2M over�2P .Sd�1/.

(ii) Let F D R, C or H. Assume that there exists a tight projective M -design zC �
FPd�1, and let the code C � Sd�1F consist of the representers of zC in Sd�1F
according to (2.1). Then the measure

� D
1

jC j

X
x2C

ıx

is a minimizer of the p-frame energy If with 2M � 2�p� 2M over�2P .Sd�1F /.

(iii) Let C � S3 denote the 600-cell. Then the measure

� D
1

jC j

X
x2C

ıx

is a minimizer of the p-frame energy If with 8 � p � 10 over � 2 P .S3/.

For parts (i)–(ii) of the above theorem, we also prove a uniqueness statement: more
precisely, whenever the corresponding statements hold, and additionally p is not an end-
point of the interval, i.e., p 2 .2M � 2; 2M/, all minimizers have to be tight designs
(although not necessarily coinciding with C ), in particular, they have to be discrete. Since
tight .2M C 1/-designs on the circle consist just of 2.M C 1/ equally spaced points, the
above result fully characterizes the minimizers for d D 2 (for both the sphere and the real
projective space). See Section 3.5 for more details.

We observe that part (i) is essentially contained in part (ii) with F D R: indeed, odd-
strength tight spherical designs are necessarily symmetric [25], and by taking one point
in each antipodal pair one obtains a tight projective design (see Sections 2.3 and 2.4 for a
more extensive discussion).
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Minimizing the continuous energy (1.4) over all measures and obtaining discrete min-
imizers allows us to make new conclusions about the minimizing configurations of the
discrete energies (1.1) for certain values of the cardinality N . One directly obtains the
following corollary.

Corollary 1.2. Let F , d , p, and C be as in any of the parts of Theorem 1.1, and let
N D kjC j, k 2 N. Then the N -point discrete p-frame energy is minimized by the config-
uration C repeated k times, i.e.,

(1.6) min
C 0�Sd�1F
jC 0jDN

1

N 2

X
x;y2C 0

jhx; yijp D Ijt jp
� 1

jC j

X
x2C

ıx

�
:

Thus, for example, if N is a multiple of 6, then repeated copies of a “half” of the
icosahedron minimize theN -point p-frame energy on S2 for p 2 Œ2;4�. Some other results
about the minima of discrete p-frame energies have been obtained in [20].

The arguments proving Theorem 1.1 are strongly reminiscent of those appearing
in [21], and are based on the linear programming method which goes back to Delsarte
and Yudin [24, 65]. Part (ii) of Theorem 1.1 is a consequence of the much more general
Theorem 3.7. The latter theorem, in fact, demonstrates that tight M -designs possess a
certain universality property: they minimize the energy for all strictly monotonic functions
of degree exactly m over all probability measures, see Section 3 for details.

The proof of optimality for the 600-cell is computer assisted and makes use of the fact
that the averages of spherical harmonics over the 600-cell vanish for a few orders above its
maximal strength as a spherical design – the same idea was used in the proof of universal
optimality of the 600-cell in [21], as well as earlier in [1, 2]. This allows us to construct a
collection of interpolating polynomials h for each p which have the desired properties of
lying below f , agreeing with f on the distances appearing in C , and finally being positive
definite, the last of which is checked using interval arithmetic. The details of the proof are
taken up in Section 4.

We collect all the necessary preliminary material in Section 2: Section 2.1 contains
the discussion of relevant properties of compact 2-point homogeneous connected spaces;
Section 2.2 explains the specifics of minimizing energy functionals over probability meas-
ures on such spaces; Section 2.3 introduces designs, and, in particular, tight designs; and
Section 2.4 describes the transference between energies on projective spaces and spheres,
which connects Theorem 3.7 to Theorem 1.1.

Theorem 1.1 leads us to believe that clustering of minimizers is a general phenomenon
when p is not an even integer and we will present our experimental evidence in favor of
this conclusion in a separate publication [14].

Conjecture 1.3. In all dimensions d � 2 and for all p > 0 such that p 62 2N, the minim-
izing measures of the p-frame energy (1.4) are discrete.

This conjecture is additionally supported by the fact that discreteness of minimizers is
known for certain attractive-repulsive potentials on Rd , [18], and has been conjectured for
some other potentials on the sphere, e.g. those appearing in [28], see also Section 7. It is
worth noting that in the classical paper [15], it was shown that for f .x; y/ D �kx � yk˛

with ˛ > 2 and any compact domain � � Rd , the energy minimizers are discrete and
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their support consists of at most d C 1 points (just two antipodal points if � D Sd�1).
Moreover, in [18] discreteness has been established for mildly repulsive potentials, i.e.,
those that behave as �kx � yk˛ with ˛ > 2 when kx � yk is small. Observe that for the
p-frame potential, we have jhx;yijp � 1� p

2
kx � yk2 when x, y 2Sd�1 are close, hence

the p-frame energy falls into the endpoint case ˛ D 2, and, according to the discussion
above, this case is more subtle.

While we have yet to establish Conjecture 1.3 and prove discreteness, in our compan-
ion paper [13] we show that on Sd�1, whenever p is not even, the support of the measure
minimizing the p-frame potential necessarily has empty interior.

Section 5 extends some of our results to non-compact settings. In Section 6 we apply
the results of Theorem 1.1 to the problems of minimizing mixed volumes of convex
bodies, and in Section 7 we apply the methods of linear programming, similar to those
employed in Theorems 1.1 and 3.7, to the optimization of energies related to causal vari-
ational principles, see [28].

We would like to point out that in many papers, the term p-frame potential is usu-
ally used to denote the p-frame energy (1.4) or its discrete counterpart. We find the term
“energy” to be more appropriate in this context and reserve the term “potential” for the
kernel f .t/ of the energy If .

2. Geometry and functions on 2-point homogeneous spaces

2.1. Two-point homogeneous spaces

For convenience, the above discussion mostly assumed the underlying space to be the unit
sphere Sd�1. This will no longer be the case, as our study concerns energy minimization
on a broader class of spaces. A metric space .�; d/ is said to be two-point homogeneous
if, for every two pairs of points x1; x2 and y1; y2 such that d.x1; x2/ D d.y1; y2/, there
exists an isometry of�mapping xi to yi ; i D 1; 2. It is known [61] that any such compact
connected space is either a real sphere Sd�1, a real projective space RPd�1, a complex
projective space CPd�1, a quaternionic projective space HPd�1, or the Cayley projective
plane OP2. Note that it suffices to consider FPd�1 for d > 2 only, as FP1 is just SdimR F

(see [4], p. 170), and so will not be separately considered in what follows.
Below,� always refers to a compact connected 2-point homogeneous space, equipped

with the geodesic distance # , normalized to take values in Œ0; ��. We let � denote the
unique probability measure invariant under the isometries of �.

The first three types of projective spaces ¹FPd�1 W F D R; C;Hº have a simple
description: they may be represented as the spaces of lines passing through the origin
in Fd ,

(2.1) xF D ¹x� j � 2 F n ¹0ºº:

Observe that the isometry groups O.d/, U.d/, and Sp.d/ of the corresponding vector
spaces Fd act transitively on each space, and that the stabilizers of a line represented by
x 2 Fd are O.d � 1/�O.1/, U.d � 1/�U.1/, and Sp.d � 1/� Sp.1/, respectively. Thus
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one has, [63], p. 28, the following quotient representations:

RPd�1 D O.d/=O.d � 1/ � O.1/;

CPd�1 D U.d/=U.d � 1/ � U.1/;

HPd�1 D Sp.d/=Sp.d � 1/ � Sp.1/;

where we write O.d/, U.d/, and Sp.d/ for the groups of matrices X over the respective
algebra, satisfying XX� D I .

Using the identification (2.1), one can associate each element of FPd�1 (F DR;C;H)
with a unit vector x 2 Fd , kxk D 1, and we shall often abuse notation by doing so.
This gives, in addition to the Riemannian metric # , another metric, the chordal distance
between points x; y 2 �, defined by

�.x; y/ D
p
1 � jhx; yij2;

where hx; yi D
Pd
iD1 xiyi is the standard inner product in Fd . The chordal distance

�.x; y/ is related to the geodesic distance #.x; y/ by the equation

cos#.x; y/ D 1 � 2�.x; y/2 D 2jhx; yij2 � 1:

Since the algebra of octonions is not associative, the line model of (2.1) fails, and
instead a model given by Freudenthal [29] is used to describe OPd�1. It is known [4]
that only two octonionic spaces exist: OP1 which is just S8, as noted above, and OP2

which can be described as the subset of 3 � 3 Hermitian matrices … over O, satisfying
…2 D … and Tr … D 1, [4, 56]. We note that, while the definition of the p-frame energy
does not extend to OP2 (and thus Theorem 1.1 does not include this space), the more
general Theorem 3.7 does apply to � D OP2.

One feature of spaces� that allows for the application of linear programming methods
is the existence of a decomposition of L2.�; �/, the space of complex-valued square-
integrable functions on �:

L2.�; �/ D
M
n�0

Vn;

where Vn are finite-dimensional irreducible representations of the isometry group of �
(see [40]). Moreover, these are in correspondence with the eigenspaces of the Laplace–
Beltrami operator on � corresponding to the n-th eigenvalue in the increasing order.
Let Yn;k , k D 1; : : : ; dim Vn, be an orthonormal basis in Vn. Because of the invariance
of Vn and due to the two-point homogeneity of �, the reproducing kernel for Vn only
depends on the distance #.x; y/ between points [59]. Furthermore, as a function of

�.x; y/ WD cos#.x; y/;

the reproducing kernel is a polynomial Cn of degree n, which satisfies

(2.2) Cn.�.x; y// D
1

dimVn

dimVnX
kD1

Yn;k.x/ Yn;k.y/:
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Formula (2.2) is known as the addition formula, and shows that functions Cn are positive
definite on �, that is, X

1�i;j�k

ci cj Cn.�.xi ; xj // � 0

for all coefficients c1; : : : ; ck 2 C, and all x1; : : : ; xk 2 �.
The polynomials Cn given by (2.2) satisfy Cn.1/ D 1 and are orthogonal with respect

to the probability measure

d�.˛;ˇ/ D
1


˛;ˇ
.1 � t /˛.1C t /ˇ dt;

where ˛ D .d � 1/ dimR.F/=2 � 1 and

(2.3) ˇ D

´
˛; if � D Sd�1;

dimR.F/=2 � 1; if � D FPd�1;

and the normalization factor is given by


˛;ˇ D 2
˛CˇC1B.˛ C 1; ˇ C 1/;

where B is the beta function. These polynomials, known as Jacobi polynomials (Gegen-
bauer polynomials in the special case when � D Sd�1), form an orthogonal basis in
L2.Œ�1; 1�; d�.˛;ˇ//; equivalently, the span of Cn.�.x; y//, n � 0, is dense in the subset
of L2.� ��;� ˝ �/ consisting of functions that depend only on the distance between x
and y.

This allows for expanding functions from L2.Œ�1; 1�; d�.˛;ˇ// in terms of Cn:

f .t/ D

1X
nD0

yfnCn.t/; where yfn D dimVn

Z 1

�1

f .t/Cn.t/ d�
.˛;ˇ/.t/:

As we have already done above, for a fixed space � we will not indicate the dependence
of polynomials Cn D C

.˛;ˇ/
n on the indices ˛, ˇ. We refer to yfn as the Jacobi coefficients

of the function f ; the normalization Cn.1/D 1 used here is common in the coding theory
community [40, 58].

2.2. Energies on 2-point homogeneous spaces

For the space of probability measures P .�/ supported on �, and for a lower semi-
continuous function f W Œ�1; 1�! R [1, the f -energy integral is defined as the func-
tional mapping � to

If .�/ D

Z
�

Z
�

f .�.x; y// d�.x/ d�.y/:

Observe that when�D Sd�1, we have �.x; y/D cos#.x; y/D hx; yi and the definition
above coincides with (1.2).

We start by introducing the notion of positive definite functions, which plays an im-
portant role in energy minimization and for the linear programming bounds we derive
later. Below, C Œ�1; 1� D CRŒ�1; 1� denotes the space of continuous real valued functions
on the interval Œ�1; 1�.
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Definition 2.1. Let f 2 C Œ�1; 1�. We say that f is positive definite on � if for any
x1; : : : ; xN 2 �, the matrix Œf .�.xi ; xj //�Ni;jD1 is positive semidefinite, i.e., if for every
collection c1; : : : ; cN 2 C, we haveX

1�i;j�N

f .�.xi ; xj //ci cj � 0:

We have already seen that the Jacobi polynomials Cn are positive definite on �, and
so their positive linear combinations must also be. It is a classical fact that this implication
can be reversed:

Proposition 2.2 ([16, 30, 52]). A function f 2 C Œ�1; 1� is positive definite on � if and
only if yfn � 0 for all n � 0.

Next we show that positive definite functions f give rise to f -energy integrals which
are minimized over probability measures by the surface (or Haar) measure � on �. This
result appears in a number of papers, see for instance [12, 23]. We adapt the proof given
in [12] to our purposes.

Proposition 2.3. Let f 2 C Œ�1; 1�, f .t/ D
P1
nD0

yfnCn.t/, and � 2 P .�/. Then, the
following are equivalent:

(i) yfn � 0 for all n � 1,

(ii) the surface measure � is a minimizer of If .

Moreover, � is the unique minimizer of If if and only if yfn > 0 for all n � 1.

To prove this statement we use the following lemma, generalizing the behavior of
Fourier expansions with positive coefficients [30, 44] to Jacobi expansions with the same
property.

Lemma 2.4. Assume that f 2 C Œ�1; 1� has the Jacobi expansion f .t/D
P1
nD0
yfnCn.t/

with yfn � 0 for all n � 1. Then this expansion converges uniformly and absolutely to f
on Œ�1; 1�.

Proof of Proposition 2.3. We first show that � is a minimizer of If . Assume that yfn � 0
for all n � 1. Then by the lemma above, the Fubini theorem, and the addition formula, we
have

If .�/ D

1X
nD0

yfn

Z
�

Z
�

Cn.�.x; y// d�.x/ d�.y/

D

1X
nD0

1

dimVn

dimVnX
kD1

yfn

Z
�

Z
�

Yn;k.x/ Yn;k.y/ d�.x/ d�.y/

D yf0 C
1

dimVn

1X
nD1

bn;� yfn � yf0 D If .�/:

The last inequality holds since bn;� D
PdimVn
kD1

j
R
�
Yn;k.x/d�.x/j

2 � 0. If yfn > 0 for all
n � 1, then equality can be achieved above only if � is orthogonal to all spaces Vn, n � 1,
which directly implies that � D � .
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Let us assume that for some m 2 N0, yfn < 0. For a fixed point p 2 �, we see that
Yn;1.x/ WD Cn.�.x; p// is in Vn and real-valued. Set d�.x/ D .1 C "Yn;1.x//d�.x/,
where " > 0 is sufficiently small so that .1C "Yn;1.x// � 0 on �. Orthogonality and the
addition formula (or the Funk–Hecke formula) give that for Y 2 Vn;Z

�

f .�.x; y// Y.x/ d�.x/ D
1

dim.Vn/
yfn Y.y/ and

Z
�

Y.x/ d� D 0:

Thus,

If .�/ D

Z
�

Z
�

f .�.x; y// .1C "Yn;1.x// .1C "Yn;1.y// d�.x/ d�.y/

D If .�/C
1

dim.Vn/

Z
�

"2 yfn Y
2
n;1.x/ d�.x/ < If .�/;

implying that � is not a minimizer for If . If yfn D 0 for some n � 1, the same argument
shows that If .�/ D If .�/, i.e., � is not the unique minimizer.

The p-frame energies correspond to taking � D FPd�1 (F D R, C, or H) and f of
the form

(2.4) f .t/ D
�1C t

2

�p=2
;

because in this case, since �.x; y/ D cos#.x; y/ D 2jhx; yij2 � 1, we have

f .�.x; y// D f .2jhx; yij2 � 1/ D jhx; yijp:

We shall now prove that, whenever p is an even integer, these energies are minimized by
the uniform measure on �.

When p D 2k and�D FPd�1 (F DR;C; or H), we have that f .t/D 2�k � .1C t /k

is a polynomial. It is standard to check that this polynomial is positive definite on �: this
could be done by checking that the coefficients in its Jacobi expansion are non-negative,
but it would be perhaps simpler to prove it as follows. Observe that, since C .˛;ˇ/0 .t/ D 1

and C .˛;ˇ/1 .t/ D ˛�ˇ
2.˛C1/

C
˛CˇC2
2.˛C1/

� t , we have that

1C t D
2.˛ C 1/

.˛ C ˇ C 2/
C
.˛;ˇ/
1 .t/C

2.ˇ C 1/

˛ C ˇ C 2
C
.˛;ˇ/
0 .t/:

Since ˛C 1D d�1
2
� dimR.F/ > 0 and ˇC 1D 1

2
� dimR.F/ > 0, we see that the function

1C t is positive definite on �. The well known Schur theorem on Hadamard (element-
wise) products of positive semidefinite matrices implies that if g and h are positive definite
on�, then so is their product gh, and, in particular, all integer powers gn are positive def-
inite. Hence, the function f .t/D 2�k � .1C t /k is positive definite on�, and therefore If
is minimized by the uniform surface measure � .
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The minimal values of the p D 2k energy may be expressed in terms of elementary
functions for each F . These constants, cF .d; k/, are given below:

cF .d; k/ D
1 � 3 � 5 � � � .2k � 1/

d � .d C 2/ � � � .d C 2.k � 1//
; F D R;

cF .d; k/ D
1�

dCk�1
k

� ; F D C;

cF .d; k/ D
k C 1�
2dCk�1

k

� ; F D H:

When p is not an even integer, the p-frame energies are not positive definite, due to
the appearance of negative terms in the Jacobi polynomial expansion of f , hence � does
not minimize the p-frame energy for p 62 2N, see Lemma 6.2.2 in [46].

2.3. Designs

We now treat the topic of designs in compact connected two-point homogeneous spaces�.
A finite, nonempty set (code) C � � is called an M -design if

(2.5)
1

jC j

X
x2C

p.x/ D

Z
�

p.x/ d�.x/

holds for all polynomials p of degree at mostM . A relaxation of the above identity allows
the configuration to be weighted, so that the equality

(2.6)
X
x2C

!xp.x/ D

Z
�

p.x/ d�.x/;

holds for some weights ¹!xºx2C � R�0, satisfying
P
x2C !x D 1, and for all polyno-

mials p of degree at most M . Such weighted formulas are called cubature formulas or
weighted designs. In both of the above equations, it is understood that polynomials p may
be given explicitly as complex-valued functions which are polynomials in coordinates
of Fd , satisfying additionally p.˛x/ D p.x/, for j˛j D 1, ˛ 2 F , in the projective case.

The strength of a (weighted) design is the maximum value of M for which iden-
tity (2.5) (accordingly, (2.6)) holds. AnM -design can be equivalently defined as a config-
uration C � �, for whichX

x;y2C

Cn.�.x; y// D 0 for 1 � n �M:

Equivalently, C is an M -design in � if and only if it satisfies

X
x2C

Y.x/ D 0 for Y 2
MM
nD1

Vn:

Similar definitions can be given for weighted designs.
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Linear programming bounds [25] imply exact constraints on the size of tight designs,
configurations which, in addition to being M -designs, have the smallest possible num-
ber of pairwise distances between their elements, for a design of strength M . The exact
definition may be given as follows.

Definition 2.5. A discrete set C � � is called a tight M -design if one of the following
conditions is satisfied.

(i) C is a design of strengthM D 2m� 1 and there arem distances between its distinct
elements, including at least one pair diameter apart;

(ii) C is a design of strength M D 2m and there are m distances between its distinct
elements.

Table 1 provides a list of known tight spherical designs (see, e.g., [21]), as well as the
600-cell, which is not a tight design, but will be of interest in Section 4. Each arrangement
labeled ‘kissing’ is the kissing configuration of a set. By centering non-overlapping con-
gruent spherical caps of maximal radius at each point in a given code, the resulting points
of tangency on a given cap form a spherical code in a lower dimensional space which we
call the kissing configuration for that set.

Tight spherical designs with d � 3 and M � 4 may only exist for M D 4; 5; and 7
with the one exception of the spherical 11-design formed by the Leech lattice minimal
vectors [6, 7]. The problem of finding tight spherical 5-designs is the same as that of
finding maximal equiangular tight frames, and it is known that existence of a tight spher-
ical 5-design in Sd�1 is possible only for d D 1; 2; 3 and for dimensions of the form
d D .2k C 1/2 � 2, where k � 1; see [6, 7, 25, 39] for details on how these conditions
arise. A direct correspondence with such spherical designs and regular graphs has long
been recognized [54], and, in connection, it is known that for infinitely many values of k,
a tight spherical 5-design cannot exist in dimension d D .2k C 1/2 � 2 [9, 45].

d N M Inner products Name

d 2 1 ˙1 two antipodal points
d d C 1 2 �1=d; 1 regular simplex
d 2d 3 0;˙1 cross-polytope
2 N N � 1 cos .2j�=N/, 0 � j � N=2 regular N -gon
3 12 5 ˙1=

p
5;˙1 icosahedron

4 120 11 0; .˙1˙
p
5/=4;˙1=2;˙1 600-cell

6 27 4 �1=2; 1=4; 1 Schläfli config.
7 56 5 ˙1=3;˙1 kissing configuration for E8
8 240 7 0;˙1=2;˙1 E8 root system
22 275 4 �1=4; 1=6; 1 McLaughlin configuration
23 552 5 ˙1=5;˙1 equiangular lines
23 4600 7 0;˙1=3;˙1 kissing configuration for ƒ24
24 196560 11 0;˙14 ;˙

1
2 ;˙1 Leech lattice ƒ24 minimal vectors

Table 1. A list of known tight spherical designs (with the 600-cell). Here M denotes the strength of
the design, d the dimension of the ambient space Rd , and N is the size of the design.
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Table 2 lists all known tight projective designs (see [22]), except those for the spaces
FP1, which are congruent to real spheres. Identifying tight projective designs is simple in
the real setting. Tight spherical designs of odd strength must be centrally symmetric [25],
and by choosing points from each antipode in an odd tight design, one arrives at a real
projective tight design. Thus, all tight designs of odd strength in Table 1 correspond to
entries in Table 2.

For the other projective spaces, the vertices of a cross-polytope (i.e., an orthonormal
basis in the projective space) always provide a tight 1-design, as they did in RPd�1.
However, unlike the real case, it is known that no tight t -designs exist in the complex
or quaternionic setting whenever M � 4 and d � 3, [8, 33, 44]. In the complex setting,
tight 2-designs, also known as symmetric, informationally complete, positive operator-
valued measures .SIC-POVMs), are known to exist for d � 16, d D 19; 24; 28; 35; 48,
and numerical experiments suggest that they may exist in every dimension [3, 49, 53, 67].
With the exception of the .3; 15/ quaternionic and .3; 27/ octonionic designs from [22],
explicit constructions are readily found in [32] for the other designs mentioned in Table 2.

d N M jhx; yij2 F Name

d d C 1 1 0; 1 R cross-polytope/ONB
2 N N � 1 cos2.�j=N/, 1 � j � N R regular 2N -gon
3 6 2 1=5; 1 R icosahedron
7 28 2 1=9; 1 R kissing configuration for E8
8 120 3 0; 1=4; 1 R roots of E8 lattice
23 276 2 1=25; 1 R equiangular lines
23 2300 3 0; 1=9; 1 R kissing configuration for ƒ24
24 98280 5 0; 1=16; 1=4; 1 R minimal vectors of ƒ24

d d C 1 1 0; 1 C cross-polytope/ONB
d d2 2 1=.d C 1/; 1 C SIC-POVM
4 40 3 0; 1=3; 1 C Eisenstein structure on E8
6 126 3 0; 1=4; 1 C Eisenstein structure on K12

d d C 1 1 0; 1 H cross-polytope/ONB
3 15 2 2=7; 1 H equiangular lines
5 165 3 0; 1=4; 1 H quaternionic reflection group

3 d C 1 1 0; 1 O cross-polytope/ONB
3 27 2 2=13; 1 O equiangular lines
3 819 5 0; 1=4; 1=2; 1 O generalized hexagon

of order .2; 8/

Table 2. A list of parameters for which projective tight designs are known to exist (besides designs
in FP1 for F ¤ R). Here M denotes the strength of the design, d the dimension of the ambient
space Fd , and N is the size of the design. For SIC-POVMs, these configurations exist for certain
values of d , and may or may not exist for all values.

A weaker property of a design is sharpness, which will not play a role here. The
paper [21] proves that sharp designs, and tight designs in particular, are minimizers for
discrete minimization problems with absolutely monotone kernels. A similar approach
allows us to show that tight designs are optimal for the continuous p-frame energy.



D. Bilyk, A. Glazyrin, R. Matzke, J. Park and O. Vlasiuk 1142

2.4. Antipodal symmetry

We observe that the energy If on the sphere Sd�1F , F D R;C;H, for the kernels f with
f .hx; yi/ D f .jhx; yij/ remains the same after averaging over unit multiples of vectors
in the support of �. Let U.F/ be the set of units in F , U.F/D ¹c 2 F W jcj D 1º, and let �
be the uniform measure on U.F/. If one defines, for a positive Borel measure � on the
sphere Sd�1F and Borel sets B � Sd�1F ,

�.B/ D
1

�.U.F//

Z
U.F/

�.cB/ d�.c/;

then If .�/ D If .�/ for potential functions f as above. This is the primary reason it
is natural to consider projective spaces FPd�1 as the optimization spaces for p-frame
energies, as opposed to the spheres, in the cases when the elements x 2 FPd�1 may be
represented by unit vectors in Fd .

This discussion shows that a minimizing measure on the sphere for If , with f as
above, can be taken to be symmetric, and that the problem of minimizing over symmetric
measures on spheres is equivalent to minimizing energy over projective spaces. In par-
ticular, this explains part (i) of Theorem 1.1, since tight spherical .2M C 1/-designs are
necessarily symmetric [25] and hence correspond to tight real projective M -designs.

3. Optimality of tight designs for kernels absolutely monotonic to
degree M

3.1. Linear programming

The main goal of this section is to show that for those dimensions and values of t for which
tight designs exist, they are the global minimizers of the p-frame energies for intervals
of p between consecutive even integers. We will use linear programming bounds to this
end.

The linear programming method provides bounds for optima in various optimization
problems, and its use is often aided by computational tools, where a problem is approxim-
ated by a finite-dimensional or discretized counterpart, then solved with a computer. It is
surprising that this simple method often provides optimal bounds. This technique applies
to all the 2-point homogeneous spaces � described above.

Our application of the method can be summed up in the following lemma, which is
a measure-theoretic counterpart of the linear programming bound of Delsarte and Yudin,
see [24, 65].

Lemma 3.1. Let h 2 C Œ�1; 1� be a positive-definite function, i.e., h.t/ D
P1
nD0
yhnCn.t/

and yhn � 0 for all n � 0.

(i) Assume that h.t/ � f .t/ for all t 2 Œ�1; 1�. Then for any � 2 P .�/,

If .�/ � yh0 D Ih.�/:
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(ii) Assume further that h is a polynomial of degree k and that there exists a k-design
C � � such that h.t/ D f .t/ for each t 2 ¹�.x; y/ W x; y 2 Cº. Then for any
� 2 P .�/,

If .�/ � If

� 1

jC j

X
x2C

ıx

�
;

i.e., If is minimized by the uniform distribution on C .

Proof. For the first part, observe that

If .�/ � Ih.�/ � Ih.�/ D yh0;

where the first inequality follows from the fact that f � h, while the second one is due to
Proposition 2.3, since h is positive definite.

For the second part, one can continue as follows:

Ih.�/ D Ih

� 1

jC j

X
x2C

ıx

�
D If

� 1

jC j

X
x2C

ıx

�
:

The first equality follows from the fact that C is a k-design, and the second one from the
fact that f and h coincide on the set ¹�.x; y/ W x; y 2 Cº. Together with part (i), this
proves the statement in part (ii).

This lemma provides insights in two different ways for how the linear programming
method can be applied.

If a candidate C is available, one can apply part (ii) of Lemma 3.1 by construct-
ing a polynomial h � f as a Hermite interpolant of the function f at the points of
¹�.x;y/ W x;y 2 Cº. This reasoning, which lies behind the proof of Theorems 3.7 and 1.1,
explains the appearance of tight designs: indeed, the number of elements in the set of inter-
polation points (i.e., distinct distances between the points of C ) determines the degree of
the interpolant h – hence one wants a design of high strength, but with few mutual dis-
tances.

The same reasoning as above applies to the emergence of sharp designs as universally
optimal sets in [21], and it also explains why this slightly weaker notion does not suffice
for our purposes: since we are working with general measures rather than point sets with
fixed cardinality, we cannot avoid interpolating at the point t D 1, which requires a design
of higher strength. The main technical difficulty in this setting is proving positive defin-
iteness of the Hermite interpolating polynomial h. We take this approach to Theorem 3.7
and carry out the technicalities in Sections 3.2–3.4.

If a suitable candidate is not available, one can still rely on part (i) of Lemma 3.1 and
attempt to optimize the value of the energy Ih.�/ over auxiliary positive definite poly-
nomials h, obtaining a lower bound for the energy over all probability measures. If the
degree of an auxiliary function h is bounded by D, we have D C 1 non-negative vari-
ables yhi , 0 � i �D, and infinitely many linear constraints h.t/ � f .t/ for all t 2 Œ�1; 1�.
In order to get the best possible lower bound, we need to maximize yh0 given these linear
conditions.
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3.2. Properties of orthogonal polynomials

Recall that, for fixed �, we write simply Cn.t/ D C
.˛;ˇ/
n .t/ with Cn.1/ D 1. In some

of the arguments in Section 3.4 we will instead use the monic polynomials proportional
to Cn; we therefore introduce notation Qn.t/ D Q

.˛;ˇ/
n .t/ for these Jacobi polynomials.

In this subsection we collect several results about orthogonal polynomials relevant
to the proof of our main theorem. Fix a space �, and let ˛ and ˇ be the corresponding
parameters of the associated Jacobi polynomials. According to Proposition 2.3, a function
being positive definite on � is equivalent to having positive coefficients in the Jacobi
expansion in terms Q.˛;ˇ/

n .
It will be useful to consider adjacent Jacobi polynomials, defined as one of the three

sequences Qk;l
n D Q

.˛Ck;ˇCl/
n with k; l 2 ¹0; 1º, k C l > 0. Specifically, we will need

the following corollary, which comes out of representing Q1;0
n through Q0;0

n (see equa-
tion (3.4) in [40]):

Proposition 3.2. Adjacent Jacobi polynomials Q1;0
n are positive definite on �.

On the other hand, adjacent polynomials Q1;1
n , defined as orthogonal with respect to

the measure .1 � t2/ d�.˛;ˇ/, are not positive definite. The following property, a special
case of the strengthened Krein condition [41], Lemma 3.22, can serve as a substitute.

Lemma 3.3. .t C 1/Q1;1
n .t/ are positive definite on � for n � 0.

Proof. For all n 2 N0, .t C 1/Q1;1
n is orthogonal to all polynomials of degree less than n

with respect to the measure .1 � t /d�.˛;ˇ/ D c˛;ˇ d�
.˛C1;ˇ/, so it can be expressed

through the orthogonal polynomials corresponding to d�.˛C1;ˇ/ as

.t C 1/Q1;1
n .t/ D Q

1;0
nC1.t/C bQ

1;0
n .t/;

for some constant b. Since all the roots ofQ1;0
n lie in .�1;1/, sgnQ1;0

n .�1/D .�1/n. Sub-
stituting t D�1 in the last equation givesQ1;0

nC1.�1/C bQ
1;0
n .�1/D 0, and so b � 0. By

Proposition 3.2, each Q1;0
n .t/ is positive definite, and thus .t C 1/Q1;1

n .t/ is also positive
definite.

Lastly, we will need the strict positive-definiteness of polynomials annihilated by sub-
sets of roots of pn C 
pn�1. We recall the following result.

Proposition 3.4 ([21], Theorem 3.1). Consider a sequence of orthogonal monic polyno-
mials p0.t/; p1.t/; p2.t/; : : :, such that degpk D k for all k 2 N0, and let t1 < � � � < tn
be the zeros of pn C 
pn�1 for some fixed 
 . Then the polynomials

kY
iD1

.t � ti /; 1 � k < n;

can be represented as a linear combination of p0.t/; p1.t/; : : : ; pn.t/ with positive coef-
ficients.
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3.3. Hermite interpolation

Let f 2CK Œa;b�, for someK 2N0, and let one be given a collection t1< � � �< tm� Œa;b�,
as well as positive integers k1; : : : ; km with

max¹k1; : : : ; kmº � K C 1:

There exists a polynomial p of degree less than D D
Pm
iD1 ki , such that for 1 � i � m

and 0 � k < ki ,
p.k/.ti / D f

.k/.ti /:

Such a p is called the Hermite interpolating polynomial of f ; it always exists and is
unique because the linear map that takes a polynomial p of degree less than D to

.p.t1/; p
0.t1/; : : : ; p

.k1�1/.t1/; p.t2/; p
0.t2/; : : : ; p

km�1.tm//

is bijective.
It is convenient to organize both the collection t1 < � � � < tm and the orders of derivat-

ives k1; : : : ; km into a polynomial g.t/. Given such a polynomial

g.t/ D

mY
iD1

.t � ti /
ki ;

where D D deg.g/ � 1, we write HŒf; g� for the interpolating polynomial of degree less
than D that agrees with f at each ti to the order ki . Similarly, we let

QŒf; g�.t/ D
f .t/ �HŒf; g�.t/

g.t/

be the divided difference associated with the polynomial g. Under the above hypotheses,
for every t 2 Œa; b� and a collection t1 < t2 < � � � < tm as above, there exists � 2 .a; b/
such that min.t; t1/ < � < max.t; tm/, and

(3.1) QŒf; g�.t/ D
f .D/.�/

DŠ
�

Enumerate the roots of g with multiplicities in increasing order, and denote these by sj ,
1 � j �D, where sj � sjC1. Let gn be the polynomial annihilated on the first n elements
of the sequence s1; : : : ; sD:

gn.t/ D

nY
jD1

.t � sj /; 1 � n � D:

The usual assignment of the empty product applies here: g0.t/ D 1.
By Newton’s formula, see [26], Chapter 4.6-7, the Hermite interpolating polynomial

HŒf; g� can be represented as

(3.2) HŒf; g�.t/ D f .s1/C

D�1X
jD1

gj .t/QŒf; gj �.sjC1/:

The relevant property of the p-frame kernel . sC1
2
/p=2 considered on a projective space

FPd�1 (for F D R;C;H), is that its first several derivatives are nonnegative on .�1; 1/,
followed by a negative one. The positivity of the derivatives implies, due to (3.1), that the
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divided differences in formula (3.2) for the p-frame kernel are nonnegative. It will be
convenient to introduce notation for this number of nonnegative derivatives of a function.

Definition 3.5. Let f 2 CM .a; b/. We say that f is absolutely monotonic of degreeM if
f .k/.t/ � 0 for 0 � k �M and t 2 .a; b/. If these derivatives are positive, we say that F
is strictly absolutely monotonic of degree M .

The usefulness of this new class of functions lies in that the Hermite interpolant of an
absolutely monotonic function f of degree M with .M C 1/st derivative negative, will
stay below f , as shown in the following observation [65].

Lemma 3.6. Let f W Œ�1; 1�! R be absolutely monotonic of degree M , with f .MC1/.t/
� 0 for all t 2 .�1; 1/. If the roots of a polynomial g of degree M C 1 are contained in
Œ�1; 1�, and in addition g.t/ � 0 for t 2 Œ�1; 1�, then

f .t/ � HŒf; g�.t/; t 2 Œ�1; 1�:

Proof. According to (3.1), there exists � 2 .�1; 1/ such that min.t; t0/ < � < max.t; tM /,
where the roots of g are t0 � � � � � tM , and

f .t/ �HŒf; g�.t/ D
f .MC1/.�/

.M C 1/Š
g.t/:

The expression on the right is nonnegative, so the conclusion of the lemma follows.

3.4. Optimality of tight designs

As above, � is a compact, connected two-point homogeneous space and Q0;Q1;Q2; : : :

are the corresponding orthogonal polynomials. Recall thatQn are orthogonal with respect
to the measure d�.˛;ˇ/ D 1


˛;ˇ
.1 � t /˛.1C t /ˇdt , where the parameters ˛, ˇ are chosen

as in Section 2.1. The main result of this section is the following.

Theorem 3.7. Let f be absolutely monotonic of degree M , with f .MC1/.t/ � 0 for t 2
.�1; 1/. Then for a tight M -design C ,

�C D
1

jC j

X
x2C

ıx

is a minimizer of

If .�/ D

Z
�

Z
�

f .�.x; y// d�.x/ d�.y/

over P .�/, the set of probability measures on �.

First of all, we show that this statement implies part (ii) of Theorem 1.1.

Proof of part (ii) of Theorem 1.1. Recall that, according to (2.4), the p-frame energy on
Sd�1F corresponds to the kernel f .t/ D .1Ct

2
/p=2 in the projective setting � D FPd�1.

One can easily check that f .dp=2eC1/.t/� 0,�1< t < 1, and that all derivatives of smaller
order are nonnegative. Thus Theorem 3.7 applies with M D dp=2e, i.e., tight projective
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M -designs minimize If on FPd�1 for 2M � 2 < p � M (the case p D 2M � 2 is
easy, since f is a positive definite polynomial, so � is a minimizer and hence so are tight
designs). Transferring the problem back to the sphere Sd�1F , as explained in Section 2.4,
finishes the proof of part (ii) of Theorem 1.1.

In what follows we give a proof of Theorem 3.7, splitting it into two separate cases,
depending on whether the design C contains two points separated by the diameter of �;
equivalently, depending on the parity of the strength M of C .

Proposition 3.8. Theorem 3.7 holds when M D 2m, m � 1.

Proof. Let t1 < � � � < tm < tmC1 D 1 be the values of �.x; y/ D cos.#.x; y// occurring
in C . Let further

gk.t/ D

kY
iD1

.t � ti /; 1 � k � mC 1:

and

(3.3) g.t/ D gm.t/ gmC1.t/ D .t � 1/g
2
m.t/:

To prove the statement of the theorem, we verify the following chain of inequalities, sat-
isfied for arbitrary � 2 P .�/, similar to the proof of Lemma 3.1:

(3.4) If .�/ � IHŒf;g�.�/ � IHŒf;g�.�/ D IHŒf;g�.�C / D If .�C /:

Since g.t/ � 0 for t 2 Œ�1; 1�, Lemma 3.6 implies that f .t/ �HŒf; g�.t/, t 2 Œ�1; 1�,
which gives the first inequality. The equality IHŒf;g�.�/D IHŒf;g�.�C / is satisfied since C

is a design of strength 2m � degHŒf; g�. The last equality holds since the interpolant
HŒf;g� agrees with f at the cosines of distances occurring in C . All that remains to show
is the second inequality: by Proposition 2.3, it will follow from the positive definiteness
of HŒf; g�, which we will now demonstrate.

For any n < m, the degree of gmC1.t/Qn.t/ is at most 2m. As C is a 2m-design, for
every fixed y 2 C there holdsZ 1

�1

gmC1.t/Qn.t/ d�
.˛;ˇ/

D

Z
�

gmC1.�.x; y//Qn.�.x; y// d�.x/

D
1

jC j

X
x2C

gmC1.�.x; y//Qn.�.x; y// D
1

jC j

mC1X
iD1

ci gmC1.ti /Qn.ti / D 0;

since, by construction, gmC1 is annihilated on all the ti . The constants ci are given by, for
any fixed y 2 C ,

ci D j¹x 2 C j �.x; y/ D tiºj:

Both gmC1 and QmC1 are monic, so we conclude that

gmC1.t/ D QmC1.t/C 
Qm.t/;

for some 
 2 R. By Proposition 3.4, subproducts of zeros of gmC1, which we denote
by gk , 1 � k � m, can be expressed as linear combinations of Qn with positive coeffi-
cients, and therefore are positive definite.
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According to the Newton formula (3.2), the Hermite interpolant of f can be expressed
as the sum of partial products of factors of g multiplied by the appropriate divided dif-
ference. We will use this formula to show that HŒf; g� is positive definite. Indeed, (3.2)
gives

(3.5) HŒf; g�.t/Df .t1/C
mX
kD1

�
gk.t/gk�1.t/QŒf; gkgk�1�.tk/Cg

2
k.t/QŒf; g

2
k �.tkC1/

�
;

where as usual, g0 D 1. Observe that the divided differences in the last equation are non-
negative due to (3.1), as the function f is absolutely monotonic of degree 2m. Since
we have shown that each gk is positive definite, Schur’s theorem implies that so are g2

k

and gkgk�1, and it follows that HŒf; g� is positive definite as well.

Before turning to the proof of Theorem 3.7 for tight designs of odd strength, recall
the definition of the adjacent polynomialsQ1;1

n DQ
.˛C1;ˇC1/
n for n � 0. They are monic,

orthogonal with respect to the measure

d�.˛C1;ˇC1/.t/ D
1


˛C1;ˇC1
.1 � t /˛C1.1C t /ˇC1dt D


˛;ˇ


˛C1;ˇC1
.1 � t2/d�.˛;ˇ/.t/;

since the polynomials Q.˛;ˇ/
n .t/ are orthogonal with respect to measure d�.˛;ˇ/.

Proposition 3.9. Theorem 3.7 holds when M D 2m � 1, m � 1.

Proof. Suppose that C � � is a tight .2m� 1/-design. As discussed in Section 2.3, tight
designs of odd strength necessarily contain antipodal points, i.e., there exist x, y 2 C such
that #.x; y/ D � and thus �1 2 A.C/ D ¹�.x; y/jx; y 2 Cº. Let �1 D t1 < � � � < tm <
tmC1 D 1 be the values of �.#.x; y// for x; y 2 C , and set

(3.6) w.t/ D

mY
jD2

.t � tj / and g.t/ D w2.t/.t2 � 1/:

As in the proof of Proposition 3.8, we need to verify the inequalities (3.4). Applying
Lemma 3.6 to HŒf; g� gives the first inequality; it remains to show positive-definiteness
of HŒf; g�.

For n < m� 1, the degree of .1� t2/w.t/Q1;1
n .t/ is at most 2m� 1, so for any y 2 C

there holds


˛C1;ˇC1


˛;ˇ

Z 1

�1

w.t/Q1;1
n .t/ d�.˛C1;ˇC1/

D

Z
�

.1 � �2.x; y//w.�.x; y//Q1;1
n .�.x; y// d�.x/

D
1

jC j

X
x2C

.1 � �2.x; y//w.�.x; y//Q1;1
n .�.x; y//

D
1

jC j

mC1X
jD1

cj .1 � t
2
j / w.tj /Q

1;1
n .tj / D 0;
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as .1 � t2/w.t/ is annihilated on the cosines of distances from C . Because w.t/ is a
degreem� 1 monic polynomial, the above implies w.t/DQ1;1

m�1.t/. By Proposition 3.4,
this also means that for 2� k �m� 1, the polynomials

Qk
jD2.t � tj / are linear combina-

tions of Q1;1
n with nonnegative coefficients. Since the cone of functions with nonnegative

Jacobi coefficients with respect to Q1;1
n is closed under multiplication, the polynomi-

als
Qk
jD2.t � tj /

2 and .t � tk/
Qk�1
jD2.t � tj /

2 also have nonnegative Jacobi coefficients
in Q1;1

n . Due to Lemma 3.3, since t � t1 D t C 1, we obtain that

(3.7) ak.t/ WD .t � t1/.t � tl /

k�1Y
jD2

.t � tj /
2 and bk.t/ WD .t � t1/

kY
jD2

.t � tj /
2

are linear combinations of Q.˛;ˇ/
n with positive coefficients, that is, they are positive def-

inite on � for 1 � k � m.
We conclude by the same observations as in the proof of Proposition 3.8; in particular,

the positive definiteness of the Hermite interpolant HŒf; g� follows from the representa-
tion

HŒf; g�.t/ D f .t1/C b1.t/QŒf; b1�.t2/(3.8)

C

mX
kD2

�
ak.t/QŒf; ak �.tk/C bk.t/QŒf; bk �.tkC1/

�
;

combined with the absolute monotonicity of f to degree 2m� 1, which implies positivity
of the divided differences Q.

3.5. Uniqueness of minimizers supported on tight designs

The proofs in the last section left the question of uniqueness of minimizers open. Are there
any other minimizers for p-frame energies when tight designs minimize and p is not an
even integer? The answer, as this section details, is no.

In general, whenever a tight design minimizes If for some kernel f that is strictly
absolutely monotonic of degree M and which satisfies f .MC1/.t/ < 0, t 2 .�1; 1/, the
energy is minimized only by a tight design, although such designs are not necessarily
unique up to equivalence, as mentioned in Section 2.3. Before stating our result in full, we
introduce a couple standard lemmas (in slightly simplified form adapted to our needs).

Let NM denote the cardinality of a tight M -design in � or, more precisely, the linear
programming lower bound on the cardinality ofM -designs [25,32], which is well-defined
even if tight M -designs do not exist and coincides with the cardinality of a tight design
when they do. In fact, tight designs are often equivalently defined in terms of this quantity.

The first lemma, which can be found in [41], Theorem 4.4, states that tight designs
have the smallest cardinality among all weighted designs of given strength.

Lemma 3.10. Let .B; w/ be a weighted M -design in �. Then jBj � NM , and equality
holds if and only if w.x/ D 1=jBj for all x 2 B and B is a tight M -design.

The second lemma shows that tight designs have the largest cardinality among all sets
with a given number of distinct distances.
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Lemma 3.11. Let B � � be an m-distance set, i.e., jA.B/j D m. Then jBj � N2m.
Moreover, if B is antipodal .contains a pair of points diameter apart/, then jBj �N2m�1.

This lemma was proved in [25] for the sphere, and in [32] for projective spaces. We
are now ready for the uniqueness result.

Theorem 3.12. Suppose that a tight M -design C minimizes the f -energy integral, for f
strictly absolutely monotonic of degreeM and such that f .MC1/.t/ < 0, t 2 .�1;1/. Then
any minimizer of If must be a tight M -design.

Proof. The argument developed to prove Theorem 3.7 may be described concisely through
the following string of inequalities:

If .�/ � IHŒf;g�.�/ � IHŒf;g�.�/ D IHŒf;g�.�C / D If .�C /;

where g is of the form (3.3) or (3.6), as is appropriate. In order for If .�/ D If .�C / to
hold, the inequalities must be equalities. The first inequality can only be an equality in
the case that A.supp.�// � A.C/. This follows from the fact that HŒf; g�.t/ < f .t/ for
all t 62 A.C/ by the remainder formula from Lemma 3.6. In particular, this shows that
jsupp.�/j is finite. Moreover, Lemma 3.11 then guarantees that jsupp.�/j � NM D jC j;
since NM is increasing with M .

Now assume that the second inequality above is an equality. We first note that since f
is strictly absolutely monotonic of degree M , f .t1/ � 0, and the divided differences
appearing in (3.5) or (3.8) are all positive due to (3.1). Thus, HŒf; g� is a linear com-
bination (possibly modulo a constant), with positive coefficients, of positive definite poly-
nomials of degrees 1; : : : ; M , so HŒf; g� D a0 C

PM
jD1 ajCj , where aj > 0 for j > 1

and a0 � 0. We see that � must then be a weighted M -design, and due to Lemma 3.10,
we have jsupp.�/j � NM D jC j.

Therefore, jsupp.�/j D NM D jC j, and the second part of Lemma 3.10 implies that
supp.�/ is a tight M -design and � has equal weights.

4. Optimality of the 600-cell

This section concerns only the p-frame kernels; it will be shown here that the 600-cell
minimizes the p-frame energy on S3 for a certain range of p. The 600-cell is one of the
six 4-dimensional convex regular polytopes; it has 600 tetrahedral faces, which explains
the origin of its name. When its 120 vertices are identified with unit quaternions, they give
a representation of the elements of a group known as the binary icosahedral group [57].

As discussed above (2.4), optimization of p-frame energy on the sphere S3 is equival-
ent to optimization of the expression

’
.RP3/2 f .�.x; y// d�.x/d�.y/ over measures �

on RP3, where the kernel f is given by

f .t/ D
�1C t

2

�p=2
:

We therefore assume for the rest of this section the underlying space to be RP3, and
use the corresponding Jacobi polynomials C .�1=2;1=2/n .t/. Following the approach of the
previous section, we will establish a sequence of inequalities similar to (3.4).
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The 600-cell is only a projective 5-design and therefore not tight. The authors in [21],
motivated by an approach found in the paper [1], found means to prove universal optim-
ality of the 600-cell by using a higher degree interpolating polynomial. The 600-cell has
the notable property that the 7th, 8th, and 9th degree harmonic averages over it vanish,
although the 6th degree average does not. This allows for constructing a degree 8 polyno-
mial hwhich is less than or equal to f , positive definite, and agrees with f at the distances
appearing in the 600-cell, and which finally has the property that its 6th Jacobi coefficient
vanishes.

For a polynomial h of the form

(4.1) h D
X

n2¹0;:::;8º; n¤6

yhn C
.1=2;�1=2/
n .t/;

the coefficients yhn can be uniquely determined as functions of p by setting

h.ti / D f .ti /; 1 � i � 5; and h0.ti / D f
0.ti /; 2 � i � 4;

where �1 D t1 < t2 < � � � < t5 D 1 are the values of �.x; y/ when vectors x; y vary over
the vertices of the 600-cell, see the proof of Theorem 4.2 below. It turns out that for all
p 2 Œ8; 10�, yhn.p/ � 0 when 0 � n � 8; n¤ 6. We apply a computer-assisted approach to
verify this positivity; specifically, using interval arithmetic, we compute values of yhn.p/
on a grid fine enough to guarantee that yhn.p/ � 0. The details of this computation are
available in the auxiliary files of the arXiv submission of this paper. Even though the com-
putations performed are carried out in finite floating point precision, interval arithmetic
guarantees that the results of these computations lie in precisely defined intervals (using
libraries [34, 50, 68]). The computer-assisted argument yields the following.

Lemma 4.1. If p 2 Œ8; 10� and the polynomial h is constructed as above, the coeffi-
cients yhn in the Jacobi expansion (4.1) satisfy yhn.p/ � 0.

Using this fact, we show optimality of the 600-cell on the range p 2 Œ8; 10�.

Theorem 4.2. The 600-cell minimizes the p-frame energy for p 2 Œ8; 10� over Borel prob-
ability measures on S3 or RP3.

Proof. Let f .t/ D ..t C 1/=2/p=2 for some 8 < p < 10, t1 D �1, t2 D .�
p
5 � 1/=4,

t3 D �1=2, t4 D .
p
5 � 1/=4, and t5 D 1. Let h.t/ be the 8th degree polynomial given

by (4.1), such that h.ti / D p.ti / for 1 � i � 5, and h0.ti / D p0.ti / for 2 � i � 4. By
Lemma 4.1, the coefficients yhn are non-negative for p 2 Œ8; 10�.

Let p.t/ D .t2 � 1/
Q4
iD2.t � ti /

2 and Qh.t/ D HŒf; p�.t/. Then we also have Qh.t/ D
HŒh; p�.t/. This gives

f .t/ � Qh.t/ D
f .8/.�/

8Š
p.t/ � 0 and h.t/ � Qh.t/ D

h.8/.�/

8Š
p.t/ � 0:

We thus have f .t/� h.t/D f .t/� Qh.t/C Qh.t/� h.t/ � 0. Since h.t/ is positive definite
and yh6 D 0, for the 600-cell C600, we have the following sequence of inequalities:

If .�/ � Ih.�/ � Ih.�/ D Ih.�C600/ D If .�C600/;

implying that equally weighted vertices of C600 minimize p-frame energy.
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5. p-frame energies in non-compact spaces

In the previous sections, we used linear programs to bound energies on compact two-point
homogeneous spaces. This approach can be extended to p-frame energies in non-compact
spaces as well. Just as above, we consider F D R;C; or H. In this setting, we consider
the set of probability measures P .Fd / with the additional restriction

(5.1)
Z

Fd
jxj2 d�.x/ D 1

for each � 2 P .Fd /. This normalization allows us to obtain a direct extension of above
results for the spherical case, and by scaling, solutions to more general problems can be
obtained from these results. A similar problem of finding maximizers for p-frame energies
for p � 2, subject to the condition that measures be isotropic, was investigated in [31].

For a potential functionf D f .�.x; y// D f .2jhx; yij2 � 1/, we define the energy
with respect to a measure � 2 P .Fd / as

If .�/ D

Z
Fd

Z
Fd
f .�.x; y// d�.x/ d�.y/:

We will be concerned in this section only with the case that f .�.x; y// D jhx; yijp .
The Jacobi polynomials for the projective spaces FPd�1, as above, are denoted Cm.

Lemma 5.1. For p � 2, assume f .t/ D . tC1
2
/p=2 � h.t/ D

P1
mD0
yhmCm.t/ for all t 2

Œ�1; 1�, where yhm � 0 for allm � 0. Then If .�/ � yh0 for all �2P .Fd / satisfying (5.1).

Proof. Since discrete masses are weak-� dense in P .Fd /, it is sufficient to prove the
inequality for them only. Let � take the form � D 1

N

PN
iD1 ıxi , xi 2 Fd , and set yi D

xi=jxi j. (Note that if xi is 0 then we can assign an arbitrary unit vector for yi ). Then,

If .�/ D
1

N 2

NX
i;jD1

jhxi ; xj ij
p
D

1

N 2

NX
i;jD1

jxi j
p
jxj j

p
jhyi ; yj ij

p

D
1

N 2

NX
i;jD1

jxi j
p
jxj j

p f .�.yi ; yj // �
1

N 2

NX
i;jD1

jxi j
p
jxj j

p h.�.yi ; yj //

D
1

N 2

1X
mD0

yhm

NX
i;jD1

jxi j
p
jxj j

pCm.�.yi ; yj //:

For any m � 1, Cm is positive definite on FPd�1, and so we have that each sumPN
i;jD1 jxi j

pjxj j
pCm.�.yi ; yj // is non-negative. Thus,

If .�/ � yh0
1

N 2

NX
i;jD1

jxi j
p
jxj j

pC0.�.yi ; yj // D yh0

� 1
N

NX
iD1

jxi j
p
�2
:
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Since p � 2,
1

N

NX
iD1

jxi j
p
�

� 1
N

NX
iD1

jxi j
2
�p=2

holds by Jensen’s inequality. The constraint 5.1 is equivalent to 1
N

PN
iD1 jxi j

2 D 1, and
by combining all inequalities, we complete the proof of the lemma.

Lemma 5.1 gives that any linear programming bounds for p-frame energies applic-
able to the spherical/projective case will work in the non-compact setting as well. As a
consequence of this approach, we obtain the following result.

Theorem 5.2. Let C be a set of arbitrary unit representatives of a tight projective
M -design, M � 2, in FPd�1 and let f .�.x; y// D jhx; yijp with p 2 Œ2M � 2; 2M�.
Then

�C D
1

jC j

X
x2C

ıx

is a minimizer of

If .�/ D

Z
Fd

Z
Fd
f .�.x; y// d�.x/ d�.y/

over the set of probability measures on Fd satisfying the constraint (5.1).

Proof. For the proof, we take f .t/ D . tC1
2
/p=2, h to be the interpolating polynomial

HŒf; g� used in the proof of Theorem 3.7 or the h used in the proof of Theorem 4.2,
and h�.x; y/ D jxjpjyjph.�.x=jxj; y=jyj// for all x; y 2 Fd . We follow the same line of
reasoning as before to find

(5.2) If .�/ � Ih�.�/ � Ih�.�
�/ D Ih�.�C / D If .�C /;

where �� is the uniform probability measure on the unit sphere in Fd (and so projects to
the Haar measure on FPd�1).

All inequalities are verified in a similar manner as in the previous section, except for
Ih�.�/ � Ih�.�

�/. This part follows from Lemma 5.1 applied to h� because Ih�.��/ D
Ih.�/ is precisely yh0 for positive definite functions h.

Note: A similar result may be derived in the same manner as above for C , a set of arbit-
rary unit representatives of the 600-cell in RP3 and p 2 Œ8; 10�, in light of Theorem 4.2.

6. Mixed volume inequalities

In this section we demonstrate an intriguing connection between the p-frame energy and
convex geometry. We begin by briefly recalling some of the basic notions from convex
geometry. See [35], Chapter 2, for a more thorough development.

LetK be a convex body and let �K.u/ be the surface measure ofK, that is, a measure
supported on the unit sphere Sd�1 satisfying, for all Borel sets B � Sd�1,

�K.B/ D j¹x 2 @K; the outer unit normal to K at x belongs to Bºjd�1;

where j � jd�1 denotes the .d � 1/-dimensional Hausdorff measure.
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For example, ifK is a polytope with faces ¹KiºmiD1 and normals ¹niºmiD1, �K is atomic
with mass jKi jd�1 at each ni ,

�K D

mX
iD1

jKi jd�1 ıni ;

and if K D B is the d -dimensional unit ball, then �K simply coincides with the standard
(unnormalized) uniform surface area measure �K.B/ D jBjd�1 D 2�d=2

�.d=2/
�.B/.

Recall that for a convex body, K � Rd , the support function hK.u/ of K takes the
form

hk.u/ D sup
v2K

hu; vi:

Given two convex bodies K and L, and p � 1, define

Vp.K;L/ D
p

d
lim
"!0

jK Cp "Lj � jKj

"
;

where K Cp "L is the convex body with support function hKCp"L.u/ satisfying

hKCp "L.u/
p
D hK.u/

p
C " hL.u/

p:

Note that for L D Bd is the unit ball and p D 1, the above quantity is just the definition
of the surface area of K. In general, Vp.K; L/ is known as the Lp-mixed volume of K
and L. The following alternative integral representation for Vp.K;L/ is known:

Vp.K;L/ D
1

d

Z
Sd�1

hL.u/
p d�

p
K.u/;

where d�pK.u/ D hK.u/
1�pd�K.u/, so that in particular d�1K.u/ D d�K.u/ .

Now, call a probability measure � supported on Sd�1 admissible if it is symmetric
and not concentrated on a subspace. A classical result, which follows from Minkowski’s
theorem, says that any admissible measure can be realized as the surface area measure of
a symmetric convex body; see more in Chapter 7 of [51].

The projection body …K of a convex body K is defined to be a body such that for
each u 2 Sd�1,

h…K.u/ D
ˇ̌
Kju?

ˇ̌
d�1

;

that is, the support function of …K equals the volume of the projection of K onto the
hyperplane orthogonal to u, [17]. Sinceˇ̌

Kju?
ˇ̌
d�1
D
1

2

Z
Sd�1
jhu; vij d�K.v/;

the identities

Ijt j.�K/ D

Z
Sd�1

Z
Sd�1
jhu; vij d�K.u/ d�K.v/ D 2

Z
Sd�1

ˇ̌
Kju?

ˇ̌
d�1

d�K.u/

D 2

Z
Sd�1

h…K.u/ d�K.u/ D 2d V1.K;…K/

finally establish the connection between L1-mixed volumes and 1-frame energies.
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Our main theorem, Theorem 1.1, shows that all minimizers of Ijt jp .�/ over probability
measures are admissible when a corresponding tight design exists, as this measure is both
discrete and can be taken to be symmetric. From this, we obtain what appears to be a new
observation, namely the following.

Proposition 6.1. The minimum of the quantity

V1.K;…K/

j@Kj2

over all symmetric convex bodies in Rd is achieved when K is a cube.

Indeed, it is easy to see that, when K is a cube, the surface measure �K is equally
distributed on the vertices of a cross-polytope, which minimizes the p-frame energy for
p D 1.

One may also define Lp-intersection bodies …pK, [42, 43], in a similar fashion and
obtain analogous relations for other values of p. Doing so allows one to infer similar state-
ments for Vp.K;…pK/=j@Kj2 for the several dimensions and ranges of p considered in
this manuscript (for which tight designs exist), as well as pose conjectures corresponding
to the numerically obtained minimizers. We anticipate, in particular, in accordance with
Conjecture 1.3, that whenever p is not an even integer, this quantity is always minimized
by a convex body which is polyhedral (with discrete surface measure).

7. Causal variational principle

We now turn to another application of the linear programming method. Define the kernel

(7.1) F.t/ D F� .t/ WD max¹0; 2�2
�
1C t

��
2 � �2.1 � t /

�
º

for � > 0. The minimization problem for the energy

(7.2) IF .�/ D

Z
S2

Z
S2
F.hx; yi/ d�.x/ d�.y/

is known as the causal variational principle on the sphere and is connected to relativistic
quantum field theory. It is conjectured in [28] that there exist discrete minimizers for
� � 1 and, moreover, that all the minimizers of (7.2) are discrete whenever � >

p
2. The

background on this problem can be found in [10, 28].
Here we confirm this conjecture for two values of � > 0, for which we can show that

the cross-polytope (or orthoplex) and the icosahedron indeed minimize the energy, which
was suggested by numerical experiments in [28]. The proofs are another application of
the linear programming framework. In this instance, Hermite interpolation is unavailable
to us as F is not differentiable on .�1; 1/. However, since we are dealing with a single
kernel, instead of a class of them as in the previous section, we need only construct the
correct auxiliary function.

We address the cross-polytope first. When � D
p
2, we have

F� .t/ D max¹0; 8t2 C 8tº;
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and thus F� .0/ D 0. Setting the measure

�cross D
1

6

3X
iD1

.ıei C ı�ei /;

where ¹e1; e2; e3º is an orthonormal basis of R3, i.e., �cross is a measure whose mass is
equally concentrated in the vertices of a cross-polytope, we have the following.

Proposition 7.1. The measure �cross is a minimizer for the energy IFp2 over P .S2/ .

Proof. The function
h.t/ D 8t2 C 8t:

is positive definite on S2 (hence, Ih is minimized by � ) and clearly satisfies h.t/� Fp2.t/
for all t 2 Œ�1;1�; and h.�1/D Fp2.�1/D 0 , h.0/D Fp2.0/D 0, h.1/D Fp2.1/D 16:
so that Ih.�cross/D IFp2.�cross/. Moreover, Ih.�/D Ih.�cross/, since the cross-polytope is
a 3-design. Therefore, for any measure � 2 P .S2/,

IFp2.�/ � Ih.�/ � Ih.�/ D Ih.�cross/ D IFp2.�cross/;

which finishes the proof.

We now focus on the case of the icosahedron. Here we set � D
q
2
p
5=.
p
5 � 1/ so

that F� .1=
p
5/ D 0. Let C � S2 consist of the vertices of a regular icosahedron and let

�icos D
1
12

P
x2C ıx be the uniform measure on the vertices of the icosahedron.

Proposition 7.2. The measure �icos minimizes the energy IF� over P .S2/ for � D
r

2
p
5

p
5�1
�

Proof. The proof is almost identical to that of Proposition 7.1, except h is instead taken
to be

h.t/ D
5.5 �

p
5/

32
t4 C

5

8
t3 C

3
p
5 � 5

16
t2 �

1

8
t C

1 �
p
5

32

D
5 �
p
5

28
C4.t/C

1

4
C3.t/C

20C 3
p
5

84
C2.t/C

1

4
C1.t/C

1

12
C0.t/;

whereCk are the standard Legendre polynomials (i.e., the Gegenbauer polynomialsC 1=2
k

).
One may verify that h is positive definite and satisfies h.t/ � F.t/ for �1 � t � 1 with
equality for t 2 ¹˙1=

p
5;˙1º, so that Ih.�icos/ D IF� .�icos/. Since the icosahedron is a

5-design, the same argument as in the proof of Proposition 7.1 finally shows that

IF .�icos/ D inf
�2P.S2/

IF .�/;

i.e., the icosahedron minimizes the energy IF� for �2 D 2
p
5

p
5�1
�
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