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Distribution symmetry of toral eigenfunctions

Ángel D. Martínez and Francisco Torres de Lizaur

Abstract. In this paper we study a number of conjectures on the behavior of the
value distribution of eigenfunctions. On the two dimensional torus, we observe that
the symmetry conjecture holds in the strongest possible sense. On the other hand, we
provide a counterexample for higher dimensional tori, which relies on a computer-
assisted argument. Moreover we prove a theorem on the distribution symmetry of a
certain class of trigonometric polynomials that might be of independent interest.

1. Introduction

The importance of Laplace eigenfunctions might be underpinned by the fact that they are
analogous to the trigonometrical polynomials in the classical harmonic analysis. How far
the analogy can be drawn lies at the heart of many conjectures on their behavior. For
instance, Yau conjectured that the nodal set of Laplace eigenfunctions, ��g � D � �,
on a smooth Riemannian manifoldM of dimension n, has .n� 1/-dimensional Hausdorff
measure comparable to �1=2. In the case of eigenfunctions on the torus, this is easily seen
to be the case as an application of the fundamental theorem of calculus and an element-
ary geometric argument. For real-analytic manifolds, the proof of Yau’s conjecture was
given by Donnelly and Fefferman in [4]. Recently, Logunov proved the lower bound in
the smooth category and improved the exponential upper bound of Hardt and Simon to a
polynomial bound (cf. [11, 12]). It is beyond the scope of this paper to provide a compre-
hensive introduction to the subject and we refer the reader to the extensive literature (see
e.g [20] and references therein).

In view of the predictions of the random wave conjectures of quantum chaos [3,7,9], it
is interesting to investigate the relationship between the positive and negative parts of real
eigenfuntions on Riemannian manifolds. In the aforementioned seminal work, Donelly
and Fefferman also proved the following.

Theorem (Corollary 7.10 in [4]). There exists a constant C > 0 such that

1

C
�

vol.¹x 2M W  �.x/ > 0º/
vol.¹x 2M W  �.x/ < 0º/

� C:

2020 Mathematics Subject Classification: 35J05, 35B06, 58J70.
Keywords: Laplacian eigenfunctions, trigonometric polynomials, value distribution, symmetry conjecture.

https://creativecommons.org/licenses/by/4.0/


Á. D. Martínez and F. Torres de Lizaur 1372

The constant depends on the manifold, but not on the eigenvalue. In the case of the
sphere, this quasi-symmetry result was conjectured in [2]. In the case of surfaces, a differ-
ent proof was found by Nadirashvili in [15]; local versions have appeared for instance in
the work of Nazarov, Polterovich and Sodin [16]. For smooth Riemannian manifolds, the
analogous quasi-symmetry statement remains open (even in two dimensions).

In connection with this, it has even been conjectured that:

Conjecture 1.1 (Symmetry). The limit

vol.¹x 2M W  �.x/ > 0º/
vol.¹x 2M W  �.x/ < 0º/

! 1

holds as � grows to infinity.

An heuristic justification of the above, in the case of metrics of negative curvature,
seems to be provided by Berry’s conjecture, but Conjecture 1.1 is actually believed to
hold for any manifold [13].

In this paper we will disprove Conjecture 1.1 in the case of the n-dimensional tori with
n � 3, although it will be proved to hold in T2 (cf. Theorem 2.8 and Theorem 2.3 below,
respectively). It is not clear to the authors whether other two dimensional manifolds will
satisfy the conjecture. This is a particularly interesting geometry, where the behaviour of
eigenfunctions has subtle connections to number theory (cf. [5, 10, 17]). In a forthcoming
work, the authors will prove that, for the two dimensional sphere, the conjecture holds for
a basis of eigenfunctions (this is a weaker statement that trivially holds for n-dimensional
tori regardless of the dimension).

Another well-known result explores the ratio of global extrema.

Theorem (Nadirashvili, [15]). There exists a constant C > 0 such that

1

C
�
k ��¹ �>0ºk1

k ��¹ �<0ºk1
� C:

In general, the constant cannot be taken to be one (which would be optimal), as shown
by Jakobson and Nadirashvili using zonal spherical harmonics in [6]. This theorem was
extended by Jakobson and Nadirashvili for general Lp norms, 1 � p <1 (loc. cit.). The
exact value of the constant for the sphere Sn was considered in a work of Armitage in [1].
In [7], Jakobson, Nadirashvili and Toth claim: it is unclear whether

Conjecture 1.2. The limit

k ��¹ �>0ºkp

k ��¹ �<0ºkp
! 1 holds as �!1

for 1 < p <1 on a given manifold.

One of the by-products of the results in this paper will be to answer this affirmatively
for a wide class of two dimensional tori. It is quite likely that our counterexamples (The-
orem 2.3) to Conjecture 1.1 will also disprove this in the case of higher dimensional tori
(for instance, it is easy to observe that they do disprove the endpoint p D1), but we will
not pursue that question in this paper.
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2. Statements of results

The first observation of this paper will be the following.

Theorem 2.3 (Sign equidistribution). Given a non constant real eigenfunction  of the
flat two dimensional torus, the following identity holds :

vol.¹x 2 T2
W  .x/ > 0º/ D vol.¹x 2 T2

W  .x/ < 0º/:

This is stronger than Conjecture 1.1 and provides the first example for which it holds
(to the best of the authors’ knowledge). Let us observe in passing that one can show that
the symmetry conjecture holds for a canonical basis of eigenfunctions for the Dirichlet
problem on a ball using Stoke’s approximations of the zeroes of Bessel functions (cf. [18],
p. 505). This might provide an idea of the intrinsic analytic difficulties even in particular
well-known cases.

The following also holds.

Theorem 2.4 (Global extrema of eigenfunctions). Given a non constant real eigenfunc-
tion  of the flat two dimensional torus, the following identity holds :

max
x2T2

 .x/ D � min
x2T2

 .x/:

Or, stated differently, the absolute values of the maxima and minima coincide.

This fact is in clear contrast with the result of Armitage on the sphere [1], where
equality is shown to fail. Both observations suggest some symmetry of the distribution
function and will be consequences of the following more general:

Theorem 2.5 (Distributional symmetry). Given a non constant real eigenfunction  of
the flat two dimensional torus, the distribution function

d�.s/ D dvol.¹x 2 T2
W  .x/ > sº/

is symmetric around s D 0.

This might be compared with the recent work of Klartag [8].

Corollary 2.6 (Lp norm symmetry). Under the same hypothesis, the following holds :Z
¹ >0º

j .x/jp dx D

Z
¹ <0º

j .x/jp dx:

This answers affirmatively the question raised by Jakobson, Nadirashvili and Toth (i.e.,
Conjecture 1.2 above) in T2.

Notice that all these results are neither probabilistic nor semiclassical, which is in
contrast with part of the recent literature. At the same time, these observations together
with the general conjectures stated above suggest their truth in higher dimensions as well.
However, this is not the case (cf. Theorem 2.8).

We will next describe a distribution symmetry result in all dimensions, but only for a
special class of trigonometric polynomials which does not include all eigenfunctions; this
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will be later complemented with counterexamples exhibiting its sharpness. To state it, we
introduce the following class of trigonometric polynomials:

f .x/ D

nX
iD1

.an sin.2��i � x/C bn cos.2��i � x//

where x 2 Tn, ai ; bi 2 R and the �i 2 Zn are linearly independent vectors. We shall
denote this class of functions by �.Tn/. The main result we obtain for this class is:

Theorem 2.7 (Distributional symmetry of functions in �). The distribution function d�
of a non constant function f 2 �.Tn/ is symmetric around s D 0. In particular, it satisfies
sign equidistribution and its global extrema coincide in absolute value.

Notice that this is neither contained nor implied by our previous results. It comple-
ments Theorem 2.5 in dimension two, and analogous results regarding sign equidistribu-
tion, global maxima and Lp norm symmetry follow for this class as well.

The linear independence hypothesis can not be dropped in any dimension as the ex-
ample

f .x/ D sin.x/C cos.2x/

and small perturbations of it readily shows.
A more subtle counterexample within the class of eigenfunctions also exists, showing

that, in general, Conjecture 1.1 does not hold true.

Theorem 2.8. The function g.x; y; z/ given by

sin.x C y/ � cos.y � z/ � sin.x C z/

satisfies �� D 2 in T3 and it is negative for at least 52% of the volume.

The proof of this is a computer-assisted argument requiring about a billion computa-
tions.

The paper is organized as follows. In the next section we provide a proof of The-
orem 2.5, of which Theorems 2.3, 2.4 and Corollary 2.6 are immediate consequences.
The proof method applies to more general two dimensional tori. In Section 4 we show
that it does not apply to higher dimensional tori. In Section 5 we give three proofs of
Theorem 2.7 on trigonometric polynomials in the class � . They have different flavors
although two of them are essentially equivalent. Finally, we devote Section 6 to explain
how to perform the computer-assisted proof of Theorem 2.8.

3. Proof of Theorem 2.5

We will divide the proof in a number of cases depending on the eigenvalue. This is based
on the following tricotomy: since an eigenvalue should be a sum of two squares, say,

� D n2 Cm2 ;

then the following combinations of parities arise naturally:
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(a) Both n and m are even if and only if � � 0 mod 4.
(b) The pair n and m have different parity if and only if � � 1 mod 4.
(c) Both n and m are odd if and only if � � 2 mod 4.

Notice that the case �� 3 mod 4 is not possible in dimension two. The first two cases
are easy to handle.

For instance, (a) reduces to the latter. Indeed, if  .x/ is an eigenfunction with eigen-
value � � 0mod 4, it is easy to observe that  .x=2/ will be an eigenfunction with
eigenvalue �=4, and the proportion of area where it is positive or negative is preserved.
We might apply this procedure until we hit the cases (b) or (c).

In case (b), we claim that the eigenfunction satisfies the following identity:

 .x; y/ D � 
�
x C

1

2
; y C

1

2

�
;

which proves that the set where it is positive is a translation of the set where it is negative
and viceversa. Since translations preserve volume, the result follows. To see the claim,
observe that we can express

(3.1)  .x; y/ D
X
�

a� exp.2�i�1x C 2�i�2y/;

where the sum extends over the set of � 2 Z2 such that �21 C �
2
2 D �. The proof in this

case ends observing that the sum �1 C �2, being odd, immediately implies the claimed
functional identity.

Finally, in case (c) we know both coordinates are odd, so it is enough to translate
by 1=2 in one of them to get the same functional identity. This concludes the proof as the
translational symmetry is an involution and isometry, therefore: it interchanges the sets
with different sign, global extrema, and the level sets in general.

4. Extensions of the argument and obstructions

The same method of proof applies to other situations as well. For instance, Theorem 2.5
might be generalized to the following.

Theorem 4.9 (Symmetry). Letƒ�R2 be a lattice and construct the torus TDR2=.2�ƒ/.
Given a non constant real eigenfunction on T , the distribution function d� is symmetric
around s D 0.

The proof is a straightforward generalization of the one presented above, taking into
account that the eigenfunctions are combinations of exp.ik � x/ with k D nv1 C mv2,
where .v1; v2/ are the generators of the dual latticeƒ�. Indeed, case (b) is dealt with using
the translation .x; y/ 7! .x; y/ C u, with u being the unique vector such that v1 � u D
v2 � u D 1=2, and the rest of the argument follows mutatis mutandis. We leave further
details to the reader.

Likewise, the method of proof immediately provides:

Theorem 4.10. Distributional symmetry holds for real eigenfunctions in T3 with eigen-
value � 6� 2 mod 4 or functions in any Tn supported in odd frequencies in any torus Tn.
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Notice that this is more general as it does not restrict to eigenfunctions. One might
be led to believe that the exceptions to the theorem could be handled using a different
argument. This is false, as the counterexample constructed in Theorem 2.8 shows. As
the proof of this will be computer-assisted, we believe it is suitable to provide the reader
beforehand with an elementary argument showing that there are no semiintegral transla-
tion T Wx 7! xC 1

2
v with v 2Z3 such that the identity .x/D� .T x/ holds, obstructing

the extension of the arguments above. In fact, this played a crucial role in finding the
counterexample itself.

Indeed, suppose that the Fourier transform of  is supported at least in the frequency
vectors given by ��1 D .1; 1; 0/, ��2 D .1;�1; 0/, ��3 D .0; 1; 1/, ��4 D .0; 1;�1/, ��5 D
.1; 0; 1/ and ��6 D .1; 0;�1/. It is evident that one needs the scalar product of any of these
with v D .x; y; z/ to be an odd number, which forces at least one of the entries to be
odd. Due to the symmetry, it is enough to suppose x is odd. Let us now suppose that y is
odd as well. The four possible scalar products of such a v against the vectors .1; 1; 0/ and
.1;�1; 0/ show a contradiction, so y must be even. The same argument would apply to z.
But this is a contradiction as the vector product with .0; 1; 1/ would be even.

5. Proof of Theorem 2.7

We present three proofs: one analytic, the other geometric and the last one purely algeb-
raic. We find it appropriate to present the analytic proof, although it is not the most
elementary, for a couple of reasons. First because it might be of interest in itself, and we
hope the reader might find applications of the argument to different problems. Secondly,
it was our first proof and the way we discovered the result originally.

5.1. Analytic proof

The proof will be based on the following.

Lemma 5.11. Any continuous odd function can be uniformly approximated by linear
combinations of x2kC1 for k D 0; 1; : : : in any symmetric interval Œ�L;L�.

Proof. The Muntz–Szász theorem (cf. [14], p. 114) implies that any continuous func-
tion f in Œ0; 1� can be uniformly approximated by linear combinations of 1 and x2kC1

with k D 0; 1; : : : We might use a rescaling to let L D 1 without loss of generality. The
oddness in our case implies that f .0/ D 0, from which it follows that for any " there exist
coefficients an such that

f .x/ D a0 C

NX
kD0

ak x
k
CO."/;

and evaluating at x D 0 it follows that a0 D O."/ too and we might forget about it for
free. The rest follows by odd symmetry.

We are now ready to fix f 2 � . Let us define L D kf k1. Let us approximate the
function sign.x/ by a continuous odd function �.x/ such that j�.x/j � 1 and �.x/ ¤
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sign.x/ for jxj � �, while �.x/ D sign.x/ for jxj > �. This impliesZ
Tn

sign.f .x// dx D
Z

Tn

�.f .x// dx CO.vol.¹x W jf .x/j < �º//:

The latter is a thin neighbourhood of the nodal set Z.f / of f . In fact, by continuity of f
and compactness, it follows that for any ı > 0 there exists � D �.ı; f; �/ > 0 such that

¹f .x/ � �º � Z.f /C Bı ;

the size of which can be shown to be o.1/ as � tends to zero.
Let us now estimate the integral in the right-hand side. Given any " > 0, an application

of Lemma 5.11 shows thatZ
Tn

�.f .x// dx D

Z
Tn

NX
kD0

akf .x/
2kC1 dx CO."/:

The proof will end if we can proof that each integralZ
Tn

f .x/2kC1 dx

vanishes. Indeed, in such a case one might let "; �! 0 and putting together both estimates
we would be done. To complete the proof, then let us recall that f can be expressed as in
equation (3.1). Unfolding the .2k C 1/-fold product, the only terms that survive are those
for which the frequencies satisfy

(5.1) 0 D

2kC1X
jD0

�i.j / D

nX
iD1

Ai�i ;

which can not happen because the �i are linearly independent. This concludes the proof
of the sign equidistribution analogue for trigonometric polynomials in the class � .

Let us point out before continuing that the proof breaks down in general, as the linear
combination

��1 � �
�
4 � �

�
5 D .1; 1; 0/ � .0; 1;�1/ � .1; 0; 1/ D .0; 0; 0/

shows (cf. Section 4, last paragraph, for the definition of ��).
The same method of proof provides the following generalization.

Proposition 5.12. For any k 2 N, the identityZ
T2

f .x/2k sign.f .x// dx D 0

holds.

We have proved kD 0 above. We leave details to the reader. This implies the following
identity: Z L

0

s2k dvol.¹f .x/ > sº/ D
Z L

0

s2k dvol.¹f .x/ < �sº/:
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This and a straightforward variation of the uniqueness results known for the moment prob-
lem1 imply that the distribution functions

¹f .x/ > sº and ¹�f .x/ > sº

coincide for s > 0, which concludes the proof.

5.2. Geometric proof

Without loss of generality, let ¹�iºniD1 be a basis of Rn. It is possible to change to the
canonical basis by a linear map whose entries are rational. This induces a transform-
ation on the torus which distorts the volume uniformly (the same distortion at every
point). As a consequence, the distribution functions of our function and the function in
the new coordinates are proportional. The latter satisfies the distribution symmetry con-
jecture since there is a translation T such that g.T x/ D �g.x/.

5.3. Algebraic proof

Given f expressed as in equation (3.1), let A be the n � n matrix whose i th column is
given by the frequency vector �i ; equivalently, let Aj i WD .�i /j . Observe that, denoting by
¹eiº

n
iD1 the standard basis in Rn, we have Aei D �i .
Since the frequencies ¹�iºniD1 are linearly independent, A has an inverse A�1. In gen-

eral, the determinant of A will be (in absolute value) bigger than 1, and thus the entries
of A�1 will not be integers, but rational numbers (see the end of Section 4 above).

Denote by .A�1/t its transpose. For a sufficiently large N , the matrix B WD N.A�1/t

has integer entries and defines a map ˆWTn ! Tn. It is easy to see that this map is a
covering with degree equal to the determinant of B; locally, it is a diffeomorphism with
constant Jacobian, i.e, with uniform volume distortion. Thus the distribution function of f
is proportional to that of the function

g.x/ WD f .Bx/ D

nX
iD1

ai cos.B t�i � x/C bi sin.B t�i � x/:

On the other hand, B t�i D Nei , so

g.x/ D

nX
iD1

ai cos.2�Nxi /C bi sin.2�Nxi / :

Therefore g has a translational antisymmetry g.x C w/ D �g.x/ for the vector

w D
1

2N
.1; 1; : : : ; 1/t :

Since translations preserve volume, we have distribution symmetry for g, and hence also
for f .

1One only needs to replace the application of Weierstrass’ theorem in Chapter II Section 6 from [19] by a
version of the Müntz–Szász theorem.
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Let us now provide a more succinct variant of this proof without the geometric inter-
pretation. With the previous notation, define

u WD
1

2

nX
iD1

.A�1/t ei :

This vector verifies, for any i D 1; : : : ; n, the identity

�i � u D
1

2
�

Thus we conclude that the function f is antisymmetric under translations by u, i.e.,

f .x C u/ D

nX
iD1

ai cos.2��ix C �/C bi sin.2��ix C �/ D �f .x/ ;

and the result follows.

6. Proof of Theorem 2.8

We can estimate the volume of .x; y; z/ 2 Œ0; 1�3 such that

g.x; y; z/ D sin.2�.x C y// � cos.2�.y � z// � sin.2�.x C z// < 0

from below numerically. Indeed, it is easy to check that the gradient of g is uniformly
bounded by 6� ; this shows that the error g.x/� g.y/ is bounded by e D 6

p
3�L for any

point y within a cube of sidelength L centered at x. This allows us to reduce the problem
to a counting argument, as it will be enough to find the proportion of cubes where g is
negative. As a consequence, if the mesh length L of a grid G is small enough, the volume
where g is negative is bounded from below by the proportion of the centers of cubes x 2G
such that

g.x/ < �e:

The above argument provides a criterion to bound this proportion from below that can
be done computer-assisted for a large grid. However, the machine will commit rounding
errors when computing the elementary function g at any x 2 G. To address this issue
rigorously, we will check the condition

Ng.x/ < �1:1e;

where we denote by Ng.x/ the machine output of the calculation of g.x/. Indeed, the com-
putation to check the above inequality requires to compute g at every x 2G with a certain
accuracy, that, say, should be smaller than 0:05e. As a consequence, for any y in the cube
centered at x,

g.y/ D g.y/ � g.x/C g.x/ � Ng.x/C Ng.x/ < e C 0:05e � 1:1e < 0:
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Of course, we are forced to use an approximation of � . Let the approximation be N� . The
mean value theorem implies that the error committed when we compute each trigonomet-
ric function (at any fixed x 2 Œ0; 1�3) is bounded by 4 � j� � N�j. (Let us remark that the
mean value theorem is applied with respect to the variable N� .) In our computations, we
can use an approximation N� with accuracy 10�20. This adds an error corresponding to the
computation of the three trigonometric functions with N� which together is then bounded
by 12 � 10�20. The error committed computing

g0.x; y; z/ D sin.2 N�.x C y// � cos.2 N�.y � z// � sin.2 N�.x C z// < 0

in C++ is bounded by, at most, 3 � 10�6. Finally, the computer will need to add this three
numbers, which adds rounding errors 10�5 twice. The computation will be reliable if
11 � 10�6 < 0:05e holds.

Let us emphasize that this is a crude estimate on the error, and using more precision
arithmetic one can do much better, but as we will see below, for this problem we will not
need to go deeper as all we are approximating is the sum of three trigonometric functions.

A simple algorithm storing in a variable M the number of points x 2 G that satisfy
the condition

g.x/ < �1:1e

allows to compute the proportion M=L3. Due to the unusual number of computation
required, this is achieved through a computer-assisted approach. We supplemented this
argument with an algorithm implemented in C++ which, in the particular case of a grid
with N 3 D .27/3 points, gives

M

N 3
D
1123200

2097152
;

which is roughly an estimated 53:5% of points x 2 G satisfying g.x/ < �1:1e < 0. In
this case, the mesh sidelength is LD 1=N D 2�7, which implies that the maximal error e
committed within each box centered at those grid points is bounded above by 0:26. As
a consequence, the proportion of points provides a lower bound estimate for the points
where g.x/ < 0, proving the result. Similarly, one can conclude that the size of the area
positiveness is at least 34:3%. This is far from giving a close estimate. Using about a
billion nodes instead (.210/3 nodes), one can get the lower estimates 59:3% for the set of
points where g is negative and 39:1% for its complementary. This time the uncertainty of
sign reduces to less than 2% of the total volume.

The precision of any machine for the required calculation is within 10�6, an accuracy
that makes the above argument reliable and allows us to avoid a more rigorous study of
the cumulative errors the algorithm might have committed.
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