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Non-symplectic automorphisms of K3 surfaces with
one-dimensional moduli space

Michela Artebani, Paola Comparin and Maria Elisa Valdés

Abstract. The moduli space of K3 surfaces X with a purely non-symplectic auto-
morphism o of order n > 2 is one dimensional exactly when ¢(n) = 8 or 10. In this
paper we classify and give explicit equations for the very general members (X, o) of
the irreducible components of maximal dimension of such moduli spaces. In partic-
ular, we show that there is a unique one-dimensional component for n = 20,22, 24,
three irreducible components for n = 15 and two components in the remaining cases.

1. Introduction

An automorphism ¢ of finite order n > 2 of a complex K3 surface X is purely non-
symplectic if 0*(wyx) = , wx, where wy is a nowhere vanishing holomorphic 2-form
of X and ¢, is a primitive nth root of unity. By [18], Main Theorem 3, there exists one
such pair (X, o) if and only if n belongs to the set TVk; = {n € N — {60} |p(n) < 20}.

The structure of the moduli space of such K3 surfaces can be described by means of
the global Torelli theorem and the surjectivity theorem for periods of K3 surfaces (see §11
in [13]). In particular, it is known that an irreducible component of the moduli space of
pairs (X, o) for n > 3 is an arithmetic quotient of a Zariski open subset of a complex ball
of dimension dim(V?) — 1, where V7 is the {,-eigenspace of o* in H?(X, C).

In this paper we consider the orders 7 such that the moduli space of K3 surfaces car-
rying a purely non-symplectic automorphism of order » is one dimensional. We show that
the orders n with such property, as expected, are exactly those n € TVks with p(n) = 8
or 10, i.e., 11,15, 16,20, 22,24 and 30 (see [18]). For all these values of n, we classify
pairs (X, o) such that dim(V %) = 2, i.e., we identify the fixed locus of o and of its powers,
determine the dimensions of the eigenspaces of o* in H2(X, C), and compute the Néron—
Severi lattice of a very general pair. The orders n = 11 and n = 16 had been previously
studied in [6,22] and [2] respectively. We collect these results in the following theorem.

Theorem 1.1. Let X be a complex K3 surface with a purely non-symplectic automorph-
ism o of order n > 2 such that (n) = 8 or 10 and dim(V?) = 2. Then Table 1 provides
all possible values for the vector d describing the dimensions of the eigenspaces of o*
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in H>(X, C), the topological invariants describing the fixed locus of powers of o (see
Section 2 for the notation) and the Néron—Severi lattice of a very general K3 surface in
each case. Moreover, all cases in the table exist.

[ n [ d [ i [ gi ki N; [ NS
11a 11 2,2) 11 1 0 2 U
11b 11 2,2) 11 - - 2 U(1l)
22 22 (2,0,0,2) 22 - - 6
11 0 2 U
2 10 1 0
15a 15 (2,1,0,2) 15 - - 5
5 2 0 1 UQB)® A2 @ Az
3 2 0 2
15b 15 (2,0,1,4) 15 - - 7
5 1 0 4 Hs ® Ag
3 4 1 1
15¢ 15 (2,0,2,2) 15 - - 4
5 1 0 4 Hs ® Ag
3 4 0 0
30a | 30 | (2,0,1,0,0,0,1,1) | 30 - - 1
15 - - 5
5 2 0 1 UQB)® Ar & An
3 2 0 2
2 10 0 0
30b | 30 | (2,0,0,1,0,0,1,3) | 30 - - 3
15 - - 7
5 1 0 4 Hs; ® Ay
3 4 1 1
2 9 1 0
16a 16 (2,0,0,0,6) 16 0 0 6
8 0 0 6 U® Dy
4 0 0 6
2 7 2 0
16b 16 (2,0,0,2,4) 16 - - 4
8 0 0 6 UQ2)® D4
4 0 0 6
2 6 1 0
20 20 (2,0,1,0,0,2) 20 - - 3
10 - - 7
5 2 0 1 UQ2) @ D4
4 0 0 6
2 6 1 0
24 24 | (2,0,0,0,0,1,0,4) | 24 - - 5
12 - - 5
6 0 0 11 U® Dy
3 4 1 1
2 7 2 0

Table 1. Non-symplectic automorphisms with ¢(n) = 8, 10.

This classification allows us to prove the following result, which provides explicit bira-
tional models for a very general pair (X, o) under the previous conditions (see Remark 2.3

about the generality assumption in the statement).
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Theorem 1.2. Let X be a very general complex K3 surface with a purely non-symplectic
automorphism o of order n > 2 such that ¢(n) = 8 or 10 and dim(V?) = 2, Then up
to a birational isomorphism, (X, o) belongs to the families described in Table 2, where
a € C is a parameter, {,, denotes a primitive nth root of unity and (x) means: minimal
resolution of a degree 11 covering of a principal homogeneous space of order 11 of the
rational elliptic surface y?> = x3 + x + t (see Example 3.3).

n | X | o
| @ Y= rax+ @ -1 (x, . 11t)
®)
15 | @ y2=x3+ @ - 1D(° —a) ($3x,y,{st)
(b) y?=x§+ xox] + x5 +axix3 (x0.¢5x1,83x2,y)
() y3= xgxl + x%x% + xi‘xz + axf (¢5x0, X1, x2,83Y)
16 | @ ¥ =x+2x+ar’@®+1) (tF6x. L6y (T61)
() »? =xo(xgxz + X3 4+ x1x5 +ax3x3) | (xo.L3x1.83x2.56y)
20 | 2 = xo(x] + x5 + x3x3 + axgxz) (—x0.{5x1,x2,1y)
22 y2=x3+ax—|—(t“—1) (x,—y,C111)
24 | y2=x3410* - 1)(t* - a) (S12x, 88y, it)
30 | @ y2=x3+@0 D> —a) ($3x, =y, §51)
() y?=x§+ xox] + x5 +axix3 (x0.¢5x1,3x2,—y)

Table 2. One dimensional families of K3 surfaces with non-symplectic automorphisms.

Corollary 1.3. The moduli space of K3 surfaces carrying a purely non-symplectic auto-
morphism of order n has a unique one-dimensional component for n = 20,22, 24, three
irreducible components for n = 15 and two irreducible components for n = 11,16, 30.

For orders 22, 15, 30 and 20, we actually prove a stronger version of Theorem 1.2,
since we provide projective models without assuming X to be very general.

Finally, in case n = 22 and n = 15, we classify purely non-symplectic automorphisms
of order n, that is, we provide the same type of information contained in Table 1, without
assuming dim(V?) = 2, see Theorem 4.2 and Theorem 5.1.

The structure of the paper is the following. In Section 2 we give preliminaries on non-
symplectic automorphisms of K3 surfaces and we fix the corresponding notation: fixed
loci, invariant lattices and eigenspaces in cohomology, moduli spaces. In Section 3, for
each order n € {11,22, 15,30, 16, 20, 24}, we prove Theorem 1.1 (see Theorem 3.1 and
Propositions 3.4, 3.6, 3.11, 3.14, 3.19, 3.24) and Theorem 1.2. In Sections 4 and 5, we
prove Theorem 4.2 and Theorem 5.1, respectively.
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2. Background and preliminary results

We will work over the complex numbers and we will denote by ¢; a primitive i th root of
unity. Let X be a K3 surface over C and let o be a purely non-symplectic automorphism
of X of ordern > 3,i.e., 0" (wx) = &, wx, where wy is a generator of the complex vector
space H20(X).

In what follows, we will denote by oy an element of (o) whose order is k.

2.1. Fixed locus

We start describing the fixed locus of o. The local action of o in a neighborhood of one of
its fixed points can be linearized and can be described by a matrix of the form

i+1 0 ) n—1
Al,i’l:(;no n—i )a l:071723"'7\‘ 2 J»
n

see §5 in [20]. When i = 0, the fixed point belongs to a fixed curve, otherwise it is an
isolated fixed point. This description implies that the fixed locus of o is the union of
isolated points and disjoint smooth curves. Moreover, by the Hodge index theorem, the
fixed locus contains at most one curve of genus g > 2. In what follows we will use the
following notation for the fixed locus of o

Fix(0) = Cg URy U---U R U{p1,....pn},

where C; is a smooth curve of genus g, Rj, ..., Rg are smooth rational curves, and
p1,-.., pn are isolated fixed points. The fixed points such that the local action is given
by the matrix A4; , will be called points of type A4; ,, and the number of such points will
be denoted by a; .

We now recall the holomorphic Lefschetz formula [7], which relates these numbers
with the action of o* on the cohomology groups H/ (X, Ox):

2
Z tr (07 (x.0p)) =
j=0

where & 1= ) ¢ cgiy (o) (1 — g(C)). Observe that

-1/2
L(n—-1)/2] Qi 1+ ¢,

Xg G—gma—g A= G?

i=

H'(X,0x) = H*(X,0x) = {0}
since X is a K3 surface, 0* =idon H%(X,Ox) = C and o* acts as multiplication by é_‘ n on

H?*(X,0x) = H%2(X) = Cay. Thus the left-hand side of the formula is equal to 1 + ¢,.

Finally, we recall Hurwitz formula for a ramified covering f: X — Y of degree d
between smooth complex projective varieties, which will be used several times in the
paper for both curves and surfaces:

Kx ~ [*Ky + ) (ei = )i,
i

where the C;’s are the irreducible components of the ramification locus and e; is the
associated ramification index (see for example Sections 16 and 17 of [8]).
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2.2. Eigenspaces and invariant lattices

We now consider the action of o* in H>(X,Z) and H?(X, C). We will denote by S(o") C
HZ(X, 7Z) the invariant lattice of ¢* fori =0, ...,n — 1. Moreover, for any divisor k of n,
let

H*(X,C)y :={x € H*(X,C) : 0*x = {&x}

and let di be its dimension. In particular, d; is the rank of S(o) and d, is the dimension
of V¥ = H?*(X,C)J. In what follows, we will denote by d the vector whose entries are
the numbers dy, as k varies in the set of divisors of n in decreasing order:

d = (dy,...,dk,...,d1), kin.

Remark 2.1. Observe that, since o is purely non symplectic, then S(o?) is contained in
the Néron—Severi lattice of X foranyi = 0,...,n — 1. In fact, given x € S(o*) we have
(x, 0x) = ((0")*x, (6")*0x) = (x,{h wx) = §,(x, x),

which implies (x, wx) = 0 and thus x € H?(X,Z) N wy = NS(X).

We also recall the topological Lefschetz formula ([7], Theorem 4.6). For simplicity,
we state it only for o'

4
A(Fix(0)) =Y (=1 tr (0*|gix.m))-
i=0
where the right side is equal to 2 + tr(0*| g2(x r)) since Hi(X,R) = {0} fori = 1,3 and
o* =idon H*(X,R) fori = 0, 4.

Finally, we recall some notation for lattices which will appear in the paper: A, (€ > 1),
D,, (m > 4)and E, (n = 6,7, 8) denote the negative definite even lattices associated to
the Dynkin diagrams of the corresponding types, U and Hs denote the lattices with the
following Gram matrices:

01 2 1
v= (Vo) m=(1 )

and U(r) with r > 2 denotes the lattice whose Gram matrix is that of U multiplied by r.

2.3. Moduli spaces

Let X be a K3 surface with an order n automorphism ¢ such that 6 *(wy) = {, wx. The
period line Cwy belongs to the domain

D ={CzeP(V°):(z,2) > 0,(z,z) =0},
where V? is the ¢,-eigenspace of * in H 2(X,C). Observe that, for n > 3, we have
(z,z) = (6%z,0%z) = Zﬁ(z,z),

thus the condition (z, z) = 0 is not necessary and D’ can be easily proved to be iso-
morphic to a complex ball. On the other hand, if n = 2, then D? is a type IV Her-
mitian symmetric space. By Theorem 11.3 in [13], an arithmetic quotient of a Zariski
open subset of D parametrizes isomorphism classes of (p, M )-polarized K3 surfaces,
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where p: C, — O(Lk3) is a representation induced by the isometry o* of H2(X,C) and
the choice of an isometry H 2(X,Z) — Lk, and M C Lgs is the invariant lattice of
Im(p). In particular, such moduli space has dimension dim(D?) = dim(V?) —1ifn >3
and dim(V9) —2ifn = 2.

On the other hand, if T is the transcendental lattice of X, it is known ([20], Section 3)
that the eigenvalues of 6 * in Ty ®z C are the primitive nth roots of unity, thus rank(7y) =
dim(V9) ¢(n). Since rank(Tx) < 21, this implies that

21
dim(D°) < y(n) := L J —1
p(n)
In particular, the dimension of D¢ is at most one if y(n) = 1. We show that the converse
also holds.

Lemma 2.2. Let n # 60 be a positive integer with ¢(n) < 20 and y(n) > 1. Then there
exist a K3 surface X and a purely non-symplectic automorphism o of X of order n such
that dim(D%) > 1.

Proof. We will denote by d(n) the dimension of the moduli space of K3 surface carrying
a purely non-symplectic automorphism of order n. The orders n > 2 with ¢(n) < 20 and
y(n) > laren =7,9,14,18 with y(n) =2,n = 5,8,10,12 with y(n) = 4,n = 3,4,6
with y(n) = 9,and n = 2.

For prime orders n = 3,5, 7, it is known by [6] that d(n) = y(n). Moreover, the same
is true for orders n = 6, 10, 14 by Proposition 2.4 and [6].

For order n = 9, it is known by [3] that d(n) = 2. Moreover, the general member of
one of its components of maximal dimension is an elliptic K3 surface with Weierstrass
equation

V2=x34+1}-a)®*-b)t*-¢), a,b,ceC,

which carries the order nine automorphism o (x, y, 1) = ({g x,{$ v, ¢31). This surface also
admits the non-symplectic involution t(x, y,t) = (x,—y, t), which commutes with ¢, so
it carries the non-symplectic automorphism ot of order 18. This shows that d(18) = 2
as well.

When n = 4, Example 6.3 in [5] is a 9-dimensional family of K3 surfaces with a purely
non-symplectic automorphism of order 4.

When n = 8, Example 4.1 in [1] is a 2-dimensional family of K3 surfaces with a purely
non-symplectic automorphism of order 8.

When n = 12, the family of elliptic K3 surfaces defined by the Weierstrass equation

5
yi=x3 +tl_[(12—a,-), a; € C,

i=1

is 4-dimensional and has an order 12 automorphism, o (x, y,t) = (={3x,iy, —t), which
can be easily checked to be purely non-symplectic.

When n = 2, it is well known that d(2) = 19 and there is a unique component of
maximal dimension whose general element is a double cover of P2 branched along a
smooth plane sextic. ]
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Remark 2.3. Under the hypotheses of Theorem 1.2, since Tx has the structure of a Z[,]-
module by [20], Section 3, and dim(V?) = 2, we have that rk NS(X) > 22 — 2¢(n). The
generality assumption in the statement of the theorem means that the Néron—Severi lattice
of X has the minimal rank.

Finally, we recall a result contained in Theorems 1.4 and 1.5 of [15], and in [12].

Proposition 2.4. Let X be a K3 surface with a non-symplectic automorphism o of order n.
If either

i n=5,13,17,19,

(i) orn = 17,11 and the fixed locus of o contains a curve,

(ili)) orn = 3 and the the fixed locus of o contains at least two curves,

(iv) orn = 3 and the the fixed locus of o contains a curve and two points,

then X admits a non-symplectic automorphism t of order 2n with > = o.
Moreover, if n = 11 and the fixed locus of o consists of only isolated fixed points,
then X does not admit a non-symplectic automorphism t of order 22 with 1> = o.

3. Proof of Theorem 1.1 and Theorem 1.2

In this section we prove the two main theorems for each order.

3.1. Order 11

Non-symplectic automorphisms of order 11 have been classified in [22] and [6], Section 7.
In particular, the proof of Theorem 1.2 for order 11 follows from the following result.

Theorem 3.1. Let X be a K3 surface with a non-symplectic automorphism o of order 11
such that rank S(o) = 2 (or equivalently dim(V %) = 2). Then two cases can occur:

(a) Fix(o) = C; U{p1, p2}and S(o) = NS(X) = U,
(b) Fix(o) = {p1, p2} and S(0) = NS(X) = U(11),
where Cy is a smooth curve of genus one. In both cases, d = (2,2). Moreover, up to

birational isomorphisms, (X, o) belongs to the family in Example 3.2 in case (a), and to
the family in Example 3.3 in case (b).

Example 3.2. Givena € C, let X1, be the elliptic fibration with Weierstrass equation
y2=x3+ax + (@ -1).

For general a € C, the fibration has one fiber of Kodaira type II over t = co and twenty-
two fibers of type I;. Observe that X1, carries the order 11 automorphism

o-lla(xa y;t) = (X, Vs §IIZ)9

which fixes the smooth fiber over ¢+ = 0 and two points in the fiber over t = co.
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Example 3.3. Consider the extremal rational elliptic surface ¢: Y — P! with Weierstrass
equation
y2=x+ x4+t

The fibration has a fiber of type IT* over 1 = oo and two fibers of type I; over the zer-
oes of A = 4 + 27¢2, thus it is extremal. Given o € P! such that ¢ ~!(e) is smooth, let
Pa.e: Yoo — P be the principal homogeneous space of ¢ associated to a non-trivial 11-
torsion element e in ¢~ (). We recall that ¢y . has the same configuration of singular
fibers as ¢ and it has a fiber F/ = 11F, of multiplicity 11 over « such that (Fp)|f, =
ec Pico( Fy) (see [11], §4, Chapter V, as a reference for principal homogeneous spaces of
rational Jacobian elliptic fibrations). Let Yy ¢! Zg,e — P! be the degree 11 base change
of ¢q, branched along = oo and t = . A minimal resolution of Z, . is a K3 sur-
face X, carrying an elliptic fibration . induced by v, . which has twenty-two fibers
of type I; over the two fibers of type I; of ¥, and a fiber of type II over # = oco. The
covering automorphism of Zy , — Y, . induces an order 11 automorphism o715 of Xg e:

Xa,e Za,e Yoz,e
l”a,e l’ﬂa,e l%[,e
P 1 P 1 11:1 P 1 .

We will denote by (X115, 011p) the family of K3 surfaces with automorphism obtained
with this construction. The automorphism o715 fixes exactly two points in the fiber of 7y ¢
of type IL

3.2. Order 22

In this section we will give the classification of purely non-symplectic automorphisms of
order 22 with dim(V' %) = 2. The full classification, including the cases with dim(V?) =1,
will be given in Section 4.

Proposition 3.4. Let X be a K3 surface with a purely non-symplectic automorphism o
of order 22 such that dim(V %) = 2. Then the fixed loci of ¢ = 02, and of its powers
o1 = 02 and 05 = o' are as follows:

Fix(022) ‘ Fix(o11) ‘ Fix(o03)
{p1.....ps} | CtU{ps.pe} | CloUR

where g(C1) =1, g(Cy1o) = 10 and g(R) = 0. Moreover, d = (2,0,0,2) and NS(X) = U
for a very general K3 surface with such property.

Proof. Decomposing H?(X, C) as the direct sum of the eigenspaces of o* we obtain,
with the notation in Section 2,

dim H?(X,C) = 22 = 10dy, + 10dy + da + dy = 20 + 10dy; + da + d.
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Since dpy = 2, thus d; + dy = 2 and dy; = 0, so eitherd = (2,0,1,1) or (2,0,0,2). Let
xi := x(Fix(o07)),i € {2, 11,22}. By the topological Lefschetz formulas, we have

Y22 =dap —diy —dy +di + 2,
3.1 x11 = —dyp —di1 +dr +dy + 2,
X2 = —10d22 + 10d11 —d2 + d] + 2.

This implies y;; = 2. By Proposition 2.4, if a K3 surface admits a non-symplectic
automorphism of order 11 without fixed curves, it does not admit a non-symplectic auto-
morphism of order 22. This result and Theorem 3.1 imply that Fix(o71) is the union of a
smooth genus 1 curve C and two points p, g. On the other hand, the same equations give
that yoo = 4ifd = (2,0,1,1) and y, = 6if d = (2,0,0, 2). This implies that 05, is
not the identity on C, thus it acts on it as an involution with four fixed points, and it either
exchanges or fixes p and ¢.

We will now show that 05, must fix p and ¢, i.e., that y,» = 6. Observe that the fixed
points of 02, on C are of type Ajo,22 since they are contained in a fixed curve of 0222. If
these were the only fixed points of 0,5, an easy computation shows that the holomorphic
Lefschetz formula does not hold, giving a contradiction.

Finally, y» = —16. By [20], this implies that the fixed locus of o, is either a genus 9
curve or the union of a genus 10 curve and a rational curve. The first case is not possible
since a curve of genus 9 has no order 11 automorphisms by the Riemann—Hurwitz formula.

Observe that for a very general K3 surface as in the statement, tk NS(X) = 22 —
2¢(22) = 2 (see Remark 2.3) and S(o71) € NS(X) by Remark 2.1, thus NS(X) = S(o11)
=~ U by Theorem 3.1. |

Example 3.5. The elliptic K3 surface in Example 3.2,
y:=x}+ax+@¢" -1, aecC,
admits the order 22 automorphism

022(x, y,1) = (x,—y,l111),

which fixes four points in the smooth fiber over + = 0 and two points in the fiber of
type IT over ¢t = oo. The involution o, = 02121 fixes the curve y = 0, which has genus 10,
and the sections at infinity. Since o3 has fixed curves and since there exist no symplectic
automorphism of a K3 surface of order 11 [20], then o is purely non-symplectic.

Proof of Theorem 1.2, order 22. Let X be a K3 surface with a purely non-symplectic
automorphism ¢ = 03, of order 22. By Proposition 3.4, Fix(o11) contains an elliptic
curve C; and two points. Thus, by Theorem 3.1, (X, 011) belongs to the family in Exam-
ple 3.2 up to isomorphism, i.e., it carries an elliptic fibration 7: X — P! with Weierstrass
equation

y:2=x34+ax+ @' —-1), aecC,

and 011(x, y,t) = (x, y, {11t). The lattice generated by the class of a fiber and the class
of a section of & is isometric to the lattice U and is fixed by the automorphism o7, thus
it coincides with S(o11) by Theorem 3.1. Since 05, preserves the lattice S(o11) and this
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contains a unique class of elliptic fibration and a unique class of smooth rational curve,
then o3, preserves both. By Proposition 3.4, the fixed locus of the involution o5 is the
disjoint union of a smooth curve Cjo of genus 10 and a smooth rational curve R. The
curve Cjy is clearly transverse to the fibers of 7, thus each fiber of 7 contains fixed points
of 0. This implies that the action induced by o, on P! is the identity, i.e., each fiber of &
is preserved by 0,. Moreover, the unique section S of & must be pointwise fixed by o3,
so that R = S. Since 03 is an involution which preserves each fiber of 7 and fixes S, then
it is defined by (x, y,¢) + (x, —y, ). This shows that the action of 05, = 011 003 on 7
is the one described in the statement of Theorem 1.2, concluding the proof. ]

3.3. Order 15

In this section we will give the classification of purely non-symplectic automorphisms of
order 15 with dim(V %) = 2. The full classification, including the cases with dim(V?) =1,
will be given in Section 5.

Proposition 3.6. Let X be a K3 surface with a purely non-symplectic automorphism o of
order 15 such that dim(V ) = 2. Then the fixed loci of 0 = 015 and its powers o; = o'/
are as follows:

‘ ‘ Fix(o15) ‘ Fix(os) ‘ Fix(o3)
@ || {p1,-... s} CoU{p1} C, Uip2, p3}
®) || {p1,---sp7y | CrUd{p1,....pa} | CaU RU{p1}
© || {p1:---.pa} | C1U{P1.91.92.93) Cy

where g(C1) =1,8(C2) = g(C5) =2,8(C4) =4 and g(R) = 0. Moreover, d = (2,1,0,2)
in case (a), d = (2,0, 1,4) in case (b) and d = (2,0,2,2) in case (c). Finally, NS(X) ==
UQB) & A, & A, for a very general K3 surface X in case (a) and NS(X) = Hs @ Ay
for a very general K3 surface X in cases (b) and (c), where Hs is the lattice defined in
Section 1 of [6].

Proof. Decomposing H?(X, C) as the direct sum of the eigenspaces of o* we obtain,
with the notation in Section 2,

22 = 8dy5 +4ds + 2d; + dy = 16 + 4ds + 2d5 + dq,

thus d € {(2,1,0,2),(2,0,2,2),(2,0,1,4),(2,0,0,6)}.
Let y; := x(Fix(0;)),i € {3, 5, 15}. By the topological Lefschetz fixed point formulas,

x15s =dis —ds—ds +dy +2,
(32) X5 = —2d15 — d5 + 2d3 + d] + 2,
X3 = —4dis +4ds —ds +di + 2.

We will show thatd = (2,1,0,2),d = (2,0,1,4) andd = (2,0, 2, 2) are the only possible
cases.

Assume that d = (2, 1,0, 2). Thus (y1s5, x5, x3) = (5, —1,0). By [6], we have that
Fix(05) is the union of a curve C, of genus 2 and one point. Since 15 = 5, the action of &
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on C; has order 3 with four fixed points, by the Riemann—Hurwitz formula. In particular,
Fix (o) is the union of five points. Finally, by [4], Fix(o3) is either the union of a genus 2
curve and two points, or contains a curve of genus 3. The second case is not possible since
there is no genus 3 curve with an order five automorphism by Table 5 in [10].

Ifd #(2,1,0,2), then x5 = 4 and y3 = —6,-3,0if d = (2,0,2,2),(2,0,1,4) or
(2,0,0,6), respectively. By [6], Fix(os) is either the union of an elliptic curve C; and four
points, or the union of four points. Observe that C; can not be contained in Fix(o3) since
by [4] this would imply y3 > 3. Thus, looking at the possible actions of o on C; and the
four points, we find that yq5 is either 1, 4 or 7.

Ifd =(2,0,0,6), then y;5 = 10 by (3.2), giving a contradiction.

If d =(2,0,1,4), then y;5 = 7 by (3.2). Thus Fix(os) is the union of an elliptic
curve Cq and four points, and Fix(o) consists of seven points, three of them on Cj.
Moreover, y3 = —3, thus by [4] Fix(03) is either the union of a genus 4 curve, a rational
curve and one point, or it contains a curve of genus 3. The last case is not possible by
Table 5 in [10].

Ifd =(2,0,2,2), then y15 = 4 and y3 = —6 by (3.2). Observe that ¢ has seven
types of isolated fixed points. The fixed points of type A1,15, A4,15, A7,15 are isolated
fixed points for o3 too, while points of type A5 .15, 43,15, 45,15, Ae,15 lie on a curve fixed
by o03. Observe that 015 acts on the set of isolated fixed points of o3 with orbits of length
either 1 or 5. Thus we have

aiis +asns +azis <aiys,  aiis +asis+azs =arz mod 5.

Moreover, points of type A4,15, As,15 lie on a curve fixed by o5, while points of type
A1,15, A2,15, A3,15, As,15, A7,15 are isolated fixed points for o5 too. Checking types one
has

(3.3) ais +asis +aeis <ais, a5+ azis <dazs.

Since y3 = —6, then a;,3 = 0 by [4]. Applying the holomorphic Lefschetz formula
to o with this condition and using the fact that @ = 0, we find that (a1,15,d2,15, .- .,47,15)
=(0,1,0,0,3,0,0). Since as,;5 = 3, then we find that Fix(os) contains an elliptic
curve Cy and o fixes three points on it.

For Fix(o3) there are two possibilities by [4]: it is either a curve of genus 4, or the
union of a genus 5 curve and a rational curve. The second case is excluded by Lemma 3.7,
where C” is the elliptic curve Cj.

‘We now compute the Néron—Severi lattice of a very general X in each case. Observe
that since d15 = 2 and ¢(15) = 8, the Néron—Severi lattice of X has rank 22 —2 -8 = 6.
In case (a), the invariant lattice S(0°) = S(03) has rank d; + 4ds = 6, thus NS(X) =
S(03) = U(3) ® A, & A,, where the last isomorphism is by [6]. In cases b) and c), the
invariant lattice S(0®) = S(o5) has rank d; + 2d3 = 6, thus we conclude as before that
NS(X) = S(o5). In both cases, S(05) is isomorphic to Hs & A4 by [6]. |

Lemma 3.7. Let X be a K3 surface and let T be a non-symplectic automorphism of
order 3 of X whose fixed locus is the disjoint union of a smooth curve C of genus five
and a smooth rational curve R. Then X has no purely non-symplectic automorphism o of
order 15 such that > = t© and such that the fixed locus of o3 contains a curve C' distinct
from C and R.
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Proof. Letm: X — Y be the quotient morphism by 7. Since the fixed locus of t is a smooth
curve and the automorphism is non-symplectic of order 3, then Y is a smooth rational
surface. Moreover, the invariant lattice S(t) has rank 2 by [4]. Since 7* is injective and
7*NS(Y) is a sublattice of S(7), then rank NS(Y) < 2. Thus Y is isomorphic to either P2
or a Hirzebruch surface F,, r > 0. The covering r is branched along a smooth curve B
whose class [B] € NS(Y) satisfies —3Ky = 2[B] by the Hurwitz formula. This excludes
the case ¥ = P2. We recall that if Y = FF,, then —Ky = (r + 2) f + 2e, where f2 =

0,e? = —r and f - e = 1. Thus r must be even and
3(r+2
[B] = ¥f+3e.

Since R? <0, then its image in ¥ has the same property and is the unique curve of negative
self-intersection in Y, i.e., [r(R)] = e. Moreover, since B is the disjoint union of 7 (R)
and 7 (C), then
(Bl—e)-e=UtD . _b-r_,
2 2

Thus Y = [Fs and the class of 7(C)is 12 f + 2e. Let p:Fg — P! be the natural fibration.
Observe that the restriction of p to 7(C) is a double cover of P! since (12 f +2¢)- f =2,
thus 77 (C) is hyperelliptic. This implies that there are twelve fibers of p which are tangent
to 7(C).

Assume now that X has an automorphism o of order 15 with 6> = 7. Then o induces
an automorphism & of Y of order 5 which preserves both 7 (R) and 7 (C). Since o2 is not
the identity on R, then & is not the identity on 7 (R), thus we can assume that it acts on
the basis of the fibration p as (x, y) — ({sx, y), where 5 is a primitive 5-th root of unity.
In particular, there are exactly two fibers of p which are invariant for ¢.

This implies that the image of the curve C’ in Fix(c03) is a fiber of p, which is invariant
for . On the other hand, & preserves 7 (C') and thus permutes the twelve fibers of p which
are tangent to 7 (C). Thus it should preserve at least two of them. The curve 7 (C') can not
be tangent to 7 (C’), since otherwise C’ would be singular, thus & should leave invariant
three fibers of p, a contradiction. ]

Example 3.8. Let B be the plane sextic defined by

Fe(x0, X1, X2) = a1x§ + azxox] + azx3 + asxg x3,
with general a;,a,,a3,a4 € C. Let X be a double cover of P2 branched along B, which
can be defined by x% — Fg(x0,x1,x2) =0inP(1,1,1,3). Then X is a K3 surface carrying
an order 15 automorphism

o15(x0, X1, X2, x3) = (xo,{5x1, {3 X2, X3)

whose fixed locus is the union of five points, which project to the points (1, 0, 0), (0, 1, 0)
and (0,0, 1) of P2. Observe that o5 fixes the genus 2 curve defined by x; = 0 and the
point (0, 1, 0, 0), while o3 fixes the genus 2 curve x, = 0 and the points (0,0, 1, £1).
Since both 03 and o5 fix curves, then none of them is symplectic by [20], thus o5 is
purely non-symplectic. This is an example of case (a) in Proposition 3.6.
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Example 3.9. Consider the elliptic surface with Weierstrass equation
y2=x>+ -1 —a),
with general a € C. Then X is a K3 surface with the automorphism of order 15:

Ols(xvy?t) = (§3X,y,§5t).

The elliptic fibration has one fiber of type IV over t = oo and ten fibers of type II. The
automorphism o3 fixes the genus 4 curve defined by x = 0, the section at infinity and
the center of the fiber of type I'V. The automorphism o5 fixes the smooth fiber over t = 0
and four points in the fiber of # = co. The automorphism o5 fixes three points in the
fiber over ¢+ = 0 and four points in the fiber over ¢ = co. As in the previous example, o3
and o5 fix curves, thus they are non-symplectic and o5 is purely non-symplectic. This is
an example of case (b) in Proposition 3.6.

Example 3.10. Consider P = P(1, 1, 2) with coordinates (xg, X1, X2), and let D be a
curve of degree 6 in P of equation

5 2.2 4 6 3
Ge(x0,X1,X2) = XgX1 +a1x7x5 +axx;x2 +az3x; +asx; =0,

where a1, as, as,as € C are general. Observe that D is smooth, since it does not pass
through the singular point (0, 0, 1) and its partial derivatives only vanish at the origin. Let
Y =~ I, be the blow up of the singular point of P and let B be the preimage of D in Y.
Since 2[D] ~ —3Kp and the resolution ¥ — P is crepant, then 2[B] ~ —3Ky. Let X
be the triple cover of Y branched along B. By the Hurwitz formula, X is a K3 surface.
Observe that the curve D has the order 5 automorphism

(x0,x1,x2) = ({5X0, X1, X2),

which lifts to an order 5 automorphism ¢ of X. The composition of ¢ with the covering
automorphism of X — Y is an order 15 automorphism o of X. A birational model of
(X,0)inP(1,1,2,2) is

x3 + Ge(xo,x1,%2) =0, 0 (x0, X1, X2, Xx3) = ({5 X0, X1, X2, {3 X3).

Embedding P(1,1,2,2) in P* via the map (x¢, x1, X2, x3) = (X3, X0 X1, X7, X2, X3), we
also obtain a birational model of (X, 0) as complete intersection in P# with three A,
singularities at g; = (0,0,0,¢%,1),i = 1,2, 3:

{ yi—yoy2 =0,
Vit yiyvitary2yi+azyiys+azy; +asy; =0,
o (0. Y1, 2. ¥3. ¥4) = (£2Y0. 85 v1. ¥2. ¥3. {3 va).-

The fixed locus of o3 is the genus 4 curve y4 = 0. The fixed locus of o5 is the union of
the curve C; of genus 1 defined by yo = y; = 0, the point p; = (1,0,0, 0, 0) and three
points over ¢q1, g2, 3. Finally, o fixes p; and three points in C; N Cy4. This is an example
of case (c) in Proposition 3.6.
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Proof of Theorem 1.2, order 15. Let X be a K3 surface with a purely non-symplectic
automorphism o715 of order 15. By Proposition 3.6, Fix(o15) contains either four, five
or seven isolated fixed points.

Case (a). We first assume that Fix(o15) consists of five fixed points, Fix(os) is the
union of a curve C, of genus 2 and one point, and Fix(o3) is the union of a genus 2
curve C5 and two points. Let ¢: X — P2 be the morphism associated to the linear sys-
tem |C,|, which is a degree 2 morphism branched along a plane sextic B which possibly
contracts the smooth rational curves disjoint from C; to simple singular points of B, [25].
Since [C;] is fixed by o7}, the automorphism o5 descends to an automorphism &5 of P2.
Let 3 = G35 and G5 = G35. Up to a projectivity, we can assume that G5, and thus 73
and G5, are diagonal. Observe that both 63 and 65 must fix pointwise a line and a point
in P2, since both o3 and o5 fix pointwise a curve of positive genus. Moreover, by the
previous description, the two lines must be distinct. Thus we can assume that

03(x0, X1, X2) = (X0, Xx1,{3x2) and 0O5(xp,X1,Xx2) = (X0, {5X1,X2).

The branch sextic B of ¢ is invariant for ;5. Observe that B can not contain a line fixed
by either 63 or &5 since otherwise Fix(o3) and Fix(o5) would contain a smooth rational
curve. This implies that B is defined by an equation of the form Fg(xg, X1, x2) = 0 as
given in Example 3.8. If either a, or a3 vanishes, then B would contain a line. If a; = 0,
then B would contain a singular point of type Eg, whose central component would be
fixed by both 03 and 05, a contradiction. Thus a1aas # 0, in particular B is smooth. Up
to rescaling the variables, an equation for X is the one given in Table 2 witha € C.

Case (b). We now consider the case when Fix(o75) consists of seven points, Fix(os)
is the union of an elliptic curve C; and four points, and Fix(o3) is the union of a genus 4
curve Cy, a rational curve R and one point. Let 7: X — P! be the morphism associated
to the linear system |C1 |, which is an elliptic fibration. Since Cj is invariant for o;5, then
the elliptic fibration is invariant for o15. On the other hand, since o3 fixes the curve C4
of genus g > 1, then it induces the identity on P!. The automorphism o3 acts on C;
and has fixed points in C; N Cy, thus it has exactly three fixed points by the Riemann—
Hurwitz formula. This implies that C; - C4 < 3. Moreover, C; - C4 > 1 since otherwise
the restriction of 7 to C4 would be an isomorphism onto [P 1 Thus C; - C4 is either 2 or 3.
We now show that the second case does not appear.

If C; - C4 = 3, then the curve R can not intersect Cy, since otherwise C; would contain
more than three fixed points of o5. Thus R must be contained in a reducible fiber F
of m. The fiber F is invariant for o3, it can only contain an isolated fixed point of o3 and
C4- F =3.ByLemma4.1 in [4], F should be of type 15, but this contradicts the fact that
the rank of the invariant lattice of o3 is 4 by Theorem 2.2 in [4].

Thus C; - C4 = 2. Since the general fiber of 7 must contain three fixed points of o3
by the Riemann—Hurwitz formula, then the curve R must be a section of 7. Thus 7 is a
Jacobian elliptic fibration invariant for an order 3 automorphism and with a fixed section.
This implies that, up to a coordinate change, = has Weierstrass equation

y>=x>+p(),

with o3(x, y,t) = ({3x, y,t), where deg(p) < 12. In these coordinates, C; is the fiber
over t = 0 and Cy4 is the curve x = 0. Since o5 has order 5 on R, then it induces an
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order 5 automorphism on P! which can be assumed to be &5(t) = {st. Since 05 is the
identity when ¢t = 0, then o5(x, y,t) = (x, y, {5¢). Thus, up to a coordinate change,
has Weierstrass equation of the form

YV:2=x}4+@@ -1 —a),

witha € C and 015(x, y,t) = ({z3x, v, {5t), as in Example 3.9.

Case (c). Finally, assume that Fix(o75) consists of four points, Fix(os) is the union
of an elliptic curve C; and four points, and Fix(o3) is a curve of genus 4. Following the
same argument in the proof of Lemma 3.7, we obtain that the quotient of X by o3 is a
smooth rational surface Y isomorphic to a Hirzebruch surface [, for some even r > 0.
This quotient is a cyclic degree 3 covering branched along a smooth curve B of genus 4
whose class is [B] = Wf + 3e, where f2=0,e? =—rand f -e = 1. Since B is
smooth, then [B] - e = % > 0, thus r < 2.

The case when r = 0, i.e., Y =~ P! x P!, can be excluded as follows. In this case B is
a curve of type (3, 3). The automorphism o5 descends to an automorphism &5 of P! x P!
which has a fixed curve, thus up to a coordinate change we can assume

05 : (X0.x1), (Yo.¥1) = (x0.X1), ({50, Y1)-

However, there is no curve of type (3, 3) which is invariant for this automorphism, giving
a contradiction.

Thus Y = F,, [B] = 6f + 3e and [B] - e = 0. After contracting the (—2)-curve
of Y, we obtain the surface P =~ IP(1, 1, 2). Since the contraction is a crepant morph-
ism, the image of B is a smooth curve D with 2[D] ~ —3Kp, i.e., of degree 6. The
automorphism o5 descends to an automorphism 65 of P which preserves D and fixes
the image of the curve C;. This implies that, after a coordinate change, we can assume
05(x0, X1, X2) = ({5X0, X1, X2). The equation of D must be invariant for &5, thus it is of
the form given in Example 3.10. If all the coefficients of G¢ are non-zero, then one obtains
the equation in Table 2 up to rescaling the variables. ]

3.4. Order 30

Proposition 3.11. Let X be a K3 surface with a purely non-symplectic automorphism o3¢
of order 30 such that dim(V?) = 2. Then there are two possibilities for the fixed locus
of 030 and of its powers:

H FiX(030) ‘ FiX(015) ‘ FiX(U5) ‘ FiX(U3) ‘ FiX(Gz)
{p1} {p1,-... ps} G U{p1} CoU{p2,p3} | Cio
p1,--sp7) | CrUdpr,...,pa} | CaURU{p1} | CoUR

where Cg, Cé have genus g and g(R) = 0. Moreover, d = (2,0,1,0,0,0, 1, 1) in case (a),
andd = (2,0,0,1,0,0, 1, 3) in case (b).

Finally, NS(X) = U(3) ® A, & A, for a very general K3 surface X in case (a), and
NS(X) = Hs ® A4 for a very general K3 surface X in case (b).

(b) || {p1. p2. ps}

Proof. Let y; = x(Fix(0;)),i = 30,15, 5, 3, 2. First observe that given a one-dimensional
family of K3 surfaces admitting a purely non-symplectic automorphism of order 30, every



M. Artebani, P. Comparin and M. E. Valdés 1176

element in the family admits a purely non-symplectic automorphism of order 15. Thus this
corresponds to one of the three families in Proposition 3.6, and the vector (15, x5, x3) is
either (5,—1,0), (7,4,—-3) or (4,4, —6).

Decomposing H?2(X, C) as the direct sum of the eigenspaces of o*, we obtain

34 22 = 8d309 + 8d15 + 4d1o + 2de + 4ds + 2d3z + dy + d;.

Assuming d3¢ = 2, this gives dj5 = 0. Using the topological Lefschetz fixed point for-
mulas, we compute the topological Euler characteristic of the fixed loci of powers of 03¢
by:

x30 = dio +ds —ds —dsz —dy + di,

X15 = —dio —de¢ —ds —d3 + dr + dy + 4,
3.5) x5 = —dio+2d¢—ds +2ds+dy+dy—2,

X3 =4dio—de+4ds —dsz +dy +dy —6,

X2 = —ddio —2ds + 4ds + 2d5 — dy + dy — 14.

We first assume to be in case (a) of Proposition 3.6, i.e., Fix(o5) is the union of a
smooth curve C, of genus 2 and a point py, Fix(o3) is the union of a smooth curve C, of
genus 2 and two isolated points, and Fix(05) consists of five isolated points py, ..., ps.In
particular, (y15, x5, x3) = (5,—1,0). Moreover, since the fixed locus of o5 only contains
isolated points, the same holds for 03¢. Thus y3p > 0. By (3.4) and (3.5), we get the
possibilities in Table 3.

do dis dio ds ds d3 dy di | x30 x5 x5 13 X2

2 0 1 0 0 0 1 1 1 5 -1 0 -18

2 0 1 0 0 0 0 2 3 5 -1 0 -16

2 0 0 0 1 0 0 2 1 5 -1 0 -8
Table 3

In particular, y3¢ is either 3 or 1, thus Fix(o3¢) is either the union of p; and two of
the p;’s with i > 2 (and the other two are exchanged), or Fix(039) = {p1} and o3¢ has
no fixed points on C,. By the proof of Theorem 1.2 in the case n = 15, the linear system
associated to C, defines a double cover ¢: X — P2 which can be defined in P(1, 1,1, 3)
by an equation of the form

y2 = xg + xoxf + xg + axgxg,

where a € C, and in these coordinates 075(xg, X1, X2, ¥) = (X9, 5X1,{3X2,y). Since 03¢
preserves C», then it induces an automorphism 6 39 of P2. The involution o either induces
the identity or an involution of 2. The latter is not possible since the fixed locus of o,
would contain a curve of genus at most 2, while y, < —8 by Table 3. Thus o, coincides
with the (automorphism induced by) the covering involution of ¢, which fixes a smooth
genus 10 curve, so that y, = —18 and y39 = 1 by Table 3. Thus o3¢ fixes a unique point.
Since C is invariant for 039, then ¢(C3) is a line which contains two fixed points for 63¢.
Since y30 = 1, their preimages by ¢ are four points exchanged in pairs by o5.
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Assume now to be in case (b) of Proposition 3.6, i.e., Fix(o3) is the union of a
curve Cy4 of genus 4, a rational curve R and a point, Fix(os) is union of an elliptic
curve C; and four points, and Fix(o;5) is the union of seven points (three on Cj). In
particular, (y1s, x5, x3) = (7,4, =3). Moreover, y3o > 0 since Fix(o15) only contains
isolated points, and thus the same holds for 3¢. There are five possible vectors d such
that (y15, x5, x3) = (7,4, —3) (see Table 4).

dzo dis dio ds ds d3 dy di| ys0 xis x5 X3 x2

2 0 0 1 0 0 2 2 1 7 4 -3 -16

2 0 0 1 0 0 1 3 3 7 4 -3 -14

2 0 0 0 0 1 1 3 1 7 4 -3 -10

2 0 0 1 0 0 0 4 5 7 4 30 -12

2 0 0 0 0 1 0 4 3 7 4 -3 -8
Table 4

By the proof of Theorem 1.2, case n = 15, X admits an elliptic fibration 7: X — P!
with Weierstrass equation

V2=x34+@ -1 —a),

with @ € C and 015(x, y,t) = ({3x, y,{5t). By the same argument in the proof of The-
orem 1.2 in the case n = 15, using Lemma 5 in [5], one concludes that the elliptic fibration
is invariant for 03¢. Since y, < —8, then o, fixes a curve of genus > 1. Such curve is
clearly transverse to all fibers of m, thus o, induces the identity on the basis of the fibra-
tion. Moreover, 0, must fix the section at infinity R of the fibration, since it preserves R
and each fiber of 7. This implies that o5 (x, y,t) = (x,—y,t). In particular, o, fixes R and
the curve defined by y = 0, which has genus 9, so that y, = —14. Moreover, 03¢ fixes
three points: two points on R and the center of the fiber of type IV over t = co.

Assume now to be in case (c) of Proposition 3.6, i.e., Fix(o03) is a curve Cy4 of genus 4,
Fix(05) is union of an elliptic curve C; and four points, and Fix(o5) is the union of four
points. In particular, (y15, x5, x3) = (4,4, —6). Moreover, y3¢ > 0 since Fix(o15) only
contains isolated points, and thus the same holds for o3¢. By the proof of Theorem 1.2 in
the case n = 15, X is the minimal resolution of the double cover of P=P(1,1,2) branched
along a smooth curve D of degree 6 not passing through the singular point of P. The
automorphism induced by o5 in P can be assumed to be (xg, X1, x2) — ({50, X1, X2).
The automorphism o5, since it commutes with o3, induces an involution 6, of P which
preserves the curve D. Moreover, it can be also diagonalized. However, no diagonal
involution leaves invariant the general equation as in Example 3.10, thus this case is not

possible.
The Néron—Severi lattice of a very general X in cases (a) and (b) is clearly the same
as in Proposition 3.6. ]

Example 3.12. The double cover X of P2 in Example 3.8 carries the order 30 automor-
phism
030(X0, X1, X2, X3) = (X0, {5 X1, {3 X2, —X3).
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Observe that for a general choice of the coefficients the fixed locus of o, is the smooth
plane sextic defined by x3 = 0, which has genus 10. Moreover, the fixed locus of o039
consists of the point (0, 1, 0, 0). This is an example of case (a) in Proposition 3.11.

Example 3.13. The elliptic K3 surface in Example 3.9 carries the order 30 automorphism

030(x,y,1) = ({3x, =y, {s1).

Observe that for general a € C the fixed locus of o, is the curve y = 0, which has genus 9.
Moreover, as observed in the proof of Proposition 3.11, the fixed locus of o3¢ consists of
two points in the section at infinity (over # = 0 and ¢ = 00) and the center of the fiber of
type IV over ¢t = oo. This is an example of case (b) in Proposition 3.11.

Proof of Theorem 1.2, order 30. Let X be a K3 surface with a purely non-symplectic
automorphism o of order 30 such that dim(V?) = 2. It is straightforward from the proof
of Proposition 3.11 that, up to isomorphism, (X, o) belongs to one of the families in
Examples 3.12 and 3.13. ]

3.5. Order 16

Purely non-symplectic automorphisms of order 16 on K3 surfaces have been classified
in [2]. The following result has the same statement as that of Theorem 4.1 in [2], but we
provide a slightly different proof since we use the weaker hypothesis dim(V?) = 2.

Proposition 3.14. Let 016 be a purely non-symplectic automorphism of order 16 of a K3
surface X and assume that dim(V %) = 2 (or equivalently, S(o2) has rank 6). Then there
are two possibilities for the fixed locus of 016 and of its powers:

‘ ‘ Fix(016) ‘ Fix(og) ‘ Fix(04) ‘ Fix(07)

@ [| {p1.-.-.Ps) UR | {p1,....P6} UR | {p1,....ps}UR | CFURUR
®) || {p1.p2.p7.p8} | {pP1,.-..PsyUR | {p1,....,ps} UR Cs UR

where g(Cg) = 6, g(C7) = 7 and g(R) = g(R") = 0. Moreover, d = (2,0,0,0,6) in
case (a), and d = (2,0,0,2,4) in case (b).

Finally, NS(X) = U & Dq4 for avery general X in case (a), and NS(X) = U(2) & D4
for a very general X in case (b).

Proof. Decomposing H?(X, C) as the direct sum of the eigenspaces of o7, we obtain
(3.6) 22 = 8d1¢ + 4ds + 2d4 + da + d;.

Since di¢ = 2, this implies that dg is either 0 or 1, and gives the 14 possibilities for the
vector d in Table 5.
Let N; be the number of isolated fixed points of a;, let y; = y(Fix(o;)) and write

6= Y (1-gC)

C CFix(07)
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die dg dy do di | y16 Xs x4 X2
2 1 0 1 1 2 4 0 -8
2 0 2 1 1 2 2 8 -8
2 0 1 3 1 0 5 8 -8
2 0 0 5 1 -2 8 8 -8
2 1 0 0 2 4 4 0 -8
2 0 2 0 2 4 2 8 -8
2 0 1 2 2 2 5 8 -8
2 0 0 4 2 0 8 8 -8
2 0 1 1 3 4 5 8 -8
2 0 0 3 3 2 8 8 -8
2 0 1 0 4 6 5 8 -8
2 0 0 2 4 4 8 8 -8
2 0 0 1 5 6 8 8 -8
2 0 0 0 6 8 8 8 -8
Table 5

fori € {2,4,8, 16}. By the topological Lefschetz fixed point formula, we get

Y16 = —dy +dy + 2,

xs =—da+da+di+2,

Xa = —4ds +2ds+dr+di +2,

x2 = —8die +4ds +2d4+dr +d; + 2.

3.7)

Table 5 shows the values of (16, xs, X4, x2) for each possible vector d.
Observe that y, = —8. By [20], N, = 0 and Fix(03) is the union of a curve of genus g
and k rational curves with (g, k) = (5,0), (6, 1) or (7, 2).
Moreover, y4 = 0 or 8. By Proposition 1 in [5], we have that Ny = 204 + 4. Since
X4 = 204 + N4, one has
Xa = 4aq + 4.

If y4 = 0, then oy = —1, but this is not possible since Fix(o4) C Fix(03) and it is not
compatible with the aforementioned possibilities for Fix(o3). Thus x4 = 8, o4 = 1 and
Fix(o4) contains a rational curve (and no more curves) and six points. This implies that
the case (g, k) = (5, 0) is impossible.

The cases (g, k) = (6, 1) and (7, 2) are treated in Lemmas 3.15 and 3.16. We con-
clude that the only admissible cases are the ones in Proposition 3.14. Observe that both in
case (a) and (b) we have that dy = dg = 0 and d; + d, = 6. This implies that S(og) =
S(04) = S(03) has rank 6. If X is very general, then rank NS(X) = 22 — 2¢(20) = 6 and
thus, by Remark 2.1, NS(X) = S(02). Moreover, by Theorem 4.2.2 in [21] or Figure 1
in [6], the invariant lattice of o5 is isometric to U @ D, in case (a) and U(2) ® D4 in
case (b), see [2]. ]

Lemma 3.15. If Fix(02) is the union of a curve of genus 6 and a rational curve, then the
fixed loci of o016, 03 and o4 are as follows:

Fix(o16) ={p1., p2, p7.ps}, Fix(os)={pi1,....pe}UR, Fix(os)={p1....,psjUR.
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Proof. Let Cg (respectively, R) be the smooth curve of genus 6 (respectively, rational
curve) in Fix(o3). By the previous analysis, we know that o4 fixes pointwise R and has

six isolated fixed points p1,..., pe on Cs.
By the Riemann-Hurwitz formula for og on Cg, we observe that either a) two of
the p;’s are fixed and the other four are permuted in pairs by og, or b) the points py,..., pe

are fixed points for 0. Observe that case a) is not possible since y4 = 8, and yg = 4 does
not appear in Table 5.

By the Riemann—Hurwitz formula for 016 on Cg, we obtain that o6 fixes two of
the p;’s and exchanges the other four in pairs. Thus (x16, xs, x4, x2) = (4,8, 8, —8).

Observe that six of the fixed points of og lie on a curve fixed pointwise by o, and
not by oy, thus the local action of og at such points is either of type A, g or A3 g. By
Proposition 2.2 in [1], we have that 6 = 2 + 4ag, thus ag = 1. This implies that Ng = 6
and the curve R is pointwise fixed by og. On the other hand, by Proposition 2 in [2],
Nig > 2016 + 1. This implies that a6 = 0, i.e., R is not pointwise fixed by 0. ]

Lemma 3.16. If Fix(03) is the union of a curve of genus 7 and two rational curves, then
the fixed loci of 016, 0g and o4 are as follows:

Fix(a16) = {p1..... pa.q1.q2} U R, Fix(0g) = {p1..... pa.q1.92} U R,
Fix(o4) ={p1,.... pa,q1,92} U R.

Proof. Let C7 (respectively, R, R’) be the smooth curve of genus 7 (respectively, rational
curves) in Fix(o,). We already know that one rational curve is fixed by o4, say R. Thus o4
fixes two points g1, g2 on R’ and four points py,..., ps on C7. This implies that the
curves R and R’ cannot be exchanged by 016 nor by og and that y16 > 4 and yg > 4.

By the Riemann—Hurwitz formula for og on C7, either the four p;’s are fixed by og or
none of them is fixed by og. This implies that either yg = 4 or yg = 8. Looking at Table 5,
we find that we are left with the three possibilities of Table 6.

die dg dy dy di | xie x8 xa 12
2 0 0 2 4 4 8 8 -8
2 0 0 1 5 6 8 8 -8
2 0 0 0 6 8 8 8 -8

Table 6

In particular, g = 8 and {p1,. .., p4,41.92} C Fix(og). Moreover, by Proposition 2.2
in [1], we obtain that 2 + 4ag = 6, thus g = 1. This implies that og fixes pointwise the
curve R.

By the Riemann—Hurwitz formula for o1¢ on C7, either a) o1¢ fixes the four p;’s
and thus y16 = 8, or b) it does not fix any of them and y;¢ = 4. By Proposition 2 and
Remark 1.3 in [2], the cases (Ni6, 16) = (2, 1) and (Ny6, 16) = (8, 0) are impossible.
Thus in case a), 16 = 1 and Nj¢ = 4, i.e., the fixed locus of 016 contains py,..., p4,q91,9>
and the curve R. On the other hand, in case b) we have that ;6 = 0, i.e., 01¢ fixes exactly
q1, g2 and two points on R. We now show that this case can not appear. By Remark 1.3
in [2], if N1e¢ = 4, then n3 16 = n7,16 = 1 and ng 16 = 2. Observe that the points of
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type As, 16 lie on a curve fixed by og, thus they must be the two points on R. This implies
that the points of type A3 16 and A716 are g1, g». However, two isolated fixed points
of 016 lying on an invariant smooth rational curve can not be of these types by the proof
of Lemma 4 in [5]. [

For the following examples, see Example 4.2 in [2].

Example 3.17. Consider the elliptic fibration defined by
y2 =x3+2x+aP+1t", aecC,

with the order 16 automorphism o16(x, y,7) = ({3 X, {3 v, {st). The action of o} on the
holomorphic two form wy = (dx A dt)/2y is the multiplication by {16, thus 0 is purely
non-symplectic. The fibration has a fiber of type I over t = 0 and a fiber of type II over
t = oo. The automorphism o6 fixes the central component of the fiber of type I, four
points in the other components of the same fiber and two more fixed points in the fiber
over t = oo. This is an example of case (a) in Proposition 3.14.

Example 3.18. Consider the plane sextic B defined by
Fe(xg,x1,x2) = xo(xgxz + ale + alexg + agxfxg) =0

for general a1, a;, a3 € C. Observe that B is the union of a smooth plane quintic C
and a line L. Let Y be the double cover of P? branched along B, which can be defined
by the equation x32. = Fg(xg, x1,x2) in P(1, 1, 1, 3). The surface Y has the order 16
automorphism

016(X0. X1, X2, y) = (Xo0. &g x1. 83 X2. {76 ).

The surface Y has five singular points of type A; over the intersection points of C and L.
Its minimal resolution X is a K3 surface and oy¢ lifts to an automorphism 616 of X.
The automorphism 616 has four fixed points: two of them over the points (1, 0, 0, 0) and
(0,1,0,0), and the other two in the exceptional divisor over (0,0, 1,0) (which is a singular
point of Y). Thus this is an example of case (b) in Proposition 3.14.

Proof of Theorem 1.2, order 16. Let X be a K3 surface with a purely non-symplectic
automorphism ¢ of order 16 such that dim(V?) = 2. By Proposition 3.14, Fix(o1¢) is
either the union of a rational curve and six points, or the union of four isolated points.
Case (a). By Proposition 3.14, NS(X) = S(02) = U & D4 for a very general K3
surface. In what follows we assume X to be very general. By Lemma 2.1 in [17], or the
proof of Corollary 3 in §3 of [23], X has an elliptic fibration 7: X — P! with a section S
and a reducible fiber of type Dy=1 o - The curve C; fixed by the involution o, has to be
transverse to the fibers of , since its genus is bigger than 1. Thus o, induces the identity
on the basis of the fibration. Since NS(X) = S(02), o5 is the identity on NS(X), hence
each smooth rational curve is invariant for o,. This implies that the section S and the
central component of the fiber of type Ijj are pointwise fixed by 0. Since a smooth fiber
of 7w must contain four fixed points for o, and one of them is on S, then C5 intersects it
in three points. Applying Lemma 5 in [5] with x = [C7], one concludes that the elliptic
fibration 7 is invariant under o1¢. The section S corresponds to the curve R’ (see the
notation of Proposition 3.14) i.e., it is not fixed pointwise by o1¢, otherwise each fiber
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of 7, including the smooth ones, would have an order 16 automorphism with a fixed point,
which is impossible for an elliptic curve, see [16]. Thus o1¢ induces an automorphism of
order 8 on the basis of . This implies that og preserves each fiber of 7 and acts on it as
an involution with a fixed point.

Consider a Weierstrass equation for 7 with respect to the section S:

y2=x>+A(t)x + B(t), tePl

We can assume that the two invariant fibers of o1¢ are over t = 0 and t = o0, and that the
fiber of type I is over t = 0. Since NS(X) = U @ Dy, the fiber Fyy over 0 is the only
reducible fiber of 7; moreover, 24 — e(Fy) is divisible by 8. This implies that the fiber
over t = oo is of type II. By Table IV.3.1 in [19], this implies that the vanishing order
v(A) of A(t) att = 01is 6 and at t = oo is 2. Thus A(z) = t°P(¢), with P(0) # 0 and
deg(P(t)) = 16. Moreover, v(B(00)) = 1, thus B(t) = 3 Q(t) with deg(Q(¢)) = 8. Since
the action of 06 on the basis of 7 has order 8 and the fibers over t = 0, co are preserved
by 016, then Q(t) = 3 + a witha € C. By Table IV.3.1 in [19], we have that A(¢) = ¢2.
Moreover, 016(x, y,1) = ({3 X, {js ¥, {st) and X belongs to the family in Example 3.17.

Case (b). In this case, Fix(o16) is the union of four isolated points, and S(03) =
U(2) & D4 by Proposition 3.14. As before, we assume X to be very general, i.e., that
NS(X) = S(05). It is known that the surface X has a degree two morphism 7: X — P?
which is the minimal resolution of a double cover ramified along the union of a line £
and a quintic curve C, see [2], Section 4. In particular, X has six (—2)-curves, i.e., five
exceptional divisors E1, ..., E5 over the points £ N C and the proper transform E of (the
double cover) of £. It follows from Vinberg’s algorithm (see [24]) that these are the only
(—2)-curves of X. This implies that the linear system of the divisor 2E + Zle E;, which
is the one defining the morphism 7, is invariant for ¢ *. Thus the automorphism ¢ induces
an automorphism & of P2 preserving the branch curve £ U C.

The involution o, fixes a genus 6 curve and a rational curve R. If the induced auto-
morphism 6, were an involution, it would fix a line and a point. This would imply that the
maximum possible genus in Fix(o3) is 2, giving a contradiction. Thus o' is the identity
on P2, o, is the covering involution, and R is the transform of the line £ in the branch
locus. Moreover, since R is contained in Fix(o4) and Fix(og), £ is fixed by 64 and 6'5. In
addition, & 1¢ has order 8 on P2 and it only fixes points, o'g has order 4 and & 4 has order 2.

Assume that £ is defined by xo = 0, thus

0g(x0,X1,x2) = (ixg,X1,X2), Ga(xo,X1,X2) = (—Xo, X1, X2).

Since 716 only fixes points in P2, we have G 1¢(Xo, X1, X2) = ({g X0, X1, —X2), and the
equation of X is obtained taking invariant monomials and recalling that we need the
quintic to be smooth, otherwise Fix(o,) would not contain a genus 6 curve. Thus the
equation of X is as in Example 3.18, and

016(xX0, X1, %2, ¥) = ({3 X0, X1, —X2, {16 Y) = (X0, {g X1, 3 X2, {1 V),

where {16 is a primitive 16-th root of unity with {7, = {s. Observe that o7y is the auto-
morphism in Example 3.18. If all the coefficients of Fg are non-zero, then one obtains the
equation in Table 2 up to rescaling the variables. ]
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3.6. Order 20

Proposition 3.19. Let X be a K3 surface with a purely non-symplectic automorphism o2¢
of order 20 such that dim(V %) = 2. Then the fixed loci of 029 and of its powers are as
follows:

Fix(029) ‘ Fix(o19) ‘ Fix(os) ‘ Fix(o4) ‘ Fix(o03)
{p1.p2.p3} [ {p1.....p7} | CaU{p1} [{p1.....ps) UR | CcUR

where g(C;) =i fori =2,6 and g(R) = 0. Moreover, d = (2,0,1,0,0,2) and NS(X) =
S(03) for a very general such K3 surface X.

Proof. Decomposing H?(X, C) as the direct sum of the eigenspaces of 05, we obtain
22 = 8dyrg + 4d1o + 4ds + 2ds + dy + dy.

Since dp¢ = 2, then dy is either O or 1, and this gives 16 possibilities for the vector d. Let
xi = x(Fix(o0y)),i € {2,4,5, 10, 20}. By the topological Lefschetz fixed point formula,
we get

Y20 = dio —ds —dy +dy + 2,

Y10 = 2d20 — dio —ds —2ds + dy + dy + 2,
(3.8) Xs = —2dx—dio—ds+2ds +dr +dy + 2,

a4 = —4dio +4ds —dr +di + 2,

X2 = —8dy + 4dio + 4ds —2ds + dr + di + 2.

By (3.8), we compute ys for the 16 possible d’s and find that it is either —1 or 4.
Lemmas 3.20 and 3.21 study these two cases separately. Observe that, since dyg = 2
and ¢(20) = 8, the Néron—Severi lattice of a very general X has rank 22 —2 -8 = 6.
Moreover, S(02) € NS(X) by Remark 2.1. On the other hand, since the fixed locus of o,
is the union of a curve of genus 6 and a rational curve, then rk S(02) = 6 by [20], thus
S(02) = NS(X). [

Lemma 3.20. If ys = —1, then the fixed loci of 029, 010, 05, 04 and o, are

Fix(020) = {p1, p2, p3}, Fix(010) ={p1,-.., Ps; P}
FiX(U5) = C2 [ {p}, FiX(G4) = {Pl» ey p6} L R, FiX(O’z) = C6 U R.

Proof. By [6],if x5 = —1, then Fix(0s) is the union of a smooth curve C of genus 2 and
one point p. This corresponds to the cases in Table 7.

In all these cases, y19 = 7, so that Fix(o1¢) is the union of p and six points on C.
By the Riemann—Hurwitz formula, this implies that o, has two fixed points on C, so that
Fix(o20) consist of the union of three points. Moreover, in all these cases y, = —8 by
Table 7, so that by [20], Fix(o) is a) the union of a curve of genus 7 and two rational
curves, or b) the union of a curve of genus 6 and a rational curve, or ¢) a genus 5 curve. In
all cases, a2 acts with order 10 on the curve of positive genus, since otherwise either o9
or o4 should contain such curve in its fixed locus, contradicting the previous remarks
for 019 and Theorem 0.1 in [5].
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dyo dio ds dy dy di | xa0 x10 x5 x4 X2

2 0 1 0 0 2 3 7 -1 8 -8

2 0 1 0 1 1 1 7 -1 6 -8

2 1 0 0 0 2 5 7 -1 0 -8

2 1 0 0 1 1 3 7 -1 -2 -8
Table 7

In case a), 0,0 must fix exactly three points on the curve C of genus 7 and exchange the
two rational curves. By the Riemann—Hurwitz formula, this implies that o5 fixes the same
points on C and o4 has exactly eight fixed points on C and exchanges the two rational
curves. This is not possible since, by Theorem 0.1 in [5], the number of fixed points equals
200 + 4, where a = ZCCFix((m)(l —g(C)).

In case b), 029 has exactly one fixed point on the genus 6 curve and two points on
the rational curve R, while o5 has exactly five fixed points on the curve by the Riemann—
Hurwitz formula. By the same formula, o4 has six fixed points on C. By Theorem 0.1
in [5], R is fixed by o4. This case corresponds to the statement.

Case c) is impossible since, by the Riemann—-Hurwitz formula, a curve of genus 5 can
not have an order 5 automorphism with more than two fixed points (and o5 would have
this property). ]

Lemma 3.21. If x5 = 4, there are no admissible cases.

Proof. By [6], if x5 = 4, then Fix(o5) contains either four isolated points or an elliptic
curve and four isolated points. In both cases, a; 5 = 3 and a5 = 1. Observe that points
of type A4,20, As,20, Ag,20 lie on a curved fixed by o5, while points of type A4; 20 with
i €{1,2,3,6,7,8} are isolated fixed points for o5. Since the action of 0,9 on Fix(o5) has
order 2 or 4, in both cases the point of type A, 5 is fixed by 020 and az 20 + a7,20 = 1,
and aj 20 + a3,20 + de,20 + as 20 is either 1 or 3.

If Fix(o05) consists of four isolated points, a4 20 + 5,20 + d9,20 = 0 since there are no
curves in Fix(o5). A Magma computation shows that the holomorphic Lefschetz formula
has no solutions satisfying these conditions.

If Fix(o5) consists of four isolated points and an elliptic curve E, by the Riemann—
Hurwitz formula, E contains 0, 2 or 4 isolated points for 029, thus a4 20 + as,20 + @920 €
{0, 2, 4}. The holomorphic Lefschetz formula has no solutions with these restrictions. =

Example 3.22. Let B be the plane sextic defined by
Fe(xg, x1,x2) = x¢ (xf + alxg + azxgxg + a3xgxz) =0,

where a1, a,,a3 € C are general. Observe that B is the union of a smooth plane quintic C
and a line L. Let Y be the double cover of P2 branched along B, which can be defined
by the equation x§ — Fe(xg,x1,x2) = 0in P(1,1, 1, 3). The surface Y has the order 20
automorphism

020(X0, X1, X2, y) = (—Xo, {5 X1, X2,1y).
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The surface Y has five singular points of type A; over the intersection points of C and L.
Its minimal resolution X is a K3 surface and o5 lifts to an automorphism 6,9 of X. The
automorphism 6,9 has three fixed points over (1,0, 0), (0, 1,0), (0,0, 1).

Proof of Theorem 1.2, order 20. Let X be a K3 surface with a purely non-symplectic
automorphism 03¢ of order 20. By Proposition 3.19, Fix(o5) contains a curve C, of
genus 2 and one point. The linear system |C,| defines a morphism ¢: X — P2 of degree 2
which contracts all smooth rational curves orthogonal to C,. Since o leaves C, invariant,
then it induces an automorphism & of P2 which can be assumed to be diagonal.

Let 5, = 510 and assume it has order 2 . Thus its fixed locus is the union of a line and
one point, so that Fix(o,) contains a fixed curve of genus at most 2, contradicting the fact
that o, fixes a curve of genus 6. Thus o, coincides with the covering involution of ¢.

Now consider the automorphism &4 = &°, whose order is equal to 2 . Its fixed locus
contains a line; we can assume it to be L = {x¢ = 0} up to projectivities. By Proposi-
tion 3.19, the line L must be a component of the branch curve B of ¢.

Finally, let 55 = . Since 05 has a fixed curve, then &5 must fix a line L’ which is
not equal to the line fixed by 74, thus up to projectivities we can assume L’ = {x; = 0}.
In these coordinates,

0 (xo,x1,Xx2) = (—X0,{5X1, X2).
The branch curve B is reduced, invariant for ¢ and must contain the line L as a component.

This implies that its equation is as in Example 3.22. If all the coefficients of Fg are non-
zero, then one obtains the equation in Table 2 up to rescaling the variables. ]

Remark 3.23. It follows from the proof of Theorem 1.2, case n = 20, that there are five
smooth rational curves Ry, ..., Rs in X, each intersecting at one point the two fixed
curves Cg and R of 03. The classes of the curves R, Ry, ..., Rs all belong to the invariant
lattice S(02). Observe that the classes of

2R+Ri + Ry +R3+ R4, 2R+Ri+R>+R3+Rs, R, R;, Rz, Rz,

generate a lattice S isometric to U(2) @ D4. Since S is contained in S(05) and det(S(02))
= det(S) = —2* by Theorem 0.1 in [6], then S = S(07).

3.7. Order 24

Proposition 3.24. Let X be a K3 surface with a purely non-symplectic automorphism
0 = 024 of order 24 such that dim(V'?) = 2. Then the fixed loci of 024 and some of its
powers are as follows:

Fix(024) ‘ Fix(o12) ‘ Fix(o¢)
{p1. P2, p3. p12. p13} | {p1. P2, p3. P12, P13} | RiU{p1,.... p11}

Fix(03) ‘ Fix(02)
C4UR U{p1} | CTURI UR;
where g(C;) =i fori = 4,7 and g(R1) = g(R2) = 0. Moreover, we have that x(Fix(04))
= y(Fix(0g)) =8, d = (2,0,0,0,0,1,0,4), and NS(X) = S(02) = U & D4 for avery
general such K3 surface X.
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Proof. Decomposing H?(X, C) as the direct sum of the eigenspaces of o5,, we obtain
22 = 8ds4 + 4d12 + 4dg + 2de + 2d4 + 2d3 + dy + d;.

Let y; = y(Fix(03)),i € {2, 3,4, 6,8, 12, 24}. By the topological Lefschetz fixed point
formula, we get

Y24 =de —d3s —dy +di + 2,

X12 = 2d1p —de —2ds — d3 + dr + dy + 2,

X8 = —2de+2d3—dy+di +2,

3.9) X6 = 4dog —2d1p —4dg —de+2ds—ds+dy +di + 2,

Xa = —4dyp +2d¢ —2d4 +2d3 + dr + dy + 2,

X3 = —4drs —2d12 +4dg —de +2ds —d3 +dy +di + 2,
X2 = —8drs + 4di2 —4ds + 2de + 2d4 + 2d3 + dr + d1 + 2.

Computing all possible values of the vector d, one can see that y3 € {0, —3, —6}.

Assume y3 = 0. By [4], Fix(o3) is either the union of genus 2 curve and two isolated
points, or the union of a genus 3 curve, a smooth rational curve and two isolated points.
Clearly Fix(og¢) C Fix(03), and in this case y¢ = 16 or 8. The first case is incompatible
with the structure of the fixed locus of 3. If y¢ = 8, then the fixed locus of o3 must be the
union of a genus 3 curve C, a smooth rational curve R and two isolated points p, g. The
automorphism o fixes four points on C and p, g. Moreover, it either fixes pointwise R
or it has two isolated fixed points on it. Both cases are incompatible with Theorem 4.1
in [12], since the fixed points of 0 contained in the fixed curve of o3 are those of type
Az6 (of type £(3.4) in [12]).

If y3 = —6, we have y¢ = 10, and this can be seen to be incompatible with The-
orem 4.1 in [12] with an argument similar to the previous one.
If y3 = —3 and by [4], Fix(o3) is either the union of a curve of genus 3 and one point,

or the union of a curve of genus 4, a smooth rational curve and one point. In these cases
we have yg = 13, which excludes the first possibility for Fix(o3). Thus Fix(o3) is the
union of a curve C of genus 4, a smooth rational curve R and one point p. Using the
Riemann—Hurwitz formula for o and the fact that y¢ = 13, we obtain that o¢ fixes p and
ten points on C. Moreover, by Theorem 4.1 in [12], the curve R is pointwise fixed by 0.
In this case one computes that yi5 is either 5 or 1, but the second case is not possible
since 01, either fixes pointwise or has two fixed points on R. Thus Fix(o012) fixed p, two
points on C and it either fixes pointwise or has two fixed points on R. A computation using
the holomorphic Lefschetz formula shows that the first case does not occur. In this case
one computes that y4 € {—1,1,3,5,7}. The only cases compatible with the structure of
Fix(012) are y24 = 3 or 5. The first case is impossible by the Riemann—-Hurwitz formula.

Assuming y3 = —3, x¢ = 13, y12 = 5 and y24 = 5, we find two possible vectors
d =(2,0,0,0,0,1,0,4),(2,0,0,1,0,0, 1, 3). For these cases, y» = —8, x4 = 8. Moreover,
xs = 81in the first case and 2 in the second case.

By [20], the fixed locus of o5 is either the union of a curve C; of genus 7 and two
smooth rational curves (R; and R;), or the union of a curve Cg of genus 6 and R;. The
latter is not possible by the Riemann—Hurwitz formula applied to o restricted to Cg. Since
x4 = 8, 04 must fix four points on C7, two points on R; and it either fixes pointwisely R,
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or it has two fixed points on it. This implies that Fix(og) contains isolated points and,
at most, a smooth rational curve. Thus yg > y24 = 5, which excludes the case d =
(2,0,0,1,0,0,1,3).

Finally, by Theorem 4.2.2 in [21] or Figure 1 in [6], the invariant lattice of o5 is iso-
metric to U & Dg4. For a very general K3 surface, we have rk NS(X) = 22 — 2¢(24) = 6.
Moreover, S(0;) € NS(X) by Remark 2.1, thus S(o,) = NS(X). |

Example 3.25. Consider the elliptic surface with equation
y2=x34+1*-1)@t*-a), acC.
For general a € C, this is a K3 surface and carries the order 24 automorphism

024(x,y,t) = ({12)6, é'gy,i[).

The action of * on the holomorphic two form wy = (dx A dt)/2y is the multiplication
by {12845 1 thus 024 is purely non-symplectic. For general a € C, the elliptic fibration
has a singular fiber F, of type I over ¢ = oo and nine fibers of type II. The automorph-
ism o, fixes the section at infinity R;, the genus 7 curve defined by y = 0 and the central
component R, of the fiber F,. The automorphism o3 fixes Rj, the curve of genus 4
defined by x = 0 and the intersection point p; between R, and the component of Fo
intersecting R;. Observe that the remaining three components of F, are permuted by 3.
The automorphism o fixes the nine singular points ps, ..., p1; of the fibers of type II, the
point p; and the intersection point p, between the fiber Fs, and the curve x = 0. Finally,
the automorphisms 01, and o024 fix the singular point p3 of the fiber Fy of type II over
t = 0, the intersection points of R; with the fibers Fy, Foo, p1 and p;.

Proof of Theorem 1.2, order 24. By Proposition 3.24, the fixed locus of o, is the union of
a curve Cy of genus 7 and two rational curves R; and R,. Moreover, NS(X) = S(o2)
=~ U @ D, for a very general X. Following the first part of the proof of Theorem 1.2 for
order 16, we find that a very general X has a Jacobian elliptic fibration 7: X — P! with
a fiber of type I§ such that Ry can be assumed to be a section of 7, R is the central com-
ponent of the reducible fiber, and C7 intersects a general fiber in three points. It follows
from Lemma 5 in [5] with x = [C7] that 7 is invariant for g,4. Since the fixed locus of o3
contains a curve Cy4 of genus > 1, then each fiber of 7 is invariant for 3. Moreover, 03
fixes pointwise the curve R;. Thus, up to a coordinate change, 7w has Weierstrass equation
of the form
y>=x>+ p(t).

where deg(p) <12, 02(x,y,t) = (x,—y,t) and o3(x, y,t) = ({3 x, y,t). Observe that og
preserves R, but o4 = 082 does not fix it pointwisely, since otherwise R; would be
contained in the fixed locus of 0y,, contradicting Proposition 3.24. Thus og induces an
automorphism &g of order 4 on P!. Up to a coordinate change, we can assume that
og(t) = it. Since the reducible fiber of type Ij must be preserved by og, then we we
can assume it to be over t = co. By [19], this implies that the deg(p) = 9 (so that it has a
triple root at infinity). Moreover, since its zero set is invariant for 5'g, then p(¢) =t (t* —a)
(t* = b) for some a,b € C. Finally, since O'g = 05, we can assume that og(x, y,t) =
(—ix, &gy, it). This implies that, up to a coordinate change, X belongs to the family in
Example 3.25. ]
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4. Classification for order 22

We now provide a classification theorem of purely non-symplectic automorphisms o of
order 22 on a K3 surface according to their fixed locus. Observe that, since ¢(22) = 10,
then dim(V'?) € {1, 2}. The case when dim(V?) = 2 has been studied in Section 3.

We recall that the fixed locus of any power o; := 622/ of ¢ is of the form

C,'I_IRll_I---I_IRkiI_I{pl,...,pNi},

where g(C;) = g;,and g(Ry) = 0forl = 1,...,k;.

Remark 4.1. As in Lemma 1.3 of [3], a straightforward computation using the holo-
morphic Lefschetz formula shows that a non-symplectic automorphism of order 22 is
purely non-symplectic.

Theorem 4.2. Let o be a purely non-symplectic automorphism of order 22 of a complex
K3 surface X . Then the invariants (gi, ki, N;) of the fixed locus of 0; := %2/, the vector
d = (dy2,d11,d2, dv) giving the dimensions of the eigenspaces of o* in H?(X,C), and
the Néron—Severi lattice of a very general K3 surface carrying an automorphism with such
invariants, are given by one of the rows of Table 8. Moreover, all cases in the table exist.

| Noo g22 koo | Nu1 g1 ki | g2 ko | d | NS
Al 6 - 0 2 1 0 10 1 (2,0,0,2) U
Bl 11 0 0 11 0 0 5 5 (1,0,1,11) | U & Ao
B2 9 0 0 |11 0 0|5 410210 | U®Ap
B3 5 - 0 11 0 0 5 1 (1,0,5,7) U Ao

Table 8. Order 22.

Proof. Let 011 be the square of 03,. According to Table 4 in [6], the fixed locus of 071 is
either a) the union of a smooth elliptic curve and two points, or b) the union of a rational
curve and eleven points. In the first case, m := %(22 —rankS(o711)) = 2, while in the
second case, m = 1.

Recall that fixed points of type Ao lie on a curve in Fix(o;;), while points of
type A; 22, A10—i,22 correspond to isolated points for 011 of type 4; 11,7 = 1,...,4. The
Lefschetz holomorphic formula with the restrictions

aspz < asjy1, aipz+ap—iz2 <aj1, [=1234

gives the solutions as in Table 9, where we compute y,; and y, by (3.1).

In case A1, we have d; + d» = 2 and dq; + d2 = 2 by Table 4 in [6]. Since y25 = 6,
then (da2,d11,d2,d1) = (2,0,0,2) by (3.1). The description of the fixed locus of o, is
thus obtained as in the proof of Proposition 3.4.

We now study the possibilities for Fix(o,2) when Fix(oq;) is the union of a rational
curve and eleven points. By [20], the fixed locus of the involution o, is the union of a
curve of genus g, and k; rational curves and y, = 2(1 — g + k). Thus in case B1
one has (g2, k2) € {(0,0), (1, 1), (2,2),(3,3), (4,4), (5,5)}. The only admissible one is
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| (@122.a222.....a1022) o | x22  x2
Al ©,0,0,1,0,0,0,0,1,4) O 6 —16
Bl | 3,2,1,1,1,2,1,0,0,0) 1| 13 2
B2 3,2,2,1,1,0,0,0,0,0) 1 11 0
B3 0,0,0,1,1,0,0,0,1,2) O 5 —6
Table 9

(g2, k2) = (5,5), since otherwise, recalling that isolated points of 05, lie on fixed curves
for 03, one gets a contradiction with the Riemann—Hurwitz formula.

As for case B2, one has (g2, k2) € {(1,0), (2, 1), (3,2), (4,3), (5,4), (6,5)}. The first
four cases give a contradiction to the Riemann—-Hurwitz formula. The case (g2, k2) =
(6, 5) is not admissible since, by Proposition V.2.14 in [14], a curve of genus 6 does not
admit an automorphism of order 11 acting on it.

Similarly, in case B3 the possibilities are (g2, k2) € {(4,0), (5, 1), (6,2)}, and the only
admissible one is (g2, k2) = (5, 1). The vector d = (d22, d11, d2, dy) is obtained in all
cases by means of (3.1).

The Néron—Severi lattice of a very general K3 surface in case Al has been given in
Section 3.2. In the remaining cases, which have d,; = 1, the rank of the Néron—Severi
lattice in the very general case is 22 — ¢(22) = 12. Since the lattice S(o1) is a prim-
itive sublattice of NS(X) by Remark 2.1 and has rank d; 4+ d> = 12 in each case, then
NS(X) = S(o11). By [22] or [6], Section 7, the lattice S(o71) is isometric to U & Ajp.

An example for case Al has been given in Section 3.2. We now provide examples for
the cases B1, B2, B3. [

Example 4.3. (Case B1) Let X be the elliptic K3 surface whose elliptic fibration is given
by

y2 =x>+1t'x +1°.
The singular fibers of the fibration are IT* over ¢ = 0, III over t = oo, and eleven fibers
of type I;. The automorphism

0221 (X, 3. 0) > (83,%.83, 7. 5351)

is purely non-symplectic of order 22 since its action on the two form is the multi-
plication by —¢1;. The automorphism o,, preserves the fibers over # = 0 and t = oco. In
the fiber over ¢ = 0, which is of type IT*, it must fix the component of multiplicity 6 and
has eight isolated fixed points in the other components. In the fiber over t = oo, it fixes
three isolated points. The involution o, preserves each fiber of the elliptic fibration, thus it
must fix R, three more components of the fiber over ¢ = 0, the section at infinity and the
3-section y = 0, which has genus 5. This corresponds to case B1.

dxAdt
2y

Example 4.4. (Case B2) Let us consider the elliptic fibration
y2 = %3 4 5% + 12,

The fibration has a fiber of type IV over ¢ = 0, a fiber of type IIT* over ¢t = oo, and eleven
fibers of type 1. The automorphism

0-22(x7 yvl) = (§181x$ _Ell% é-llt)
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is purely non-symplectic of order 22 since its action on the two form is the multi-

dxAdt
2y
plication by —¢%,. By Example 7.4 in [6], 011 has fixed locus R U {p1, ..., p11}, where R
is the central component of the fiber of type IIT*. The involution 0, maps (x, y,t) to
(x,—y, 1), thus it preserves each fiber. This implies that it fixes R and two more rational
components of the fiber of type III*, as well as the section at infinity and the 3-section

y = 0, whose genus is 5. This corresponds to case B2.

Example 4.5. (Case B3) We already observed in Section 3.2 that the elliptic K3 surface
defined by
y2=x3+ax+ (@' —1), aeC*

with the automorphism 025 : (x, v, ) — (x, —y, {11t), is an example of case A. If a3 =
—27/4, thus the fibration admits a singular fiber of type IT over t = 0, I;; over t = oo, and
eleven fibers of type I;. The fixed locus of the automorphism oy is contained in the fibers
over t = 0 and ¢t = oo. Since it fixes eleven isolated points and one rational curve, then
it must fix one of the components of the fibre of type I;1, say R, has nine fixed points in
the other components of the same fibers, and two more fixed points in the fiber of type II.
The involution o, fixes the section at infinity and the curve y = 0, which has genus 5.
Moreover, o, can not preserve each component of the fiber of type I;, by Lemma 4
in [5]. Thus o, acts on the fiber of type 1;; as a reflection, without fixed components and
with a unique invariant component. This corresponds to case B3.

Remark 4.6. By Section 2.3, the moduli space of K3 surfaces having a purely non-
symplectic automorphism of order 22 whose invariants are as in cases B1, B2 or B3 is
0-dimensional, since dim(V?) = 1. In fact, since tk T(X) = 10 = ¢(22) and f™* has
order 11 on NS(X), then it follows from Theorem 5.9 in [9] that there is a unique K3 sur-
face X which carries the three types of non-symplectic automorphisms of order 22. Thus
the K3 surfaces given in Examples 4.3, 4.4 and 4.5 are isomorphic.

5. Classification for order 15

We now provide a classification theorem of purely non-symplectic automorphisms o of
order 15 on a K3 surface according to their fixed locus. Observe that, since ¢(15) = 8,
then dim(V'?) € {1, 2}. The case when dim(V?) = 2 has been studied in Section 3.

Theorem 5.1. Let o be a purely non-symplectic automorphism of order 15 of a complex
K3 surface X. Then the invariants (gi, ki, N;) of the fixed locus of 0; := o'>/%, the vector
d = (d1s.ds,d3, dy) giving the dimensions of the eigenspaces of o* in H*(X,C) and the
Néron—Severi lattice of a very general K3 surface carrying an automorphism with such
invariants, are given by one of the rows of Table 10. Moreover, all cases in the table exist.

Proof. According to [6], the fixed locus of the cube of 015, i.e., 05, is the union of a
smooth curve of genus gs, ks rational curves, and a; 5 + a5 isolated points, with gs, ks,
ai,s and a5 as in one of the lines of Table 11.

Recall that @ = ZCcFix(mS)(l —g(C)). In order to find all possibilities for Fix(o15),
we will look for a solution a := (a1,15,d2.15, - - ., a7,15, @) of the holomorphic Lefschetz
formula compatible with the system of equations (3.2).



Non-symplectic automorphisms of K3 surfaces with one-dimensional moduli space 1191

Nis g5 kis | Ns g5 ks | N3 g3 k3 d NS
Al 5 - 0 1 2 0 2 2 0 | 2.1,0.2) [ UBR) DA & 4,
Bl 7 - 0 4 1 0 1 4 1 (2.0,1,4) Hs @ Ay
B2 7 - 0 4 1 0 6 0 2| (1,206 | UsEs® AP
B3 4 - 0 4 1 0 0 4 0 | (2,0,2,2) Hs @ Ay
DI | 10 0 0 7 1 1 6 0 2| (1,1,0,10) | U Es® AP
F3 9 0 0 10 0 1 4 2 2 | (1,0,2,10) | Hs® A4 ® Eg
F7 | 12 0 0 10 0 1 5 2 3 | (1,0,1,12) | Hs® A4 ® Eg
F8 5 - 0 10 0 1 2 2 0 | (1,0,4,6) Hs @ A4 & Eg
Table 10. Order 15.
ais azs | g5 ks | m
A 1 0 2 0 5
B| 3 1 1 0] 4
C 3 1 - - 4
D 5 2 1 1 3
E 5 2 0 0 3
F 7 3 0 1 2
G 9 4 0 2 1

Table 11. Fixed locus of 05.

Remark 5.2. We recall that points of type A4,15, As,15 lie on a curve fixed by o5 and not
by 015. Thus if a4,15 + as,15 > 0, there is at least a curve in Fix(05)\ Fix(015).

Remark 5.3. Observe that by [10], a curve of genus 3 does not admit an automorphism
of order 5. Thus if Fix(03) contains a curve of genus 3, such curve is also fixed by o015.

We now analyze each line of the previous table separately.

e Case A: corresponds to y(Fix(05)) = —1. By equations (3.3). it follows that a5 ;5 =
az,15 = 0. The only solution of the holomorphic Lefschetz formula with this property is
a =1(0,0,1,2,2,0,0,0). In particular, y(Fix(o15)) = 5. It follows from equations (3.2)
that d = (2, 1,0, 2). The proof thus follows as in the proof of Proposition 3.6.

e Case B: corresponds to y(Fix(os)) = 4, i.e., Fix(os) is the disjoint union of a
smooth curve of genus 1 and four points. By Example 5.6 in [6], X has an elliptic fibration
m: X — P! which can be defined by a Weierstrass equation of the form

V2=x>4+@ +a)x+ "+ B> +y), ap.yeC,

where 05(x, y,t) = (x, y, {st). The automorphism o5 fixes pointwise the smooth fiber Fj
over ¢ = 0 and leaves invariant the fiber Fi, over t = 0o, which contains four fixed points.
This property and the fact that 24 — e(Fy) must be divisible by 5, imply that Fi, is of
Kodaira type 1V, i.e., the union of three smooth rational curves intersecting transversally
at one point. Observe that the elliptic fibration & is invariant for o3, since the smooth
fiber over t = 0 is invariant for o3, and thus the same holds for the associated linear
system. Moreover, o3 must preserve all fibers of m, since otherwise 15 should divide
24 — ¢(Foo) = 20, a contradiction. The remaining singular fibers of 7, considering the
fact that they are preserved by o3 (thus J = 0) and that 24 — e(F) = 20, are either five
fibers of type IV, or ten fibers of type II.
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By the holomorphic Lefschetz formula and equations (3.3), we find that either a =
(0,1,0,0,3,0,0,0) ora = (0,0,0,0,3,3,1,0).

Ifa=1(0,1,0,0,3,0,0,0), then it follows from equations (3.2) that either d =
(2,0,2,2) or d = (1,2, 1,4). The first case has been considered in the proof of Pro-
position 3.6 (case B3). In the second case, by (3.2) and Table 1 in [4], y3 = 9 and the
fixed locus of o3 contains at least two curves. We now exclude this case.

The automorphism o5 fixes four points: three of them lie on the unique curve F fixed
by o5 and the other one is an isolated fixed point for os. By the previous description, it
follows that o3 must fix the center of the fiber Fo, and permutes the other three fixed points
of o5 on it (and thus the three components of the fiber F,). Moreover, being of types 45,15
and As s, the fixed points of 015 are all contained in a curve C fixed by o3. Since C
passes through the center of the fiber F,, then it is connected, and by the Riemann—
Hurwitz formula, it is the unique fixed curve of o3 which is transversal to the fibers of .
On the other hand, 03 can not fix a curve R contained in a fiber of 7, since the other
singular fibers are either of type II, or of type IV, and in both cases R would intersect C, a
contradiction. Thus o3 fixes at most one (connected) curve, so that the case d = (1,2, 1,4)
is not possible.

If a =1(0,0,0,0,3,3,1,0), then it follows from equations (3.2) that either d =
(2,0,1,4)ord = (1,2,0,6).If d = (2,0, 1,4), then by (3.2) and Table 1 in [4], y3 = —3
and the fixed locus of o3 consists either of the disjoint union of a genus 3 curve and one
point, or the disjoint union of a curve of genus 4 , a rational curve and one point. The first
case is not possible by Remark 5.3.

If d = (1,2,0,6), then by (3.2) and Table 1 in [4], y3 = 12 and the fixed locus
of 03 consists either of the union of three disjoint rational curves and six points, or the
disjoint union of a curve of genus 1, three rational curves and six points. We now exclude
the second case. Observe that in this case 015 fixes three points on Fy and four isolated
points in the fiber F,. Six of these points are contained in a curve fixed by o3, which
will intersect each fiber of 7 at three points counting multiplicity. The same argument as
before shows that o3 can not fix a curve contained in a fiber of 7. Thus o3 fixes at most
three (connected) curves.

To conclude, the only possible cases have ¢ = (0,0, 0,0, 3, 3, 1, 0) and either d =
(2,0,1,4) with o3 fixing a genus 4 curve, a rational curve and one point (case B1), or
d = (1,2,0, 6) with g3 fixing three smooth rational curves and six points (case B2).

e Case C: in this case, o5 fixes exactly four points; more precisely, a; 5 = 3 and
azs = 1. As before, by the holomorphic Lefschetz formula one obtains that either

a=(0,1,0,0,3,0,0,0) or a=(0,0,0,0,3,3,1,0).

In both cases, a4,15 + as,15 > 0, thus this case is not possible by Remark 5.2.

e Case D: in this case the fixed locus of 05 contains an elliptic curve, a smooth rational
curve R and seven isolated fixed points, with a1 s = 5 and a, s = 2. The holomorphic
Lefschetz formula with the restrictions of (3.3) gives four solutions for the vector a:

(5.1 (0,0,0,0,3,3,1,0),(0,0,1,2,2,0,0,0), (0,1,0,0,3,0,0,0), (3,2,2,3,0,0,0, 1).
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The only one compatible with equations in (3.2) isa =(3,2,2,3,0,0,0,1). By Remark 5.2,
a solution with « = 1 means that only R is fixed by 015. By (3.2), this gives y3 = 9.
According to Table 1 in [4], there are two possibilities for Fix(o3):

D1: disjoint union of three smooth rational curves and six points;
D2: disjoint union of an elliptic curve, three smooth rational curves and six points.

We now show that case D2 is not possible. Let
FiX(O’3) =FU R1 @] R2 U R3 @] {pl,pz,...,p6}

and consider the elliptic fibration 7: X — P! defined by the linear system | E|. The auto-
morphism &3 induced by o3 on P! is not the identity, since otherwise o3 should act on the
general fiber of 7 either as a translation (which is impossible since o3 is non-symplectic),
or with fixed points (impossible, since otherwise o3 should fix a curve which is transverse
to all fibers, and thus intersecting E). Thus &3 has order 3 and fixes two points in P!, one
of them corresponding to the fiber E. The smooth rational curves and the isolated points
fixed by o3 must be components of the other invariant fiber. This implies that such fiber is
of type If = Dio.

Since the curve E is preserved by o5, thus the fibration 7 is preserved too. The fixed
locus of o5 contains a curve of genus one E’. The curve E’ can not be transverse to the
fibers of 7, since otherwise the general fiber of w would have an order 5 automorphism
with a fixed point, which is impossible by [16], Corollary 4.7, IV. Thus E’ is one of the
fibers of . A similar reasoning to the one used for o3 implies that o5 induces an order 5
automorphism of P!, thus it preserves exactly two fibers of . Observe that s must
preserve both E, since it commutes with o3, and the fiber of type I} = 1510, since an
elliptic fibration of a K3 surface can not have five fibers of this type (the Euler number
of the fiber is 12). This implies that £ = E’, thus E would be a fixed curve of 015, a
contradiction.

e Case E: as in the previous case, a1,s = 5, a2 5 = 2 and the holomorphic Lefschetz
formula with the restrictions of (3.3) has the four solutions of (5.1). Since in each case
as,15 + as,15 > 0, then by Remark 5.2 the only curve fixed by o5 is not fixed by 015 and
o = 0. For each one of the three possible a’s with @ = 0, the system (3.2) has no solutions.
Thus there are no 05 such that o5 has invariants as in case E.

e Case F: in this case, Fix(o5) contains two rational curves Ri, R, and ten points
with a1 s = 7,a, 5 = 3. The holomorphic Lefschetz formula with the restrictions of (3.3)
gives nine solutions, all of them with & = 0 or 1. Thus at most one of the two curves R;
is contained in Fix(o5).

If Fix(o15) contains a rational curve, then @ = 1, and combining the nine solutions of
the Lefschetz formula with (3.2) one gets the possibilities F1-F7 of Table 12. If Fix(o15)
only contains points, then @ = 0 and by (3.2) we get possibilities F8 and F9.

By Remark 5.3, we exclude cases F4 and F9.

Case F1 has to be excluded for the following reason: the total number of fixed points
for 015 is nine, and o5 fixes a rational curve. Thus, az 15 + a3,15 + as,15 + a¢,15 = 5 of
the isolated fixed points for o715 lie on curves fixed by o3. However, Fix(03) contains just
one rational curve, which is fixed by o5, giving a contradiction.
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ais az,s a3 g3 k3 ai,is az,15 as,1s as,15 as,15 de,15 az,is o
Fl1 7 3 4 0 0 3 3 1 1 1 0 0 1
F2 7 3 4 1 1 3 3 1 1 1 0 0 1
F3 7 3 4 2 2 3 3 1 1 1 0 0 1
F4 7 3 4 3 3 3 3 1 1 1 0 0 1
F5 7 3 5 0 1 3 2 1 1 1 3 1 1
F6 7 3 5 1 2 3 2 1 1 1 3 1 1
F7 7 3 5 2 3 3 2 1 1 1 3 1 1
F8 7 3 2 2 0 0 0 1 2 2 0 0 0
F9 7 3 2 3 1 0 0 1 2 2 0 0 0

Table 12. Case F.

Case F2 has to be excluded for the following reason: 015 acts as an automorphism of
order 5 on the elliptic curve in Fix(o3) and it contains fixed points, which is not possible
by [16], Corollary 4.7, IV. Case F6 is analogous.

In case F5, the total number of fixed points for o5 is twelve: five of them are isolated
for o3, thus seven points should lie on the rational curve in Fix(o3)\ Fix(oy5). This is not
possible by the Riemann—Hurwitz formula.

e Case G: in this case, Fix(o5) contains three rational curves and all solutions of the
holomorphic Lefschetz formula with the restrictions of (3.3) have @ = 0 or 1. Thus at most
one of the three rational curves in Fix(o5) is contained in Fix(o;5). Checking (3.2) for all
solutions in both cases @ = 0, 1, we find no solutions. Thus there are no possible 015 such
that Fix(o5) is as in case G.

The Néron—Severi lattice of a very general K3 surface in cases Al, B1 and B3 has
been given in Section 3.3. In the remaining cases, which have dy5 = 1, the rank of the
Néron—Severi lattice in the very general case is 22 — ¢(8) = 14. In cases B2 and D1, we
have that the rank of S(03) is di 4+ 4ds = 14. Since S(03) is a primitive sublattice of
NS(X) by Remark 2.1, we conclude that NS(X) = S(o03). By [4], the lattice S(03) in the
two cases is isometric to U @ E¢ & Ag) 3. A similar argument in the cases F3, F7 and Fy
shows that for a very general X the Néron—Severi lattice is equal to S(o5) and is isometric
to Hs @ A4 @ Es by [6]. [

We now provide examples for all cases collected in Table 10, thus completing the
proof of Theorem 5.1. Examples of cases Al, B1 and B3 can be found in Section 3.3.

Example 5.4. (Case B2). The elliptic K3 surface with Weierstrass equation
y2 — X3 4 ([5 _ 1)2

has six fibers of type IV, over t = oo and over the zeroes of > — 1. It carries the order 15
automorphism

015 - (X, Vs t) = (§3x, Y, é‘5l)'
The fixed locus of 05 is contained in the union of the smooth fiber over ¢ = 0 and the fiber

over ¢ = oo. The fixed locus of o3 contains the section at infinity, the two sections defined
by x = y & (#> — 1) = 0 and the six centers of the fibers of type IV.
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Example 5.5. (Case D1) This surface appears in [9]. Let X be the elliptic K3 surface with
Weierstrass equation
y2:x3+t5x—|— 1,

The fibration has one fiber of type III* = E; over t = oo, and fifteen fibers of type I. It
carries the order 15 automorphism

o15: (x,y,1) —~ (5112)6,%5151)-

The automorphism o5 = of’s fixes the smooth fiber E over t = 0, the smooth rational curve
of multiplicity 4 of the fiber over + = oo and seven isolated points in the same reducible
fiber. Thus the invariants of o5 are (g5, k5) = (1, 1), which corresponds to case D. The
elliptic curve E is not fixed by 03 = 07s: (x,y,7) — ({3, y.{31). The automorphism o3
fixes three smooth rational curves and three isolated points in the fiber over # = oo, and
three points in the curve E.

Example 5.6. (Case F3) Let Y be the double cover of P? defined by the following equa-
tionin P(1,1, 1, 3):

y2 = x2(xg X3 + x5 + x5).
The branch sextic B is the union of a line L and a quintic curve Q. The surface Y has four
rational double points: one point of type D7 at (0, 1,0, 0) and three points of type A; at
(—Q, 1,0,0), fori = 0, 1, 2. The minimal resolution of Y is a K3 surface X . The surface
has the order 15 automorphism

o015 : (X0, X1, X2, ) > (X0, L3x1, {sxa, £2).

We will denote by 675 the lifting of 015 to X. The automorphism o3 fixes the genus 2
curve C, defined by x; = 0 and the singular point (0, 1, 0, 0). Thus 65 fixes the proper
transform of C, and the union of two components and four isolated points in the excep-
tional divisor of type D7. Thus we are in case F3.

Example 5.7. (Case F7) Let Y be the double cover of P2 defined by the following equa-
tionin P(1,1,1, 3):

y? = x2 (x5 4+ x7 + x5 x1x2).
The branch sextic B is the union of a line L and a quintic curve Q. The surface Y has
a rational double point of type Dig at (1,0, 0, 0). The minimal resolution of Y is a K3
surface X . The surface has the order 15 automorphism

015 : (X0, X1, X2. ) > (3 x0. {5 X1, 83 X2, ).

We will denote by 075 the lifting of 015 to X. The automorphism o3 fixes the genus 2
curve C, defined by xo = 0 and the point (1, 0, 0, 0). Thus &3 fixes the proper transform
of C, and the union of three components and five isolated points in the exceptional divisor
of type D19. Thus we are in case F7.

Example 5.8. (Case F8) Let Y be the double cover of P? defined by the following equa-
tionin P(1,1,1, 3):
v =xgx 4 (0 —x3)%
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The surface Y has three rational double points of type A4 at (0,1, ¢ ’3 0), withi =0,1,2.
The minimal resolution of Y is a K3 surface X. The surface has the order 15 automorph-
ism

o015 : (X0, Xx1,%2,¥) = ({5X0, X1, {3x2, ).

We will denote by 615 the lifting of 015 to X. The automorphism o3 fixes the genus 2
curve C, defined by x, = 0 and the smooth points (0, 0, 1, £1). Thus we are either in
case F8 or in case Al. The automorphism o5 fixes the two smooth rational curves defined
by xo = y & (x7 — x3) = 0 and the point (1,0, 0, 0). Thus its lifting 55 fixes two smooth
rational curves, so we are in case F8.

Remark 5.9. By Section 2.3, the moduli space of K3 surfaces having a purely non-
symplectic automorphism of order 15 whose invariants are as in cases B2, D1, F3, F7
or F8 is 0-dimensional, since dim(V?) = 1. In cases B2 and DI, the isometry f* has
order 5 on NS(X), while in cases F3, F7 and F8, it has order 3. Moreover, in all cases
tk T(X) = 8 = ¢(15). It follows from Theorem 5.9 in [9] that there is a unique K3
surface X which carries purely non-symplectic automorphisms of order 22 of types B2
and D1, and a unique K3 surface carrying automorphisms of types F3, F7, F8. Thus the K3
surfaces given in Examples 5.4 and 5.5 are isomorphic, and the same is true for the K3
surfaces given in Examples 5.6, 5.7, 5.8.
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