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Cones, rectifiability, and singular integral operators

Damian Dąbrowski

Abstract. Let � be a Radon measure on Rd . We define and study conical energies
E�;p.x;V; ˛/, which quantify the portion of � lying in the cone with vertex x 2 Rd ,
direction V 2 G.d; d � n/, and aperture ˛ 2 .0; 1/. We use these energies to char-
acterize rectifiability and the big pieces of Lipschitz graphs property. Furthermore, if
we assume that � has polynomial growth, we give a sufficient condition for L2.�/-
boundedness of singular integral operators with smooth odd kernels of convolution
type.

1. Introduction

Let m < d be positive integers. Given an m-plane V 2 G.d; m/, a point x 2 Rd , and
˛ 2 .0; 1/, we define

K.x; V; ˛/ D
®
y 2 Rd W dist.y; V C x/ < ˛jx � yj

¯
:

That is, K.x; V; ˛/ is an open cone centered at x, with direction V , and aperture ˛.
Let 0<n<d . It is well known that if a setE �Rd satisfies, for some V 2G.d; d�n/,

˛ 2 .0; 1/, the condition

(1.1) x 2 E H) E \K.x; V; ˛/ D ¿;

then E is contained in some n-dimensional Lipschitz graph � , and Lip.�/ � 1=˛, see,
e.g., the proof of Lemma 15.13 in [42].

To what extent can we weaken the condition (1.1) and still get meaningful information
about the geometry of E? It depends on what we mean by “meaningful information”,
naturally. One could ask for the rectifiability of E, or if E contains big pieces of Lipschitz
graphs, or whether nice singular integral operators are bounded on L2.E/. The aim of this
paper is to answer these three questions.
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1.1. Rectifiability

A measurable set E � Rd is n-rectifiable if there exists a countable number of Lipschitz
maps fi WRn ! Rd such that

Hn
�
E n

[
i

fi .R
n/
�
D 0;

where Hn denotes the n-dimensional Hausdorff measure. More generally, a Radon mea-
sure � is said to be n-rectifiable if �� Hn and there exists an n-rectifiable set E � Rd

such that �.Rd nE/ D 0.
A measure-theoretic analogue of (1.1), well-suited to the study of rectifiability, is that

of an approximate tangent plane. We recall the definition below.
For r > 0, we define the truncated cone

K.x; V; ˛; r/ D K.x; V; ˛/ \ B.x; r/;

and for 0 < r < R, we define the doubly truncated cone

K.x; V; ˛; r; R/ D K.x; V; ˛;R/ nK.x; V; ˛; r/:

Given a Radon measure � on Rd and x 2 supp�, the lower and upper densities of � at x
are defined as

‚n�.�; x/ D lim inf
r!0

�.B.x; r//

rn
and ‚n;�.�; x/ D lim sup

r!0

�.B.x; r//

rn
:

Recall that if � is n-rectifiable, then 0 < ‚n�.�; x/ D ‚n;�.�; x/ < 1 for �-a.e.
x 2 supp�. In that case we set ‚n.�; x/ WD ‚n�.�; x/ D ‚

n;�.�; x/.

Definition 1.1. We say that an n-plane W 2 G.d; n/ is an approximate tangent plane to
a Radon measure � at x 2 supp� if ‚n;�.�; x/ > 0, and for every ˛ 2 .0; 1/,

(1.2) lim
r!0

�.K.x;W ?; ˛; r//

rn
D 0:

The following classical characterization of rectifiable measures holds.

Theorem 1.2 (Theorem 9.1 of [27]). Let � be a finite Radon measure on Rd satisfying
0 < ‚n;�.�; x/ <1 for �-a.e. x 2 Rd . Then the following are equivalent:

(a) � is n-rectifiable,

(b) for �-a.e. x 2 Rd , there exists a unique approximate tangent plane to � at x,

(c) for �-a.e. x 2 Rd , there exist Wx 2 G.d; n/ and ˛x 2 .0; 1/ such that

(1.3) lim sup
r!0

�.K.x;W ?x ; ˛x ; r//

rn
< .˛x/

n ".n/‚n;�.�; x/;

where ".n/ is a small dimensional constant.

The results we prove in this paper are of similar nature. More precisely, we introduce
and study conical energies.
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Definition 1.3. Suppose� is a Radon measure on Rd , and x2supp�. Let V2G.d; d�n/,
˛ 2 .0; 1/, 1 � p <1 and R > 0. We define the .V; ˛; p/-conical energy of � at x up to
scale R as

E�;p.x; V; ˛;R/ D

Z R

0

��.K.x; V; ˛; r//
rn

�p dr
r
:

For E � Rd , we set also EE;p.x; V; ˛;R/ D EHnjE ;p.x; V; ˛;R/.

Note that the definition above depends on the dimension parameter n, so it would be
more precise to say that E�;p.x; V; ˛; R/ is the n-dimensional .V; ˛; p/-conical energy.
For the sake of brevity, throughout the paper we will consider n to be fixed, and we will
usually not point out this dependence. The same applies to other definitions.

We are ready to state our first result.

Theorem 1.4. Let 1 � p < 1. Suppose that � is a Radon measure on Rd satisfying
‚n;�.�; x/ > 0 and ‚n�.�; x/ <1 for �-a.e. x 2 Rd . Assume that for �-a.e. x 2 Rd ,
there exist some Vx 2 G.d; d � n/ and ˛x 2 .0; 1/ such that

(1.4) E�;p.x; Vx ; ˛x ; 1/ <1:

Then � is n-rectifiable.
Conversely, if � is n-rectifiable, then for �-a.e. x 2Rd , there exists Vx 2G.d;d � n/

such that for all ˛ 2 .0; 1/, we have

(1.5) E�;p.x; Vx ; ˛; 1/ <1:

Remark 1.5. The “necessary” part of Theorem 1.4 improves on Theorem 1.2 in the fol-
lowing way. Existence of approximate tangents means that the conical density simply
converges to 0, while (1.5) means that the conical density satisfies a Dini-type condition,
and converges to 0 rather fast.

Remark 1.6. Concerning the “sufficient” part of Theorem 1.4, clearly, condition (1.3) is
weaker than (1.4). However, Theorem 1.4 has the following advantage over Theorem 1.2:
we only require ‚n;�.�; x/ > 0 and ‚n�.�; x/ <1 for our criterion to hold. In partic-
ular, we do not assume � � Hn. It is not clear to the author how to show a criterion
involving (1.3) or (1.2) without assuming a priori �� Hn.

Question 1.7. Suppose � is a Radon measure on Rd satisfying ‚n;�.�; x/ > 0 and
‚n�.�; x/ <1 for �-a.e. x 2 Rd . Assume that for �-a.e. x 2 Rd , there exists an approx-
imate tangent plane to � at x. Does this imply that � is n-rectifiable?

Let us mention that in recent years many similar characterizations of rectifiable mea-
sures have been obtained. By “similar” we mean the pointwise finiteness of a square
function involving some flatness quantifying coefficients. The most famous coefficients
of this type are ˇ numbers, first introduced in [33] and further developed by David and
Semmes [21], [22]. A necessary condition for rectifiability that uses p̌ numbers was
shown in [59], see Theorem 9.3 for the precise statement. Its sufficiency (under various
assumptions on densities of the measure) was proved in [4], [9], [25], [51]. Measures car-
ried by rectifiable curves are studied using ˇ numbers in [3], [8], [9], [10], [38], [39], [45];
see also the survey [6].



D. Dąbrowski 1290

Finiteness of a square function involving ˛ coefficients (defined in [56]) is shown to be
necessary for rectifiability in [59]. The opposite implication is studied in [2], [5], [49]. In
[15], [17], rectifiable measures were characterized using ˛2 numbers, first defined in [57].
Square functions involving centers of mass are studied in [44] and [63]. Finally, [60], [62]
are devoted to a square function involving � numbers, where

��.x; r/ D
ˇ̌̌�.B.x; r//

rn
�
�.B.x; 2r//

.2r/n

ˇ̌̌
:

For related characterizations of rectifiable measures in terms of tangent measures, see
Chapter 16 of [42] and Section 5 of [53]. For a study of tangent points of Jordan curves
in terms of ˇ numbers, see [11], and for a generalization of this result for lower content
regular sets of arbitrary dimension, see [64].

The behavior of conical densities on purely unrectifiable sets is studied in [14] and in
Section 5 of [35]. In [14], [36], [37], [41], the relation between conical densities for higher
dimensional sets and their porosity is investigated.

Higher order rectifiability in terms of approximate differentiability of sets is studied
in [54]. In [24], Del Nin and Idu characterize C 1;˛ rectifiable sets using approximate tan-
gents paraboloids, essentially obtaining a C 1;˛ counterpart of Theorem 1.2. See also [28]
and [29] for related results.

We would also like to mention recent results of Badger and Naples that nicely comple-
ment Theorem 1.4. In Theorem D of [45], Naples showed that a modified version of (1.2)
can be used to characterize pointwise doubling measures carried by Lipschitz graphs, that
is, measures vanishing outside of a countable union of n-dimensional Lipschitz graphs. In
an even more recent paper [7], Badger and Naples completely describe measures carried
by n-dimensional Lipschitz graphs on Rd . They use a Dini condition imposed on the so-
called conical defect, and their condition is closely related to (1.4). Note the absence of
densities in the assumptions (and conclusion) of their results. If one adds an assumption
‚n�.�;x/ <1 for �-a.e. x 2Rd , then it actually follows from [7] that �-a.e. finiteness of
their conical Dini function implies that� is n-rectifiable. We would like to stress, however,
that neither Theorem 1.4 implies the results from [7], nor the other way around.

1.2. Big pieces of Lipschitz graphs

Before stating our next theorem, we need to recall some definitions.

Definition 1.8. We say that E � Rd is n-Ahlfors–David regular (abbreviated as n-ADR)
if there exist constants C0; C1 > 0 such that for all x 2 E and 0 < r < diam.E/,

C0 r
n
� Hn.E \ B.x; r// � C1 r

n:

The constants C0; C1 will be referred to as the ADR constants of E.

Definition 1.9. We say that an n-ADR set E � Rd has big pieces of Lipschitz graphs
(BPLG) if there exist constants �; L > 0; such that the following holds.

For all balls B centered at E, 0 < r.B/ < diam.E/; there exists a Lipschitz graph �B ,
with Lip.�B/ � L, such that

Hn.E \ B \ �B/ � � r.B/
n:
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Sets with BPLG were studied, e.g., in [18], [22], [23] as one of the possible quantitative
counterparts of rectifiability. Let us point out that the class of sets with BPLG is strictly
smaller than the class of uniformly rectifiable sets, introduced in the seminal work of
David and Semmes [21], [22]. An example of a uniformly rectifiable set that does not
contain BPLG is due to Hrycak, although he never wrote it down, see the appendix of [1].

While there are available many characterizations of uniformly rectifiable sets, the sets
containing BPLG are not as well understood. David and Semmes showed in [23] that a
set contains BPLG if and only if it has big projections and satisfies the weak geometric
lemma. We refer the reader to [23] or Section I.1.5 of [22] for details.

Very recently, Orponen characterized the BPLG property in terms of the big pro-
jections in plenty of directions property [50], answering an old question of David and
Semmes. A little before that, Martikainen and Orponen [40] characterized sets with BPLG
in terms of L2 norms of their projections. Interestingly, the authors use the information
about projections of an n-ADR set E to draw conclusions about intersections with cones
of some subset E 0 � E with Hn.E 0/ � Hn.E/. This in turn allows them to find a Lip-
schitz graph intersecting an ample portion of E 0. We will use some of their techniques to
prove a characterization of sets containing BPLG in terms of the following property.

Definition 1.10. Let 1 � p < 1. We say that a measure � has big pieces of bounded
energy for p, abbreviated as BPBE.p/, if there exist constants ˛; �;M0 > 0 such that the
following holds.

For all ballsB centered at supp�, 0 < r.B/ < diam.supp�/; there exist a setGB �B ,
with �.GB/ � ��.B/, and a direction VB 2 G.d; d � n/ such that for all x 2 GB ,

(1.6) E�;p.x; VB ; ˛; r.B// D

Z r.B/

0

��.K.x; VB ; ˛; r//
rn

�p dr
r
�M0:

Theorem 1.11. Let 1 � p <1. Suppose E � Rd is n-ADR. Then E has BPLG if and
only if HnjE has BPBE.p/.

Remark 1.12. In particular, for n-ADR sets, the condition BPBE.p/ is equivalent to
BPBE.q/ for all 1 � p; q <1.

Remark 1.13. In fact, one can show that an a priori slightly weaker condition than BPBE
is already sufficient for BPLG. To be more precise, in (1.6) replace K.x; VB ; ˛; r/ with
K.x; VB ; ˛; r/ \GB , so that we get

(1.7)
Z r.B/

0

�Hn.K.x; VB ; ˛; r/ \E \GB/

rn

�p dr
r
�M0:

We show that this “weak” BPBE is sufficient for BPLG in Proposition 10.1. It is obvious
that (1.7) is also necessary for BPLG: if E contains BPLG, then choosing GB D �B as in
Definition 1.9, one can pick the corresponding VB and ˛ so thatK.x;VB ; ˛; r/\ �B D¿:

It is tempting to consider also the following definition.

Definition 1.14. Let 1 � p < 1. We say that a measure � has bounded mean energy
(BME) for p if there exist constants ˛;M0 > 0, and for every x 2 supp�, there exists a
direction Vx 2 G.d; d � n/ such that the following holds.



D. Dąbrowski 1292

For all balls B centered at supp�, 0 < r.B/ < diam.supp�/; we haveZ
B

E�;p.x;Vx ; ˛; r.B//d�.x/D

Z
B

Z r.B/

0

��.K.x; Vx ; ˛; r//
rn

�p dr
r
d�.x/�M0�.B/:

In other words, we require �.K.x; Vx ; ˛; r//p r�np drr d�.x/ to be a Carleson mea-
sure. This condition looks quite natural due to many similar characterizations of uniform
rectifiability, e.g., the geometric lemma of [21], [22] or the results from [56], [57].

It is easy to see, using the compactness of G.d; d � n/ and Chebyshev’s inequality,
that BME for p implies BPBE.p/. However, the reverse implication does not hold. In [16],
we give an example of a set containing BPLG that does not satisfy BME. The problem is
the following. In the definition above, the plane Vx is fixed for every x 2 supp� once and
for all, and we do not allow it to change between different scales. This is too rigid.

Question 1.15. Can one modify the definition of BME, allowing the planes Vx to depend
on the scale r , so that the modified BME could be used to characterize BPLG, or uniform
rectifiability?

It seems likely that every uniformly rectifiable measure would satisfy such relaxed
BME (the idea would be similar to what is done in Section 9: use the ˇ-numbers char-
acterization of UR to get an upper bound for ˇ-numbers, and then estimate the measure
of cones from above by the ˇ-numbers). It is less clear whether this relaxed BME would
imply uniform rectifiability. Perhaps additional control for the oscillation of Vx;r would
be needed.

1.3. Boundedness of SIOs

We will be concerned with singular integral operators of convolution type, with odd C 2

kernels kWRd n ¹0º ! R satisfying, for some constant Ck > 0,

(1.8) jr
jk.x/j �

Ck

jxjnCj
for x ¤ 0 and j 2 ¹0; 1; 2º:

We will denote the class of all such kernels by Kn.Rd /. Note that these kernels are par-
ticularly nice examples of Calderón–Zygmund kernels (see p. 48 of [58] for definition),
which will let us use many tools from the Calderón–Zygmund theory. Since the measures
we work with may be non-doubling, our main reference will be Chapter 2 of [58]. For the
more classical theory, we refer the reader to Chapter 5 of [31], Chapter 4 of [32].

Definition 1.16. Given a kernel k 2Kn.Rd /, a constant " > 0, and a (possibly complex)
Radon measure �, we set

T"�.x/ D

Z
jx�yj>"

k.y � x/ d�.y/; x 2 Rd :

For a fixed positive Radon measure � and all functions f 2 L1loc.�/, we define

T�;"f .x/ D T".f�/.x/:
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We say that T� is bounded in L2.�/ if all T�;" are bounded in L2.�/, uniformly in " > 0.
LetM.Rd / denote the space of all finite real Borel measures on Rd . When endowed with
the total variation norm k�kTV, this is a Banach space. We say that T is bounded from
M.Rd / to L1;1.�/ if there exists a constant C such that for all � 2M.Rd / and all � > 0,

�.¹x 2 Rd W jT"�.x/j > �º/ �
Ck�kTV

�
;

uniformly in " > 0.

The main motivation for developing the theory of quantitative rectifiability was find-
ing necessary and/or sufficient conditions for boundedness of singular integral operators.
David and Semmes showed in [21] that, for an n-ADR set, the L2 boundedness of all
singular integral operators with smooth and odd kernels is equivalent to uniform rectifia-
bility. The famous David–Semmes problem asks whether the L2 boundedness of a single
SIO, the Riesz transform, is already sufficient for uniform rectifiability. It was shown that
the answer is affirmative for nD 1 in [43], for nD d � 1 in [46], and the problem is open
for other n.

In the non-ADR setting less is known. A necessary condition for the boundedness of
SIOs in L2.�/, where � is Radon and non-atomic, is the polynomial growth condition:

(1.9) �.B.x; r// � C1r
n for all x 2 supp�; r > 0;

see Proposition 1.4 in Part III of [19]. Eiderman, Nazarov and Volberg showed in [26]
that if � is a measure on R2, H1.supp�/ < 1, and � has vanishing lower 1-density,
then the Riesz transform is unbounded. Their result was generalized to SIOs associated to
gradients of single layer potentials in [13]. Nazarov, Tolsa and Volberg proved in [47] that
if E � RnC1 satisfies Hn.E/ < 1 and the n-dimensional Riesz transform is bounded
in L2.HnjE /, then E is n-rectifiable. That the same is true for gradients of single layer
potentials was shown by Prat, Puliatti and Tolsa in [52].

Concerning sufficient conditions for boundedness of SIOs, in [4] Azzam and Tolsa
estimated the Cauchy transform of a measure using its ˇ numbers. Their method was
further developed by Girela-Sarrión [30]. He gives a sufficient condition for boundedness
of singular integral operators with kernels in Kn.Rd / in terms of ˇ numbers. We use the
main lemma from [30] to prove the following criterion involving 2-conical energy.

Theorem 1.17. Let � be a Radon measure on Rd satisfying the polynomial growth con-
dition (1.9). Suppose that � has BPBE.2/. Then all singular integral operators T� with
kernels k 2 Kn.Rd / are bounded in L2.�/, with norm depending only on BPBE con-
stants, the polynomial growth constant C1, and the constant Ck from (1.8).

Remark 1.18. A similar result, with BPBE.2/ condition replaced by BPBE.1/ condi-
tion, has already been shown in Theorem 10.2 of [12]. It is easy to see that for measures
satisfying the polynomial growth (1.9), we have

E�;2.x; V; ˛;R/ � C1E�;1.x; V; ˛;R/;

and so BPBE.2/ is a weaker assumption than BPBE.1/. Moreover, in [16] we show
that the measure constructed in [34] does not satisfy BPBE.1/, but it trivially satisfies
BPBE.2/. Hence, Theorem 1.17 really does improve on Theorem 10.2 of [12].
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Remark 1.19. Recall that for n-ADR sets, the condition BPBE.p/ was equivalent to
BPLG, regardless of p. By the remark above, it is clear that if we replace the n-ADR
condition with polynomial growth (i.e., if we drop the lower regularity assumption), then
the condition BPBE.p/ is no longer independent of p. In general we only have one impli-
cation: for 1 � p < q <1,

BPBE.p/ H) BPBE.q/:

Remark 1.20. Theorem 1.17 is sharp in the following sense. If one tried to weaken the
assumption BPBE.2/ to BPBE.p/ for some p > 2, then the theorem would no longer hold.
The reason is that for any p > 2, one may construct a Cantor-like probability measure �,
say on a unit square in R2, that has linear growth and such that for all x 2 supp�,Z 1

0

��.B.x; r//
r

�p dr
r

. 1

(that is, a much stronger version of BPBE.p/ holds), but nevertheless, the Cauchy trans-
form is not bounded on L2.�/. See Chapter 4.7 of [58].

Sadly, the implication of Theorem 1.17 cannot be reversed. Let E � R2 be the pre-
viously mentioned example of a 1-ADR uniformly rectifiable set that does not contain
BPLG. In particular, by Theorem 1.11, E does not satisfy BPBE.p/ for any p. Never-
theless, by the results of David and Semmes [21], all nice singular integral operators are
bounded on L2.E/.

1.4. Cones and projections

Let us note that Theorem 10.2 of [12] was merely a tool to prove the main result of [12]:
a lower bound on analytic capacity involving L2 norms of projections. Chang and Tolsa
proved also an interesting inequality showing the connection between 1-conical energy
and L2 norms of projections. We introduce additional notation before stating their result.

Definition 1.21. Suppose V 2 G.d; d � n/; ˛ 2 .0; 1/, and 1 � p <1. Let B be a ball.
The .V; ˛; p/-conical energy of � in B is

E�;p.B; V; ˛/ D

Z
B

Z r.B/

0

��.K.x; V; ˛; r//
rn

�p dr
r
d�.x/:

We define also

E�;p.R
d ; V; ˛/ D

Z
Rd

Z 1
0

��.K.x; V; ˛; r//
rn

�p dr
r
d�.x/:

We will often suppress the arguments V; ˛, and write simply E�;p.B/, E�;p.Rd /.

Remark 1.22. For p D 1, we haveZ 1
0

�.K.x; V; ˛; r//

rn
dr

r
D

Z
K.x;V;˛/

Z 1
jx�yj

dr

rnC1
d�.y/(1.10)

D n�1
Z
K.x;V;˛/

1

jx � yjn
d�.y/;
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and so

(1.11) E�;1.R
d ; V; ˛/ D n�1

Z
Rd

Z
K.x;V;˛/

1

jx � yjn
d�.y/ d�.x/:

In their paper, Chang and Tolsa were working with the expression from the right-hand
side above.

Given V 2G.d;m/, we will denote by �V WRd ! V the orthogonal projection onto V ,
and by �?V WR

d ! V ?, the orthogonal projection onto V ?. We endow G.d;m/ with the
natural probability measure d;m, see Chapter 3 of [42], and with a metric d.V; W / D
k�V � �W kop, where k�kop is the operator norm. We write �V� to denote the image
measure of � by the projection �V . If �V� � HnjV , then we identify �V� with its
density with respect to HnjV , and k�V�kL2.V / denotes the L2 norm of this density.
Otherwise, we set k�V�kL2.V / D1.

Proposition 1.23 (Corollary 3.11 of [12]). Let V0 2 G.d; n/ and ˛ > 0. Then, there exist
constants �;C > 1 such that for any finite Borel measure � in Rd (see (1.11)),

E�;1.R
d ; V ?0 ; ˛/ �

Z
Rd

Z
K.x;V ?0 ;˛/

1

jx � yjn
d�.y/ d�.x/

� C

Z
B.V0;�˛/

k�V�k
2
L2.V /

dd;n.V /:

Let us note that a variant of this estimate was also proved in [40], for a measure of the
form � D HnjE , with E a suitable set.

The inequality converse to that of Proposition 1.23 in general is not true, but it is not
far off. Additional assumptions on � are necessary, and one has to add another term to the
left-hand side. See Remark 3.12, Appendix A, of [12].

In the light of results mentioned above, as well as the characterization of sets with
BPLG from [40], the connection between L2 norms of projections and cones is quite
striking. Note that the proof of the Besicovitch–Federer projection theorem also involves
careful analysis of measure in cones, see Chapter 18 of [42]. Exploring further the rela-
tionship between cones and projections would be very interesting.

Question 1.24. Is it possible to obtain an inequality similar to that of Proposition 1.23,
but with E�;2 on the left-hand side, and some quantity involving �V� on the right-hand
side?

1.5. Organization of the article

In Section 2 we introduce additional notation and recall the properties of the David–
Mattila lattice D�. In Section 3 we state our main lemma, a corona decomposition-like
result. Roughly speaking, it says that if a measure � has polynomial growth, and for some
V 2 G.d; d � n/, ˛ 2 .0; 1/, we have E�;p.Rd ; V; ˛/ <1, then we can decompose D�

into a family of trees such that:
• for every tree, � is “well-behaved” at the scales and locations of the tree,
• we have a good control on the number of trees (see (3.2)).
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We prove the main lemma in Sections 4–6. Let us point out that in the case p D 1, an
analogous corona decomposition was already shown in Lemma 5.1 of [12]. Our proof
follows the same general strategy, but some key estimates had to be done differently (most
notably the estimates in Section 5).

In Section 7 we show how to use the main lemma and results from [30] to get The-
orem 1.17. Sections 8 and 9 are dedicated to the proof of Theorem 1.4. The “sufficient
part” follows from our main lemma, while the “necessary part” is deduced from the cor-
responding ˇ2 result of Tolsa [59]. Finally, we prove Theorem 1.11 in Sections 10 and 11.
To show the “sufficient part”, we use the results from [40], whereas the “necessary part”
follows from a simple geometric argument.

2. Preliminaries

2.1. Additional notation

We will write A . B if there exists some constant C such that A � CB . A � B means
that A . B . A. If the constant C depends on some parameter t , we will write A .t B .
We usually omit the dependence on n and d .

B.x; r/ stands for the open ball ¹y 2 Rd W jy � xj < rº. On the other hand, if B is a
ball, then r.B/ denotes its radius.

A characteristic function of a set E � Rd will be denoted by 1E .
Given a Radon measure � and a ball B D B.x; r/, we set

‚�.B/ D ‚�.x; r/ D
�.B/

rn
:

If T is a singular integral operator as in Definition 1.16, then the associated maximal
operator T� is defined as

T��.x/ D sup
">0

jT"�.x/j for � 2M.Rd /, x 2 Rd :

Given an n-plane L, �L will denote the orthogonal projection onto L, and �?L will
denote the orthogonal projection onto L?.

Given two bounded setsE;F �Rd , distH .E;F /will stand for the Hausdorff distance
between E and F .

2.2. David–Mattila lattice

In the proof of Theorem 1.17 we will use the lattice of “dyadic cubes” constructed by
David and Mattila [20]. Their construction depends on parameters C0 > 1 and A0 >
5000C0. The parameters can be chosen in such a way that the following lemmas hold.

Lemma 2.1 (Theorem 3.2, Lemma 5.28 of [20]). Let � be a Radon measure on Rd ,
E D supp�. There exists a sequence of partitions of E into Borel subsets Q 2 D�;k ,
k � 0, with the following properties:

(a) For each integer k � 0, E is the disjoint union of the “cubes” Q 2 D�;k , and if
k < l , Q 2 D�;l , and R 2 D�;k , then either Q \R D ¿ or else R � Q.
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(b) The general position of the cubes Q can be described as follows. For each k � 0
and each cube Q 2 D�;k , there exists a ball B.Q/ D B.xQ; r.Q// such that

xQ 2 Q; A�k0 � r.Q/ � C0A
�k
0 ;

E \ B.Q/ � Q � E \ 28B.Q/ D E \ B.xQ; 28r.Q//;

and the balls 5B.Q/;Q 2 D�;k ; are disjoint.

(c) Denote by Ddb
� the family of doubling cubes, i.e.,Q2D�D

S
k�0D�;k satisfying

(2.1) �.100B.Q// � C0�.B.Q//:

Then, for any R 2 D�, there exists a family ¹Qiºi2I � Ddb
� such that Qi � R

and �.R n
S
i Qi / D 0.

For anyQ 2D�, we denote by D�.Q/ the family of P 2D� such that P �Q. Given
Q 2 D�;k , we set J.Q/ D k and `.Q/ D 56C0A�k0 . Note that r.Q/ � `.Q/:

We define BQ D 28B.Q/ D B.xQ; 28r.Q//; so that

E \ 1
28
BQ � Q � BQ:

Note that if Q � P , then BQ � BP .

Lemma 2.2 (Lemma 2.4 of [4]). Suppose the cubes Q 2D�, R 2D�, Q � R; are such
that all the intermediate cubes Q ¨ S ¨ R are non-doubling, i.e., S … Ddb

� . Then

(2.2) ‚�.100B.Q// � .C0A0/
dA
�9d.J.Q/�J.R/�1/
0 ‚�.100B.R//

and X
S2D�WQ�S�R

‚�.100B.S// . ‚�.100B.R//:

Let us remark that the constant 9d in the exponent of (2.2) could be replaced by any
other positive constant, if C0 and A0 are chosen suitably, see equation (5.30) of [20].

Lemma 2.3 (Lemma 4.5 of [12]). Let R 2 Ddb
� . Then there exists another doubling cube

Q ¨ R, Q 2 Ddb
� , such that

�.Q/ � �.R/ and `.Q/ � `.R/:

From now on we will treat C0 and A0 as absolute constants, and we will not track the
dependence on them in our estimates.

3. Main lemma

In order to formulate our main lemma we need to introduce some vocabulary.
Let � be a compactly supported Radon measure with polynomial growth (1.9). Sup-

pose D� is the associated David–Mattila lattice, and assume that

R0 D supp� 2 D�

is the biggest cube.
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Given a family of cubes Top � Ddb
� satisfying R0 2 Top, we define the following

families associated to each R 2 Top:
• Next.R/ is the family of maximal cubes Q 2 Top strictly contained in R,
• Tr.R/ is the family of cubes Q 2 D� contained in R, but not contained in any P 2

Next.R/.
Clearly, D� D

S
R2Top Tr.R/. Define

Good.R/ D R n
[

Q2Next.R/

Q:

Lemma 3.1 (Main lemma). Let � be a compactly supported Radon measure on Rd . Sup-
pose there exists r0 > 0 such that for all x 2 supp�, 0 < r � r0; we have

(3.1) �.B.x; r// � C1 r
n:

Assume further that for some V 2 G.d; d � n/; ˛ 2 .0; 1/; and 1 � p < 1, we have
E�;p.Rd ; V; ˛/ <1: Then there exists a family of cubes Top �Ddb

� and a corresponding
family of Lipschitz graphs ¹�RºR2Top satisfying:

(i) the Lipschitz constants of �R are uniformly bounded by a constant depending
on ˛,

(ii) �-almost all Good.R/ is contained in �R,

(iii) for all Q 2 Tr.R/, we have ‚�.2BQ/ . ‚�.2BR/.

Moreover, the following packing condition holds:

(3.2)
X
R2Top

‚�.2BR/
p�.R/ .˛ .C1/p�.Rd /C E�;p.R

d ; V; ˛/:

The implicit constant does not depend on r0.

We prove the lemma above in Sections 4–6. From this point on, until the end of Sec-
tion 6, we assume that � is a compactly supported Radon measure satisfying the growth
condition (3.1), and that there exist V 2 G.d; d � n/, ˛ 2 .0; 1/, 1 � p <1; such that

E�;p.R
d ; V; ˛/ <1:

For simplicity, in our notation we will suppress the parameters V and ˛. That is, we will
write E�;p.Rd / D E�;p.Rd ; V; ˛/, as well as K D K.0; V; ˛/, K.x/ D K.x; V; ˛/, and
K.x; r/ D K.x; V; ˛; r/. Finally, given 0 < r < R, set

K.x; r; R/ D K.x;R/ nK.x; r/:

Parameters

In the proof of Lemma 3.1 we will use a number of parameters. To make it easier to
keep track of what depends on what, and at which point the parameters get fixed, we list
them below. Recall that “C1 D C1.C2/” means that “the value of C1 depends on the value
of C2.”
• A D A.p/ > 1 is the “HD” constant; it is fixed in Lemma 6.1.
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• � D �.˛; t/ is the “LD” constant; it is fixed in (5.1).
• M DM.˛/ > 1 is the “key estimate” constant; it is chosen in Lemma 4.3.
• � D �.M; t/ 2 .0; 1/ is the constant from the definition of E�;p.Q/ in (4.1); it is fixed

in the proof of Lemma 5.4.
• t D t .M; ˛/ > M is the “t -neighbor” constant, see Section 4.3. It is fixed just

below (5.6), but depends also on Lemma 4.5 and Lemma 4.7.
• ƒ D ƒ.M/ > 2M is the constant from Lemma 4.8.
• " D ".�; ˛; �/ 2 .0; 1/ is the “BCE” constant; it is fixed in Lemma 5.4.

4. Construction of a Lipschitz graph �R

SupposeR 2Ddb
� . In this section we will construct a corresponding tree of cubes Tree.R/,

and a Lipschitz graph �R that “approximates � at scales and locations from Tree.R/”; see
Lemma 4.8.

4.1. Stopping cubes

Consider constants A� 1, 0 < "� � � 1, and 0 < �� 1, which will be fixed later on.
Given Q 2 D�, we set

(4.1) E�;p.Q/ D
1

�.Q/

Z
2BQ

Z ��1r.Q/

�r.Q/

��.K.x; r//
rn

�p dr
r
d�.x/:

For any R 2 Ddb
� , we define the following families of cubes:

• BCE0.R/, the family of big conical energy cubes, consisting of Q 2D�.R/ such thatX
Q�P�R

E�;p.P / > "‚�.2BR/
p:

• HD0.R/, the high density family, consisting of Q 2 Ddb
� .R/ n BCE0.R/ such that

‚�.2BQ/ > A‚�.2BR/:

• LD0.R/, the low density family, consisting of Q 2 D�.R/ n BCE0.R/ such that

‚�.2BQ/ < �‚�.2BR/:

We denote by Stop.R/ the family of maximal (hence, disjoint) cubes from BCE0.R/ [
HD0.R/ [ LD0.R/, and we set BCE.R/ D BCE0.R/ \ Stop.R/; HD.R/ D HD0.R/ \
Stop.R/; LD.R/ D LD0.R/ \ Stop.R/:

Note that the cubes in HD.R/ are doubling (by the definition), while the cubes from
LD.R/ and BCE.R/ may be non-doubling.

We define Tree.R/ as the family of cubes from D�.R/which are not strictly contained
in any cube from Stop.R/ (in particular, Stop.R/� Tree.R/). Note that it may happen that
R 2 BCE.R/, in which case Tree.R/ D ¹Rº.

Basic properties of cubes in Tree.R/ are collected in the lemma below.
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Lemma 4.1. Suppose Q 2 Tree.R/. Then

(4.2) ‚�.2BQ/ . A‚�.2BR/:

Moreover, for Q 2 Tree.R/ n Stop.R/,

� ‚�.2BR/ � ‚�.2BQ/;(4.3) X
Q�P�R

E�;p.P / � "‚�.2BR/
p:(4.4)

Finally, for everyQ 2 Tree.R/, there exists a doubling cube P.Q/ 2 Tree.R/\Ddb
� such

that Q � P.Q/ and `.P.Q// .A;� `.Q/. If R 62 Stop.R/, we have P.Q/ 2 Tree.R/ \
Ddb
� n Stop.R/.

Proof. First, note that ifR 2 Stop.R/, then Tree.R/D ¹Rº and the lemma above is trivial.
Assume that R 62 Stop.R/.

Inequalities (4.3) and (4.4) are obvious by the definition LD.R/ and BCE.R/.
Concerning (4.2), note that for Q 2 Tree.R/ \Ddb

� n Stop.R/, we have ‚�.2BQ/ �
A‚�.2BR/, from the high density stopping condition. In general, given Q 2 Tree.R/,
let P.Q/ be the smallest doubling cube containing Q, other than Q. Since R 2 Ddb

�

and R 62 Stop.Q/, we certainly have P.Q/ 2 Tree.R/ \Ddb
� n Stop.R/, and therefore

‚�.2BP.Q// � A‚�.2BR/.
Denote by P1; P2; : : : ; Pk all the intermediate cubes, so that Q � P1 � P2 � � � � �

Pk � P.Q/. Since Pj are non-doubling, we have, by Lemma 2.2,

‚�.2BQ/ . ‚�.2BP1/ . ‚�.100B.P1// � .C0A0/
dA
�9d.k�1/
0 ‚�.100B.P.Q///

. ‚�.2BP.Q// � A‚�.2BR/;

which proves (4.2).
Finally, to see that `.P.Q// .A;� `.Q/, note that P1 2 Tree.R/ n Stop.R/, and so

� ‚�.2BR/ � ‚�.2BP1/. On the other hand, a minor modification of the computation
above shows that

‚�.2BP1/ .C0;A0 A
�9d.k�1/
0 A‚�.2BR/:

It follows that k .A;� 1.

The following estimate of the measure of cubes in BCE.R/ will be used later on in the
proof of the packing estimate (3.2).

Lemma 4.2. We have

(4.5)
X

Q2BCE.R/

�.Q/ �
1

"‚�.2BR/p

X
P2Tree.R/

E�;p.P /�.P /:

Proof. We use the fact that for Q 2 BCE.R/, we haveX
Q�P�R

E�;p.P / > "‚�.2BR/
p
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to conclude that

‚�.2BR/
p

X
Q2BCE.R/

�.Q/ �
1

"

X
Q2BCE.R/

�.Q/
X
P2D�

Q�P�R

E�;p.P /

D
1

"

X
P2Tree.R/

E�;p.P /
X

Q2BCE.R/
Q�P

�.Q/ �
1

"

X
P2Tree.R/

E�;p.P /�.P /:

4.2. Key estimate

We introduce some additional notation. Given x 2 Rd and � > 0, set

K�.x/ D K.x; V; �˛/:

For Q 2 D�, we denote
K�Q D

[
x2Q

K�.x/:

If � D 1, we will write KQ instead of K1Q.

Lemma 4.3. There exists a constant M DM.˛/ > 1 such that if Q 2 Tree.R/ and P 2
D�.R/ satisfy

P \K
1=2
Q nMBQ ¤ ¿ and dist.Q;P / �Mr.P /;

then P 62 Tree.R/.

Proof. Taking M D M.˛/ > 1 big enough, we can choose cubes P 0; Q0 2 D�.R/ such
that
• P ¨ P 0 � R, P 0 � K3=4Q ; and `.P 0/ � dist.P 0;Q/,

• Q ¨ Q0 � R, `.Q0/ �M�1`.P 0/, and dist.P 0;Q0/ � `.P 0/.
Moreover, if M is taken big enough, we have, for all x 2 2BQ0 ,

2BP 0 � K.x/:

Thus, if � is taken small enough (say, ��M�1), we have��.2BP 0/
`.P 0/n

�p
�.2BQ0/ .�

Z
2BQ0

Z ��1r.Q0/

�r.Q0/

��.K.x; r//
rn

�p dr
r
d�.x/(4.6)

D E�;p.Q
0/�.Q0/:

Since Q 2 Tree.R/ and Q ¨ Q0, we have Q0 2 Tree.R/ n Stop.R/, and so (from (4.6)
and (4.4))

‚�.2BP 0/
p
�

��.2BP 0/
`.P 0/n

�p
.�

�.Q0/

�.2BQ0/
E�;p.Q

0/ � E�;p.Q
0/ � "‚�.2BR/

p:

It follows that, for " small enough, P 0 2 LD0.R/. Since P ¨ P 0, we get that P … Tree.R/.
The proof is complete.
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We set

(4.7) GR D R n
[

Q2Stop.R/

Q and zGR D

1\
kD1

[
Q2Tree.R/
r.Q/�A�k0

2MBQ:

Note that GR � zGR.

Lemma 4.4. For all x; y 2 zGR, we have y 62 K1=2.x/. Thus, zGR is contained in an n-
dimensional Lipschitz graph with Lipschitz constant depending only on ˛.

Proof. Proof by contradiction. Suppose that x; y 2 zGR and x � y 2 K1=2. Let Q; P 2
Tree.R/ be such that x 2 2MBQ, y 2 2MBP , with side length so small that P \ .K1=2Q n

MBQ/¤¿ and dist.Q;P /�Mr.P / (note that this can be done becauseK1=2 is an open
cone, and so x0 � y0 2K1=2 also for x0 2B.x;"0/ and y0 2B.y;"0/, assuming "0 > 0 small
enough). It follows by Lemma 4.3 that P … Tree.R/, and so we reach a contradiction.

4.3. Construction of �R

The Lipschitz graph from Lemma 4.4 can be thought of as a first approximation of �R.
It contains the “good set” zGR, but we would also like for �R to lie close to cubes from
Tree.R/. In this subsection we show how to do it.

Given t > 1, we say that cubes Q;P 2 D� are t -neighbors if they satisfy

(4.8) t�1 r.Q/ � r.P / � t r.Q/

and

(4.9) dist.Q;P / � t .r.Q/C r.P //:

If at least one of the conditions above does not hold, we say thatQ and P are t -separated.
We will also say that a family of cubes is t -separated if the cubes from that family are
pairwise t -separated.

Consider a big constant t D t .M; ˛/ > M which will be fixed later on. We denote by
Sep.R/ a maximal t -separated subfamily of Stop.R/ (it exists by Zorn’s lemma). Clearly,
for every Q 2 Stop.R/, there exists some P 2 Sep.R/ which is a t -neighbor of Q.

Furthermore, we define Sep�.R/ as the family of all cubesQ 2 Sep.R/ satisfying the
following two conditions:

(4.10) 2MBQ \ zGR D ¿;

and for all P 2 Sep.R/, P ¤ Q, we have

(4.11) 2MBP 6� 2MBQ:

Lemma 4.5. Suppose t D t .M/ is big enough. Then, for all Q;P 2 Sep�.R/, Q ¤ P ,
we have Q 6� 1:5MBP :

Proof. Suppose Q 2 Sep�.R/ and Q � 1:5MBP . We will show that P … Sep�.R/.
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Firstly, if r.Q/ > t�1r.P /, thenQ � 1:5MBP implies thatQ and P are t -neighbors
(for t big enough), and so P … Sep�.R/. On the other hand, if r.Q/ � t�1r.P /, then (if
t is big enough) Q � 1:5MBP implies 2MBQ � 2MBP , contradicting (4.11).

Lemma 4.6. For every Q 2 Sep.R/ at least one of the following is true:
(a) 2MBQ \ zGR ¤ ¿,

(b) there exists P 2 Sep�.R/ such that 2MBP � 2MBQ.

Proof. If Q 2 Sep�.R/, then of course (b) holds (with P D Q). Suppose that Q …
Sep�.R/, and that (a) does not hold (i.e., 2MBQ \ zGR D ¿). We will find P 2 Sep�.R/
such that 2MBP � 2MBQ.

Since Q … Sep�.R/ and (4.10) holds, condition (4.11) must be false. Thus, we get
a cube Q1 2 Sep.R/ such that 2MBQ1 � 2MBQ. If Q1 2 Sep�.R/, we get (b) with
P D Q1. Otherwise, we continue as follows.

Reasoning as before, Q1 2 Sep.R/ n Sep�.R/ and 2MBQ1 \ zGR D ¿ ensures that
there exists a cube Q2 2 Sep.R/ such that 2MBQ2 � 2MBQ1 . Iterating this process, we
get a (perhaps infinite) sequence of cubes Q0 WD Q;Q1; Q2; : : : satisfying 2MBQjC1 �
2MBQj .

If the algorithm never stops, then
T1
jD0 2MBQj ¤ ¿. But, by the definition (4.7) of

zGR, we have
T1
jD0 2MBQj �

zGR; and so we get a contradiction with 2MBQ \ zGR D¿.
Thus, the algorithm stops at some cube Qm, which means that Qm 2 Sep�.R/. Setting
P D Qm finishes the proof.

Lemma 4.7. Suppose t D t .M/ is big enough. Then

(a) for all Q;P 2 Sep�.R/, Q ¤ P; we have

(4.12) Q \K
1=2
P D P \K

1=2
Q D ¿;

(b) for all x 2 zGR and for all Q 2 Sep�.R/, we have

x … K
1=2
Q and Q \K1=2.x/ D ¿:

Proof of (a). Proof by contradiction. Suppose Q \ K1=2P ¤ ¿ (which by symmetry of
cones implies P \ K1=2Q ¤ ¿). Without loss of generality, assume that r.Q/ � r.P /.
Since Q and P are t -separated, at least one of the conditions (4.8), (4.9) fails, i.e.,

r.Q/ � t�1r.P / or dist.Q;P / > t.r.Q/C r.P //:

We know by Lemma 4.5 thatQ 6� 1:5MBP . It is easy to see that in either of the cases
considered above, this impliesQ\ 1:2MBP D¿. It follows thatQ\ .K1=2P nMBP /¤¿
and r.Q/ � r.P / � M�1 dist.Q; P /. Hence, we can use Lemma 4.3 to conclude that
Q … Tree.R/. This contradicts Q 2 Sep�.R/.

Proof of (b). Proof by contradiction. Suppose x 2 K1=2Q . We have x … 2MBQ by (4.10).
Since x 2 zGR, we can find an arbitrarily small cube P 2 Tree.R/ such that x 2 2MBP .
Taking r.P / small enough, we have r.P /�M�1 dist.Q;P / andP \K1=2Q nMBQ ¤ ¿
(because x 2K1=2.x0/ n 2MBQ for some x02Q, andK1=2.x0/ is an open set). Lemma 4.3
yields P … Tree, a contradiction.



D. Dąbrowski 1304

Lemma 4.8. There exists a Lipschitz graph �R, with Lipschitz constant depending only
on ˛, such that

zGR � �R:

Moreover, there exists a big constant ƒ D ƒ.M; t/ > 1 such that for every Q 2 Tree.R/,
we have

(4.13) ƒBQ \ �R ¤ ¿:

Proof. Recall that for each cube Q 2 D� we have a “center” denoted by xQ 2 Q. Set
F D ¹xQ W Q 2 Sep�.R/º [ zGR. It follows, by Lemma 4.4 and Lemma 4.7, that for any
x; y 2 F , we have x � y … K1=2. Thus, there exists a Lipschitz graph �R, with slope
depending only on ˛, such that F � �R.

Concerning the second statement, it is clearly true forQ 2Sep�.R/ (even withƒD 1).
For Q 2 Sep.R/, we have, by Lemma 4.6, that either 2MBQ \ zGR ¤ ¿ or there exists
P 2 Sep�.R/ with 2MBP � 2MBQ. Thus, (4.13) holds if ƒ � 2M .

If Q 2 Stop.R/, there exists some P 2 Sep.R/, which is a t -neighbor of Q, so that
for some ƒ D ƒ.t;M/ > 1, we have ƒBQ � 2MBP ; and 2MBP intersects �R. Finally,
for a general Q 2 Tree.R/, either Q contains some cube from Stop.R/, or Q � zGR. In
any case, ƒBQ \ �R ¤ ¿.

Remark 4.9. Note that while for a general cubeQ 2 Tree.R/, we only haveƒBQ \�R¤
¿, we have a better estimate for the root R:

(4.14) BR \ �R ¤ ¿:

Indeed, (4.14) is clear if the set zGR is non-empty. If zGR D ¿, then Sep�.R/ ¤ ¿, so that
for some P 2 Sep�.R/, we have xP 2 �R \ BR.

5. Small measure of cubes from LD.R/

In the proof of the packing estimate (3.2), it will be crucial to have a bound on the measure
of low density cubes.

Lemma 5.1. We have X
Q2LD.R/

�.Q/ .t;˛ ��.R/:

In particular, for � small enough, we have

(5.1)
X

Q2LD.R/

�.Q/ � �1=2�.R/:

We begin by defining some auxiliary subfamilies of LD.R/.

Lemma 5.2. There exists a t -separated family LDSep.R/ � LD.R/ such thatX
Q2LD.R/

�.Q/ .t

X
Q2LDSep.R/

�.Q/:
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Proof. We construct the family LDSep.R/ in the following way. Define LD1.R/ as a max-
imal t -separated subfamily of LD.R/. Next, define LD2.R/ as a maximal t -separated
subfamily of LD.R/ n LD1.R/. In general, having defined LDj .R/, we define LDjC1.R/ to
be a maximal t -separated subfamily of LD.R/ n .LD1.R/ [ � � � [ LDj .R//.

We claim that there is only a bounded number of non-empty families LDj .R/, with the
bound depending on t . Indeed, if Q 2 LDj .R/, then Q has at least one t -neighbor in each
family LDk.R/, k � j . It follows easily from the definition of t -neighbors that the number
of t -neighbors of any given cube is bounded by a constant C.t/. Hence, j � C.t/.

Set LDSep.R/ to be the family LDj .R/ maximizing
P
Q2LDj .R/

�.Q/. ThenX
Q2LD.R/

�.Q/ � C.t/
X

Q2LDSep.R/

�.Q/:

We define also a family LD�Sep.R/ � LDSep.R/ in the following way: we remove from
LDSep.R/ all the cubes P for which there exists some Q 2 LDSep.R/ such that

(5.2) 1:1BQ \ 1:1BP ¤ ¿ and r.Q/ < r.P /:

Lemma 5.3. For each Q 2 LDSep.R/ at least one of the following is true:

(a) 1:2BQ \ zGR ¤ ¿,

(b) there exists some P 2 LD�Sep.R/ such that 1:2BP � 1:2BQ.

Proof. Suppose Q 2 LDSep.R/, and that (a) does not hold. We will find P such that (b) is
satisfied.

If Q … LD�Sep.R/, then there exists some cube Q1 2 LDSep.R/ such that

1:1BQ \ 1:1BQ1 ¤ ¿ and r.Q1/ < r.Q/:

Since Q and Q1 are t -separated, and (4.9) holds, it follows that t r.Q1/ < r.Q/. Thus,
Q1 is tiny compared to Q, and we have 1:2BQ1 � 1:2BQ. If Q1 2 LD�Sep.R/, we set
P D Q1 and we are done. Otherwise, we iterate as in Lemma 4.6 (with 2M replaced
by 1:2) to find a finite sequence Q1; Q2; : : : ; Qm satisfying 1:2BQjC1 � 1:2BQj , and
such that Qm 2 LD�Sep.R/.

Lemma 5.4. For each Q 2 LD�Sep.R/, we have

(5.3) �
�
Q \

[
P2LD�Sep.R/

.K
1=2
P nMBP /

�
.�;˛;� "�.Q/:

In particular, if " is small enough, then for each Q 2 LD�Sep.R/, we can choose a point

(5.4) wQ 2 Q n
[

P2LD�Sep.R/

.K
1=2
P nMBP /:

Proof. Suppose Q 2 LD�Sep.R/ and that we have Q \K1=2P nMBP ¤ ¿ for some P 2
LD�Sep.R/. Note that if we had Mr.Q/ � dist.Q;P /, then the assumptions of Lemma 4.3
would be satisfied, and we would arrive at Q 62 Tree.R/, a contradiction. Thus,

(5.5) dist.Q;P / �Mr.Q/ < tr.Q/:
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It follows that (4.9) – one of the t -neighborhood conditions – is satisfied. Since Q and P
are t -separated, we necessarily have t r.Q/ � r.P / or t r.P / � r.Q/.

If we had t r.Q/ � r.P /, then (5.5) implies dist.Q; P / � r.P /. Hence, 1:1BQ \
1:1BP ¤ ¿. But this cannot be true, by the definition of LD�Sep.R/. It follows that

(5.6) t r.P / � r.Q/:

Let S � P be the biggest ancestor of P satisfying r.S/ � ır.Q/ for some small
constant ıD ı.˛/, which will be fixed in a few lines. If t is big enough, then S ¤ P . Thus,
r.S/ �ı r.Q/, and S 2 Tree.R/ n Stop.R/. Recall that by the definition of LD�Sep.R/, we
have 1:1BQ \ 1:1BP D ¿. It follows that if ı < 0:001, then 4BS \ 1:05BQ D ¿. Now,
using this separation, it is not difficult to check that for ı D ı.˛/ small enough, for any
x 2 K

1=2
P \Q, we have

2BS � K.x/:

Observe also that, due to (5.5) and the fact that r.S/ � ır.Q/, we have

2BS � B.x; r/ for r 2
���1
2
r.Q/; ��1r.Q/

�
;

provided that � is small enough (say, ��1 � t ). Putting together the two estimates above,
we get that

�.2BS / � �.K.x; r//

for any x 2 K1=2P \Q � Q \K
1=2
P nMBP and all r 2 .��1r.Q/=2; ��1r.Q//.

Integrating the above over all x 2 A, where A � Q \ K1=2P nMBP is an arbitrary
measurable subset, yields (see (4.3))

�.A/‚�.2BR/
p
� ��1�.A/‚�.2BS /

p
��;˛ �.A/

��.2BS /
r.Q/n

�p
(5.7)

.�
Z
A

Z ��1r.Q/

�r.Q/

��.K.x; r//
rn

�p dr
r
d�.x/:

Now, letPi be some ordering of cubesP 2 LD�Sep.R/ satisfyingQ\K1=2P nMBP ¤¿.
We define A1 D Q \K

1=2
P1
nMBP1 , and for i > 1,

Ai D Q \K
1=2
Pi
n

�
MBPi [

i�1[
jD1

Aj

�
:

Observe that Ai are pairwise disjoint and their union is Q \
S
P2LD�Sep.R/

.K
1=2
P nMBP /.

Thus, from (5.7), we have

�
�
Q \

[
P2LD�Sep.R/

K
1=2
P nMBP

�
‚�.2BR/

p
D

X
i

�.Ai /‚�.2BR/
p

.�;˛;�
Z
S
i Ai

Z ��1r.Q/

�r.Q/

��.K.x; r//
rn

�p dr
r
d�.x/ � E�;p.Q/�.Q/:

Note that since Q … BCE.R/, we have E�;p.Q/�.Q/ � "‚�.2BR/
p�.Q/. So the esti-

mate (5.3) holds.
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Lemma 5.5. There exists an n-dimensional Lipschitz graph �LD passing through all the
points wP , P 2 LD�Sep.R/. The Lipschitz constant of �LD depends only on ˛.

Proof. It suffices to show that for any Q;P 2 LD�Sep.R/, Q ¤ P; we have

(5.8) wQ � wP … K
1=2:

Without loss of generality, assume r.P / � r.Q/. By (5.4), we have

wQ … K
1=2
P nMBP :

In particular,
wQ … K

1=2.wP / nMBP :

So, to prove (5.8), it is enough to show that

(5.9) wQ …MBP :

Assume the contrary, i.e., wQ 2MBP . Then

dist.Q;P / � CMr.P / � t .r.Q/C r.P //:

That is, (4.9) holds. But Q and P are t -separated, and so (4.8) must fail. Hence,

r.P / � t�1r.Q/:

Q and P belong to LD�Sep.R/, so by (5.2) we have 1:1BQ \ 1:1BP D ¿. Thus,

dist.wQ; BP / � 0:1r.BQ/ � Ctr.BP / > Mr.BP /:

So (5.9) holds.

We can finally finish the proof of Lemma 5.1.

Proof of Lemma 5.1. By Lemma 5.2, it suffices to estimate the measure of cubes from
LDSep.R/. Let G denote an arbitrary finite subfamily of LDSep.R/. We use the covering
lemma (Theorem 9.31 of [58]) to choose a subfamily F � G such that[

Q2G

1:5BQ �
[
Q2F

2BQ;

and the balls ¹1:5BQºQ2F are of bounded superposition.
The above and the LD stopping condition give

(5.10)
X
Q2G

�.Q/ �
X
Q2F

�.2BQ/ . � ‚�.2BR/
X
Q2F

r.BQ/
n:

Now, it follows from Lemma 5.3 and Lemma 5.5 that for each Q 2 G � LDSep.R/, there
exists either wQ 2 �LD \ 1:2BQ or x 2 zGR \ 1:2BQ � �R \ 1:2BQ. Hence,

Hn.1:5BQ \ .�LD [ �R// �˛ r.BQ/
n:



D. Dąbrowski 1308

Now, using the bounded superposition property of F , we getX
Q2F

r.BQ/
n
�˛

X
Q2F

Hn.1:5BQ \ .�LD [ �R// . Hn
� [
Q2F

1:5BQ \ .�LD [ �R/
�

� Hn.2BR \ .�LD [ �R// �˛ r.R/
n
� �.2BR/‚�.2BR/

�1
� �.R/‚�.2BR/

�1;

since R 2 Ddb
� . Together with (5.10), this givesX

Q2G

�.Q/ .˛ ��.R/:

Since G was an arbitrary finite subfamily of LDSep.R/, we finally arrive atX
Q2LDSep.R/

�.Q/ .˛ ��.R/:

6. Top cubes and packing estimate

6.1. Definition of Top

In order to define the Top family, we need to introduce some additional notation. Given
Q 2D�, let MD.Q/ denote the family of maximal cubes from Ddb

� .Q/ n ¹Qº. It follows
from Lemma 2.1 (c) that the cubes from MD.Q/ cover �-almost all of Q.

Given R 2 Ddb
� , set

Next.R/ D
[

Q2Stop.R/

MD.Q/:

Since we always have MD.Q/ ¤ ¹Qº, it is clear that Next.R/ ¤ ¹Rº.
Observe that if P 2 Next.R/, then, by Lemma 4.1 and Lemma 2.2, we have for all

intermediate cubes S 2 D�, P � S � R;

(6.1) ‚�.2BS / .A ‚�.2BR/:

We are finally ready to define Top. It is defined inductively as TopD
S
k�0 Topk . First,

set
Top0 D ¹R0º;

where R0 was defined as supp�. Having defined Topk , we set

TopkC1 D
[

R2Topk

Next.R/:

Note that for each k � 0, the cubes from Topk are pairwise disjoint.

6.2. Definition of ID

We distinguish a special type of Top cubes. We say that R 2 Top is increasing density,
R 2 ID, if

�
� [
Q2HD.R/

Q
�
�
1

2
�.R/:
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Lemma 6.1. If A is big enough, then for all R 2 ID,

(6.2) ‚�.2BR/
p�.R/ �

1

2

X
Q2Next.R/

‚�.2BQ/
p�.Q/:

Proof. The definition of ID and the HD stopping condition imply that for any R 2 ID,

‚�.2BR/
p�.R/ � 2‚�.2BR/

p
X

Q2HD.R/

�.Q/ � 2A�p
X

Q2HD.R/

‚�.2BQ/
p�.Q/:

Note that all Q 2 HD.R/ are doubling, and so, by Lemma 2.3,

‚�.2BQ/
p�.Q/ .

X
P2MD.Q/

‚�.2BP /
p�.P / D

X
P2Next.R/
P�Q

‚�.2BP /
p�.P /:

If A is taken big enough, then the estimates above yield (6.2).

6.3. Packing condition

We will now establish the packing condition (3.2). For S 2 Top, set Top.S/D Top\D�.S/

and Topj .S/ D Topj \D�.S/. For k � 0, we also define

Topk0.S/ D
[

0�j�k

Topj .S/ and IDk0.S/ D ID \ Topk0.S/:

Recall that � satisfies the following polynomial growth condition: there exist C1 > 0 and
r0 > 0 such that for all x 2 supp�, 0 < r � r0; we have

(6.3) �.B.x; r// � C1r
n:

Lemma 6.2. For all S 2 Top, we haveX
R2Top.S/

‚�.2BR/
p�.R/(6.4)

.";�;� .C1/p�.S/C
Z
2BS

Z ��1C0r.S/

0

��.K.x; r//
rn

�p dr
r
d�.x/:

The implicit constant does not depend on r0.

Proof. First, we deal with ID cubes. Note that, from (6.2),X
R2IDk0 .S/

‚�.2BR/
p�.R/ �

1

2

X
R2IDk0 .S/

X
Q2Next.R/

‚�.2BQ/
p�.Q/

�
1

2

X
Q2TopkC10 .S/

‚�.2BQ/
p�.Q/;
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where the last inequality follows from the fact that
S
R2Topk0

Next.R/ D TopkC10 . Now,
observe that for Q 2 TopkC1, we have r.Q/ � C0A�k0 r.R0/, and so if k is big enough,
then r.2BQ/ � r0. Thus, by (6.3),

(6.5) ‚�.2BQ/ � C1:

Hence, X
R2Topk0 .S/

‚�.2BR/
p�.R/ D

X
R2Topk0 .S/nID

‚�.2BR/
p�.R/C

X
R2IDk0 .S/

‚�.2BR/
p�.R/(6.6)

�

X
R2Topk0 .S/nID

‚�.2BR/
p�.R/C

1

2

X
R2TopkC10 .S/

‚�.2BR/
p�.R/

�

X
R2Topk0 .S/nID

‚�.2BR/
p�.R/C

1

2

X
R2Topk0 .S/

‚�.2BR/
p�.R/C

.C1/
p

2
�.S/:

Note that for small cubesQ 2 Topk0.S/ (i.e., satisfying r.2BQ/� r0), we have (6.5), while
for big cubes, the trivial estimate ‚�.2BQ/ � �.2BS /r�n0 holds. It follows thatX

R2Topk0 .S/

‚�.2BR/
p�.R/ � .k C 1/..C1/

p
C �.2BS /

pr
�np
0 /�.S/ <1;

and so we may deduce from (6.6) thatX
R2Topk0 .S/

‚�.2BR/
p�.R/ � 2

X
R2Topk0 .S/nID

‚�.2BR/
p�.R/C .C1/

p�.S/:

Letting k !1, we arrive at

(6.7)
X

R2Top.S/

‚�.2BR/
p�.R/ � 2

X
R2Top.S/nID

‚�.2BR/
p�.R/C .C1/

p�.S/:

Now, we need to estimate the sum from the right-hand side. By the definition of ID, we
have, for all R 2 Top.S/ n ID,

�
�
R n

[
Q2HD.R/

Q
�
�
1

2
�.R/;

and so by Lemma 2.1 (c), we get

�.R/ � 2�
�
R n

[
Q2Stop.R/

Q
�
C 2�

� [
Q2Stop.R/nHD.R/

Q
�

D 2�
�
R n

[
Q2Next.R/

Q
�
C 2

X
Q2LD.R/

�.Q/C 2
X

Q2BCE.R/

�.Q/:

The measure of low density cubes is small due to (5.1), and so for � small enough, we
have

�.R/ � 3�
�
R n

[
Q2Next.R/

Q
�
C 3

X
Q2BCE.R/

�.Q/:
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Thus, X
R2Top.S/nID

‚�.2BR/
p�.R/ � 3

X
R2Top.S/

‚�.2BR/
p�
�
R n

[
Q2Next.R/

Q
�

(6.8)

C 3
X

R2Top.S/nID

‚�.2BR/
p

X
Q2BCE.R/

�.Q/:

Concerning the first sum, notice that if �.R n
S
Q2Next.R/Q/ > 0, then we have arbi-

trarily small cubes P belonging to Tree.R/. In particular, by (4.3) and (6.3), we have
‚�.2BR/� �

�1‚�.2BP /� �
�1C1, taking P 2 Tree.R/ n Stop.R/ small enough. Recall

also that for R 2 Top.S/; the sets R n
S
Q2Next.R/Q are pairwise disjoint. Hence,

(6.9)
X

R2Top.S/

‚�.2BR/
p�
�
R n

[
Q2Next.R/

Q
�
� .��1C1/

p�.S/:

To estimate the second sum, from (6.8), we apply (4.5) to getX
R2Top.S/

‚�.2BR/
p

X
Q2BCE.R/

�.Q/ �
1

"

X
R2Top.S/

X
P2Tree.R/

E�;p.P /�.P /

�
1

"

X
P2D�.S/

E�;p.P /�.P /:

By the definition of E�;p.P /, and the bounded intersection property of the balls 2BP for
cubes P of the same generation, we haveX

P2D�.S/

E�;p.P /�.P / D
X
k

X
P2D�;k.S/

Z
2BP

Z ��1r.P /

�r.P /

��.K.x; r//
rn

�p dr
r

.
X
k

Z
2BS

Z ��1C0A
�k
0

�A�k0

��.K.x; r//
rn

�p dr
r

.�
Z
2BS

Z ��1C0r.S/

0

��.K.x; r//
rn

�p dr
r
d�.x/:

Consequently,X
R2Top.S/

‚�.2BR/
p

X
Q2BCE.R/

�.Q/ .";�
Z
2BS

Z ��1C0r.S/

0

��.K.x; r//
rn

�p dr
r
d�.x/:

Together with (6.7), (6.8) and (6.9), this gives (6.4).

Let us put together all the ingredients of the proof of the main lemma.

Proof of Lemma 3.1. Let Top � Ddb
� be as above, and let ¹�RºR2Top be as in Lemma 4.8.

Then, properties (i) and (ii) are ensured by Lemma 4.8. Property (iii) follows from (6.1).
We get the packing estimate (3.2) from (6.4), by taking S D R0.
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7. Application to singular integral operators

To prove Theorem 1.17, we will use geometric characterizations of boundedness of oper-
ators from Kn.Rd / shown in Sections 4, 5, 9 of [30]. For n D 1, d D 2, a variant of this
characterization valid for the Cauchy transform was already proved in [55].

For Q;S 2 D�, Q � S , we set

ı�.Q; S/ D

Z
2BSn2BQ

1

jy � xQjn
d�.y/:

The notation Good.R/; Tr.R/;Next.R/, used below, was introduced in Section 3.

Lemma 7.1 ([30]). Let � be a compactly supported Radon measure on Rd satisfying the
growth condition (1.9). Assume there exist a family of cubes Top�Ddb

� and a correspond-
ing family of Lipschitz graphs ¹�RºR2Top satisfying:

(i) Lipschitz constants of �R are uniformly bounded by some absolute constant,

(ii) �-almost all Good.R/ is contained in �R,

(iii) for all Q 2 Tr.R/, we have ‚�.2BQ/ . ‚�.2BR/.

(iv) for allQ 2Next.R/, there exists S 2D�,Q�S; such that ı�.Q;S/.‚�.2BR/
and 2BS \ �R ¤ ¿.

Then, for every singular integral operator T with kernel k 2Kn.Rd /, we have

sup
">0

kT"�k
2
L2.�/

.
X
R2Top

‚�.2BR/
2�.R/;

with the implicit constant depending on C1 and the constant Ck from (1.8).

The result above is not explicitly stated in [30], but it is essentially Lemma 1, Section 5,
of [30]. The “corona decomposition” assumptions of Lemma 7.1 come from Lemma D
of [30], which is treated there as a black-box. The proof of Lemma 1 of [30] is con-
cluded in Section 9 of [30], and it is evident from its last line that we may replace the
ˇ-number right-hand side of Lemma 1 of [30] by the sum-over-Top-cubes right-hand side
of Lemma 7.1.

We are going to use Lemma 3.1 together with Lemma 4.8 and Lemma 7.1 to get the
following.

Lemma 7.2. Let � be a compactly supported Radon measure on Rd satisfying the growth
condition (1.9). Assume further that for some V 2 G.d; d � n/; ˛ 2 .0; 1/; we have

E�;2.R
d ; V; ˛/ <1:

Then, for every singular integral operator T with kernel k 2Kn.Rd /, we have

(7.1) sup
">0

kT"�k
2
L2.�/

. �.Rd /C E�;2.R
d ; V; ˛/;

with the implicit constant depending on C1; ˛ and the constant Ck from (1.8).
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Proof. Using Lemma 3.1 (with p D 2), it is clear that the assumptions (i)–(iii) of Lem-
ma 7.1 are satisfied. We still have to check if (iv) holds. Once we do that, the packing
estimate (3.2) together with Lemma 7.1 will ensure that (7.1) holds.

Suppose R 2 Top, Q 2 Next.R/. We are looking for S 2 D� such that ı�.Q; S/ .
‚�.2BR/ and 2BS \ �R ¤¿. Let P 2 Stop.R/ be such thatQ � P . By Lemma 4.8, we
have some constant ƒ such that

ƒBP \ �R ¤ ¿:

Together with (4.14), this implies that there exists S 2 Tree.R/ such that P � S , r.S/�ƒ
r.P /, and

2BS \ �R ¤ ¿:

We split

ı�.Q; S/ D

Z
2BSn2BP

1

jy � xQjn
d�.y/C

Z
2BP n2BQ

1

jy � xQjn
d�.y/:

Concerning the first integral, for y 2 2BS n 2BP , we have jy � xQj � r.S/ �ƒ r.P /,
and so (from (4.2))Z

2BSn2BP

1

jy � xQjn
d�.y/ . ‚�.2BS / .A ‚�.2BR/:

To deal with the second integral, observe that there are no doubling cubes between Q
and P . Then it follows from Lemma 2.2 thatZ

2BP n2BQ

1

jy � xQjn
d�.y/ . ‚�.100B.P //:

If P D R, then P is doubling and we have ‚�.100B.P // . ‚�.2BR/. Otherwise, the
parent of P , denoted by P 0, belongs to Tree.R/ n Stop.R/. Since 100B.P / � 2BP 0 , we
get (from (4.2))

‚�.100B.P // . ‚�.2BP 0/ .A ‚�.2BR/:

Either way, we get that ı�.Q;S/ .A ‚�.2BR/, and so the assumption (iv) of Lemma 7.1
is satisfied.

Lemma 7.2 allows us to use the non-homogeneous T1 theorem of Nazarov, Treil and
Volberg [48] to prove a version of Theorem 1.17 in the case of a fixed direction V , i.e., if
for all x 2 supp�, we have Vx � V .

Lemma 7.3. Let � be a Radon measure on Rd satisfying the polynomial growth condi-
tion (1.9). Suppose that there exist M0 > 1, ˛ 2 .0; 1/, V 2 G.d; d � n/ such that for
every ball B , we have

(7.2) E�;2.B; V; ˛/ �M0�.B/:

Then all singular integral operators T� with kernels in Kn.Rd / are bounded in L2.�/.
The bound on the operator norm of T� depends only on C1; ˛;M0; and the constant Ck
from (1.8).
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Proof. We apply Lemma 7.2 to �jB , where B is an arbitrary ball, and get that

sup
">0

kT".�jB /k
2
L2.�jB /

.C1;˛;Ck �.B/C E�jB ; 2.R
d ; V; ˛/:

It is easy to see that, using the assumptions (1.9) and (7.2), we have

E�jB ;2.R
d ; V; ˛/ . E�;2.B; V; ˛/C C

2
1�.B/ � .M0 C C

2
1 /�.B/:

Hence,

(7.3) sup
">0

kT".�jB /k
2
L2.�jB /

.C1;˛;Ck ;M0 �.B/:

The L2 boundedness of T� follows by the non-homogeneous T1 theorem from [48]. The
condition (7.3) is slightly weaker than the original assumption in [48], but this is not a
problem, see the discussion in Section 3.7.2 of [58].

We are ready to finish the proof of Theorem 1.17.

Proof of Theorem 1.17. Let B be an arbitrary ball intersecting supp�. Recall that, by the
definition of BPBE.2/, there exist M0 > 1, � > 0, VB 2 G.d; d � n/; and GB � B such
that �.GB/ � ��.B/, and for all x 2 GB ,Z r.B/

0

��.K.x; VB ; ˛; r//
rn

�2 dr
r
�M0:

By the polynomial growth condition (1.9), we also haveZ 1
r.B/

��.K.x; VB ; ˛; r//
rn

�2 dr
r
�

Z 1
r.B/

�.B/2

r2nC1
dr .

�.B/2

r.B/2n
� C 21 :

Hence, for all x 2 GB , Z 1
0

��.K.x; VB ; ˛; r//
rn

�2 dr
r

.C1;M0 1:

Set � D �jGB . The estimate above implies that for all balls B 0 � Rd , we have

E�;2.B
0; VB ; ˛/ D

Z
B 0

Z r.B 0/

0

��.K.x; VB ; ˛; r//
rn

�2 dr
r
d�.x/ .C1;M0 �.B

0/:

Clearly, � D �jGB has polynomial growth, and so we may apply Lemma 7.3 to conclude
that all singular integral operators T� with kernels in Kn.Rd / are bounded in L2.�/.
Thus, the corresponding maximal operators T� are bounded fromM.Rd / to L1;1.�/, see
Theorem 2.21 of [58].

Recall that for all balls B , we have �.GB/ �� �.B/. For any fixed T , the operator
norm of T�jGB ;"WL

2.�jGB /! L2.�jGB / is bounded uniformly in B and ", and so the
same is true for the operator norm of T�WM.Rd /! L1;1.�jGB /. Hence, we may use the
good lambda method, Theorem 2.22 of [58], to conclude that T� is bounded in L2.�/.
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8. Sufficient condition for rectifiability

The aim of this section is to prove the following sufficient condition for rectifiability.

Proposition 8.1. Suppose � is a Radon measure on Rd satisfying ‚n;�.�; x/ > 0 and
‚n�.�;x/ <1 for �-a.e. x 2Rd . Assume further that for �-a.e. x 2Rd , there exist some
Vx 2 G.d; d � n/ and ˛x 2 .0; 1/ such that

(8.1)
Z 1

0

��.K.x; Vx ; ˛x ; r//
rn

�p dr
r
<1:

Then � is n-rectifiable.

We reduce the proposition above to the following lemma.

Lemma 8.2. Suppose � is a Radon measure on B.0; 1/ � Rd , and assume that there
exists a constant C� > 0 such that‚n�.�; x/ � C� and‚n;�.�; x/ > 0 for �-a.e. x 2 Rd .
Assume further that there exist M0 > 0, V 2 G.d; d � n/ and ˛ 2 .0; 1/ such that for
�-a.e. x 2 Rd ,

(8.2)
Z 1

0

��.K.x; V; ˛; r//
rn

�p dr
r
�M0:

Then � is n-rectifiable.

Proof of Proposition 8.1 using Lemma 8.2. To show that � is rectifiable, it suffices to
prove that for any boundedE � supp� of positive measure, there existsF �E,�.F /> 0;
such that �jF is rectifiable. Given any such E we may rescale it and translate it, so, with-
out loss of generality, E � B.0; 1/.

Since 0 < ‚n;�.�; x/ and ‚n�.�; x/ < 1 for �-a.e. x 2 E, choosing C� > 1 big
enough, we get that the set

(8.3) E 0 D
®
x 2 E W ‚n;�.�; x/ > 0; ‚n�.�; x/ � C�

¯
has positive �-measure.

Let ¹Vkºk2N be a countable and dense subset of G.d; d � n/. It is clear that for any
˛ 2 .0; 1/, V 2 G.d; d � n/; there exists k 2 N such that K.0; Vk ; k�1/ � K.0; V; ˛/.
Set

Ek D

²
x 2 Rd W

Z 1

0

��.K.x; Vk ; k�1; r//
rn

�p dr
r
� k

³
:

It is a simple exercise to check that for each k 2 N, the set Ek is Borel. Moreover, it
follows from (8.1) that �.Rd n

S
kEk/D 0. Pick any k 2N with �.E 0 \Ek/ > 0 and set

F D E 0 \Ek . Using the Lebesgue differentiation theorem and (8.3), it is easy to see that
for�-a.e. x 2 F , we have‚n;�.�jF ; x/D‚n;�.�;x/ > 0 and‚n�.�jF ; x/D‚

n
�.�;x/�

C�. Hence, �jF satisfies the assumptions of Lemma 8.2, and so it is n-rectifiable.

8.1. Proof of Lemma 8.2 for � � H n

First, we will prove Lemma 8.2 under the additional assumption ‚n;�.�; x/ < 1 for
�-a.e. x 2 Rd (which is equivalent to �� Hn).
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Using similar tricks as in the proof of Proposition 8.1, it is easy to see that we may
actually replace ‚n;�.�; x/ <1 by a stronger condition: without loss of generality, we
can assume that there existC1>0 and r0>0 such that for all x 2 supp� and all 0< r � r0,
we have

(8.4) �.B.x; r// � C1r
n:

Then the assumptions of Lemma 3.1 are satisfied, and we get a family of cubes Top�Ddb
�

and an associated family of Lipschitz graphs �R, R 2 Top. The cubes from Top satisfy the
packing conditionX

R2Top

‚�.2BR/
p�.R/ . �.Rd /C E�;p.R

d ; V; ˛/ � .1CM0/�.B.0; 1//:

It follows that for �-a.e. x 2 Rd , we haveX
R2TopWR3x

‚�.2BR/
p <1:

Fix some x for which the above holds. Denote by R0 � R1 � � � � the sequence of cubes
from Top containing x. We claim that for �-a.e. x, this sequence is finite.

Indeed, if the sequence is infinite, we have ‚�.2BRi / ! 0. On the other hand, let
i � 0 and r.RiC1/ � r � r.Ri /. Since RiC1 2 Next.Ri /, we get, from (6.1),

‚�.x; r/ .A ‚�.2BRi /:

In consequence,
‚n;�.�; x/ .A lim sup

i!1

‚�.2BRi / D 0;

which may happen only on a set of�-measure 0 because‚n;�.�;x/> 0 for�-a.e. x 2Rd .
Hence, for �-a.e. x 2 Rd , the sequence ¹Riº is finite. This means that if Rk denotes

the smallest Top cube containing x, then x 2 Good.Rk/. It follows that

�
�
Rd n

[
R2Top

Good.R/
�
D 0:

By Lemma 3.1 (ii), we have �.Good.Rk/ n �Rk / D 0. Hence,

�
�
Rd n

[
R2Top

�R

�
D 0;

and so � is n-rectifiable.

8.2. Proof of Lemma 8.2 in full generality

Thanks to the partial result from the preceding subsection, it is clear that to prove Lem-
ma 8.2 in full generality, it suffices to show that for � satisfying the assumptions of
Lemma 8.2, we have

Mn�.x/ D sup
r>0

�.B.x; r//

rn
<1 for �-a.e. x 2 B.0; 1/:

To do that, we will use techniques from Section 5 of [61].
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Lemma 8.3 (Lemma 5.1 of [61]). Let C > 2. Suppose that � is a Radon measure on Rd ,
and that‚n�.�;x/�C� for�-a.e. x 2Rd . Then, for�-a.e. x 2Rd , there exists a sequence
of radii rk ! 0 such that

�.B.x; C rk// � 2C
d�.B.x; rk// � 20C�C

nCd rnk :

Let � < 1=2 be a small constant depending on ˛, to be chosen later. By the lemma
above (used with C D ��1) and Vitali’s covering theorem (see Theorem 2.8 of [42]), there
exists a family of pairwise disjoint closed ballsBi , i 2 I; centered at xi 2 supp��B.0;1/,
which cover �-almost all of B.0; 1/, and which satisfy

�.Bi / � 2�
�d�.�Bi / � 20C��

�d r.Bi /
n;

and
r.Bi / � �

for some arbitrary fixed � > 0. We may assume that (8.2) holds for all the centers xi .
Choose I0 � I a finite subfamily such that

�
�
B.0; 1/ n

[
i2I0

Bi

�
� "�.B.0; 1//;

where " > 0 is some small constant. Clearly, I0 D I0.�; "/.
For each i 2 I0, we consider an n-dimensional disk Di , centered at xi , parallel to

V ? 2 G.d; n/; with radius �r.Bi /. We define an approximating measure

� D
X
i2I0

�.Bi /

Hn.Di /
Hn
jDi :

Note that

(8.5) �.Di / D �.Bi / �� �.�Bi / .� C� r.Bi /n:

Moreover, since I0 is a finite family, the definition of � and (8.5) imply that � satisfies the
polynomial growth condition (3.1) with r0 Dmini2I0 r.Bi /=2 and C1 D C.�/C�, i.e., for
0 < r < r0 and x 2 supp �,

(8.6) �.B.x; r// � C.�/C� r
n:

Lemma 8.4. For � D �.˛/ < 1=2 small enough, we have

E�;p.R
d ; V; 1

2
˛/ .�;p .M0 C �.B.0; 1//

p/�.B.0; 1//:

The implicit constant does not depend on �; ".

Proof. Let i 2 I0 and x 2 Di . We will estimate the �-measure of K.x; V; 1
2
˛; r/.

First, note that �.K.x;V; 1
2
˛;r//D �.K.x;V; 1

2
˛;r/ nBi /. Indeed,Bi \ supp�DDi ,

andDi\K.x;V; 12˛/D¿ becauseDi is parallel to V ?. Thus, �.K.x; V; 1
2
˛; r/\Bi /D 0.

It follows immediately that for r � .1 � �/r.Bi /, we have �.K.x; V; 1
2
˛; r// D 0.
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Concerning r > .1 � �/r.Bi /, if � D �.˛/ is small enough, then

K.x; V; 1
2
˛; r/ n Bi � K.xi ; V;

3
4
˛; 2r/ n Bi

because x 2 �Bi . Thus, it suffices to estimate �.K.xi ; V; 34˛; 2r/ n Bi /.
Suppose r > .1 � �/r.Bi / and j 2 I0 is such that Dj \K.xi ; V; 34˛; 2r/ n Bi ¤ ¿.

Since Bi and Bj are disjoint, we have

r.Bj /C r.Bi /C dist.Bi ; Bj / � 3r and dist.Di ;Dj / �
r.Bi /

2
C
r.Bj /

2
:

It follows easily that, for � D �.˛/ small enough, we get �Bj � K.xi ; V; ˛; 4r/. Thus,
using (8.5),

�.K.xi ; V;
3
4
˛; 2r// D �.K.xi ; V;

3
4
˛; 2r/ n Bi / �

X
j2I0W�Bj�K.xi ;V;˛;4r/

�.Dj /

��

X
j2I0W�Bj�K.xi ;V;˛;4r/

�.�Bj / � �.K.xi ; V; ˛; 4r//:

Hence, thanks to (8.2),Z 1=4

0

��.K.xi ; V; 34˛; 2r//
rn

�p dr
r

.�
Z 1

0

��.K.xi ; V; ˛; r//
rn

�p dr
r
�M0:

This givesZ
Di

Z 1
0

��.K.x; V; 1
2
˛; r//

rn

�p dr
r
d�.x/ �

Z
Di

Z 1
0

��.K.xi ; V; 34˛; r//
rn

�p dr
r
d�.x/

� C.�/M0�.Di /C

Z
Di

Z 1
1=4

��.Rd /
rn

�p dr
r
d�.x/

.�;p M0�.Di /C �.R
d /p�.Di / �M0�.Bi /C �.B.0; 1//

p�.Bi /:

Summing over i 2 I0 yields

E�;p.R
d ; V; 1

2
˛/ .�;p .M0 C �.B.0; 1//

p/�.B.0; 1//:

Lemma 8.5. For � D �.˛/ < 1=2 small enough, we haveZ
Mn�.x/

p d�.x/ .˛;�;p
�
.C�/

p
CM0 C �.B.0; 1//

p
�
�.B.0; 1//:

The constants on the right-hand side do not depend on �; ".

Proof. By (8.6) and Lemma 8.4, we may use Lemma 3.1 to get a family of cubes Top�
satisfying properties (i)–(iii) of Lemma 3.1, and such thatX

R2Top�

‚�.2BR/
p�.R/ .˛;� .C�/p�.Rd /C C.p/.M0 C �.B.0; 1//

p/�.B.0; 1//(8.7)

.˛;�;p
�
.C�/

p
CM0 C �.B.0; 1//

p
�
�.B.0; 1//:
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Now, property (iii) of Lemma 3.1 lets us estimateMn�.x/. Indeed, suppose x 2 supp�,
and let r1 > 0 be such that

Mn�.x/ � 2
�.B.x; r1//

rn1
:

Since supp� �B.0;2/, we have r1 � 4. LetQ 2D� be the smallest cube satisfying x 2Q
and B.x; r1/ \ supp � � 2BQ (such a cube exists because the largest cube Q0 WD supp �
clearly satisfies supp � � 2BQ0 ). Let R 2 Top� be the top cube such that Q 2 Tr.R/.
Clearly, `.Q/ � r1. By Lemma 3.1 (iii), we have

�.B.x; r1//

rn1
. ‚�.2BQ/ . ‚�.2BR/:

Thus, Mn�.x/
p .

P
R2Top�

1R.x/‚�.2BR/p . Integrating with respect to � and apply-
ing (8.7) yields the desired estimate.

Lemma 8.6. We haveZ
Mn�.x/

p d�.x/ .˛;�;p
�
.C�/

p
CM0 C �.B.0; 1//

p
�
�.B.0; 1//:

In particular, Mn�.x/ <1 for �-a.e. x 2 B.0; 1/.

Proof. Denote

Mn;��.x/ D sup
r��

�.B.x; r//

rn
:

Recall that I0 D I0.�; "/ and set

E";� D supp� \
[
i2I0

Bi :

We claim that

(8.8)
Z
E";�

Mn;�.1E";��/.x/
p d�.x/ .

Z
Mn;� �.x/

p d�.x/:

Indeed, let x;x0 2Bj , j 2 I0, and r � �. Then, using repeatedly the fact that r.Bi /� �� r
for i 2 I0,

�.B.x; r/ \E";�/ � �.B.x
0; 3r/ \E";�/ �

X
i2I0WBi\B.x0;3r/¤¿

�.Bi /

D

X
i2I0WBi\B.x0;3r/¤¿

�.Di / � �.B.x
0; 5r//:

Hence, for all x 2 Bj , j 2 I0;

Mn;�.1E";��/.x/ � 5
n inf
x02Bj

Mn;� �.x
0/:

Integrating both sides of the inequality with respect to � in E";� yields (8.8).
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Lemma 8.5 and (8.8) giveZ
E";�

Mn;�.1E";��/.x/
p d�.x/�C.˛;�;p/

�
.C�/

p
CM0C�.B.0;1//

p
�
�.B.0;1//DWK;

where K is independent of � and ".
Set "k D 2�k . Observe that, for a fixed � > 0, we have �.Rd n lim infk E"k;�/ D 0,

where

lim inf
k

E"k;� D

1[
jD1

Gj and Gj D

1\
kDj

E"k;�:

The inclusion Gj � E"j ;� givesZ
Gj

Mn;�.1Gj�/.x/
p d�.x/ �

Z
E"j ;�

Mn;�.1E"j ;��/.x/
p d�.x/ � K:

Since the sequence of sets Gj is increasing, we easily get that for �-a.e. x 2 B.0; 1/,

1Gj .x/Mn;�.1Gj�/.x/
j!1
����!Mn;��.x/;

and the convergence is monotone. Hence, by the monotone convergence theorem,Z
Mn;��.x/

p d�.x/ � K:

The estimate is uniform in �, and so once again monotone convergence givesZ
Mn�.x/

p d�.x/ � K:

Taking into account Lemma 8.6 and Section 8.1, the proof of Lemma 8.2 is finished.

9. Necessary condition for rectifiability

In this section we will prove the following.

Proposition 9.1. Suppose � is an n-rectifiable measure on Rd , and 1 � p <1. Then,
for �-a.e. x 2 Rd , there exists Vx 2 G.d; d � n/ such that for any ˛ 2 .0; 1/, we haveZ 1

0

��.K.x; Vx ; ˛; r//
rn

�p dr
r
<1:

First, we recall the definition of ˇ2 numbers, as defined by David and Semmes [21].

Definition 9.2. Given a Radon measure �, x 2 supp�, r > 0; and an n-plane L, define

ˇ�;2.x; r/ D inf
L

�
1

rn

Z
B.x;r/

�dist.y; L/
r

�2
d�.y/

�1=2
;

where the infimum is taken over all n-planes intersecting B.x; r/.
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Tolsa [59] showed the following necessary condition for rectifiability in terms of ˇ2
numbers.

Theorem 9.3 ([59]). Suppose � is an n-rectifiable measure on Rd . Then, for �-a.e.
x 2 Rd , we have

(9.1)
Z 1

0

ˇ�;2.x; r/
2 dr

r
<1:

Remark 9.4. When showing that rectifiable sets have approximate tangents almost every-
where, one uses the so-called linear approximation properties, see Theorems 15.11 and
15.19 of [42]. The theorem of Tolsa improves on the linear approximation property and
allows us to improve on the classical approximate tangent plane result.

For a fixed n-rectifiable measure �, let Lx;r denote a plane minimizing ˇ�;2.x; r/ (it
may be non-unique, in which case we simply choose one of the minimizers).

Recall that in Definition 1.1 we defined the approximate tangent to � to be an n-plane
W 0x 2G.d;n/. LetWx WD xCW 0x , whenever the approximate tangent exists and is unique
(that is, for �-a.e. x, by Theorem 1.2). In order to apply Tolsa’s result in our setting, we
need the following intuitively clear result.

Lemma 9.5. Let � be a rectifiable measure. Then, for �-a.e. x 2 supp�, we have

(9.2)
distH .Lx;r \ B.x; r/;Wx \ B.x; r//

r

r!0
���! 0:

A relatively simple (although lengthy) proof can be found in Appendix A.
Before proving Proposition 9.1, we need one more lemma. Recall that if ˛ > 0, W is

an n-plane, and 0 < r < R; thenK.x;W ?; ˛; r;R/D K.x;W ?; ˛;R/ nK.x;W ?; ˛; r/.

Lemma 9.6. Let ˛; " 2 .0; 1/ be some constants satisfying � WD 1 � ˛ � 3" > 0. Let
x 2 Rd , r > 0; and suppose that W and L are n-planes satisfying x 2 W and

(9.3) distH .L \ B.x; r/;W \ B.x; r// � "r:

Then
K.x;W ?; ˛; r; 2r/ � B.x; 2r/ n B�r .L/:

Proof. Suppose y 2 K.x; W ?; ˛; r; 2r/, so that r < jx � yj < 2r and jx � �W .y/j <
˛jx � yj. We need to show that dist.y; L/ > �r .

Set y0 D �L.y/, x0 D �L.x/. Then, using (9.3),

dist.y; L/ D jy � y0j � jx � yj � jx0 � y0j � jx � x0j
D jx � yj � jx0 � y0j � dist.x; L/ � jx � yj � jx0 � y0j � "r:

Let Q�W and Q�L denote the orthogonal projections onto the n-planes parallel to W and L
passing through the origin. It follows from (9.3) thatk Q�W � Q�Lkop � ". Thus,

jx0 � y0j D j Q�L.x � y/j � j Q�W .x � y/j Ck Q�W � Q�Lkop jx � yj � j Q�W .x � y/j C 2"r:
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Hence, using the fact that j Q�W .x � y/j D jx � �W .y/j < ˛jx � yj, we get, from the two
estimates above,

dist.y;L/� jx � yj � j Q�W .x � y/j � 3"r � .1� ˛/jx � yj � 3"r � .1� ˛ � 3"/r D �r:

The proof is complete.

Proof of Proposition 9.1. Let � be n-rectifiable. For r > 0 and x 2 supp�, let Lx;r be the
n-plane minimizing ˇ�;2.x; r/. We know that for �-a.e. x 2 supp�, we have (9.1) and
(9.2) (in particular, the approximate tangent plane Wx exists). Fix such x. Set Vx D W ?x ,
let ˛ 2 .0; 1/ be arbitrary, and for 0 < r < R, set K.r/ D K.x; Vx ; ˛; r/, K.r; R/ D
K.x; Vx ; ˛; r; R/. We will show that

(9.4)
Z 1

0

��.K.r//
rn

�p dr
r
<1:

Let " > 0 be a constant so small that � WD 1 � ˛ � 3" > 0. Use Lemma 9.5 to find
r0 > 0 such that for 0 < r � r0, we have

distH .Lx;r \ B.x; r/;Wx \ B.x; r// � "r:

Then it follows from Lemma 9.6 that for all 0 < r � r0,

K.r; 2r/ � B.x; 2r/ n B�r .Lx;r /:

Note that, by Chebyshev’s inequality,

�.B.x;2r/nB�r .Lx;r //� �
�2

Z
B.x;2r/

�dist.y; Lx;r /
r

�2
d�.y/D ��2.2r/nˇ�;2.x;2r/

2:

Hence, for 0 < r � r0, we have

�.K.r; 2r//

rn
.� ˇ�;2.x; 2r/2;

and so, from (9.1),

(9.5)
Z r0

0

�.K.r; 2r//

rn
dr

r
.�

Z 2r0

0

ˇ�;2.x; r/
2 dr

r
<1:

Now, observe that for any integer N > 0,Z r0

2�N r0

�.K.r//

rn
dr

r
. .r0/

�n

NX
kD0

�.K.2�kr0//2
kn

� 2n.r0/
�n

NX
kD0

�.K.2�kr0//2
kn
� .r0/

�n

NX
kD0

�.K.2�kr0//2
kn

D .r0/
�n

NX
kD0

�.K.2�kr0//2
.kC1/n

� .r0/
�n

NX
kD0

�.K.2�kr0//2
kn
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D .r0/
�n

NC1X
kD1

�
�.K.2�kC1r0// � �.K.2

�kr0//
�
2kn C

�.K.2�.NC1/r0//

.2�.NC1/r0/n
�
�.K.r0//

rn0

.
Z r0=2

0

�.K.r; 2r//

rn
dr

r
C‚�.x; 2

�.NC1/r0/C 0:

Letting N !1, we get from the above and (9.5) thatZ r0

0

�.K.r//

rn
dr

r
.�

Z 2r0

0

ˇ�;2.x; r/
2 dr

r
C‚n;�.�; x/ <1

for �-a.e. x 2 supp�, where we also used the fact that ‚n;�.�; x/ <1 �-almost every-
where (because � is n-rectifiable). The integral

R 1
2r0

�.K.r//
rn

dr
r

is obviously finite, and so
we get that Z 1

0

�.K.r//

rn
dr

r
<1;

which is precisely (9.4) with p D 1. To get the same result with p > 1, note that since
‚n;�.�; x/ <1 for �-a.e. x, we haveZ 1

0

��.K.r//
rn

�p dr
r
�

Z 1

0

�.K.r//

rn
‚�.x; r/

p�1 dr

r

� sup
0<r<1

‚�.x; r/
p�1

Z 1

0

�.K.r//

rn
dr

r
<1:

10. Sufficient condition for BPLG

In this section we prove the “sufficient part” of Theorem 1.11. After a suitable translation
and rescaling, it suffices to show the following.

Proposition 10.1. Suppose p � 1, E � Rd is n-AD-regular, and 0 2 E. Let ˛ > 0,
M0 > 1, � > 0, and assume that there exist F � E \ B.0; 1/ and V 2 G.d; d � n/ such
that Hn.F / � �, and for all x 2 F ,

(10.1)
Z 1

0

�Hn.K.x; V; ˛; r/ \ F /

rn

�p dr
r
�M0:

Then there exists a Lipschitz graph � , with Lipschitz constant depending on ˛; n; d , such
that

(10.2) Hn.F \ �/ & 1;

with the implicit constant depending on �;p;M0;˛;n;d , and theAD-regularity constants
of E.

To prove the above we will use techniques developed in [40]. Fix V 2G.d;d � n/. Let
� > 0 and M 2 ¹0; 1; 2; : : : º. In the language of Martikainen and Orponen, a set E � Rd

has the n-dimensional .�;M/-property if for all x 2 E,

#
®
j 2 Z W K.x; V; �; 2�j ; 2�jC1/ \E ¤ ¿

¯
�M:
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It is easy to see that if E has the n-dimensional .�; 0/-property, then E is contained in a
Lipschitz graph with Lipschitz constant bounded by 1=� , see Remark 1.11 of [40].

The main proposition of [40] reads as follows.

Proposition 10.2 (Proposition 1.12 of [40]). Assume that E is n-AD-regular, and assume
that F1 � E \ B.0; 1/ is an Hn-measurable subset with Hn.F1/ �C 1. Suppose further
that F1 satisfies the n-dimensional .�;M/-property for some � > 0, M � 0. Then there
exists and Hn-measurable subset F2 � F1, with Hn.F2/ �C;�;M 1, which satisfies the
.�=b; 0/-property. Here b � 1 is a constant depending only on d .

Remark 10.3. It follows immediately from the proposition above that if we construct
F1 � E \ B.0; 1/ with Hn.F1/ � � satisfying the n-dimensional .˛=2; M/-property,
then we will get a Lipschitz graph � such that (10.2) holds. Hence, we will be done with
the proof of Proposition 10.1.

To construct F1, we will use another lemma from [40].

Lemma 10.4 (Lemma 2.1 of [40]). Let E be an n-AD-regular set with Hn.E/ � C > 0,
let F � E \ B.0:1/ be an Hn-measurable subset, and let

F" D
®
x 2 F W Hn.F \ B.x; rx// � "r

n
x for some radius 0 < rx � 1

¯
:

Then Hn.F"/ . " with the bound depending only on C and the AD-regularity constant
of E.

Note that the set F n F" does not have to be AD-regular. Nevertheless, we gain some
extra regularity that will prove useful.

Now, let E and F � E \ B.0; 1/ be as in the assumptions of Proposition 10.1. We
apply Lemma 10.4 to conclude that for some ", depending on � and the AD-regularity
constant of E, we have

Hn.F n F"/ �
�

2
:

Set F1 D F n F".

Lemma 10.5. There exists M DM.M0; "; ˛; n/ such that F1 satisfies the n-dimensional
.˛=2;M/-property.

Proof. Denote by FBad � F1 the set of x 2 F1 such that

(10.3) #
®
j 2 Z W K.x; V; ˛=2; 2�j ; 2�jC1/ \ F1 ¤ ¿

¯
> M:

We will show that, if M is chosen big enough, the set FBad is empty.
Let x 2 FBad and j 2 Z be such that there exists xj 2K.x;V;˛=2; 2�j ; 2�jC1/\ F1.

It is easy to see that for some � D �.˛/, independent of j , we have

B.xj ; �2
�j / � K.x; V; ˛; 2�j�1; 2�jC2/:

Since xj 2 F1 D F n F", it follows that

Hn.F \ B.xj ; �2
�j // > ".�2�j /n:
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The two observations above give

Hn.F \K.x; V; ˛; 2�jC2//

.2�jC2/n
�

Hn.F \K.x; V; ˛; 2�j�1; 2�jC2//

.2�jC2/n
&˛;� ":

By (10.3), there are more than M different scales (i.e., j ’s) for which the above holds.
Thus, for x 2 FBad, we haveZ 1

0

�Hn.K.x; V; ˛; r/ \ F /

rn

�p dr
r

&˛;� M"p:

Taking M D M.M0; "; ˛; n; p/ big enough, we get a contradiction with (10.1). Thus,
FBad is empty. Now, it follows trivially by the definition of FBad that F1 satisfies the
n-dimensional .˛=2;M/-property.

By Remark 10.3, this finishes the proof of Proposition 10.1.

11. Necessary condition for BPLG

In this section we prove the “necessary part” of Theorem 1.11. After rescaling, translating,
and using the BPLG property, it is clear that it suffices to show the following.

Proposition 11.1. Suppose E � Rd is n-AD-regular and 0 2 E. Let p � 1. Assume there
exists a Lipschitz graph � such that Hn.� \ E \ B.0; 1// � �. Then there exists ˛ D
˛.Lip.�// > 0, V 2 G.d; d � n/ and a set F � � \E \ B.0; 1/ such that Hn.F / & �,
and for x 2 F ,

(11.1)
Z 1

0

�Hn.K.x; V; ˛; r/ \E/

rn

�p dr
r
�M0;

where M0 > 1 is a constant depending on p; Lip.�/; � and the AD-regularity constant
of E.

We begin by fixing some additional notation. Set � DHnjE . We will denote the AD-
regularity constant of E by C0, so that for every x 2 E, 0 < r < diam.E/;

C�10 rn � �.B.x; r// � C0r
n:

Remark 11.2. Since we assume that E is AD-regular, the exponent p in (11.1) does not
really matter. For any p > 1, we have�Hn.K.x; V; ˛; r/ \E/

rn

�p
� C

p�1
0

Hn.K.x; V; ˛; r/ \E/

rn
;

and so it is enough to prove (11.1) for p D 1.

SetLD Lip.�/. Let V 2G.d;d � n/ be such that � is anL-Lipschitz graph over V ?,
and let � D �.L/ > 0 be such that

K.x; V; �/ \ � D ¿ for all x 2 � .

Set ˛ D min. �
2
; 0:1; 1

4L
/.
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For every x 2 E \ B.0; 1/ n � , consider the ball Bx D B.x; 0:01 dist.x; �//. We
use the 5r-covering lemma to choose a countable subfamily of pairwise disjoint balls
Bj D B.xj ; rj /, rj D 0:01 dist.xj ; �/, j 2 Z; such that

E \ B.0; 1/ n � �
[
j2Z

5Bj :

Observe that

(11.2)
X
j2Z

rnj � C0
X
j2Z

�.Bj / D C0�
� [
j2Z

Bj

�
� C0�.B.0; 2// . C 20 :

For each j 2 Z, set

Kj D
[
y25Bj

K.y; V; ˛/; Kj .r/ D
[
y25Bj

K.y; V; ˛; r/:

Lemma 11.3. For each j 2 Z, we have

(11.3) Hn.Kj \ �/ .L rnj :

Moreover,

(11.4) Kj .r/ \ � D ¿ for r < rj :

Proof. Equation (11.4) is easy to prove: observe that for r < rj , we have Kj .r/ � 6Bj ,
and so for y 2 Kj .r/,

dist.y; �/ � dist.xj ; �/ � 6rj D .1 � 0:06/ dist.xj ; �/ > 0:

Concerning (11.3), we claim that since � D graph.F / for some L-Lipschitz function
F WV ? ! V , and since ˛ is sufficiently small, for all x 2 Rd , we have

(11.5) K.x; V; ˛/ \ � � B.x; C dist.x; �//;

where C D C.L/ > 1: Indeed, if dist.x; �/ D 0, then K.x; V; ˛/ \ � D ¿ and there is
nothing to prove. Suppose dist.x;�/ > 0; y 2 K.x;V; ˛/\ � , and let z 2 � be the image
of x under the projection onto � orthogonal to V ?, i.e., z D �?V .x/C F.�

?
V .x//.

Observe that, since � is a Lipschitz graph,

jx � zj .L dist.x; �/;

and also �?V .x/ D �
?
V .z/. By the definition of a cone, y 2 K.x; V; ˛/ gives

j�?V .z � y/j D j�
?
V .x � y/j < ˛jx � yj:

On the other hand, y 2 � and the above imply

j�V .z � y/j � Lj�
?
V .z � y/j < L˛jx � yj:
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The three estimates above yield

jx � yj � jx � zj C jz � yj � C.L/ dist.x; �/C j�?V .z � y/j C j�V .z � y/j

� C.L/ dist.x; �/C ˛jx � yj C L˛jx � yj � C.L/ dist.x; �/C
1

2
jx � yj:

Hence, jx � yj .L dist.x; �/ and (11.5) follows.
Now, going back to (11.3), note that for y 2 5Bj , we have dist.y; �/ � rj , so that

K.y;V;˛/\ � � B.y;C rj / for some C D C.L/. Moreover, B.y;C rj /� B.xj ; 10Crj /.
Therefore, Kj \ � � B.xj ; 10Crj / \ � , and (11.3) easily follows.

Proof of Proposition 11.1. Let x 2 � \ B.0; 1/ and 0 < r < 1. Since ¹5Bj ºj2Z cover
E \ B.0; 1/ n � , and K.x; V; ˛; r/ \ � D ¿, we have

�.K.x; V; ˛; r// �
X

j2ZW5Bj\K.x;V;˛;r/¤¿

�.5Bj / . C0
X

j2ZW5Bj\K.x;V;˛;r/¤¿

rnj :

Notice that 5Bj \K.x;V;˛; r/¤¿ if and only if x 2Kj .r/. Hence, using the above and
Lemma 11.3 yieldsZ
�\B.0;1/

Z 1

0

�.K.x; V; ˛; r//

rn
dr

r
dHn.x/

.C0
Z
�\B.0;1/

Z 1

0

1

rn

X
j2Z

rnj 1Kj .r/.x/
dr

r
dHn.x/

D

X
j2Z

rnj

Z
�\B.0;1/

Z 1

0

1

rn
1Kj .r/.x/

dr

r
dHn.x/

�

X
j2Z

rnj

Z
Kj\�

Z 1

rj

1

rn
dr

r
dHn.x/ .

X
j2Z

rnj

Z
Kj\�

r�nj dHn.x/ .L
X
j2Z

rnj .C0 1;

see (11.2)–(11.4). We know that Hn.� \ B.0; 1/ \ E/ � �, and so we can use Cheby-
shev’s inequality to conclude that there exist M0 D M0.L; C0; �/ > 1 and F � � \
B.0; 1/ \E, with Hn.F / � �=2, such that for all x 2 F ,Z 1

0

�.K.x; V; ˛; r//

rn
dr

r
�M0:

A. Proof of Lemma 9.5

For reader’s convenience, we restate Lemma 9.5 below.

Lemma A.1. Let � be a n-rectifiable measure. For x 2 supp� and r > 0, let Lx;r denote
a minimizing plane for ˇ�;2.x; r/, let W 0x be the approximate tangent plane to � at x,
whenever it exists, and let Wx D W 0x C x. Then for �-a.e. x 2 supp�, we have

(A.1)
distH .Lx;r \ B.x; r/;Wx \ B.x; r//

r

r!0
���! 0:
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Proof. Recall that since � is n-rectifiable, the density ‚n.�; x/ exists and satisfies 0 <
‚n.�; x/ <1 for �-a.e. x. Let M � 100 be some big constant. Define

EM WD
®
x 2 supp� WM�1 � ‚n.�; x/ �M

¯
:

Note that �.Rd n
S
M�100 EM / D 0, and so it suffices to show that for all M � 100,

(A.1) holds for �-a.e. x 2 EM . Fix some big M , and set � D �jEM . It is well known that

(A.2) M�1 � ‚n.�; x/ D ‚n.�; x/ �M for �-a.e. x 2 supp �;

which can be shown, e.g., using Corollary 6.3 of [42] in conjunction with the Lebesgue
differentiation theorem. For �-a.e. x, the plane Wx is well defined by Theorem 1.2, and
also by Theorem 9.3,

(A.3)
Z 1

0

ˇ�;2.x; r/
2 dr

r
<1 for �-a.e. x 2 Rd :

Fix x 2 EM such that (A.3) and (A.2) hold, and such that Wx is well defined. Once we
show that (A.1) holds at x, the proof will be finished. From now on we will suppress the
subscript x, so that Lr DW Lx;r , W WD Wx . By applying an appropriate translation, we
may assume that x D 0.

Given some small r > 0, let Ar .y/ D y=r , so that Ar .B.0; r// D B.0; 1/. Set L0r D
Ar .Lr /. It is easy to see that (A.1) is equivalent to showing

distH .L0r \ B.0; 1/;W \ B.0; 1//
r!0
���! 0:

We will prove that the convergence above holds by contradiction. Suppose it is not true,
so that there exist " > 0 and a sequence rk ! 0 such that for all k, we have

(A.4) distH .L0rk \ B.0; 1/;W \ B.0; 1// � ":

Let � > 0 be some tiny constant. Observe that, by (A.3), for k � k0.�; M/ large
enough, we have

(A.5) ˇ�;2.0; rk/
2
�
�3

M
:

Indeed, otherwise one could use the simple fact that ˇ�;2.0; r/ . ˇ�;2.0; 2r/ to conclude
that

R 1
0
ˇ�;2.0; r/

2 dr=r D 1. Moreover, let us remark that for every 0 < ı < 1=2, if
k D k.ı/ is large enough, then we have L0rk \ B.0; ı/ ¤ ¿. This can be shown easily
using the fact that ‚n.�; x/ �M�1, that Lrk are minimizers of ˇ�;2.0; rk/, and the fact
that ˇ�;2.0; rk/! 0. We leave checking the details to the reader.

Now, we use the fact that for k large enough L0rk \ B.0; ı/ ¤ ¿ and the compactness
properties of the Hausdorff distance to conclude that there exists some subsequence (again
denoted by rk) such that L0rk \ B.0; 1/ converges in Hausdorff distance to a compact set
of the form V \ B.0; 1/, where V is an n-plane intersecting B.0; ı/. Since ı > 0 can be
chosen arbitrarily small, we get that V passes through 0. Note that, by (A.4),

(A.6) distH .V \ B.0; 1/;W \ B.0; 1// � ":
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LetB�rk .V / denote the �rk-neighborhood of V . We will show now that a large portion
of measure � in B.0; rk/ is concentrated at the intersection of B�rk .V / and B�rk .W /.

Since V passes through 0, for every r > 0, we have A�1r .V / D V . Thus,

(A.7)
distH .Lrk \ B.0; rk/; V \ B.0; rk//

rk

k!1
����! 0:

Note that, for k big enough,

1

�.B.0; rk//

Z
B.0;rk/

�dist.y; V /
rk

�2
d�.y/ �

1

�.B.0; rk//

Z
B.0;rk/

�dist.y; Lrk /
rk

�2
d�.y/

C

�distH .Lrk\B.0; 2rk/; V \B.0; 2rk//
rk

�2
�

rn
k

�.B.0; rk//
ˇ�;2.0; rk/

2
C �3

� 2Mˇ�;2.0; rk/
2
C �3 � 3�3:

see (A.2), (A.5), (A.7). It follows from Chebyshev’s inequality and the estimate above that

�.B.0; rk/ n B�rk .V // � �
�2

Z
B.0;rk/

�dist.y; V /
rk

�2
d�.y/ � 3��.B.0; r//:

Hence,
�.B.0; rk/ \ B�rk .V // � .1 � 3�rk/�.B.0; rk//:

On the other hand, by the definition of the approximate tangent plane W and (A.2), for
any 0 < ˛ < 1, we have

�.K.0;W; ˛; rk// D �.B.0; rk// � �.K.0;W
?;
p

1 � ˛2; rk//

� �.B.0; rk// �
�

2M
rnk � .1 � �/�.B.0; rk//;

if k is large enough (depending on ˛, � and M ). Note that K.0;W; ˛; rk/ � B˛rk .W / \
B.0; rk/. Thus, choosing ˛ D �, if we define

S D S.k; �/ D B.0; rk/ \ B�rk .V / \ B�rk .W /;

then by the two previous estimates, we have

(A.8) �.S/ � .1 � 4�/�.B.0; rk// �
1

2M
rnk ;

where in the second inequality we used (A.2).
We will show that if � is chosen small enough (depending on ", the constant from

(A.6)), then the estimate above leads to a contradiction. Roughly speaking, (A.8) means
that a lot of measure is concentrated in the intersection of B�rk .V / and B�rk .W /, but
since V and W are somewhat well-separated by (A.6), this intersection behaves approxi-
mately like an .n � 1/-dimensional set.
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Let us start by exploiting (A.6). By the definition of Hausdorff distance and the fact
that V and W are n-planes, it follows from basic linear algebra that there exists some
w 2 W ? with jwj D 1 and j�V .w/j � ". Let v1 D �V .w/=j�V .w/j, and let V0 � V be
the orthogonal complement of span.v1/ in V .

We define T D T .k; �/ to be a tube-like set defined as

T D T .k; �/ D
®
z 2 Rd W jz � v1j � 2�"

�1rk ; j�V0.z/j � rk ; j�
?
V .z/j � �rk

¯
:

We claim that S.k; �/ � T .k; �/. Indeed, let z 2 S . The estimate j�V0.z/j � rk is trivial
since S � B.0; rk/. The estimate j�?V .z/j � �rk follows from the fact that z 2 B�rk .V /.
Concerning jz � v1j, note that since z 2 B�rk .W / and w 2 W ?, we have jz � wj � �rk .
We can use our choice of w and v1 D �V .w/=j�V .w/j to get

�rk � jz � wj D jz � �V .w/C z � �
?
V .w/j

� jz � �V .w/j � jz � �
?
V .w/j D jz � v1j j�V .w/j � j�

?
V .z/ � �

?
V .w/j

� jz � v1j" � j�
?
V .z/j j�

?
V .w/j � jz � v1j" � �rk ;

where in the last inequality we used again z 2B�rk .V /. Thus, we have jz � v1j � 2�"�1rk ,
and the proof of S.k; �/ � T .k; �/ is finished.

Choose � D " for some tiny  D .M/ > 0, and let k be large enough for (A.8) to
hold. It follows from the definition of T that we can cover T with a family of balls ¹Biºi2I
such that r.Bi / D �rk and #I . "�1��.n�1/. It is well known that (A.2) implies that for
all y 2 Rd and r > 0, we have �.B.y; r// �Mrn. In particular, for each i 2 I we have
�.Bi / �M.�rk/

n. Thus, from (A.8),

1

2M
rnk � �.S/ � �.T / �

X
i2I

�.Bi /

� #IM.�rk/n . "�1��.n�1/M.�rk/
n
D "�1�Mrnk :

That is,
M�2 . "�1� D :

This is a contradiction for  D .M/ small enough. Hence, (A.4) is false, and so (A.1)
holds for �-a.e. x 2 EM . Taking M !1 finishes the proof.
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