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Hypercontractivity on the unit circle for ultraspherical
measures: linear case

Paata Ivanisvili, Alexander Lindenberger, Paul F. X. Müller and
Michael Schmuckenschläger

Abstract. In this paper we extend complex uniform convexity estimates for C to Rn

and determine best constants. Furthermore, we provide the link to log-Sobolev in-
equalities and hypercontractivity estimates for ultraspherical measures.

1. Introduction

The starting point of this paper is Bonami’s sharp complex convexity estimate (see Chap-
ter III, Theorem 7 of [3])

(1.1)
Z

S1
jx C a�jdm.�/ �
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jxj2 C

1
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a2
�1=2

for x 2 R2; a 2 Œ0;1/;

where S1 denotes the unit circle in R2 and m denotes the usual Haar measure on S1,
with m.S1/ D 1. Davis, Garling and Tomczak-Jaegermann, see Proposition 3.1 of [4],
presented a proof of (1.1) based on the power series representation of elliptic integrals.
We remark that the estimate (1.1) can be seen as a corollary of hypercontractivity on the
unit circle for analytic polynomials. Independently, Rothaus [7] and Weissler [8] showed
that for any 1 � p < q �1 and any trigonometric polynomial f D

P
ak�

k , one has that� Z
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holds if and only if jr j �
p
.p � 1/=.q � 1/, r 2 R. If f is an analytic polynomial, i.e.,

f D
P
k�0 ak�

k , then using a personal communication by Janson, Weissler (see Corol-
lary 2.1 of [8]) obtains that k

P
k�0 akr

k�kkq � k
P
k�0 ak�

kkp holds if and only if
jr j �

p
p=q for all 0 < q � p � 1. The choice q D 2, a0 D x; a1 D 1 and ak D 0 for

all k � 2 gives

(1.2)
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for x 2 R2; a 2 Œ0;1/;
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for all 0 < p � 2, and p=2 is the best (i.e., largest) real constant satisfying (1.2). Alek-
sandrov, see Lemma 9.11 of [1], presented an elegant analytic proof of (1.2). The proofs
in [8], respectively [1], of (1.2) are complex analytic in nature; they do not seem to work
in the vector-valued case, i.e., find the largest C D C.p; n/ > 0 such that

(1.3)
� Z

Sn�1
jx C a�jp d�

�1=p
� .jxj2 C Ca2/1=2 for x 2 Rn; a 2 Œ0;1/;

where j � j is the n-dimensional Euclidean norm, and m is replaced by � , the normalized
Haar measure on the unit sphere in Rn. Let us also mention that Beckner’s hypercontrac-
tivity [2] on n-sphere implies the bound k1CrH1.�/kLq.Sn�1;d�/�k1CH1.�/kLp.Sn�1;d�/
for all r �

p
.p � 1/=.q � 1/, where 1 < p � q �1, andH1WSn�1!C is any spherical

harmonic of degree 1, i.e., �Sn�1H1 D �.n � 1/H1. While Beckner’s result pertains to
the circle of ideas discussed in the present paper, it does not seem to directly imply our
estimate (1.3).

Recently, see [5], we recorded a proof of (1.2), based on Green’s identities and sub-
harmonicity estimates, such asZ

S1
jx C a�jˇ dm.�/ � max¹a; jxjºˇ ; ˇ 2 R; x 2 R2; a 2 Œ0;1/:

In the present paper we obtain the largest C in (1.3) in dimensions n � 3. The cases
n D 3 and n � 4 are treated separately. For n D 3, we were able to adjust the argument
in [5]. In dimensions four and higher, our proof uses Riesz potential operators on Rn,
acting on the surface measure � .

In Section 3 we exhibit connections between the inequalities (1.3) and advanced tech-
niques based on logarithmic Sobolev inequalities. By change of variables, we reduce the
question to the study of hypercontractivity for ultraspherical measures on the unit circle,

d�m.z/ D cmjsin.�/jm d�; z D ei� 2 S1; �m.S
1/ D 1; m > �1;

applied to “linear polynomials” on S1 given by f .z/ D aC bz.
FormD �1, by definition, we set d��1.z/D 1

2
.ı1.z/C ı�1.z//. We are interested in

real numbers m;p; q; r , with 0 < p � q <1 and r 2 R, such that

(1.4) k1C rbzkLq.S1;d�m/ � k1C bzkLp.S1;d�m/ for all b 2 R:

Taking b! 0 in (1.4), one easily obtains a necessary condition on the 4-tuple .m;p; q; r/,
namely,

(1.5) jr j �

s
p Cm

q Cm
:

IfmD�1, then we are in the setting of a celebrated theorem of Bonami [3], also known as
Bonami–Beckner–Gross “two-point inequality”, which says that (1.5) implies (1.4) when
.m; p; q; r/ D .�1; p; q; r/ and q � p > 1. A theorem of Weissler [8] shows that (1.5)
implies (1.4) when .m; p; q; r/ D .0; p; q; r/ and q � p > 0. Inequality (1.3) with the
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largest C , the main theorem of our paper, in an equivalent way can be restated as (1.5)
implies (1.4) when .m; p; q; r/ D .n � 2; p; 2; r/, with n � 2, n 2 N and 2 � p > 0. In
Section 3, using log-Sobolev inequalities for ultraspherical measures, we show that (1.5)
implies (1.4) for 4-tuples .m; p; q; r/, with q � p � 6 and all m � �1. Despite of partial
progresses, the description of all 4-tuples .m; p; q; r/ for which (1.4) holds true remains
an open question.

Perhaps an advantage of the reformulation (1.4) over the vector-valued inequality (1.3)
is that the estimate of the type (1.4) can be asked for semigroups such that the analytic
polynomials Pk , deg.Pk/ D k, orthogonal with respect to the measure d�m, are eigen-
functions of the generator of the semigroup. Namely, given a sequence 0D �0 < �1 � � � �
(eigenvalues), 0 < p � q <1, find the largest C > 0 such that for all r 2 R, jr j � C , we
have

(1.6)



X
k�0

r�kakPk.z/




Lq.S1;d�m/

�




X
k�0

akPk.z/




Lp.S1;d�m/

;

for all ak 2 C, k � 0. Here we assume that aj D 0 starts for some large j � N in order to
avoid convergence issues of the infinity series. Our main results only cover the linear case
a0; a1 2 R, and ak D 0 for all k � 2, and they do not cover hypercontractivity in such
generality as (1.6).

For the reader’s convenience, we state explicitly the higher dimensional results that
we obtain in this paper using both approaches. In Section 2 we prove

(1.7) kx C raykLq.Sn�1;d�.y// � kx C aykLp.Sn�1;d�.y// for all x 2 Rn; a 2 R;

if q D 2, 0 < p � 2, n � 2, jr j �
p
.p C n � 2/=n, r 2 R. In Section 3, in particular, we

verify inequality (1.7) if 6 � p � q, n � 2, jr j �
p
.p C n � 2/=.q C n � 2/, r 2 R.

2. Main theorem

In this section, Sn�1 denotes the unit sphere in Rn, ¢ denotes the normalized Haar measure
on Sn�1, and Bnr .x/ denotes the open ball in Rn with radius r > 0, centered at x 2 Rn;
and we set for convenience Bnr D Bnr .0/. We remark that the notations used in Section 3
will be different from the ones in Section 2.

Theorem 2.1. Let n 2 N, with n � 2. Let p 2 .0; 2� and � � .nC p � 2/=n. Then

(2.1)
Z

Sn�1
jx � azjp d¢.z/ � .jxj2 C �a2/p=2 for x 2 Rn; a 2 Œ0;1/;

and .nC p � 2/=n is the best (i.e., largest) constant satisfying (2.1).

We start with the elementary observation that .nC p � 2/=n is the best (i.e., largest)
constant satisfying (2.1). For x 2 R2, with jxj D 1, and a; � 2 RC, define

(2.2) I.a/ D

Z
Sn�1
jx � azjp d¢.z/ and g.a/ D .1C �a2/p=2:
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Assuming that (2.1) holds true, for � > 0, we have

(2.3) I.a/ � g.a/ for a � 0:

We now show that (2.3) implies that � � .nC p � 2/=n. Clearly, we have that I.0/ D 1,
g.0/ D 1, g0.0/ D 0 and g00.0/ D p=�. Next, since

@ajx � azj
p
D pjx � azjp�2 z � .az � x/;

we have I 0.0/ D 0. Hence, (2.3) implies that I 00.0/ � g00.0/. Calculating further

@2ajx � azj
p
D p.p � 2/jx � azjp�4.z � .az � x//2 C pjx � azjp�2jzj2;

and invoking the integral identityZ
Sn�1
j.x � z/j2d�.z/ D

1

n

gives I 00.0/ D p.p � 2/=nC p. Thus, I 00.0/ � g00.0/, implies that � � .nC p � 2/=n.
Before turning to the proof of Theorem 2.1, we determine the parameters n and q for

which x 7! jxjq is a subharmonic mapping on Rn, and draw consequences (analogous to
Jensen’s formula in complex analysis).

Lemma 2.1. Let n 2 N and q 2 R. The function f WRn n ¹0º ! R, x 7! jxjq , is subhar-
monic if and only if q � max¹0; 2 � nº or q � min¹0; 2 � nº, and then

(2.4)
Z

Sn�1
jx � azjq d¢.z/ � max¹a; jxjºq for a 2 R; x 2 Rn:

Proof. For i 2 ¹1; : : : ; nº, we have

@if .x/ D qxi jxj
q�1; @2i f .x/ D qjxj

q�2
C q.q � 2/x2i jxj

q�4;

and therefore

(2.5) �f .x/ D q.nC q � 2/jxjq�2:

Clearly the sign of the factor q.nC q � 2/ determines if f is subharmonic or not.
We next turn to verifying that q.nC q � 2/ � 0 implies (2.4). If a < jxj, the mean

value property of subharmonic functions directly yieldsZ
Sn�1
jx � azjq d¢.z/ � jxjq :

To treat the case a > jxj, we define HaWBna.0/! R by

Ha.x/ WD

Z
Sn�1
jx � azjq d¢.z/:

and notice that Ha is subharmonic and rotational invariant, i.e., there exists a function
haW Œ0; a/! R such that

Ha.x/ D ha.jxj/ for x 2 Œ0; a/:
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Using subharmonicity and rotational invariance, together with the representation of the
Laplace operator in n-dimensional spherical coordinates, we obtain

0 � �Ha.x/ D jxj
1�n@r .r 7! rn�1@ha.r//.jxj/ for jxj 2 .0; a/:

This yields
rn�1@ha.r/ � 0 for r 2 Œ0; a/

and, consequently,
ha.r/ � ha.0/ D a

q for r 2 Œ0; a/:

Hence, for a > jxj, we have Ha.x/ D ha.jxj/ � aq; and henceZ
Sn�1
jx � azjq d¢.z/ � aq :

Proof. We now prove that (2.1) holds true for � WD .nC p � 2/=n. Since the case n D 2
is already known, we consider n� 3. An application of the divergence theorem yields thatZ

Sn�1
jx � azjp d¢.z/(2.6)

D 1C a2p.p C n � 2/

Z 1

0

Z t

0

�r
t

�n�1 Z
Sn�1
jx � azjp�2d¢.z/dr dt:

Indeed, put f WRn ! R, f .y/ WD jx � ayjp , and define a vector field X by X.y/ WD
rf .ty/. Then divX.y/ D t�f .ty/ and, by the divergence theorem,

@t

Z
Sn�1

f .tz/d¢.z/ D
Z

Sn�1
X.z/ � zd¢.z/(2.7)

D
1

nVoln.Bn2/
t

Z
Bn2

�f .ty/dy

D
1

nVoln.Bn2/

Z
tBn2

�f .y/dy

D
1

tn�1

Z t

0

Z
Sn�1

rn�1�f .rz/dr d¢.z/:

Integrating the identity (2.7) from t D 0 to t D 1 and invoking (2.5) gives (2.6). Define

H.a; x/ WD

Z
Sn�1
jx � azjp�2d¢.z/:

Then H.a; �/ is rotational invariant, i.e., there exists a function hW Œ0;1/2 ! R such that
H.a; x/ D h.a; jxj/. By (2.6) and re-scaling, we have

(2.8)
Z

Sn�1
jx � azjp d¢.z/ D 1C p.p C n � 2/

Z a

0

Z t

0

t1�nun�1h.u; 1/dudt:

The proof of Theorem 2.1 will be obtained by proving suitable lower estimates for the
volume integral appearing on the right-hand side of (2.8). We will distinguish the case
where x 7! jxjp�2 is sub-harmonic (corresponding to n D 3 and p � 1), and the case
where sub-harmonicity fails (corresponding to n � 4 or p > 1).
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2.1. Case n D 3 and p � 1

First note that

1C p.p C 1/

Z a

0

Z t

0

t�2u2 max¹1; uºp�2dudt(2.9)

D

´
1C p.pC1/

6
a2; a 2 Œ0; 1�;

ap C p.2�p/
3a
C

.p�1/p
2

; a > 1:

Indeed, (2.9) follows from a direct calculation separating the cases a � 1 and a > 1:
For a � 1, we calculateZ a

0

Z t

0

t�2u2 max¹1; uºp�2dudt D
Z a

0

t�2
Z t

0

u2dudt D
a2

6
;

which yields (2.9) for a � 1.
For a > 1, we calculateZ a

0

Z t

0

t�2u2 max¹1; uºp�2dudt

D

Z 1

0

t�2
Z t

0

u2dudt C
Z a

1

t�2
Z 1

0

u2dudt C
Z a

1

t�2
Z t

1

up dudt

D
1

6
�
a�1 � 1

3
C

ap � 1

.p C 1/p
C
a�1 � 1

.1C p/
;

which yields (2.9) for a � 1, by arithmetic.
Since x 7!jxjp�2 is subharmonic, for nD 3 and p 2 .0;1�, Lemma 2.1 yields h.a;x/�

max¹1; aºp�2. Applying this estimate to (2.8) and invoking (2.9), we obtain

(2.10)
Z

S2
jx � azjp d¢.z/ �

´
1C p.pC1/

6
a2; a � 1;

ap C p.2�p/
3a
�
p.1�p/
2

; a > 1:

Defining

g.a/ WD

8̂<̂
:
1C p.pC1/

6
a2; a 2 Œ0; 1�;

ap C p.2�p/
3a
�
p.1�p/
2

; a2 2 .1; 3
2�p

/;

ap; a2 � 3
2�p

;

it suffices to show

(2.11)
Z

S2
jx � azjp d¢.z/ � g.a/ �

�
1C

p C 1

3
a2
�p=2

:

We first consider a2 � 3=.2 � p/. In this case, we have

(2.12)
Z

S2
jx � azjp d¢.z/ � ap �

�
1C

p C 1

3
a2
�p=2

:
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Figure 1. Plots of the functions � and �0 for p 2 ¹0:1; : : : ; 0:85; 1º.

Indeed, by Lemma 2.1, x 7! jxjp is subharmonic. Taking into account that jxj D 1 and
a2 > 3=.2 � p/, Lemma 2.1 yieldsZ

Sn�1
jx � azjp d¢.z/ � max¹a; 1ºp � ap:

To obtain the second estimate in (2.12) note that a2 � 3=.2 � p/ holds if and only if
a2 � 1C pC1

n
a2.

We now turn to the case a2 < 3=.2 � p/. By (2.10), in this case, it remains to show
the second inequality of (2.12). If moreover a 2 Œ0; 1�, this is just Bernoulli’s inequality.
If finally a2 2 .1; 3=.2 � p//, we proceed as follows: For p 2 .0; 1�, we define

�.t/ WD tp=2 C
p.2 � p/

3
p
t
�
p.1 � p/

2
�

�
1C

p C 1

3
t
�p=2

:

We show that �.t/ � 0 for t 2 .1; 3=.2 � p//. Indeed, since t < 3=.2 � p/ holds if and
only if t < 1C pC1

3
t , we get

�0.t/ D
p

2
t .p�2/=2 �

p.2 � p/

6
t�3=2 �

p.p C 1/

6

�
1C

p C 1

3
t
�.p�2/=2

�

�p
2
�
p.p C 1/

6

�
t .p�2/=2 �

p.2 � p/

6
t�3=2

D
p.2 � p/

6
.t .p�2/=2 � t�3=2/ � 0:

Due to �.1/ � 0, this implies �.t/ � 0 for t 2 .1; 3=.2 � p//. Summing up for p 2 .0; 1�
and t D a2 2 .1; 3=.2 � p//, we have

ap C
p.2 � p/

3a
�
p.1 � p/

2
�

�
1C

p C 1

3
a2
�p=2

:

2.2. Case n > 3 or p > 1

Since we cannot apply Lemma 2.1, we need another lower bound for h.a; 1/. In order to
accomplish that, we use the formula

(2.13) r�� D
1

�.�=2/

Z 1
0

t��=2�1 exp
�
�
r2

t

�
dt D

1

�.�=2/

Z 1
0

t�=2�1 exp.�r2t /dt;
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which holds for all r > 0 and <� > 0. Putting � WD 2 � p, i.e., p D 2 � �, we get

H.a; x/ D

Z
Sn�1
jx � azjp�2d¢.z/

D
1

�.�=2/

Z 1
0

Z
Sn�1

t��=2�1 exp
�
�
jx � azj2

t

�
d¢.z/dt

D
1

�.�=2/

Z 1
0

� Z
Sn�1

exp
�2ax � z

t

�
d¢.z/

�
t��=2�1 exp

�
�
1C a2

t

�
dt:

We are thus left with finding a good lower bound forZ
Sn�1

exp.�x � z/d¢.z/ D
Z

Sn�1
cosh.�jx � zj/d¢.z/;

where � > 0 and jxj D 1. The obvious bound is 1, which eventually turns out not to
be sufficient for p < 4=.nC 2/, so we take the second Taylor approximation, that is,
cosh s � 1 C s2=2. By (2.13) and the functional equation of the gamma function, we
conclude

h.a; 1/ � .1C a2/��=2 C
2a2

n�.�=2/

Z 1
0

t��=2�3 exp
�
�
1C a2

t

�
dt

D .1C a2/��=2 C
2a2�.�=2C 2/

n�.�=2/
.1C a2/��=2�2

D .1C a2/p=2�1
�
1C

.4 � p/.2 � p/

2n

a2

.1C a2/2

�
DW  .a/:

According to (2.8), it remains to prove that

1C p.p C n � 2/

Z a

0

Z t

0

t1�nun�1 .u/dudt �
�
1C

p C n � 2

n
a2
�p=2

:

We set c WD .nC p � 2/=n and show

F.a/ WD 1C p.p C n � 2/

Z a

0

Z t

0

t1�nun�1 .u/dudt � .1C ca2/p=2 � 0:

Since F.0/ D 0, this follows from F 0 � 0, i.e.,

n

Z a

0

un�1 .u/du � an.1C ca2/p=2�1 � 0;

which in turn follows from

nan�1 .a/ � @a.a
n.1C ca2/p=2�1/ � 0:

Rearranging terms this amounts to

1C
.4 � p/.2 � p/a2

2n.1C a2/2
�

� 1C a2
1C ca2

�1�p=2
C
a2c.2 � p/

n.1C a2/

� 1C a2
1C ca2

�2�p=2
� 0:



Hypercontractivity for ultraspherical measures 1343

Put x WD .1C ca2/=.1C a2/; then x 2 .c; 1/ and

a2 D
1 � x

x � c
; 1C a2 D

1 � c

x � c
and

a2

1C a2
D
1 � x

1 � c
:

Thus, we have to show that

1C
.4 � p/.2 � p/.1 � x/.x � c/

2n.1 � c/2
� xp=2�1 C

c.2 � p/.1 � x/

n.1 � c/
xp=2�2 � 0;

i.e.,

x2�p=2 �
1C n.1�c/Cc.2�p/

n.1�c/
.x � 1/

1C .4�p/.2�p/.1�x/.x�c/

2n.1�c/2

D
1 � c � .1 � c2/.1 � x/

1 � c C .2 � p
2
/.1 � x/.x � c/

:

Considering n� 4 or p >1, we have cD 1� .2 � p/=n� 1=2. So, eventually it suffices to
prove that given q WD 2� p=2 2 Œ0; 1�, then for all .x; y/ 2 Œ0; 1�2 satisfying x � y � 1=2,
we have

(2.14) xq.1 � y C q.1 � x/.x � y// � 1 � y � .1 � y2/.1 � x/:

The function q 7! xq.1 � y C q.1 � x/.x � y// is decreasing. Indeed, the derivative of
the logarithm with respect to q is

.1 � x/.x � y/

1 � y C q.1 � x/.x � y/
� log

1

x
�
.1 � x/.x � y/

1 � y
� log

1

x
� 1 � x � log

1

x
� 0;

where we simply used the fact y � x � 1. Thus, we only have to prove, that, assuming
1=2 � y � x � 1, we have

x2
�
1 � y C 2.1 � x/.x � y/

�
� 1C y C .1 � y2/.1 � x/ � 0:

The left-hand side is a polynomial in x of order 4, which factorizes to

.1 � x/.x � y/.2x2 C y � 1/:

Due to the conditions on x and y, this is obviously non-negative.

However, the polynomial is negative for y � x < 1=2, and thus inequality (2.14) does
not hold for small values of p and n 2 ¹2; 3º. Hence, the above argument does not apply
to dimensions two and three!

3. Hypercontractivity for ultraspherical measures on the unit circle

Here we place the estimates of Theorem 2.1 in a wider framework, provided by logarith-
mic Sobolev inequalities and hypercontractivity. To this end, we first rewrite it as follows:
For 0 < p � 2, n � 2, jr j �

p
.p C n � 2/=n, r 2 R, we have

(3.1) kx C raykL2.Sn�1;d�.y// � kx C aykLp.Sn�1;d�.y// for all x 2 Rn; a 2 R:
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Figure 2. Plots of x 7! xq �
1�y�.1�y2/.1�x/
1�yCq.1�x/.x�y/

for y 2 ¹0:5; 0:3º and q 2 ¹1; 1:1; : : : ; 2º:

In this section we consider (3.1) for the range of parameters n� 2, and 0<p� q <1.
We are interested to find the largest possible constant C D C.n;p; q/ > 0 such that for all
r 2 R, jr j � C.p; q; r/, we have

(3.2) kx C arykLq.Sn�1;d�.y// � kx C aykLp.Sn�1;d�.y// for all x 2 Rn; a 2 R:

First we prove a theorem on the unit circle for ultraspherical measures

d�m.z/ D cmjsin.�/jm d� for all real m > �1;

where z D ei� 2 S1, and the scalar cm WD
�.m=2C1/

2�.1=2/�.m=2C1=2/
is chosen in such a way that

�m.S1/ D 1. For m D �1, we set d��1.z/ D 1
2
.ı�1.z/C ı1.z//.

Theorem 3.1. Let m � �1 and 6 � p � q. We have

(3.3) k1C rbzkLq.S1;d�m/ � k1C bzkLp.S1;d�m/ for all b 2 R

if and only if jr j �
p
.p Cm/=.q Cm/.

Let us show that the theorem implies the following corollary.

Corollary 3.1. For any 6 � p � q, all integers n � 2, and any real jr j �
q
pCn�2
qCn�2

,
inequality (3.2) holds true.

Indeed, without loss of generality, we can assume jxj D 1 in (3.2). Next, for y D
.y1; : : : ; yn/ 2 Sn�1 and � D .n � 2/=2, we have

kx C ayk
p

Lp.Sn�1;d�.y// D

Z
Sn�1

.1C 2ahx; yi C a2/p=2 d�.y/

D
�.�C 1/

�.1=2/�.�C 1=2/

Z 1

�1

.1C 2at C a2/p=2.1 � t2/��.1=2/ dt

D
�.�C 1/

�.1=2/�.�C 1=2/

Z �

0

.1C 2a cos.�/C a2/p=2 sin2�.�/ d� .t D cos.�//

D

Z
S1
j1C azjp d�2�.z/ D k1C azk

p

Lp.S1;d�n�2/
:
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Similarly, we have kx C raykLq.Sn�1;d�.y// D k1C razkLq.S1;d�n�2/. Thus, the inequali-
ties (3.2) and (3.3) are the same with m D n � 2.

Next we prove Theorem 3.1.

Proof. As the measure d��1.z/ D 1
2
.ı�1.z/C ı1.z// is the weak* limit of the measures

d�m.z/ when m! �1, m > �1, without loss of generality, we can assume that m > �1

in the theorem.
First we show that the assumption jr j �

p
.p Cm/=.q Cm/ is necessary for the

hypercontractivity (3.3). Indeed, notice thatZ
S1
.<.z//2 d�m.z/D cm

Z 2�

0

cos2.�/j sin.�/jmd� D 1�
cm

cmC2
D 1�

mC 1

mC 2
D

1

mC 2
:

Therefore,

k1C bzkLp.S1;d�m/ D
� Z

S1
j1C bzjp d�m.z/

�1=p
D

� Z
S1
.1C 2b<.z/C b2/p=2 d�m.z/

�1=p
D

� Z
S1
1C

p

2
.2b<.z/C b2/C

p

4

�p
2
� 1

�
4b2.<.z//2 C o.b2/d�m.z/

�1=p
D

�
1C

p

2
b2 C

p.p � 2/

2
b2
Z
.<.z//2d�m

�1=p
D 1C

b2

2
C
p � 2

2
b2

1

mC 2
C o.b2/

D 1C
b2

2
�
mC p

mC 2
C o.b2/:

So the inequality k1 C rbzkLq.S1;d�m/ � k1 C bzkLp.S1;d�m/ implies r2 mCq
mC2

�
mCp
mC2

.
Since p; q > �m, we obtain jr j �

p
.mC p/=.mC q/.

Next we show that the necessary condition jr j �
p
.p Cm/=.q Cm/ is also suffi-

cient for (3.3). Since q � 1 and d�m.z/ D d�m.�z/, the map r 7! k1C rbzkLq.S1;d�m/
is even and convex on R, and hence it is nondecreasing on Œ0;1/. Thus, it suffices to
prove (3.3) in the case when r D

p
.p Cm/=.q Cm/. Let m D 2�. After rescaling b as

b 7! b=
p
p Cm, we can rewrite (3.3) as follows:� Z �1

�1

�
1C

2btp
q C 2�

C
b2

q C 2�

�q=2
d��.t/

�1=q
(3.4)

�

� Z �1
�1

�
1C

2btp
p C 2�

C
b2

p C 2�

�p=2
d��.t/

�1=p
;

where d��.t/ D 2c2�.1 � t2/��.1=2/dt is a probability measure on Œ�1; 1�. Rescaling b
as b 7! b=

p
2, we see that inequality (3.4) simply means that the map

s 7!
� Z 1

�1

�
1C

2bt
p
s C �

C
b2

s C �

�s
d��.t/

�1=s
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is nonincreasing on .3;1/ (here s D p=2). If we differentiate in s, then after a certain
calculation we see that it suffices to show the following log-Sobolev inequality: Put f .t/D
1C 2bt=

p
s C �C b2=.s C �/, thenZ

f s lnf s d�� �
Z
f s d�� ln

Z
f s d��

� �s2
Z
f s�1

d

ds
f d�� D s2

Z
f s�1

�
bt.s C �/�3=2 C b2.s C �/�2

�
d��:

Therefore, if we let b.s C �/�1=2 D Qb and g.t/ D 1C 2 Qbt C Qb2, then our log-Sobolev
inequality rewrites as follows:

(3.5)
Z
gs lngs d�� �

Z
gs d�� ln

Z
gs d�� �

s2

s C �

Z
gs�1. Qbt C Qb2/d��:

The log-Sobolev inequality of Mueller–Weissler, see p. 277 of [6], for d�� states thatZ
gs lngs d�� �

Z
gs d�� ln

Z
gs d��(3.6)

�
s2

2.2�C 1/

2�C 1

2.�C 1/

Z
.g0/2gs�2d��C1 D

s2

4.�C 1/

Z
.g0/2gs�2d��C1:

Thus, we need to show thatZ
.g0/2gs�2d��C1 �

4.�C 1/

s C �

Z
gs�1. Qbt C Qb2/d��:

After an integration by parts, we can rewrite the left-hand side of the last inequality as

4.�C 1/

s � 1

Z
gs�1 t Qb d��

(here we used the fact that c2.�C1/
c�
D

�C1
�C1=2

). Hence, to prove (3.3) it suffices to show that

(3.7)
1

s � 1

Z
gs�1 t d�� �

1

s C �

Z
gs�1.t C Qb/ d��:

We can rewrite (3.7) as Z
gs�1 d�� �

Z
t .�C 1/

b.s � 1/
gs�1d��:

Integrating the right-hand side by parts, we see that it is enough to showZ
.1C 2at C a2/s�1d��.t/ �

Z
.1C 2at C a2/s�2d��C1.t/

for all a D Qb > 0. We claim that it suffices to consider the case when a 2 .0; 1/. Indeed,
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otherwise, we can writeZ
.1C 2at C a2/s�1d��.t/ D a2.s�1/

Z
.a�2 C 2a�1t C 1/s�1d��.t/

� a2.s�1/
Z
.a�2 C 2a�1t C 1/s�2d��C1.t/

D a2
Z
.1C 2at C a2/s�2d��C1.t/

�

Z
.1C 2at C a2/s�2d��C1.t/:

The inequality .s � 1/=.s � 2/ � 1 impliesZ
.1C 2at C a2/s�1 d��.t/ �

� Z
.1C 2at C a2/s�2d��.t/

�.s�1/=.s�2/
:

Next, by Jensen’s inequality, we have
R
.1C 2at C a2/s�2d�� � .1C a2/s�2 � 1. Thus,� Z

.1C 2at C a2/s�2d��.t/
�.s�1/=.s�2/

�

Z
.1C 2at C a2/s�2d��.t/:

So, we need to show that
R
.1C 2at C a2/s�2d��.t/�

R
.1C 2at C a2/s�2d��C1.t/.

The inequality trivially holds true if s D 3. Considering the linear function F.t/ D 1C
2at C a2, it suffices to show that

(3.8)
Z 1
0

rs�3��.t 2 Œ�1; 1� WF.t/ > r/dr �
Z 1
0

rs�3��C1.t 2 Œ�1; 1� WF.t/ > r/dr:

Consider h.u/ D ��.t 2 Œ�1; 1� W t > u/ � ��C1.t 2 Œ�1; 1� W t > u/. Clearly, h.�1/ D
h.0/ D h.1/ D 0. Also

h0.u/ D �2c2�.1 � u
2/��1=2 C 2c2�C2.1 � u

2/�C1=2

D 2c2�C2.1 � u
2/��1=2

� 1

2.�C 1/
� u2

�
:

It follows that h.u/ � 0 on Œ�1; 0� and h.u/ � 0 on Œ0; 1�. Thus, '.r/ D ��.t 2 Œ�1; 1� W
F.t/ > r/ � ��C1.t 2 Œ�1; 1� W F.t/ > r/ changes sign only once, that is, there exists
r0 2 Œ0;1/ such that '.r/ � 0 on Œ0; r0� and '.r/ � 0 on Œr0;1/. If r0 D 0, then (3.8)
trivially holds true. If r0 > 0, then we have

(3.9)
Z 1
0

�� r
r0

�s�3
� 1

�
'.r/ dr � 0

because the integrand has nonnegative sign. Therefore, inequality (3.9), together withR1
0
'.r/ dr D 0, implies

R1
0
rs�3'.r/ dr � 0.
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