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On a problem by Nathan Jacobson

Victor Hugo López Solís and Ivan Pavlovich Shestakov

Abstract. We prove a coordinatization theorem for unital alternative algebras con-
taining 2 � 2 matrix algebra with the same identity element 1. This solves an old
problem announced by Nathan Jacobson on the description of alternative algebras
containing a generalized quaternion algebra H with the same 1, for the case when
the algebra H is split. In particular, this is the case when the basic field is finite or
algebraically closed.

1. Introduction

The classical Wedderburn coordinatization theorem says that if a unital associative alge-
bra A contains a matrix algebra Mn.F / with the same identity element, then it is itself a
matrix algebra, A Š Mn.D/, “coordinated” by D. Generalizations and analogues of this
theorem were proved for various classes of algebras and superalgebras [2,4,6–10,12,13].
The common content of all these results is that if an algebra (or superalgebra) contains a
certain subalgebra (matrix algebra, octonions, Albert algebra) with the same identity ele-
ment, then the algebra itself has the same structure, but not over the basic field rather over
a certain algebra that “coordinatizes” it. The coordinatization theorems play an important
role in structure theories, especially in classification theorems, and also in representation
theory, since quite often an algebra A coordinated byD is Morita equivalent toD, though
they could belong to different classes (for instance, Jordan algebras are coordinated by
associative and alternative algebras).

In this paper we consider alternative algebras. Recall that an algebra A is called altern-
ative if it satisfies the following identities:

(1.1) x2y D x.xy/; .xy/y D xy2;

for all x; y 2 A. All associative algebras are clearly alternative. A classical example of
a non-associative alternative algebra is the Cayley (or generalized octonion) algebra O
(see [3,5,13,16]). Kaplansky [4] proved an analogue of Wedderburn’s theorem for altern-
ative algebras containing the Cayley algebra. He showed that if A is an alternative algebra
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with identity element 1which contains a subalgebra B isomorphic to a Cayley algebra and
if 1 is contained in B, then A is isomorphic to the Kronecker product B ˝ T , where T
is the center of A. Jacobson gave a new proof of Kaplansky’s result, using his classi-
fication of irreducible alternative bimodules, and in addition proved an analogue of this
theorem for Jordan algebras [2], where the role of Cayley algebra is played by the Albert
algebra, the exceptional simple Jordan algebra of dimension 27. These results have import-
ant applications in the theory of representations of alternative and Jordan algebras [1, 3].

The Wedderburn coordinatization theorem in the case n� 3 admits a generalization for
alternative algebras, since every alternative algebra A which contains a subalgebraMn.F /

.n � 3/ with the same identity element is associative (see Corollary 11 in Chapter 2
of [13]). The result is not true for n D 2: the split Cayley algebra and its 6-dimensional
subalgebra are counterexamples. The problem of description of alternative algebras con-
taining M2.F / or, more generally, a generalized quaternion algebra H with the same
identity element, was posed by Jacobson [2]. In this paper, we solve this problem for the
split case H ŠM2.F /, without any restriction on the dimension and characteristic of the
base field F .

Our M2.F /-coordinatization involves two ingredients: an alternative M2.F /-algebra
A is “coordinated” by an associative algebra B and by a commutative B-bimodule V (that
is, V is annihilated by any commutator of elements of B), on which a skew-symmetric
mapping is defined with values in the center of B, satisfying the Plücker relations. More
exactly, A DM2.B/˚ V

2, with a properly defined multiplication. The details are given
in the main Theorem 5.1.

The paper is organized as follows. In Section 2 we give definitions and some known
results on alternative algebras and bimodules. In Section 3 we prove that a unital alternat-
ive algebra A containing the generalized quaternion algebra H with the same unit admits
a Z2-grading A D Aa ˚Ac with associative 0-component Aa. In the next section, we
determine multiplication in the 1-component Ac . In Section 5 we prove the main the-
orem on M2.F /-coordinatization of alternative algebras. Sections 6 and 7 are devoted to
examples and open questions.

Throughout this paper, the ground field F is of arbitrary characteristic.

2. Definitions and known results

Let A be an arbitrary algebra. Denote by .x; y; z/ D .xy/z � x.yz/ the associator of the
elements x; y; z 2A, and by Œx; y�D xy � yx the commutator of the elements x; y 2A.
For subsets B;C ;D of A, we denote by .B;C ;D/ the associator space generated by
all the associators .b; c; d/, b 2 B, c 2 C , d 2 D . The associative center N.A/, the
commutative center K.A/ and the center Z.A/ are respectively defined as follows:

N.A/ D ¹a 2 Aj.a;A;A/ D .A; a;A/ D .A;A; a/ D 0º;

K.A/ D ¹a 2 AjŒa;A� D 0º;

Z.A/ D N.A/ \K.A/:
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In terms of associators, identities (1.1) defining alternative algebras can be written as

.x; x; y/ D 0; .x; y; y/ D 0:

The first of them is called the left alternative identity and the second one, the right altern-
ative identity.

Linearizing the left and right alternative identities, we obtain

.x; z; y/C .z; x; y/ D 0; .x; y; z/C .x; z; y/ D 0;

which show that in an alternative algebra the associator is an antisymmetric function of its
arguments. Also, these identities can be written as

(2.1) .x ı z/y � x.zy/ � z.xy/ D 0; .xy/z C .xz/y � x.y ı z/ D 0;

where a ı b D ab C ba.
Throughout the article we will make use of some identities that are valid in any altern-

ative algebra and will be mentioned at the time be required.

2.1. Alternative bimodules

Let A be an alternative algebra over F and let V be a bimodule over A, this is, V is a
vector space over F equipped with the applications A˝ V �! V , a ˝ v 7�! av, and
V ˝A �! V , v ˝ a 7�! va, for a 2 A, v 2 V . Define on the vector space E D A˚ V

a binary operation � W E �E �! E by

.aC v/ � .b C w/ D ab C .av C wb/;

where a; b 2 A, v; w 2 V . Then E with the operation (product) � becomes an algebra,
the split null extension of A by bimodule V , where A is a subalgebra and V is an ideal
such that V 2 D 0. Now, V is called an alternative bimodule over A if E is an alternative
algebra with respect to �.

Due to identities (1.1), a bimodule V over A is an alternative bimodule if and only if
the following relationships are satisfied:

.a; a; v/ D 0;.a; v; b/C .v; a; b/ D 0;

.v; b; b/ D 0;.a; v; b/C .a; b; v/ D 0;

for all a; b 2 A, v 2 V .
Let A be a composition algebra (see [3,5,13,16]). Recall that A is a unital alternative

algebra, it has an involution a 7! a� such that the trace t .a/ D a C a� and the norm
n.a/ D aa� lie in F .

An alternative bimodule V over a composition algebra A is called a Cayley bimodule
if it satisfies the relation

(2.2) av D va�;

where a 2 A, v 2 V , and a! a� is the canonical involution in A.
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Typical examples of composition algebras are the algebras of (generalized) quater-
nions H and octonions O with symplectic involutions. Recall that O D H ˚ vH, with
the product defined by

(2.3) a � b D ab; a � vb D v.a�b/; vb � a D v.ab/; va � vb D .ba�/v2;

where a; b 2 H; 0 ¤ v2 2 F; a 7! a� is the symplectic involution in H.
The subspace vH�O is invariant under multiplication by elements of H, and it gives

an example of a Cayley bimodule over H. If H is a division algebra, then vH is irreducible,
otherwise H ŠM2.F / and

vH D hve22;�ve12i ˚ h�ve21; ve11i;

where the M2.F /-bimodules hve22; �ve12i and h�ve21; ve11i are both isomorphic to
the 2-dimensional Cayley bimodule Cay D F � m1 C F � m2, with the action of M2.F /

given by

(2.4) eij �mk D ıikmj ; m � a D a� �m;

where a 2 M2.F /; m 2 Cay; i; j; k 2 ¹1; 2º and a 7! a� is the symplectic involution
in M2.F /.

We will denote the Cayley bimodule vH for division H as Cay H, and the regular
(associative) H-bimodule by Reg .

3. Z2-grading A D Aa C Ac

The statement of the next result follows from Lemma 11 in [15] and its proof.

Proposition 3.1 (Lemma 11 in [15]). Let A be a unitary alternative algebra over the
field F which contains a composition subalgebra C with the same identity element. Sup-
pose that a subspace V of A is C -invariant and satisfies (2.2). Then, the following iden-
tities are valid for any a; b 2 C , r 2 A, u; v 2 V :

.ab/v D b.av/; v.ab/ D .vb/a;(3.1)

a.ur/ D u.a�r/; .ru/a D .ra�/u;(3.2)

a.uv/ D u.va/; .uv/a D .au/v;(3.3)

.u; v; a/ D Œuv; a�:(3.4)

It is important to know the structure of unitary alternative H-bimodules. Their struc-
ture is given by the following result.

Proposition 3.2 (Lemma 12 in [15]). Every unitary alternative H-bimodule V is com-
pletely reducible and admits a decomposition V D Va ˚ Vc , where Va is an associative
H-bimodule and Vc is a Cayley bimodule over H; furthermore, the subbimodule Vc

coincides with the associator subspace .V;H;H/. Every irreducible component of the
subbimodule Va is isomorphic to the regular H-bimodule Reg , and every irreducible
component of the subbimodule Vc is isomorphic to Cay H if H is a division algebra,
and to Cay if H ŠM2.F /.
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Let A be an alternative algebra such that A contains H with the same identity element,
so we can consider A as a unitary alternative H-bimodule. Then, by Proposition 3.2, A is
completely reducible and admits the decomposition

A D Aa ˚Ac ;

where Aa is a unitary associative H-bimodule and Ac is a unitary Cayley H-bimodule.
DenoteZa D ¹u 2AajŒu;H�D 0º. Since Aa is isomorphic to a direct sum of bimod-

ules Reg , we have Aa D ˚i Reg i , Reg i Š Reg for all i . This implies that Aa contains
a set of elements ¹uiº (the images of 1 under the isomorphisms with Reg) such that
Regi D ui H with ui 2 Za, and each element of Aa can be written in only one way
in the form

P
uiai , ai 2 H. Now, of course, Za ¤ 0 and Aa D ZaH.

Also, by Proposition 3.2, the bimodule Ac coincides with .A;H;H/ and is completely
reducible; this is, Ac D j̊

eCayj , where eCay is equal to Cay H or to Cay. Therefore,

A D .˚i Regi /˚ . j̊
eCayj /:

The statements and demonstrations of Lemmas 3.3 and 3.4 are similar to Lemmas 3:1
and 3:2 of [7] given there for superbimodules over the superalgebra B.4; 2/ D HC Cay.

Lemma 3.3. Let A D Aa ˚ Ac be the decomposition of A from above. Then for any
m; n 2 Ac , a 2 H,

(3.5) .mn/a D .am/n; a.mn/ D m.na/;

and for any u 2 Aa, m 2 Ac , a; b 2 H,

.um/a D .ua�/m(3.6)
a.mu/ D m.a�u/;(3.7)

..um/a/b D .um/.ba/;(3.8)
b.a.mu// D .ab/.mu/;(3.9)
.um; a; b/ D .um/Œb; a�;(3.10)
.b; a;mu/ D Œb; a�.mu/:(3.11)

Proof. First, observe that (3.5) follows from (3.1), and that (3.6), (3.7) follow from (3.2).
Now let u 2 Aa, m 2 Ac , a; b 2 H. Then by (3.6),

.um/a:b D .ua�:m/b D .ua�:b�/m D .u:.ba/�/m D .um/.ba/;

which proves (3.8). Similarly, by (3.7), we get (3.9). Finally, by (3.8) and (3.9) we have

.um; a; b/ D ..um/a/b � .um/.ab/ D .um/.ba/ � .um/.ab/ D .um/Œb; a�;

.b; a;mu/ D .ba/.mu/ � b.a.mu// D .ba/.mu/ � .ab/.mu/ D Œb; a�.mu/;

which proves (3.10) and (3.11).

Lemma 3.4. The products AaAa, AaAc , AcAa and AcAc are H-invariant subspaces.
Moreover, AaAc CAcAa � Ac and AcAc � Aa.
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Proof. Since Aa and Ac are H-invariant, in order to prove the first part of the lemma
it suffices to show that the product of any H-invariant subspaces U and W is again H-
invariant.

We have, by the linearized identity of the right alternativity (2.1),

.UW /H � U.W ıH/C .UH/W � UW;

and similarly H.UW / � UW:
Now, let us demonstrate that AaAc CAcAa � Ac . Recall that by Proposition 3.2,

Ac D .A;H;H/. Choose a; b 2 H such that 0 ¤ Œa; b�2 2 F ; then by (3.11),

AcAa D Œa; b�
2.AcAa/ � Œa; b�.AcAa/ D .a; b;AcAa/ � .H;H;A/ D Ac ;

and similarly AaAc � Ac . Finally, for any m; n 2 Ac and a 2 H, we have by (3.5)
and (3.1),

..mn/a/b D ..am/n/b D .b.am//n D ..ab/m/n D .mn/.ab/;

which proves AcAc � Aa:

Lemma 3.5. Aa is an associative subalgebra of A.

Proof. Recall the following identities, valid in every alternative algebra (see [15, 16]):

.xy/.zx/ D x.yz/x;(3.12)
Œx; yz� D Œx; y�z C yŒx; z� � 3.x; y; z/;(3.13)

.xy; z; t/ D x.y; z; t/C .x; z; t/y � .x; y; Œz; t �/;(3.14)
2Œ.x; y; z/; t � D .Œx; y�; z; t/C .Œy; z�; x; t/C .Œz; x�; y; t/;(3.15)
Œx; y�.x; y; z/ D .x; y; .x; y; z// D �.x; y; z/Œx; y�;(3.16)
..z; w; t/; x; y/ D ..z; x; y/; w; t/C .z; .w; x; y/; t/(3.17)

C .z; w; .t; x; y// � Œw; .z; t; Œx; y�/�C .Œz; t �; w; Œx; y�/:

Let us fix arbitrary elements u; v;w 2 Za and a; b; c 2 H. Then by (3.15),

.Œa; b�; u; v/ D 2Œ.a; b; u/; v� � .Œb; u�; a; v/ � .Œu; a�; b; v/ D 0:

So by (3.14),

.uv; a; b/ D u.v; a; b/C .u; a; b/v � .u; v; Œa; b�/ D �.Œa; b�; u; v/ D 0;

which implies .ZaZa;H;H/D 0. By linearization of (3.16), choosing a; b 2H such that
Œa; b�2 D ˛ 2 F , ˛ ¤ 0, we have for any x 2 Aa,

Œa; b�.u; x; c/ D �Œu; b�.a; x; c/ � Œa; x�.u; b; c/ � Œu; x�.a; b; c/C .a; b; .u; x; c//

C .u; b; .a; x; c//C .a; x; .u; b; c//C .u; x; .a; b; c//

D .a; b; .u; x; c//

.3.17/
D ..u; a; b/; x; c/C .u; .x; a; b/; c/C .u; x; .c; a; b//

� Œx; .u; c; Œa; b�/�C .Œu; c�; x; Œa; b�/ D 0:
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So ˛.u; x; c/ D Œa; b�2.u; x; c/ D Œa; b�.Œa; b�.u; x; c// D 0, thus .u; x; c/ D 0, which
implies .Za;Aa;H/ D 0. In particular, .Za; Za;H/ D 0. Then, by (3.13),

Œa; uv� D Œa; u�v C uŒa; v� � 3.a; u; v/ D 0;

and so ŒH; ZaZa� D 0. Therefore ZaZa � Za.
By linearization of (3.16), we have

Œa; b�.u; v; w/ D �Œa; v�.u; b; w/ � Œu; b�.a; v; w/ � Œu; v�.a; b; w/C .a; b; .u; v; w//

C .a; v; .u; b; w//C .u; b; .a; v; w//C .u; v; .a; b; w// D 0:

Choose again a; b 2 H such that Œa; b�2 D ˛ 2 F , ˛ ¤ 0. Then

˛.u; v; w/ D Œa; b�2.u; v; w/ D Œa; b�.Œa; b�.u; v; w// D 0;

and so .u; v; w/ D 0. Thus Za is an associative algebra.
Consequently, by linearization of the central Moufang identity (3.12) and using the

fact that Aa is an associative H-bimodule, we have

.ua/.vb/ D �.ba/.vu/C .u.av//b C .b.av//u D �.ba/.vu/C .u.va//b C ..ba/v/u

D �.ba/.vu/C ..uv/a/b C .ba/.vu/ D .uv/.ab/:

Therefore AaAa � Aa, that is, Aa is a subalgebra of A.
Recalling that .Za;Aa;H/ D 0, then for all x; y 2 Aa we have

.ua; x; y/
.3.14/
D u.a; x; y/C .u; x; y/a � .u; a; Œx; y�/ D u.a; x; y/C .u; x; y/a:

Thus, using the last equality several times and the fact that Za is associative, we have

.ua; vb;wc/ D u.a; vb;wc/C .u; vb;wc/a

D �u.v.b; a; wc/C .v; a; wc/b/ � .v.b; u;wc/C .v; u;wc/b/a

D �..w.c; v; u/C .w; v; u/c/b/a D 0:

Therefore, Aa is an associative subalgebra of A.

It follows immediately from Lemmas 3.4 and 3.5 the following result.

Corollary 3.6. ADAa ˚Ac is a Z2-graded algebra, where Aa is the even part and Ac

is the odd part of the Z2-grading of A.

In what follows we will use in a permanent way the fact that A is a Z2-graded altern-
ative algebra. Thus, we have .Ac ;H;Ac/ � .Ac ;Aa;Ac/ � Aa, and ŒZa;Ac � � Ac .

Lemma 3.7. ŒZa;Ac � D .Za;A;A/ D 0.

Proof. Let us fix arbitrary elements u; v;w 2 Za,m;n 2Ac and a; b; c 2H. In the proof
of the previous lemma we have shown that .Za;Aa;H/ D 0. So, let us generalize the
previous equality and show first

(3.18) .Za;A;H/ D 0:
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By the fact that Ac is a Cayley H-bimodule, we have

.a; u;m/ D .au/m � a.um/ D .au/m � .um/a� D .au/m � .ua/m D Œa; u�m D 0;

which proves .H; Za;Ac/ D 0. Thus,

.Za;A;H/ � .Za;Aa;H/C .Za;Ac ;H/ D 0;

which proves (3.18).
In addition, consider the identity

(3.19) .Œx; y�; y; z/ D Œy; .x; y; z/�

which is valid in every alternative algebra. Using its linearization, we obtain

.Œu;m�; a; b/ D �.Œu; a�;m; b/C Œm; .u; a; b/�C Œa; .u;m; b/� D 0:

Thus .ŒZa;Ac �;H;H/ D 0, that is, ŒZa;Ac � � Aa. Therefore,

ŒZa;Ac � � Aa \Ac D 0;

which implies ŒZa;Ac � D 0.
By linearization of (3.16), by (3.17), choosing a;b 2H such that 0¤ Œa; b�2 D ˛ 2 F ,

we have

Œa; b�.u;m; n/ D �Œu; b�.a;m; n/ � Œa;m�.u; b; n/ � Œu;m�.a; b; n/C .a; b; .u;m; n//

C .u; b; .a;m; n//C .a;m; .u; b; n//C .u;m; .a; b; n//

D .u;m; .a; b; n//

D ..u;m; a/; b; n/ � ..u; b; n/;m; a/ � .u; .m; b; n/; a/

C Œm; .u; a; Œb; n�/� � .Œu; a�;m; Œb; n�/ D 0;

hence ˛.u;m;n/D Œa; b�2.u;m;n/D Œa; b�.Œa; b�.u;m;n//D 0 and .u;m;n/D 0; there-
fore, .Za;Ac ;Ac/ D 0. Also

Œa; b�.u; n; v/ D �Œu; b�.a; n; v/ � Œa; n�.u; b; v/ � Œu; n�.a; b; v/C .a; b; .u; n; v//

C .u; b; .a; n; v//C .a; n; .u; b; v//C .u; n; .a; b; v//

D .a; b; .u; n; v// D ..u; n; v/; a; b/

(3.17)
D �.u; .a; n; v/; b/ � .u; a; .b; n; v//C ..u; a; b/; n; v/

C Œa; .u; b; Œn; v�/� � .Œu; b�; a; Œn; v�/ D 0;

so ˛.u; n; v/ D Œa; b�2.u; n; v/ D Œa; b�.Œa; b�.u; n; v// D 0 and .u; n; v/ D 0; thus,
.Za;Ac ; Za/ D 0. Then by (3.14) and (3.18),

.ua; v;m/ D u.a; v;m/C .u; v;m/a � .u; a; Œv;m�/ D 0I

so .ZaH; Za;Ac/ D 0. Therefore .Aa; Za;Ac/ D 0, and we have

.Za;A;A/ � .Za;Aa;Aa/C .Za;Ac ;Aa/C .Za;Ac ;Ac/ D 0;

so Za � N.A/.
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Corollary 3.8. Aa D Za ˝F H.

Proof. As Aa D
P
˚ui H, every element of Aa can be written uniquely in the formP

uiai , with ai 2H. We know that Aa is associative. On the other hand, let x D
P
uiai

2 Za; then ax D xa for all a 2 H by ŒZa;H� D 0. Therefore, we haveX
uiaai D

X
uiaiaI

so, aai D aia. But as H is central, we have ai D ˛i1, ˛i 2 F . Then Za D
P
Fui and

Aa D Za ˝F H.

Lemma 3.9. ŒZa; Za�Ac D Ac ŒZa; Za� D 0:

Proof. In the proof of Lemma 3.7 we have obtained ŒZa;Ac � D 0. Thus, by (3.13) and
again by Lemma 3.7,

ŒZa; Za�Ac � ŒZa; ZaAc � �ZaŒZa;Ac �C 3.Za; Za;Ac/ D 0;

and similarly Ac ŒZa; Za� D 0:

Remark 3.10. Note that in general Za is not commutative. For example, if A DMn.H/,
then Za Š Mn.F /. If A is prime and nonassociative, then by the Corollary to The-
orem 8.11 in [16], N.A/ D Z.A/, hence Za � Z.A/ is commutative. In fact, in this
case A is a Cayley–Dickson ring (see [16]).

4. Multiplication in Ac

In the previous section we described, in particular, the structure of the associative part Aa.
This section is devoted to description of the multiplication in the Cayley part Ac . Here and
below we will assume that the quaternion algebra H is split, that is, H ŠM2.F /.

We have already mentioned that the Cayley H-bimodule Ac is completely reducible
and is a direct sum of bimodules isomorphic to the Cayley bimodule CayDF �m1CF �m2

from (2.4). Denote by V.1/ and V.2/ the subspaces of Ac spanned by the elements of
type m1 and m2, respectively; then the mappings

�12 W V.1/! V.2/; v 7! e12 � v;

�21 W V.2/! V.1/; v 7! e21 � v

are mutually inverse and establish isomorphisms between V.1/ and V.2/. Clearly, Ac D

V.1/˚ V.2/. Let V D V.1/. For any v 2 V , we denote v.1/ D v; v.2/ D �12.v/. Then
Cay.v/ D F � v.1/C F � v.2/ Š Cay.

Proposition 4.1. For any u; v 2 V we have

Cay.u/ � Cay.v/ D hu; viH;

where h; iWV � V ! Z.A/ is a skew-symmetric bilinear mapping. In particular, Cay.v/2

D 0 for any v 2 V .
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Proof. We have, by the identities of right and left alternativity,

.u.1/v.1//e11 D� .u.1/e11/v.1/C u.1/.v.1/ ı e11/ D u.1/v.1/;

e11.u.1/v.1// D� u.1/.e11v.1//C .e11 ı u.1//v.1/ D �u.1/v.1/C u.1/v.1/ D 0;

which shows that u.1/v.1/2e22Aae11DZae21, hence u.1/v.1/D ze21 for some z2Za.
Furthermore, we have

ze22D .ze21/e12D .u.1/v.1//e12D � .u.1/e12/v.1/Cu.1/.v.1/ ı e12/Du.2/v.1/;

ze11D e12.ze21/D e12.u.1/v.1//D � u.1/.e12v.1//C.e12 ı u.1//v.1/D � u.1/v.2/;

ze12D e12.ze22/D e12.u.2/v.1//D � u.2/.e12v.1//C.e12 ı u.2//v.1/D � u.2/v.2/;

which proves that Cay.u/ � Cay.v/ D zH.
Since z 2Za, we have Œz;H�D Œz;Ac �D 0. Hence in order to prove that z 2Z.A/, it

remains to show that Œz; Za� D 0. Note that zDz.e11Ce22/Du.2/v.1/�u.1/v.2/2A2
c .

Therefore,

Œz; Za� � ŒA
2
c ; Za� � Ac ŒAc ; Za�C ŒAc ; Za�Ac C 3.Ac ;Ac ; Za/ D 0:

Finally, denote z D z.u; v/ and consider

e11.u.1/ ı v.1// D .e11u.1//v.1/C .e11v.1//u.1/ D u.1/ ı v.1/:

On the other hand, e11.u.1/ ı v.1// D e11..z.u; v/ C z.v; u//e21/ D 0: Hence u.1/ ı
v.1/ D 0 and z.u; v/ D �z.v; u/. Denote hu; vi D z.u; v/; then we have, as above,

(4.1) hu; vi D z.u; v/ D u.2/v.1/ � u.1/v.2/;

which proves that hu; vi is a bilinear function of u; v.

Lemma 4.2. For any u; v;w; t 2 V the following identities hold :

hu; viw C hv;wiuC hw; uiv D 0;(4.2)
hu; vihw; ti C hv;wihu; ti C hw; uihv; ti D 0:(4.3)

Proof. Recall that in the proof of Proposition 4.1 we obtained the equalities

u.1/v.1/ D hu; vi e21;(4.4)
u.1/v.2/ D �hu; vi e11;(4.5)
u.2/v.1/ D hu; vi e22;(4.6)
u.2/v.2/ D �hu; vi e12:(4.7)

Therefore, using the fact that hu; vi 2 Z.A/, by the linearized right alternative identity we
have

0 D .u.1/; v.1/; w.2//C .u.1/; w.2/; v.1//

D hu; vie21w.2/C u.1/hv;wie11 � hu;wie11v.1/ � u.1/hw; vie22

D hu; viw C 0 � hu;wiv � hw; viu D hu; viw C hw; uiv C hv;wiu;

which proves (4.2). Multiplying (4.2) by the element t 2 V , we get (4.3).
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Corollary 4.3. Let ¹vi j i 2 I º be a basis of the space V and let uij D hvi ; vj i 2 Z.A/.
Then the elements uij satisfy the Plücker relations

(4.8) uij D �uj i ; uijukl C uikulj C uilujk D 0:

An example of a family of elements uij D �uj i satisfying relations (4.8) may be
obtained by taking in an associative commutative algebra K elements a1; : : : ; an and
setting uij D ai � aj .

Another example is the coordinate algebra of the GrassmanianG2;n (see, for example,
p. 42 in [14]).

Lemma 4.4. Consider the algebra of polynomials F Œx1; : : : ; xnI y1; : : : ; yn�, and let
˛ij D det

� xi yi
xj yj

�
2 F Œx1; : : : ; xnI y1; : : : ; yn�. Then the elements ˛ij D � j̨ i satisfy

relations (4.8). Moreover, the algebra F Œ˛ij j 1 � i < j � n� is a free algebra modulo
relations (4.8).

Proof. Firstly, one can easily check that the elements ˛ij satisfy relations (4.8). Further-
more, it follows from the relation

˛12˛ij C ˛1i j̨ 2 C ˛1j ˛2i D 0

that ˛ij for i;j>2 lies in the algebraF Œ˛1i ;˛1j ;˛2i ;˛2j ;˛
�1
12 ��F.x1; : : : ;xnIy1; : : : ;yn/.

Therefore,

(4.9) F Œ˛ij j 1 < i � n; 2 < j � n� � F Œ˛12; : : : ; ˛1nI˛23; : : : ; ˛2n; ˛
�1
12 �:

Observe that y2 D
1

x1
˛12 C

x2y1

x1
, hence F.x1; x2; y1; y2/ D F.x1; x2; y1; ˛12/.

Similarly, resolving with respect to xn; yn the system

˛1n D x1yn � y1xn;

˛2n D x2yn � y2xn;

we get
xn D

x2˛1n � x1˛2n

˛12

and yn D
y2˛1n � y1˛2n

˛12

I

hence

xn; yn 2 F.˛1n; ˛2n; x1; x2; y1; y2/ D F.˛1n; ˛2n; x1; x2; y1; ˛12/:

Therefore,

F.x1; : : : ; xn; y1; : : : ; yn/ D F.x1; x2; y1; ˛12; : : : ; ˛1n; ˛23; : : : ; ˛2n/;

and tr.degF.x1; x2; y1; ˛12; : : : ; ˛1n; ˛23; : : : ; ˛2n/ D 2n, which means that the elements
˛12; : : : ; ˛1n; ˛23; : : : ; ˛2n are algebraically independent.

Now, let F Œuij � be a free algebra modulo relations (4.8). Consider the epimorphism
� WF Œuij ��!F Œ˛ij �; uij 7�!˛ij . We will prove that ker� D 0. Let f .u12; : : : ;u.n�1/n/2

ker� , that is, f .˛12; : : : ; ˛.n�1/n/D 0. Inclusions (4.9) follow from relations (4.8), hence
they are valid in the algebra F Œuij � as well. Therefore, there exists k such that

uk
12f .u12; : : : ; u.n�1/n/ D g.u12; : : : ; u2n/
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for some g.u12; : : : ; u2n/ 2 F Œu12; : : : ; u2n�. Clearly, g.˛12; : : : ; ˛2n/ D 0. Since the
elements ˛12; : : : ; ˛2n are algebraically independent, we have g D 0. But the algebra
F Œuij � is a domain (see, for example, Chapter 8 of [11]), therefore f D 0, proving the
lemma.

Recall that by Corollary 3.8, Aa ŠM2.Za/, hence A DM2.Za/˚ V.1/˚ V.2/.

Proposition 4.5. Let X;Y 2 A; X D Xa C x.1/C y.2/; Y D Ya C z.1/C t .2/, where
Xa D

�
a b
c d

�
; Ya D

�
e f
g h

�
; a; b; c; d; e; f; g; h 2 Za; x; y; z; t 2 V . Then the productXY

is given by

XY DXaYaC

�
�hx; ti �hy; ti

hx; zi hy; zi

�
C.azCctChx�gy/.1/C.bzCdt�f xCey/.2/:

Proof. The proof follows from identities (2.4), (4.4)–(4.7), and Lemma 3.7.

We can make the formula defining the product in A more transparent by using the
following notation: for u; v 2 V , we denote

.u; v/ D u.1/C v.2/:

With this notation, using usual matrix multiplication and the fact that ŒZa; Vc � D 0, we
have for X D Xa C .x; y/, Y D Ya C .z; t/,

(4.10) XY D XaYa C

�
�hx; ti �hy; ti

hx; zi hy; zi

�
C .z; t/Xa C .x; y/.Ya/

�;

where
�

a b
c d

��
D
�

d �b
�c a

�
.

In the next section we will prove that Proposition 4.5 in fact describes all unital altern-
ative extensions of the algebra M2.F /.

5. The main theorem

Let B be an associative unital algebra and let V be a left B-module such that ŒB;B�
annihilates V . Clearly, in this case V has a structure of a commutative B-bimodule with
v � bD b � v; v 2V; b 2B. Assume that there exists a B-bilinear skew-symmetric mapping
h; iWV � V ! B such that hV; V i � Z.B/ and formula (4.2) holds for any u; v;w 2 V .

Let A D M2.B/ ˚ V
2, where V 2 D ¹.u; v/ j u; v 2 V º Š V ˚ V . Let X; Y 2 A;

X D Xa C .x; y/; Y D Ya C .z; t/, where Xa; Ya 2 M2.B/ and .x; y/; .z; t/ 2 V 2.
Define a product in A by formula (4.10):

XY D XaYa C

�
�hx; ti �hy; ti

hx; zi hy; zi

�
C .z; t/Xa C .x; y/.Ya/

�:

Theorem 5.1. The algebra A with the product defined above is an alternative unital
algebra containing M2.F / with the same unit. Conversely, every unital alternative alge-
bra that contains the matrix algebra M2.F / with the same unit has this form.
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Proof. The second part of the theorem follows from Proposition 4.5 with B D Za. Let us
now prove that A is alternative.

Let us first prove that V 2 is a right alternative bimodule over M2.B/. Let A; B 2
M2.B/, .x;y/2V 2. One can easily check that .x;y/..AB/��B�A�/D 0 (since V ŒB;B�
D 0). Therefore,

..x; y/; A;A/ D ..x; y/A�/A� � .x; y/.A2/� D 0:

Furthermore,

.A; .x; y/; B/C.A;B; .x; y// D ..x; y/A/B��..x; y/B�/AC.x; y/.AB/�..x; y/B/A

D .x; y/.AB� � B�AC AB � BA/ D .x; y/ŒA;B C B�� D 0

since B C B� D tr.B/ commutes with A on V 2. Therefore, V 2 is a right alternative
bimodule over M2.B/. Now let A D

�
a b
c d

�
with a; b; c; d 2 B, and consider

.A; .x; y/; .x; y// D ..x; y/A/ � .x; y/ �

�
�hx; yi 0

0 hy; xi

�
A

D .xaC yc; xb C yd/ � .x; y/C hx; yiA

D

�
�hxaC yc; yi �hxb C yd; yi

hxaC yc; xi hxb C yd; xi

�
C hx; yiA

D

�
�hxa; yi �hxb; yi

hyc; xi hyd; xi

�
C hx; yiA D �hx; yiAC hx; yiA D 0:

Furthermore,

..x; y/; A; .u; v//C ..x; y/; .u; v/; A/

D ..x; y/A�/ � .u; v/ � .x; y/ � ..u; v/A/C ..x; y/ � .u; v//A � .x; y/ � ..u; v/A�/

D .xd � yc;�xb C ya/ � .u; v/ � .x; y/ � .uaC vc; ub C vd/

C

�
�hx; vi �hy; vi

hx; ui hy; ui

�
A � .x; y/ � .ud � vc;�ub C va/

D

�
�hxd � yc; vi �h�xb C ya; vi

hxd � yc; ui h�xb C ya; ui

�
�

�
�hx; ub C vd i �hy; ub C vd i

hx; uaC vci hy; uaC vci

�
C

�
�hx; via�hy; vic �hx; vib�hy; vid

hx; uiaChy; uic hx; uibChy; uid

�
�

�
�hx;�ubCvai �hy;�ubCvai

hx; ud�vci hy; ud�vci

�
D

�
X11 X12

X21 X22

�
:

We have

X11 D �hxd � yc; vi C hx; ub C vd i � hx; via � hy; vic C hx;�ub C vai

D �hx; vid C hy; vic C hx; uib C hx; vid � hx; via � hy; vic � hx; uibChx; via

D 0;
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and similarly,

X12 D �h�xb C ya; vi C hy; ub C vd i � hx; vib � hy; vid C hy;�ub C vai

D hx; vib � hy; viaC hy; uib C hy; vid � hx; vib � hy; vid � hy; uib C hy; via

D 0;

X21 D hxd � yc; ui � hx; uaC vci C hx; uiaC hy; uic � hx; ud � vci

D hx; uid � hy; uic � hx; uia � hx; vic C hx; uiaC hy; uic � hx; uid C hx; vic

D 0;

X22 D h�xb C ya; ui � hy; uaC vci C hx; uib C hy; uid � hy; ud � vci

D hx; uid � hy; uic � hx; uia � hx; vic C hx; uiaC hy; uic � hx; uid C hx; vic

D 0:

Finally,

..x; y/; .z; t/; .z; t// D

�
�hx; ti �hy; ti

hx; zi hy; zi

�
� .z; t/ � .x; y/ �

�
�hz; ti 0

0 ht; zi

�
D .z; t/

�
�hx; ti �hy; ti

hx; zi hy; zi

�
C hz; ti.x; y/

D .�hx; tiz C hx; zit C hz; tix;�hy; tiz C hy; zit C hz; tiy/

D .ht; xizChx; zitChz; tix; ht; yizChy; zitChz; tiy/
(4.2)
D .0; 0/:

Therefore, A is right alternative. Similarly, one can prove that A is left alternative.

6. Examples

6.1. Algebra of octonions

Let B be a unital associative commutative algebra and let ADO.B/ be the split octonion
algebra over B. In this case, ADM2.B/˚ vM2.B/ with v2 D 1; Aa DM2.B/; Ac D

vM2.B/, Za D Z.A/ D B.
Take V D B2 D ¹.a; b/ ja; b 2 Bº, .a; b/.1/ D v

�
0 0
�b a

�
, .a; b/.2/ D v

�
b �a
0 0

�
: Then

we have A DM2.B/˚ V.1/˚ V.2/, with h.a; b/; .c; d/i D � det
�

a b
c d

�
.

In fact, by (4.1),

h.a; b/; .c; d/i D .a; b/.2/ � .c; d/.1/ � .a; b/.1/ � .c; d/.2/

D v

�
b �a

0 0

�
� v

�
0 0

�d c

�
� v

�
0 0

�b a

�
� v

�
d �c

0 0

�
D

�
0 0

�d c

�
�

�
0 a

0 b

�
�

�
d �c

0 0

�
�

�
a 0

b 0

�
D � det

�
a b

c d

�
:
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Now for any u D .a; b/; v D .c; d/; w D .e; f / 2 V we have

hu; viw C hv;wiuC hw; uiv

D � det
�
a b

c d

�
.e; f / � det

�
c d

e f

�
.a; b/ � det

�
e f

a b

�
.c; d/

D �.ad � bc/.e; f / � .cf � de/.a; b/ � .eb � fa/.c; d/ D .0; 0/;

hence O.B/ satisfies (4.2).
The following proposition gives conditions under which the algebra A from The-

orem 5.1 is isomorphic to the octonion algebra O.B/.

Proposition 6.1. The unital algebra A DM2.B/˚ V
2 from Theorem 5.1 is isomorphic

to the octonion algebra O.B/ if and only if there exist x; y 2 V such that hx; yi D 1.

Proof. We have already checked that the algebra O.B/ has the form M2.B/ ˚ V
2. It

suffices to note that hx; yi D 1 for x D .1; 0/; y D .0;�1/ 2 V .
Let now ADM2.B/˚ V

2 be such that there exist x;y 2 V with hx;yi D 1:Observe
first that for any u; v 2 V; a; b 2 B the following equality holds:

(6.1) Œa; b�hu; vi D 0:

In fact, we have

abhu; vi D ahbu; vi D hbu; avi D bhu; avi D bahu; vi:

For any a;b 2B we now have 0D Œa;b�hx;yiD Œa;b�; hence B is commutative. Consider
C D M2.F / C Cay.x/ C Cay.y/. It follows from Proposition 4.1 and its proof that C

is a subalgebra of A isomorphic to the split octonion algebra O.F /. Therefore, by the
Kaplansky–Jacobson theorem, A Š O.A/ for some commutative associative algebra A.
It follows from (4.2) that V D B � Cay.x/CB � Cay.y/ and A D B.

6.2. Algebras obtained by (commutative) Cayley–Dickson process

Note that if the mapping h; iWV 2 ! Z.B/ is trivial, then the algebra A is just a split null
extension of the algebra M2.B/ by a bimodule V 2. In this case, V may be an arbitrary
associative B-module (annihilated by ŒB;B� if B is not commutative). For instance, when
B D F and V D F we get in this way the algebra A DM2.F /˚ Cay.

If the mapping h; iW V 2 ! Z.B/ is not trivial, then by (4.2) the rank of V as a
B-module is less than 3. Observe that the left side of (4.2) is B-multilinear and skew-
symmetric on u; v; w. Therefore, it holds when ƒ3.VB/ D 0. In particular it holds if the
rank of V is less or equal to 2. If V � B � x then the mapping h; i is trivial by skew-
symmetry. Let us consider now the case when V is a 2-generated B-module.

Let A be an associative commutative algebra and ˛ 2 A. Denote by CD.M2.A/; ˛/

the algebra M2.A/˚ vM2.A/ with a product defined by the following analogue of (2.3):

(6.2) a � b D ab; a � vb D v.a�b/; vb � a D v.ab/; va � vb D ˛.ba�/;

where a; b 2M2.A/; a 7! a� is the symplectic involution in M2.A/.
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The algebra CD.M2.A/; ˛/ is an alternative algebra containing M2.A/ with the same
unit. We will call it the algebra obtained from M2.A/ by the Cayley–Dickson process
with parameter ˛. The algebra CD.M2.A/; ˛/ is an octonion algebra if and only if the
parameter ˛ is invertible in A.

Theorem 6.2. Let B be a unital commutative algebra, let V D B2, and let h; iWV 2 ! B

be a skew-symmetric B-bilinear mapping. Then the algebra A D M2.B/ ˚ V
2 is iso-

morphic to an algebra CD.M2.B/; ˛/, where ˛ D �h.1; 0/; .0; 1/i. Conversely, every
algebra CD.M2.A/; ˛/ has this form.

Proof. Let AD CD.M2.A/;˛/. Take V D A2 D ¹.a; b/ ja; b 2 Aº, .a; b/.1/D v
�

0 0
�b a

�
,

and .a;b/.2/D v
�

b �a
0 0

�
2 vM2.A/. Then we have, as before, A DM2.A/˚V.1/˚V.2/,

with h.a; b/; .c; d/i D �˛ det
�

a b
c d

�
. In particular, h.1; 0/; .0; 1/i D �˛.

Conversely, let A DM2.B/˚ V
2, where V Š B2 and h.1; 0/; .0; 1/i D �˛. Define

the mapping 'W V 2 D V.1/ ˚ V.2/! vM2.B/ � CD.M2.B/; ˛/ by sending, for any
a; b 2 B,

.a; b/.1/ 7! v

�
0 0

�b a

�
; .a; b/.2/ 7! v

�
b �a

0 0

�
:

It is easy to see that ' is an isomorphism of alternative M2.B/-bimodules. Furthermore,
let x D .a; b/; y D .c; d/ 2 V D B2, then we have

hx; yi D h.a; b/; .c; d/i D ha.1; 0/C b.0; 1/; c.1; 0/C d.0; 1/i

D .ad � bc/h.1; 0/; .0; 1/i D �˛.ad � bc/:

Let z D .e; f /; t D .g; h/ 2 V ; then we have by (4.10),

.x; y/.z; t/ D

�
�hx; ti �hy; ti

hx; zi hy; zi

�
D �˛

�
�ahC bg �chC dg

af � be cf � de

�
:

On the other hand,

'.x; y/ � '.z; t/ D v

�
d �c

�b a

�
� v

�
h �g

�f e

�
D ˛

�
h �g

�f e

�
�

�
a c

b d

�
D ˛

�
ah � bg ch � dg

�af C be �cf C ed

�
:

Therefore, the mapping

idC ' W A DM2.B/˚ V
2
! CD.M2.B/; ˛/ DM2.B/˚ vM2.B/

is an isomorphism.

6.3. Algebras obtained by noncommutative Cayley–Dickson process

Let us now generalize the Cayley–Dickson process for non-commutative coefficient algeb-
ras. Let A be a unital associative algebra, not necessarily commutative, and let ˛ 2 A
be such that ˛A � Z.A/. Denote NCD.M2.A/; ˛/ D M2.A/ ˚ vM2. NA/, where NA D
A=ŒA;A�A, and define a product in it by setting

(6.3) a � b D ab; a � v Nb D v. Na� Nb/; v Nb � a D v. Na Nb/; v Na � v Nb D ˛.b1a
�
1/;
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where a; b 2 M2.A/; Na; Nb are their images in M2. NA/, Na 7! Na� is the symplectic invol-
ution in M2. NA/, and a�1 ; b1 2 M2.A/ are some pre-images of Na�; Nb under the canonical
epimorphismM2.A/!M2. NA/. Observe that the last product in (6.3) is defined correctly
since ˛ŒA;A� D 0.

Proposition 6.3. The algebra NCD.M2.A/; ˛/ is a unital alternative algebra that con-
tains M2.A/ with the same unit.

Proof. Denote I D ŒA;A�A. ThenM2.I / is an ideal of NCD.M2.A/;˛/which annihilates
vM2. NA/ and is annihilated by ˛; moreover, NCD.M2.A/;˛/=I Š CD.M2. NA/;˛/. There-
fore, the M2.A/-bimodule vM2. NA/ is in fact an M2. NA/-bimodule, and since the algebra
CD.M2. NA/; ˛/ is alternative, vM2. NA/ is an alternative M2.A/-bimodule. In this way, it
suffices to check the alternativity identities only when we have at least two arguments
belonging to vM2. NA/.

For any a; b 2M2.A/, we have

.a; v Nb; v Nb/ D .v. Na� Nb// � v Nb � a.˛bb�1 / D ˛ b.b
�
1a/ � ˛ a.bb

�
1 /;

where b�1 D Nb
�. Consider

b.b�1a/ � a.bb
�
1 / D

Nb. Nb� Na/ � Na. Nb Nb�/ D .det Nb/ Na � Na.det Nb/ D N0:

Thus b.b�1a/ � a.bb
�
1 / 2M2.I / and ˛.b.b�1a/ � a.bb

�
1 // D 0.

Furthermore,

.v Na; v Nb; v Nb/ D .˛ba�1/ � v
Nb � v Na � .˛bb�1 / D ˛v.. Na

Nb�/ Nb � . Nb Nb�/ Na/ D 0:

Finally, consider, for c 2M2.A/,

.v Na; v Nb; c/C .v Na; c; v Nb/ D ˛ ba�1 � c � v Na � v. Nc
Nb/C v. Nc Na/ � v Nb � v Na � v. Nc� Nb/

D ˛ .ba�1 � c � cb � a
�
1 C b � a

�
1c
�
1 � c

�
1b � a

�
1/:

We have

ba�1 � c � cb � a
�
1 C b � a

�
1c
�
1 � c

�
1b � a

�
1 D
Nb Na� � Nc � Nc Nb � Na� C Nb � Na� Nc� � Nc� Nb � Na�

D Nb Na� t . Nc/ � t . Nc/ Nb Na� D N0:

Hence ba�1 � c � cb � a
�
1 C b � a

�
1c
�
1 � c

�
1b � a

�
1 2 M2.I / and ˛ .ba�1 � c � cb � a

�
1 C b �

a�1c
�
1 � c

�
1b � a

�
1/ D 0.

We have proved that the algebra NCD.M2.A/; ˛/ is right alternative. Similarly, one
can check that it is left alternative.

Now we can generalize Theorem 6.2 to the case when B is not commutative.

Theorem 6.4. Let B be a unital associative algebra, B D B=ŒB;B�B, V D B
2

and let
h;iWV 2!B be a skew-symmetric B-bilinear mapping. Then the algebra ADM2.B/˚V

2

is isomorphic to the algebra NCD.M2.B/; ˛/, where ˛ D �h.1; 0/; .0; 1/i. Conversely,
every algebra NCD.M2.A/; ˛/ has this form.
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Proof. Let first A D NCD.M2.A/; ˛/. Denote NA D A=ŒA; A�A and take V D NA2 D

¹. Na; Nb/ ja;b 2Aº; . Na; Nb/.1/D v
�

0 0

� Nb Na

�
, . Na; Nb/.2/D v

�
Nb �Na
0 0

�
2 vM2. NA/; then we have, as

before, A DM2.A/˚ V.1/˚ V.2/, with h. Na; Nb/; . Nc; Nd/i D �˛.ad � bc/. In particular,
h.N1; N0/; .N0; N1/i D �˛.

Conversely, let ADM2.B/˚V
2, where VŠB

2
, BDB=ŒB;B�B and h.N1; N0/; .N0; N1/i

D �˛. Define the mapping 'W V 2 D V.1/ ˚ V.2/ ! vM2.B/ � NCD.M2.B/; ˛/ by
sending, for any a; b 2 B,

. Na; Nb/.1/ 7! v

�
0 0

�Nb Na

�
; . Na; Nb/.2/ 7! v

�
Nb �Na

0 0

�
:

Then, as in the proof of Theorem 6.2, one can easily see that the mapping

idC ' W A DM2.B/˚ V
2
! NCD.M2.B/; ˛/ DM2.B/˚ vM2.B/

is an isomorphism.

Algebras of type CD.M2.A/; ˛/ can be constructed for any commutative algebra A
and any ˛ 2 A. For algebras of type NCD.M2.A/; ˛/, one have to check the condition
Œ˛A;A�D 0. For instance, one can takeAD F hx;y jyŒx;y�D Œx;y�y D 0i, with ˛D y2:

6.4. The case when V is not 2-generated

In all the examples considered above, the B-module V was 2-generated. Here we will
give an example where V is 3-generated.

Let B be a commutative unital algebra, let a; b; c 2 B, and let V D B3=I , where
I D B � .a; b; c/. Denote e1 D .1; 0; 0/C I , e2 D .0; 1; 0/C I and e3 D .0; 0; 1/C I .
Then we have V D B � e1 CB � e2 CB � e3, where a � e1 C b � e2 C c � e3 D 0. Define a
B-bilinear skew-symmetric mapping h; iWV � V ! B by setting

he1; e2i D c; he2; e3i D a; he3; e1i D b:

One can easily check that the mapping h; i is defined correctly. Moreover, we have

he1; e2ie3 C he2; e3ie1 C he3; e1ie2 D c � e3 C a � e1 C b � e2 D 0;

that is, identity (4.2) is true for uD e1; vD e2;wD e3. Since the left side of (4.2) is skew-
symmetric and multilinear on u; v; w, it follows that (4.2) is valid in V . By Theorem 5.1,
the algebra ADM2.B/˚ V

2 is a unital alternative algebra containingM2.B/ as a unital
subalgebra.

Observe that taking here a D b D 0, we get the algebra CD.B; c/ from Theorem 6.2.
Moreover, following the scheme from the previous section, this construction can be

extended for noncommutative algebras B. One has only to choose the elements a;b;c 2B

such that aB C bB C cB � Z.B/.
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7. Open questions

(1) The first natural question which we leave open is the case when the algebra H is
not split, that is, when H is a division algebra. This case is more complicated since while
Cayi � Cayj D ˛ij H, the product Reg i H � Regj H D

P4
kD1 ˛

k
ij H for some ˛k

ij 2 Z.A/,
and instead of Plücker relations (4.8), the elements ˛k

ij satisfy more complicated system
of relations. We plan to consider this case in a forthcoming paper.

(2) An interesting question is to study the alternative algebras that contain H (or
H-algebras) from a categorical point of view. Clearly, the class of H-algebras form a
category, with morphisms being the homomorphisms acting identically on H. Given an
H-bimodule V , the free H-algebra over V or tensor algebra HŒV � of the bimodule V plays
a role of a free object in this category. When V D Va is associative, V D ˚m

iD1Reg i H
and the algebra HŒV � is associative and is isomorphic to H ˝ F hx1; : : : ; xmi, where
F hx1; : : : ; xmi is the free associative algebra on m generators.

When V D Vc is a Cayley H-bimodule, V D ˚m
iD1Cayi , the situation is not so clear

even in the split case. For m D 1, HŒV � D H˚ Cay with Cay2
D 0 is just a well-known

6-dimensional subalgebra of a split Cayley–Dickson algebra; for n D 2, we have HŒV � Š
CD.M2.F Œ˛12�/; ˛12/, but for n � 3, the structure of the algebra HŒV � is not known.

The situation is even more complicated for the mixed case, when V D Va ˚ Vc with
Va; Vc ¤ 0, again except some trivial cases.
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