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Nonsymplectic automorphisms of prime order
on O’Grady’s sixfolds

Annalisa Grossi

Abstract. We classify nonsymplectic automorphisms of prime order on irreducible
holomorphic symplectic manifolds of O’Grady’s 6-dimensional deformation type.
More precisely, we give a classification of the invariant and coinvariant sublattices of
the second integral cohomology group.

1. Introduction

1.1. Background

Irreducible holomorphic symplectic manifolds X are simply connected compact Kéhler
manifolds carrying a nowhere degenerate holomorphic symplectic form oy which spans
HO(X.Q%).

In dimension 2, irreducible holomorphic symplectic manifolds are K3 surfaces. Fuji-
ki [17] and Beauville [5] found examples in higher dimensions: more precisely the Hilbert
scheme of n points on a K3 surface and the generalized Kummer manifold in the sense of
Beauville [5] are irreducible holomorphic symplectic manifolds of dimension 2n. Man-
ifolds which are deformation equivalent to the Hilbert scheme and to the generalized
Kummer manifold are called manifolds of K3/ type and of Kum,, type, respectively.

Mukai [28] discovered a symplectic form on moduli spaces of sheaves on symplectic
surfaces assuming some conditions on them. However, he proved that all nonsingular
irreducible holomorphic symplectic manifolds obtained in this way were a deformation
of known examples.

The singular ones admit a resolution of singularities which is irreducible holomorphic
symplectic only in two cases discovered by O’Grady: one in dimension 6, see [32], and one
in dimension 10, see [31]. Manifolds that are deformation equivalent to O’Grady’s sixfold
and to O’Grady’s tenfold are called manifolds of OG6 type and manifolds of OG10 type,
respectively.
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1.2. Automorphisms of irreducible holomorphic symplectic manifolds

An automorphism of an irreducible holomorphic symplectic manifold X is symplectic
if its pullback acts trivially on ox. An automorphism is nonsymplectic if its pullback
acts nontrivially on the space H>%(X) = Coy. A cyclic group G C Aut(X) is called
symplectic if it is generated by a symplectic automorphism.

Automorphisms of irreducible holomorphic symplectic manifolds can be classified
studying the induced action on H?(X, Z) which carries a lattice structure provided by the
Beauville-Bogomolov—Fujiki quadratic form. A marking is an isometry n: H*(X, Z)—L,
where L is a lattice; the pair (X, n) is called a marked pair. If (X, n) is a marked pair, an
isometry ¢ € O(L) is symplectic if ¢ @ C € O(L ® C) acts trivially on n(oy), and it
is nonsymplectic if ¢ ® C € O(L ® C) acts nontrivially on the space Cn(ox). A cyclic
group G C O(L) is called nonsymplectic if G is generated by a nonsymplectic isometry.

We are interested in the image of the following representation map:

(1.1) ne: Aut(X) — O(L), frno f*on '

If an isometry ¢ € O(L) and there exists g € Aut(X) such that n.(g) = ¢, then ¢ is
effective. A group G C O(L) is called effective if its elements are effective.

The aim of this paper is to study effective nonsymplectic groups G C O(L) of prime
order on manifolds of OG6 type.

The global Torelli theorem for K3 surfaces, due to Piatetski-Shapiro—Shafarevich,
allows us to reconstruct automorphisms of a K3 surface S starting from Hodge isomet-
ries of H?(S, Z) which preserve the Kihler cone. Huybrechts [20], Markman [23] and
Verbitsky [37] (see also [38]) formulated similar results of Torelli type for irreducible
holomorphic symplectic manifolds.

Recently, Mongardi—Rapagnetta [26] computed the monodromy group for manifolds
of OG6 type and due to the features of this group, the global Torelli theorem (Theorem 1.3
in [23]) holds in a stronger form for OG6 type manifolds, namely a necessary and suffi-
cient condition to have a bimeromorphic map between two manifolds of OG6 type is to
have a Hodge isometry of the second integral cohomology.

Classifying finite groups of automorphisms G of a certain deformation type of irredu-
cible holomorphic symplectic manifolds can mean one of the following:

(1) classifying invariant and coinvariant sublattices of the induced action of G in
H?(X,Z) up to isometry;

(2) classifying the connected components of the moduli space of pairs (X, G).

In general, classification (2) is finer than (1). This paper deals with level (1) of classifica-
tion of nonsymplectic groups G C Aut(X) on manifolds of OG6 type.

In the case of manifolds of K3[2! type, the symplectic automorphisms are treated by
Camere [12] and Mongardi [25]; the study of nonsymplectic automorphisms was started
by Beauville [6] and continued by Ohashi—-Wandel [33], Boissiere-Camere—Mongardi—
Sarti [7], Boissiere—Camere—Sarti [8], and Camere—G. Kaputska—M. Kaputska—Mongar-
di [15]; furthermore, Boissiere—Nieper-Wilkirchen—Sarti [10] describe the fixed locus of
these automorphisms. Camere—Cattaneo—Cattaneo [14] study nonsymplectic involutions
of K3 type manifolds and Camere—Cattaneo [13] study nonsymplectic automorphisms
of K3 type manifolds, where n > 3. Moreover, Joumaah [22], building on a work by
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Ohashi—Wandel [33], gives a criterion to find the classification (2) in the case of involu-
tions on manifolds of K3 type.

The study of automorphisms of generalized Kummer manifolds was started by Mon-
gardi—Tari—-Wandel [27], and continued by Boissiere—Nieper-WiBkirchen—Tari [9] and by
Brandhorst—Cattaneo [11].

Recently, the author together with Onorati and Veniani [19] classified symplectic bira-
tional transformations on manifolds of OG6 type in the case of finite cyclic groups, hence
this paper completes the classification of automorphisms of manifolds of OG6 type. The
classification of nonsymplectic automorphisms on manifolds of OG10 type was started
by Brandhorst—Cattaneo [11], and recent progress by Onorati [34] about the monodromy
group and the wall divisors for this deformation class constitutes a starting point for the
study of the symplectic case.

1.3. Contents of the paper

In Subsection 1.2 we give a summary of basic results about irreducible holomorphic
symplectic manifolds, and we introduce the main tools to approach the study of auto-
morphisms. In Section 2 we give basic notions of lattice theory and we recall the properties
of the second integral cohomology of an irreducible holomorphic symplectic manifold.
If X is an irreducible holomorphic symplectic manifold, the second integral cohomology
group is equipped with an integral quadratic form called Beauville—Bogomolov—Fujiki
quadratic form. With this form, H?(X, Z) is a lattice of signature (3, b(X) — 3). If X is
a manifold of OG6 type, then H?(X, Z) is isomorphic to the rank 8 and signature (3, 5)
lattice U®3 @[—2]®? (see [35]), and we denote this lattice by L throughout the paper. If
a group G acts on L, then the invariant and coinvariant sublattices are denoted by LS
and Lg, respectively.

In Section 3, in order to obtain the classification of invariant and coinvariant lattices
of L, we classify isometries of prime order of the smallest unimodular lattice in which L
embeds, namely A = U®>. We denote by A% and Ag respectively the invariant and the
coinvariant sublattices of A with respect to the action of a subgroup G C O(A). Taking
into account Proposition 3.9, we determine which pairs of p-elementary lattices can rep-
resent the invariant and the coinvariant sublattices with respect to an action of a group
G C O(A) of prime order p. We give the first crucial result of this paper.

Theorem 1.1. Let G C O(A) be a subgroup of prime order p. If either p = 2 and
sgn(Ag) = 2,1k(Ag) —2), or p =2 and sgn(Ag) = (3,tk(Ag) — 3), or p € {3,5,7}
and sgn(Ag) = (2,tk(Ag) — 2), then the pair (AG, A ) appears in Table 1.

In Proposition 3.3, we determine the possible prime orders of nonsymplectic groups
of isometries on manifolds of OG6 type and in Proposition 3.4 we find that, for manifolds
of OG6 type, nonsymplectic groups G C O(L) of prime order are effective. In this way
we obtain the classification of invariant and coinvariant sublattices of L. with respect to
effective nonsymplectic groups G C O(L) of prime order on a manifold of OG6 type. In
Section 4 we finally come to the main result of this paper.
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Theorem 1.2. Let X be a manifold of OG6 type and let G C O(L) be a nonsymplectic
group of prime order p. Then G is an effective nonsymplectic group if and only if |G| €
{2,3,5,7}, and the pair (L® L) appears in Table 5.

Finally we remark that in [18] we determine if nonsymplectic automorphisms of man-
ifolds of OG6 type classified in Table 5 in Theorem 1.2 are induced (see Definition 3.7
in [18]), and induced at the quotient (see Definition 4.2 in [18]).

2. Preliminaries

In Subsection 2.1 we gather the required background and we give an overview of lat-
tice theory and of finite quadratic forms, recalling the fundamental definitions and results
which we will use throughout this paper.

How to construct primitive embeddings of lattices is explained in Subsection 2.2, and
in Subsection 2.3 we recall basic results about nonsymplectic groups of isometries of
lattices and p-elementary lattices.

2.1. Lattices

Our main references for lattices are Nikulin’s paper [30], but we also use [16] and [21],
Chapter 14. A lattice L is a free Z-module of finite rank together with a symmetric bilinear
form

(,)LxL—7Z,

which we assume to be nondegenerate. A lattice L is called even if x? := (x, x) € 27Z
Vx € L. For any lattice L, the discriminant group is the finite group associated to L
defined as L¥ = L*/L, where L < L* := Homgz(L,Z), x —> (x,-). The discriminant
group is a finite abelian group of order |det(L)| and this number is called the discriminant
of L. A lattice is called unimodular if L* = {id}, and p-elementary if the discriminant
group LF is isomorphic to (Z/pZ)®? for some a € Zs¢. The length of the discriminant
group L¥#, denoted by /(L¥), is the minimal number of generators of the finite group L¥.
The divisibility div(v) of an element v € L is the positive generator of the ideal (v, L) =
div(v)Z. The pairing (, ) on L induces a Q-valued pairing on L* and hence a pairing
L¥ x L} — Q/Z. If the lattice L is even, then the Q-valued quadratic form on L* yields

gr: LY > Q/2Z.

The form gy, is called the discriminant quadratic form on L. There exists a natural homo-
morphism O(L) — O(L¥). If G € O(L) is a subgroup of isometries, then its image
in O(L¥) is denoted by G¥*. If g € G C O(L) is an isometry, we denote by g* its image
in O(L%).

Definition 2.1. Let L be a 2-elementary even lattice, and let g7, be the discriminant quad-

ratic form on L. We define

if g7 (x) € Z/27Z forall x € L*,
otherwise.

5(L):{?
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A fundamental invariant in the theory of lattices is given by the genus.

Two lattices L and L’ are in the same genus if L & U =~ L’ @ U, or equivalently if and
only if they have the same signature and discriminant quadratic form, see Corollary 1.9.4
in [30]. Sometimes we will need to know that a lattice is unique in its genus. In this paper
all the lattices that we use are unique in their genus, either because they are indefinite and
p-elementary (Theorem 3.6.2 in [30]), or by an application of Theorem 1.14.2 in [30].
Finally, if L is unique in its genus also L (n) satisfies this property.

We introduce two lattices that will be useful in Section 4:

2 1 -4 1
H5:(1 _2)5 K7:(1 _2)7

and we recall that U is the even unimodular lattice of rank 2 and A,,, D,, and E,, denote
the positive definite ADE lattices. Moreover, [n] with n € Z denotes the rank 1 lattice
generated by a of square #n; in particular, A; = [2].

2.2. Embeddings of lattices

A morphism between two lattices S — L is by definition a linear map that respects the
quadratic forms. If § < L has finite index, then we say that L is an overlattice of S. An
injective morphism S < L is called a primitive embedding if its cokernel is torsion free
and in this setting we denote by S+ C L the orthogonal complement.

Throughout the paper we refer to Propositions 1.15.1 and 1.5.1 in [30] for the clas-
sification of primitive embeddings and the computation of orthogonal complements of
primitive embeddings.

By Proposition 1.15.1 in [30], a primitive embedding S < L, where T = S+ C L,
is given by a subgroup H C L¥ which is called the embedding subgroup, and an isometry
y:H — H' C S* that we call the embedding isometry. If T is the graph of y in L¥ @
S(— l)”, then

T = TL/T and |det(T)| = |det(L)] - |det(S)|/|H .

Equivalently, by Proposition 1.5.1 in [30] we deduce that, if L is unique in its genus, a
primitive embedding S < L, where T = S+ C L, is given by a subgroup K C S* which
is the gluing subgroup, and an isometry y: H — H' C T* that we call the gluing isometry.
If T is the graph of y in S¥ @ T'(—1), then

LY ~T+/T and |det(L)| = |det(S)| - |det(T)|/|K |?.

2.3. Isometries
If L is a lattice and G C O(L), then the invariant sublattice of L is
LS = {x € L such that g(x) = x, Vg € G},

and the coinvariant sublattice is
Lg = (LSt
It holds
L®Q=(L°®Ls)®Q.
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Both the invariant and the coinvariant lattices are primitive sublattices of L. In fact,
they can be expressed as kernels of endomorphisms. In particular, if G C O(L) is a cyclic
group of order n generated by g, then

L% =Ker(g —id) and Lg = Ker(id+g + ---+ g" V).

The Néron—Severi lattice is the (1, 1)—part of H2(X,Z), i.e., NS(X) = H*(X,Z) N
HU!(X,C). The transcendental lattice T(X) is the orthogonal complement of NS(X)
in H2(X,Z) ie., T(X) = NS(X)*, and it is the smallest sublattice of H?(X, Z) such
that H2°(X) C T(X) ®z C. It holds

H*(X,2) ® Q = (NS(X) ® T(X)) ® Q.

Proposition 2.2 (see, for instance, [29], §3). If (X, n) is a marked irreducible holo-
morphic symplectic manifolds with marking n: H*(X,Z) — L and G C O(L) is a non-
symplectic group, then L¢ € NS(X) and T(X) C Lg.

Our convention is that the (real) spinor norm
spin: O(L) — R*/(R*)? = {£1}

takes the value +1 on a reflection 7, when v is a such that v2 < 0. Moreover, the Cartan—
Dieudonné theorem guarantees that O(L ® R) is generated by reflections in nonisotropic
elements. For more details about this choice, we refer to [24], where the opposite conven-
tion is used. We denote by O™ (L) the kernel of the spinor norm.

Remark 2.3. Anisometry g € O(L) belongs to the kernel of the spinor norm if and only
if g preserves the orientation of a positive definite subspace V' C L ® R of maximal rank.

Lemma 2.4. Let G C O(L) be a subgroup of order 2 and let r be a generator of G. Then

spin(y) = (—=1)°*,
where (54, s_) is the signature of Lg.

Proof. Let (t4,1_) be the signature of LY. Denote by p, € O(L ® R) the reflection with
respect to the v € L ® R. Choose an orthonormal basis {ei,...,es , fi,..., fs—} of
Lg ® R (so el-2 =1=- sz), and observe that if v belongs to this basis then p, sends v
to —v and preserves both LS and the other basis elements. Moreover, spin(pe, ) = —1
and spin(pz,) = 1. Since ¥ acts as —id on L ® R and as id on L% ® R, we have that
Y = P, 00 P, ©Pf O+ 0 pr_. Applying the spinor norm we have that

spin(y) = spin(pe, ) - - spin(pe, ) spin(py,) -~ spin(py,_) = (—1)**. n

Lemma 2.5 (see, for instance, [10], §5.3). If A is a unimodular lattice and G C O(A) is
a subgroup of prime order p, then Ag and A are p-elementary lattices and (Ag)* =
(AS(=1)*.
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Lemma 2.6 (Boissiere—Nieper-WiBirchen—Sarti, [10], Lemma 5.3; Mongardi—Tari—Wan-
del, [27], Lemma 1.8). Let L be a lattice and let G C O(L) be a subgroup of prime
order p. Then (p — 1) | tk(Lg) and

L

—— = (Z/pZ)*.
e s = /D)

There are natural embeddings of L/(L® & Lg) into the discriminant groups (L)* and
(Lg)*. Moreover, if m(p — 1) = tk(Lg), then a < m.

Proposition 2.7 (Boissiere-Camere—Mongardi—Sarti, [7], §4). Let L be a lattice with a
nontrivial action of order p, with rank p — 1, and discriminant d. Then d/p?~2 is a
square in Q.

3. Invariant and coinvariant lattices of A

The main goal of this paper is to classify effective nonsymplectic groups G C O(L) of
prime order on manifolds of OG6 type. In order to pursue this goal, it is convenient to
consider the primitive embedding L < A, where A = U®? is the smallest unimodular
lattice in which L embeds. Such an embedding is unique up to isometry of A by Propos-
ition 1.15.1 in [30]. In Subsection 3.1 we show that nonsymplectic groups G C O(L) of
prime order are effective. In Subsection 3.2 we exhibit the possible values of the signature
of p-elementary sublattices of A. These values are related to the signature of the invariant
and the coinvariant sublattices of L with respect to a nonsymplectic group G C O(L) of
prime order p € {2,3,5,7}. Afterwards, in Subsection 3.3, we give a criterion to determine
if there exists a group G C O(A) of prime order such that the p-elementary sublattices
of A are the invariant and the coinvariant sublattices with respect to the action of G.
Finally, in Subsection 3.4 we prove Theorem 1.1.

3.1. Nonsymplectic groups of prime order are effective

Consider the primitive embedding L < A.We call R = Lt < A the residual lattice.
Then R = [2]%2, thus it is a 2-elementary lattice of signature (2, 0). Given an isometry
g € O(L), by Corollary 1.5.2 in [30], there exists g’ € O(A) such that g’ restricts to g
on L if and only if there exists an isometry g” € O(R) with the following property: g#
and g”* (see Subsection 2.1 for the notation) coincide through an isomorphism Lf ~ R
In particular (see Lemma 2.12 in [25]) we have the following result, where we denote
by ¢ the image of ¢ in O(L%).

Lemma 3.1. Let X be a manifold of OGO type. If ¢ € O(L) is an isometry such that
o¥ = id, then there exists a primitive embedding L — A and ¢ extends to an element
@ € O(A) that acts trivially on L+ C A.

Proof. Let [v1/2] and [v2/2] be two generators of L¥ such that v? = =2 and v3 = 2.
Then ¢*([v1/2]) = [v1/2] and @*([v2/2]) = [v2/2], i.e., 9(v1) = v; + 2w; and @(v2) =
Uy + 2wy, with w; € Lfori € {1,2}. Consider arank 2 lattice generated by two orthogonal
elements r1 and r; of square 2; its discriminant group is also (Z/27)®? and it is generated
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by [r1/2] and [rp/2] with discriminant form given by ¢(r1/2) = 1/2, q(r2/2) = 1/2
and (r1, ;) = 0. Notice that L ®Zry & Zr; has an overlattice isometric to A which is
generated by L, ”JFT'“ and ”JFT” We extend ¢ to L@®Zr; & Zr, by imposing ¢(r1) = rq,
@(r) = rp and we obtain an extension ¢ of ¢ on A defined as follows:

~(Ti + i ri + @(v;)
#(*5) = ' .

2 2

Remark 3.2. If X is an irreducible holomorphic symplectic manifold and G is a cyclic
group generated by a nonsymplectic isometry, then at a generic point of the moduli space
of pairs (X, G) the invariant lattice is the Néron-Severi lattice and the coinvariant one is
the transcendental lattice [29], §3.

Proposition 3.3. If X is an irreducible holomorphic symplectic manifold of OG6 type
and G C O(L) is a nonsymplectic group of prime order p, then p € {2,3,5,7}.

Proof. The result directly follows from Proposition 6 in [4]. ]

The following result allows us to classify nonsymplectic automorphisms of prime
order starting from their action on the second integral cohomology.

Proposition 3.4. If X is an irreducible holomorphic symplectic manifold of OG6 type
and if G C O(L) is a nonsymplectic group of prime order p, then G is effective.

Proof. Since G is nonsymplectic, by Proposition 2.2, T(X) € Lg and LS < NS(X).
By construction, a nonsymplectic group of isometries is a group of Hodge isometries.
We need to check that a Kihler class is sent to a Kéhler class by the elements of G.
If X admits the action of a nonsymplectic group of automorphisms then X is projective,
see [4], §4. Since LS C NS(X), there exists an invariant ample class. More precisely, in
the nonsymplectic case the signature of the invariant lattice LY is (1, rk(LG) — 1), and the
signature of the coinvariant lattice Lg is (2, tk(Lg) — 2). We know by Theorem 5.4 (1)
in [26] that in the OG6 case Mon?(X) = O™ (L). If p # 2, then ¢ preserves the orientation
of the positive cone since p is an odd number and ¢? = id. Then we have ¢ € O1 (L) =
Mon?(X). If p = 2, then spin(¢) = (—1)? = 1 by Lemma 2.4, and the signature of Lg
is (2,1k(Lg) — 2) so ¢ € O" (L) = Mon?(X). Using Theorem 1.3 in [23], we conclude
the proof. ]

3.2. Admissible signature of invariant and coinvariant sublattices of A

Proposition 3.5. Let X be a manifold of OG6 type and let G C O(L) be a subgroup
of prime order p. Consider a primitive embedding L <— A, and let ry and ry be the
generators of R = L+ C A. Consider a group of isometries G' C O(A) such that G’
restricts to G on L. If |G¥| = 1, then Lg = Ag, hence sgn(Lg) = sgn(Ag/) and
sgn(L%) = sgn(AG,) —(2,0).

Proof. If |G¥| = 1, then Lg =~ A by Lemma 3.1. |
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Proposition 3.6. Let X be a manifold of OG6 type and let G C O(L) be a subgroup
of prime order p. Consider a primitive embedding L. — A, and let r1 and r, be the
generators of R = L+ C A. Consider a group of isometries G' C O(A) such that G’
restricts to G on L. If |G¥| = 2, then Lg = (r; — r2)* C Ag and LY = (r; + rp)*
C A9, hence sgn(Lg) = sgn(Ag/) — (1,0) and sgn(LS) = sgn(AG,) —(1,0).

Proof. We extend the action on A by the isometry ¢ = (‘1) (1,) on R. Since A is unimodular,
the gluing subgroup of L@ R C A is H = (Z/27)®?. By Proposition 1.5.1 in [30],
there is an isometry Lf > R(—1)*. Since G* acts on L# exchanging the generators,
exchanges the generators of R. Since G’ = G|L @ VY|r, this gives (r1 + r2) € A% and
(ri—r) € Agr. ]

3.3. Existence of the actions of prime order on A

Now we give a classification of all the possible p-elementary sublattices S of A, and
their orthogonal complements 7 = S+ C A, combining the constraints on the signature
of Propositions 3.5 and 3.6 with the content of Remark 3.2. More precisely, for p = 2
we look for 2-elementary sublattices S of A with sgn(S) = (2,1k(S) — 2) and sgn(S) =
(3,1k(S) — 3), and for p € {3,5,7} we look for p-elementary sublattices S of A with
sgn(S) = (2,1k(S) — 2). The pairs (7, S) obtained in this way are candidates to be the
invariant and the coinvariant sublattices with respect to G C O(A) of prime order p. If
p = 2, we know that all the 2-elementary lattices that we find correspond to an involution
which acts as —id on Ag. On the other hand, if p is an odd prime number, we need
the following criterion to determine if the pair (7, S) corresponds to an invariant and a
coinvariant sublattice respectively, with respect to G C O(A) of prime order p.

Lemma 3.7. If G C O(A) is a group of prime order p € {2,3,5,7} and sgn(Ag) =
(2,1k(A ) — 2), then there exists a primitive embedding A — H?*(X,Z), where X is
a K3 surface.

Proof. In our assumptions, the lattice Ag is a p-elementary lattice with sgn(Ag) =
(2,1k(Ag) —2). Since A g is a sublattice of A and sgn(A) = (5,5), we have rk(Ag) <7.
The signature of the lattice H?(X, Z) is (3,19), hence we can apply Corollary 1.12.3
in [30] to prove that there exists a primitive embedding of A in the unimodular lattice
H?(X,Z).Wehave 19—3 =16 =0 (8), moreover 3 —2 > 0and 19 — (tk(Ag) —2) > 0,
since (rk(A g) — 2) < 5 by assumption. The inequality 22 —rk(Ag) > l(A%) is satisfied
since 22 —rk(A ) > 15 and l(AnG) <7. |

Definition 3.8. Let X be a K3 surface. We denote by M the isometry class of H?(X,Z).

Proposition 3.9. Let p € {2,3,5,7} and let S be a p-elementary lattice such that there
exists a primitive embedding S — A and such that sgn(S) = (2,1k(S) — 2). If there exists
a group G C O(A) of prime order p such that S = A g, then there exists a K3 surface X
with a marking H*(X,Z) — M and a nonsymplectic group G' C O(M) of prime order p
such that § =~ Mg.

Proof. Let G C O(A) be a group of prime order p and let A g be the coinvariant lattice, a
p-elementary lattice such that (Ag)* = (A9)*. Since the action on (A 9)* is trivial, then
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also the action on (A g )¥ is trivial by Corollary 1.5.2 in [30]. By Lemma 3.7, there exists
a primitive embedding A g <> M. Recalling the construction of the gluing subgroup
in Subsection 2.2, since M is unimodular, the gluing subgroup K coincide with (A g )¥.
Since the action on (A g)* is trivial, then also the action on the discriminant group of the
orthogonal complement Aé C M is trivial due to the anti-isometry between (A g )¥ and
(Aé)#. In order to define a group G’ C O(M) such that G’ restricts to G on Ag and
such that Ag = Mg, we need an isometry of Aé C M such that the induced action on
(Aé)ﬁ is trivial. We show now that this isometry is id‘ AL Indeed, the action of G on Ag
extends to an action on M by gluing G|, and id| AL since the action of both on the
gluing subgroups is trivial. In this way we get A g = M- by construction. On the complex
space M ® C we have a weight-two Hodge structure, where M ® C)?>° ¢ M ® C)%2 =
Mg ® C is of signature (2, rk(S) — 2). By the Torelli theorem, there exists a K3 surface X
such that H2%(X) @ H%2(X) = Mg’ ® C and the action on the integral cohomology is
nonsymplectic, as we want. |

Artebani—Sarti—Taki [2] for p = 5, 7, and Artebani—Sarti [1] for p = 3, find a classi-
fication of invariant and coinvariant sublattices with respect to a nonsymplectic group of
prime order p on a K3 surface. As a consequence, using Proposition 3.9, we can determ-
ine which p-elementary sublattices A ¢ classified in Table 1 are the coinvariant sublattices
with respect to an isometry of prime order p of A. If this is the case, there exists a group
G C O(A) of prime order p such that (AG, A ) are the invariant and the coinvariant
sublattices.

3.4. Proof of Theorem 1.1
In the following we prove Theorem 1.1, dividing it into five cases.

Proposition 3.10. [f the order of G C O(A) is 2 and if sgn(Ag) = (2,tk(Ag) — 2),
then there are fourteen possible pairs of invariant and coinvariant lattices (A%, A g) with
respect to the action of G on A.

Proof. Since |G| =2, then A® and A g are 2-elementary lattices. It holds that rk(A %) =
10 — rk(Ag), hence a < 10 — rk(A ). We use Lemma 2.6 to bound the number a that
occurs there. For each possible value of a we apply Theorem 3.6.2 and Corollary 1.13.5
in [30] and we obtain the classification in Table 1. [

Proposition 3.11. If the order of G C O(A) is 2 and if sgn(Ag) = (3,1k(Ag) — 3),
then there are thirteen possible pairs of invariant and coinvariant lattices (AG, Ag) with
respect to the action of G on A.

Proof. Recall that tk(A%) = 10 — tk(A ), hence a < 10 — rk(A g ). The result is a direct
application of Lemma 2.6, and Theorem 3.6.2 and Corollary 1.13.5 in [30]. The classific-
ation is summarized in Table 1. ]

Proposition 3.12. [fthe order of G C O(A) is 3 and if sgn(Ag) = (2,tk(Ag) — 2), then
there are five possible pairs of invariant and coinvariant lattices (A~ , A g) with respect
to the action of G on A.
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No. |G| Ag AC sen(Ag) a8
1 2 UP2g[2)®3 [2]®3 (2.5) 301
2 2 Usl-21%3 e (2 2193 @ [-2] 2.4 4 1
3 2 U%2g[-2)®2 U g[2]9? (2.4) 2 1
4 2 (2192 @ [-2]®3 (2192 @ [2]93 (2,3) 5 1
5 2 Ua[-2]92 @ 2] Ua[2]®2 ¢ [-2] (2,3) 3 1
6 2 U227 U®2 g[2] (2,3) 1 1
7 2 2192 @ [-2]92 U292 @ [-2]9%2 (2,2 4 1
8 2 U((2)®? U UuQ)®? (2.2) 4 0
9 2 UesPl®[-2 U2 g2 @ [-2] (2,2) 2 1
10 2 UasUQ) U®2gU(2) 2.2 2 0
11 2 U2 U3 (2,2 0 0
12 2 2192 @ [-2] UP2g[-21%2@ 2] (2.1) 301
13 2  Us]2 U®3 g[-2] 2.1 11
14 2 2192 U®3 g[-2]®2 (2,0) 2 1
12 UBg2®? [2]82 3.5) 2 1
2 2 U2 @ [-2]92 [2192¢[-2) (3.4 301
3 2 UsR®2 e [-2/%2 [2%2¢[-21%2 (3.3 4 1
4 2 U U(2)®2 U((2)%2 (3,3) 4 0
5 2 UP2gpe[-2] Ua2] ® [-2] (3.3) 2 1
6 2 029U UaUQ) (3.3) 2 0
7 2 U3 U2 (3.3) 0 0
8 2 [—-2]92 @ [2]93 292 @ [-2]®3 (3.2) 5 1
9 2 Us[-2]®[2%? Uo[2] @ [-2]%2 (3.2 301
10 2 U®2 g2 U®2 g[-2] (3.2) 1 1
11 2 UQ) @ [2]%2 UaUQR) ®[-2]192 3,1 4 1
12 2 Ue[®? U®2 g[-2]92 (3.1 2 1
13 2 [293 U®2 g[-2]®3 (3.0) 301
1 3 UP2 g Ay (—1) U A, (2.4 1 -
2 3 UaUBR) ®A-1) UQR) @A, (2.4) 3 -
3 3 U2 U®3 (2.2 0 -
4 3 UsUQ) U®2gU@3) 2,2 2 -
5 3 As UD3 @Ay (1) (2,0 1 -
1 5 U®Hs U®2 o H; (2.2) 1 -
1 7 UP2gK, UaK7(—1) (2,4 1 -

Table 1. Pairs (AG, Ag) for G C O(A) of prime order p =2 and sgn(Ag) = (2,1k(Ag) —2), or

p =2andsgn(Ag) = 3, tk(Ag) —3),0or p € {3,5,7} and sgn(Ag) = (2,tk(Ag) — 2).

Proof. The result is a direct application of Lemma 2.6, the theorem in §1 of [36], The-
orem 1.13.3 and Corollary 1.13.5 in [30], and Proposition 2.7. The coinvariant sublattices
that we find for p =3 are Ag = U®? DA (—1),A¢=UA(-1)dUQB),Ag = U®?,
Ag =U®UQ3) and Ag = A, and due to the classification of Artebani—Sarti [1], they
are coinvariant sublattices with respect to an isometry of order 3 on A. The classification
is summarized in Table 1.
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Proposition 3.13. If the order of G C O(A) is 5 and if sgn(Ag) = (2,1k(Ag) — 2), then
there is one possible pair of invariant and coinvariant lattices (A, A g) with respect to
the action of G on A.

Proof. Recall that rk(A g) has to be a multiple of 4 and, due to the assumptions on the
signature, tk(A g) < 7. The result is a direct application of Lemma 2.6, the theorem in §1
of [36], Corollary 1.13.5 in [30] and Proposition 2.7. In this case Ag = U & Hs and
A% =U®2 g Hs. By Proposition 3.9, we check that this pair corresponds to invariant and
coinvariant lattices (A%, A ) with respect to the action of a group G C O(A) of order 5.
The classification is summarized in Table 1. ]

Proposition 3.14. If the order of G C O(A) is 7 and if sgn(Ag) = (2,1k(Ag) — 2), then
there is one possible pair of invariant and coinvariant lattices (A, A g) with respect to
the action of G on A.

Proof. Recall that rk(A g) has to be a multiple of 6 and, due to the assumptions on the
signature, tk(A g) < 7. The result is a direct application of Lemma 2.6, the theorem in §1
of [36], Corollary 1.13.5 in [30] and Proposition 2.7. We obtain a unique coinvariant lattice
Ag = U®? g K7 and the orthogonal complement is A =Uo K. By Proposition 3.9,
we check that this pair corresponds to the action of a group G C O(A) of order 7. The
classification is summarized in Table 1. ]

In Table 1, in the column § we indicate whether the 2-elementary quadratic form of
the discriminant group of the lattice is integer valued, § = 0, or not, § = 1 (cf. Defini-
tion 2.1). Moreover, a is the length of the discriminant group of Ag and of A€ since A
is unimodular.

4. Invariant and coinvariant lattices of L

To classify effective nonsymplectic groups of isometries G C O(L) means to classify
invariant and coinvariant sublattices (LG, Lg) of L. As we have already explained in
Section | there are two levels of classification and to classify group actions is finer than
classifying pairs (LG, Lg). The classification in (1) is equivalent to counting the different
primitive embeddings of L in L. In Subsections 4.1 and 4.2 we classify pairs (LG, Lg)
for effective nonsymplectic groups G C O(L) of order 2 and in Subsection 4.3 we classify
pairs (LY, L) for effective nonsymplectic groups G C O(L) of order 3, 5, 7. In Subsec-
tion 4.4 we prove Theorem 1.2.

4.1. Order 2, trivial action on the discriminant group

Lemma 4.1. If L is a lattice and G C O(L) is a group of order 2 generated by ¢, then
L,=L""%.

Proof. We have L, = Ker(¢ + id) = Ker(—¢ —id) = Ker((—¢) —id) = L™°. ]

Lemma 4.2. If G C O(L) is a group such that |G| = 2 and |G¥| = 1, then Lg and LS
are 2-elementary lattices.



Nonsymplectic automorphisms of prime order on O’Grady’s sixfolds 1211

Proof. The lattice L is 2-elementary by Lemmas 3.1 and 2.5 using the primitive embed-
ding L < A.If ¢ is a generator of G, then ¢’ = ¢ @ —id; 1 is an extension of ¢ to A
(cf. Corollary 1.5.2 in [30]). The isometry —¢’ = —¢ & id; 1 is an isometry of order 2
of A hence by Lemma 2.5 A_y is a 2-elementary lattice. Moreover by construction
A_y = L_, and by Lemma 4.1 L_, = L’ so LY = L¢ is 2-elementary. L]

Proposition 4.3. Let G C O(L) be a subgroup such that |G| = 2 and |G¥| = 1. Let
H C L be the embedding subgroup of a primitive embedding Lg — L.

(@) If H = {id}, then [(L)%) = I((Lg)*) + 2.
(b) If H = 7/27Z, then [(L%)%) = I((Lg)%).
(©) If H = (2/22)%, then [(L)*) = I(Lo)*) — 2.

Proof. Recall that an embedding L < L is given by an isometry between a subgroup
of (Lg)* and a subgroup of L¥. We know that L¥ ~ (Z./27,)®? hence there are three
choices for the the embedding subgroup H C LA, By Lemma 4.2, the lattices L, Lg
and LC are 2-elementary, so the formula

|det(L9)| = [det(L)] - |det(Lg)|/| H|?

gives
1LY = 1((Lg)") +2 —2n,

where H = (Z/27)®". Replacing n with 0, 1 and 2, we obtain the statements (a), (b)
and (c), respectively. ]

Remark 4.4. By Theorem 3.6.2 in [30], if § = 0, then sgn(LY) = (1, 1) or sgn(LY) =
(1,5).

Here we show how to use Proposition 4.3 to compute the only possible primitive
embeddings of the coinvariant sublattices LG = A g in L in order to obtain the invariant
sublattices LE. We do it in one case, the same strategy is applied for all the others. The
first case of Table 1 is Ag = Lg = U®? ®[—2]®3. Using Proposition 4.3 we know that if
the embedding subgroup H is equal to the identity then / ((LY)#) is equal to /((Lg)*) + 2,
hence the lattice LY has rank 1 and / ((LG)#) = 3 4+ 2 = 5, hence this case cannot hap-
pen by Theorem 1.10.1(2) in [30]. If the embedding subgroup H is equal to Z/2Z then
I((LO)%) is equal tol ((Lg)#), hence the lattice LS has rank 1 and /((L9)%) is equal to 3,
hence neither this case can happen. As last choice we have the embedding subgroup H
equal to(Z /27)®? and the following relation holds: /((L9)*) = I((Lg)*) — 2. In this case
the lattice LS has rank 1 and /((L%)#) is equal to 1. This case can happen and computing
the embedding we get LC = [2]. Starting from the classification in Table 1 we classify
invariant and coinvariant sublattices of G in L in Table 5.

4.2. Order 2, nontrivial action on the discriminant group

Consider an embedding L. < A and a group of isometries G C O(A) such that |G| =2
and |G¥| = 2. By Lemma 2.5 we computed the thirteen possible isometry classes of A g
in Table 1.
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Let r1 and r, be two orthogonal generators of R. If |G#| = 2 then by Proposition 3.6,
Rg = [4] is generated by the (r; — r,) and RC = [4] is generated by the (r; + r2). By
Proposition 1.15.1 in [30], we compute the possible primitive embeddings Rg =~ [4] —
Ag in order to find S = (Rg)*t C Ag. The results of this computation are the possible
isometry classes of S summarized in Table 2.

No. Ag S = [4]*4c

1 U p[-2)®2 U92 [-2]%2 @ [-4]
2 U gne-2%? Us2eAs(-))

3 U2 2] 0 [-2]92 U @ [-2]92 & [-4]
4 U292 ¢ [-2]92 2192 @ [-2]92 @ [—4]
5 Ua2)92 @ [-2]92 Ua[-2]92 & [4]

6 UeU(@2)®2 U(2)%2 @ [-4]

7 U UQ2)®2 U UQ2) & [-4]

8 U2 g2 @ [-2] U2 @ [-2] & [-4]
9 U®2 g U(2) UaUQ2) @ [—4]

10 U®2gUQ) U2 ¢4

11 U®3 U€B2 @[_4]

12 219 @ [-2]®2

2] @ [-2]%% @ [4]

13 Us2]92 o [-2]

21%? @ [-2] @ [-4]

14 UsP9?e[-2 Ua[-2] & [4]
15 U®2g Uo2] ® [-4]
16  UQ) & [2]92 UQ2) @ [4]

17 UQ)®[2)®2 2192 & [-4]
18 Ua[2®? 2192 & [—4]
19  Us[2]®? Uo[4]

20 [2193 2] & [4]

Table 2. Orthogonal complements of [4] — Ag.

Then for each S we obtain T = S+ by computing the primitive embeddings S < L
by Proposition 1.15.1 in [30]. All the pairs (7, S) are summarized in Table 3. Only when
S = U(2)®% @ [-4] and when S = U®[2] @ A3(—1) we do not find any primitive embed-

ding § — L.

By Lemma 3.2 in [19], we know that if |G| = 2 and |G¥#| = 2 then |det(Lg)| =
|det(LG)|. This result excludes the candidate cases 1, 2, 3, 5, 11, 13, 17, 19, 21, 23, 25, 27

of Table 3.

Lemma 4.5. In the case |G| = 2 and |G*| = 2, if |det(Lg)| = |det(LY)|, the gluing
subgroup of Lg — L contains no elements of order 4.
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Proof. Let H be the gluing subgroup and suppose that it contains an element of order 4.
If H' is the image of H in (LG)ﬁ, then H @ H’ contains an element of order 4 which is
also the unique element of order 4 in (Lg)* @ (L9)%. Hence HL & (H")* c (Lg)* @
(LG)tt does not contain elements of order 4 and, in particular, it contains only elements of
order two. Since L* is generated by elements in H+ @ (H')* thatare notin H @ H', G
acts trivially on these elements and this is a contradiction. ]

We compute the gluing subgroups for the possible S and 7" in Table 3 and Lemma 4.5
excludes the cases 4, 6, 8, 9, 14, 15, 16, 18, 22. In case 25 we have (S, T) =~ ([2]EBZ ®
[—4], [4] ® D4(—1)). These two pairs of lattices do not admit a gluing subgroup in L
since the discriminant form of S* and the discriminant form of 7'(—1)# do not admit
any isometric subgroup in both cases. In these two cases the lattices (7, S) can not be
invariant and coinvariant sublattices with respect to an action of a group G C O(L) such
that |G| =2 and |G”| = 2. For the cases lefti.e. 7, 10, 12, 20, 24, 26 we exhibit an isometry
that generates a group G C O(L) such that |G| = 2, |G¥| = 2 and it holds that Lg = S
and LC = T, i.e. (T, S) are invariant and coinvariant sublattices with respect to the action
of G on L. We denote these cases by & in Table 3. For these cases we give in Table 4 an
example of G C O(L) written with respect to the standard basis of L =~ U®? g[—2]®2
with |G| =2, |G¥#| = 2 and (Lg, L) as invariant and coinvariant sublattices (7, S).

4.3. Order 3,5 and 7

If G C O(L) and |G| = p, where p > 3, we have |G¥| = 1, so by Proposition 3.5 we have
Lg =~ Ag and LY =~ Rt c AC.

Proposition 4.6. If S is a p-elementary lattice with p € {3,5,7} and if there exists a
primitive embedding S — L, then the embedding is unique up to isometry of L.

Proof. If S < L is a primitive embedding then the embedding subgroup H is such that
H C St~ (Z/pZ)®* and H C L¥ = (Z/27)®2. Since p > 3 then H = {id} hence the
isometry y = id which means that T1/T =~ (S1)* =~ S* @ L* and gs1 = qL —gs. By
[30, Proposition 1.15.1] we conclude. [

We know that L < A is an embedding such thatif G C O(L) and |G| = p with p >3
then |G#) = 1. Due to this fact it is possible to extend the action on A trivially on L ~LS
which means that Lg =~ A g is a p-elementary lattice. We compute an orthogonal comple-
ment Lé of a primitive embedding L < L and by Proposition 4.6 all the other primitive
embeddings are equivalent with respect to the level (1) of the classification described in
Subsection 1.2.

Remark 4.7. In cases |G| = 3 and |G| = 7 we can use Theorem 2.9 in [3] to show that
there is a unique embedding L < L up to isometry of L. In fact, we have tk(Lg) < 2
(or tk(LY) < 2) and U®3 L. We obtain the level (1) of the classification explained in
Subsection 1.2.

If |G| = 3, the only possible coinvariant sublattices that we find in Table | are Lg =
U2 @ As(—1),Lg = UdAz(-1) ®U@B),Lg = U®* L 2 U U(3) and Lg = As.
By Proposition 4.6, we know that the primitive embedding Lg < L, if there exists, is



A. Grossi 1214
No. S T &
1 U92 [-2]%2 @ [—4] [4] -
2 UsPe[-2%2e[-4 [“el-2 -
3 21%2 @ [-2]%2 @ [-4] [-21%? @ [4] -
4 Ua[-2]92 @ [4] 2] ® [-2] ® [-4] -
5 Ua[-219% @ [4] Uo[—4] -
6 Ua[-2]92 @ [4] UQ2) & [-4] -
7 UaUQ) @ [—4] UQ2) &[4 »
8  UsaUQ ®[-4 [-21%2 & [4] -
9  Us2e[-2 &[4 (2192 & [4] -
10 UePl®[-2]®[-4] 2] ® [-2] ® [-4] &
11 U®2g[—4q (2192 & [4] -
12 U®2g[—4] U a[—4] &
13 [Ro[-2%%a[4 Uo[-2] @ [-4] -
14 [2e[-21%? o [4] 2] @ [-2]%% @ [-4] -
15 22214 [—2]%3 @ [4] -
16 [2192@[-2]®[-4] Ua[-2] @ [-4] -
17 Us[-2] & [4] 2] ® [-2]%2 & [-4] -
18 Ue[-2] &[4 Ua[-2] & [-4] -
19 Us2 ®[-4] [—2]%3 @ [4] -
20 Usl2lo[-4] Ua[—2] & [-4] &
21 UQ) &[4 UQR) @ [-2]192 -4 -
22 UQ) &[4 Ua[-2]92 @ [-4] -
23 2192 @ [—4] (2194 & [4] -
24 2192 @ [—4] U292 ¢ [-4] &
25 Us4] Ua[-2]92 ¢ [—4] -
26 Uo[4] U As(-1) &
27 2] M4 Ua[-2193 @ [-4] -

Table 3. Orthogonal complements of S < L.

unique up to isometry of L. The embedding is given by choosing H = {id} as embedding
subgroup. If Lg 2 U®2 @ Ay(—1) then LC = [-2] @ [6]. If Lg =~ U Ax(—1) & U(3)
then there are no primitive embeddings of this lattice in L; in fact if such an embedding
exists, then the length of the discriminant group of the orthogonal complement is greater
than the rank. If Lg 2 U®? then L® ~ U®[—2]®2.If Lg 2 U® U(3) then L =2 U(3) &
[—2]®2 and if Lg =~ A, then L >~ U@ Ay (—1) @ [-2]®2.

If |G| = 5, the only possible coinvariant sublattice that we find in Table 1 is Lg =
U & Hs. By Proposition 4.6, we know that the primitive embedding Lg < L is unique
up to isometry of L. The embedding is given by choosing the trivial embedding subgroup
H = {id} and we obtain L¢ =~ [-2] & [-10] & U.

If |G| = 7, the only possible coinvariant sublattice that we find in Table 1 is Lg =
U @ K. By Proposition 4.6, we know that the primitive embedding Lg < L is unique
up to isometry of L. The embedding is given by choosing the trivial embedding subgroup
H = {id} and we obtain L¢ =~ [—2] & [14].
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No. Lg LC example

—1 0 0 0 ) 0 0 )

0 -1 0 0 ) 0 0 )

0 0 0 0 1 0 0 )

0 0 0 0 ) 1 0 )
1 Us U(Z) D [_4] U(2) D [_4] 0 0 1 0 0o 0 o0 O

0 0 ) 1 ) ) 0 )

0 0 0 0 ) 0 0 1

0 0 o0 0o 0o 0 1 0

-1 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0

0 0o o 1 0 0 0 o

0 0 1 0 0 0 0 0
2 Us2] e [2l®[-4] [l&[-2]e[-4 o 0 0o 0 o -1 o o

0 0 0 0 -1 0 0 )

0 0 0 0 0 0 0 1

0 ) 0 0 0 0 1 0.

—1 0 ) ) 0 0 0 )

0 -1 0 ) ) 0 0 )

o2 0 0 -1 0 0 0 0 0

0 0 0 -1 0 0 0 0
3 UY* ¢[—4] U o[-4] o 0 0 0 1 0 0 o0

0 0 0 0 0 1 0 0

0 0 ) 0 ) 0 0 1

0 0 ) ) ) 0 1 )

1 ) ) ) 0 0 0 )

0 1 ) ) 0 0 0 )

0 ) -1 ) 0 0 0 )

0 ) 0 -1 0 0 0 )
4 UEB[Z] S [_4] U @[—2] S [_4] [V ] 0 0 0 -1 0 0

o0 0o 0 -1 0 0 0

o0 o o0 0 0 0 1

o 0 o o0 0 0 1 0

1 0 ) 0 0 0 0 )

0 1 ) ) 0 0 0 )

@2 @2 0 ) ) -1 0 0 0 )

0 ) -1 0 0 0 0 )
5 [2] 2] [_4] U 69[_2] D [_4] o 0o o 0 o -1 0 o0

0 ) ) ) -1 0 0 )

0 ) ) ) 0 0 0 1

o 0 o o0 0 0 1 o0

1 0 0 0o 0o 0o 0 0

o1 0o o0 0 0 0 0

o0 -1 0o o0 0o o0 0

0 ) ) -1 0 0 0 )
6 Uol[4] U Asz(-1) 0 0 o0 0o -1 -2 -1 -1

0 ) ) ) -2 -1 -1 -1

0 ) ) ) 2 2 2 1

0 ) ) ) 2 2 1 2

Table 4. Invariant and coinvariant sublattices of nonsymplectic groups G C O(L) of order 2 and
|G#| = 2 on manifolds of OG6 type.

4.4. Proof of Theorem 1.2

The computations in Sections 4.1, 4.2, and 4.3 are the proof of Theorem 1.2. In fact, the
pairs (LG, L) are invariant and coinvariant sublattices with respect to effective nonsym-
plectic groups G C O(L) of prime order on a manifold X of OG6 type. Then there exist
G’ C Aut(X) such that G = 74(G’) where 7 is the representation map recalled in equa-
tion (1.1). In this way, nonsymplectic groups G C Aut(X) of prime order on manifolds X
of OG6 type are completely classified. ]
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No. |G| |G¥ Lg LG

1 2 1 U®2 g[—2)®3 2]

2 2 1 U2 @ [-2]®3 2@ [-2]

3 2 1 U®2 g[-2]®2 U

4 2 1 U®2 g[-2]®2 2l ®[-2]

5 2 1 U®2 g[—2)®2 UQ2)

6 2 1 2192 @ [-2]®3 2] ® [-2]®2

7 2 1 U292 @ [2] Uo[-2]

8 2 1 Ug[-2]%? & 2] (2] & [-2]%2

9 2 1 U®2 g[-2] 2192 @ 2]

10 2 1 U®2 g[-2] Uo[-2]

1 2 1 2192 @ [-2]®2 U o[-2]®2

12 2 1 2192 @ [-2]®2 2193 @ 2]

13 2 1 U(2)%2 uQR) @ [-2]92

14 2 1 Ua2] & [-2] 2] @ [-2]®3

15 2 1 U2 & [-2] Uo[-2]®2

16 2 1 UaU(2) UQ2) @ [-2]%2

17 2 1 UaU(2) U g[-2]®?

18 2 1 U®? U o[-2]®2

19 2 1 2192 ¢ [-2] 214 @ 2]

20 2 1 2192 ¢ [-2] Uo[-2]93

21 2 1 Uo[2] Ua[-2]®3

2 2 1 [2]®2 Uog[-2]%4

23 2 1 [2]92 U Dy(-1)

24 2 1 [2]®2 U(2) ® Dy(—1)

1 2 2 UoUQ) & [-4] UQ2) & [-4]

2 22 Us2]e[-2l®[-4] Rle[-2e[-4

3 2 2 U®2 g[-4] Uo[-4]

4 2 2 Ua2] ® [-4] Ua[-2] & [-4]

5 2 2 2192 @ [-4] U292 ¢ [-4]

6 2 2 U4 U As(-1)

1 3 1 U®2 g Ay (—1) [-2] @ [6]

2 3 1 U®? U o[-2]®?

3 3 1 UaUQ3) UuQ) @ [-2]%2

4 3 1 Az Ua Az (—1) & [-2]®2

1 5 1 U® Hs 2] [-10]@ U

1 7 1 U®2 g K, (—2] & [14]
Table 5. Invariant and coinvariant sublattices of effective nonsymplectic groups G C O(L) on man-
ifolds of OG6 type.
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