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On the number of vertices of Newton–Okounkov polygons

Joaquim Roé and Tomasz Szemberg

Abstract. The Newton–Okounkov body of a big divisor D on a smooth surface
is a numerical invariant in the form of a convex polygon. We study the geometric
significance of the shape of Newton–Okounkov polygons of ample divisors, showing
that they share several important properties of Newton polygons on toric surfaces. In
concrete terms, sides of the polygon are associated to some particular irreducible
curves, and their lengths are determined by the intersection numbers of these curves
with D.

As a consequence of our description, we determine the numbers k such that D
admits some k-gon as a Newton–Okounkov body, elucidating the relationship of
these numbers with the Picard number of the surface, which was first hinted at by
work of Küronya, Lozovanu and Maclean.

1. Introduction

The Newton–Okounkov body of a line bundle with respect to an admissible flag is defined
as follows (see [3, 6, 11]). Let S be a normal projective variety of dimension d (the case
we shall deal with in the paper is that of a surface, d D 2), let D be a big divisor class
on S , and fix a flag

Y� W S D Y0 � Y1 � � � � � Yd D ¹ptº

which is admissible, i.e., Yi is an irreducible subvariety of codimension i , smooth at the
point Yd , for each i . Let gi be a local equation for Yi in Yi�1 around the point Yd . Then Y�
determines a rank d valuation vY� on the field of rational functions of S , namely vY�.f /D
.v1.f /; : : : ; vd .f //, where vi are defined recursively setting f1 D f and

vi .f / D ordYi .fi /; i D 1; : : : ; d;

fiC1 D .fi=g
vi .f /
i /jYi ; i D 1; : : : ; d � 1:

By trivializing OS .D/ in an arbitrary neighborhood of Yd , the valuation vY� may be
applied to global sections of multiples OS .kD/, and the Newton–Okounkov body of D
with respect to Y� is the convex body

�Y�.D/ D
°vY�.s/

k

ˇ̌̌
s 2 H 0.S;OS .kD//

±
:
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Whereas the volume of the Newton–Okounkov body is well known to be equal to
vol.D/=.dimS/Š for every Y�, its shape, and in particular its dependence on Y�, is still an
intriguing subject.

There are two situations in which the work of Lazarsfeld–Mustaţă [11] allows to
prove that �Y�.D/ is a polytope. If S is a toric variety, D is a torus-invariant divisor,
and the flag Y is composed of torus-invariant subvarieties, then [11] proves that �Y�.D/
is (up to the action of GLn.Z/) just the Newton polytope associated to D in toric geo-
metry (see §3.4 in [4]). If S is a surface, on the other hand, then Küronya–Lozovanu–
Maclean [7, 8] used the description of [11] to show that for every D and Y�, �Y�.D/ is a
polygon. A close analysis of their construction reveals that the shape of general Newton–
Okounkov polygons (on surfaces) reflects the geometry of the pair .D; Y�/ much like
Newton polygons do in the toric case. Indeed, when S;D and Y� are toric, �Y�.D/ is a
polygon with vertices in Z2, with a side corresponding to each prime toric divisor (if D
is ample), the selfintersections of these prime divisors determine the slopes of these sides,
and their intersection with D equals the lattice length of the corresponding sides. On an
arbitrary smooth projective surface, associated to each pair .D; Y�/, there is a config-
uration of irreducible curves playing the role of the torus-invariant prime divisors: each
side of �Y�.D/ corresponds to one or more of these irreducible curves, their slopes are
rational and determined by the intersection matrix of the configuration, and their lengths
are determined by the intersection numbers of D with the curves in the configuration.
This amounts to Theorem B in [8], which we prefer to state here in the following form
(we elaborate on the details in Section 6).

Proposition. Let S be a normal projective surface, D a big divisor on S , and Y�W S �
C � ¹pº an admissible flag. Let � be the maximal real number such that D � �C is
pseudo-effective, and let D � �C D P CN be the Zariski decomposition of D � �C .

The intersection matrix of C and of the irreducible components of N determine all
possible slopes of sides of �Y�.D/. For a fixed D and C , in the set of all big divisors D0

such that the negative part N 0 of the Zariski decomposition of D0 � �D0C has the same
support as N , and for each possible slope, the length of the corresponding side is a func-
tion of the intersection numbers of D0 with these curves (where we understand that if this
length is zero then no side with that slope exists).

Moreover, the lower sides are related to connected components ofN passing through p
whereas the upper sides are related to connected components ofN intersecting C at other
points.

It was observed in [7] that the number of vertices of �Y�.D/ is bounded above by
2�.S/ C 2, where �.S/ denotes the Picard number. We show that the slightly stronger
bound 2�.S/C 1 holds and is sharp, i.e., for any given natural number � there are sur-
faces S with �.S/ D �, ample divisors D and flags Y�WS � C � ¹pº such that �Y�.D/
is a .2� C 1/-gon. We also determine, in terms of configurations of negative curves on a
given smooth surface S , the numbers k for which there is a flag Y� such that �Y�.D/ is a
k-gon.

The role of Zariski decompositions in the determination of �Y�.D/ provides a strong
relationship with Zariski chamber decompositions, and in fact the subdivision of the inter-
val Œ0;�� given by the projections of the sides of the polygon is also induced by the Zariski
walls crossed by the ray that starts fromD in the direction of �C . Somewhat surprisingly
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for the authors, the numbers k for which �Y�.D/ can have k sides (or the chambers that
can be traversed by a ray emanating from D) are independent of D as long as it is ample.

In order to state our main result, we introduce some new invariants attached to a con-
figuration of negative curves. For an effective divisor N D C1 C � � � C Ck with negative
definite intersection matrix, consider the following two numbers:

• mc.N/ denotes the largest number of irreducible components of a connected divisor
contained in N .

• mv.N/ denotes k Cmc.N/C 4 if k < � � 1, and k Cmc.N/C 3 if k D � � 1.
Given a smooth projective surface S , let

mv.S/ D max¹mv.N/ jN D C1 C � � � C Ck negative definiteº:

Our main result is the following.

Theorem 1.1. On every smooth projective surface S , and for every big divisor D,

max
Y�
¹# vertices.�Y�.D//º � mv.S/;

where the maximum is taken over all admissible flags Y . If D is ample, then for every
3 � v � mv.S/ there exists a flag Y� such that �Y�.D/ has exactly v vertices.

Note that by the Hodge index theorem, mv.S/ is defined, and it is bounded above by
2�C 1; we also show that this upper bound is sharp:

Corollary 1.2. Given a positive integer �, there is a projective smooth surface S with
Picard number �.S/D �, a divisorD and a flag Y� such that�Y�.D/ has 2�C 1 vertices.

The deep analogy of Newton–Okounkov polygons with the Newton polygons in toric
geometry is the departure point for our work. In the case of finitely generated valuation
semigroup, the connection with toric geometry goes far beyond an analogy and has found
important applications via toric degenerations (see e.g. [5]). When the pseudo-effective
cone of S is finitely generated, only finitely many negative divisors N D C1 C � � � C Ck
exist, with theCi being generators, and the application of Theorem 1.1 becomes especially
straightforward. In these cases, a concrete description of the polygon �Y�.D/ is already
available, as a Minkowski sum of triangles and line segments (at least if S is del Pezzo or
the flag Y� is general enough, see [9, 12]).

In the absence of finite generation, the meaning of the toric analogy is far from being
well understood, and in [8] it appears implicitly only. In Section 2 we recall the descrip-
tion of Newton–Okounkov polygons uncovered by [11], Section 6.2, and [8] from the
point of view outlined above, which we then use to study these polygons, with special
emphasis on the number of vertices (or sides) they possess. The analysis of these boundar-
ies, done in Sections 3 and 4, allows to determine the number of lower and upper vertices;
Proposition 3.3 is the technical key to all results in this paper. It is worth stressing that,
analogously to the boundaries of classical Newton polygons, the lower boundary encodes
the local behavior of D near p, whereas the upper boundary encodes the behaviour “at
infinity”. In Section 5 we prove Theorem 1.1 and, finally, in Propositions 6.1 and 6.2 we
show how to explicitly determine the slopes and lengths (so the whole shape) of Newton–
Okounkov polygons from intersection numbers as indicated above. To construct flags Y�
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that give polygons with the desired number of points we use Lemma 5.3, which may be
interesting in itself: it shows that the Zariski chambers that can be crossed by a ray start-
ing from an ample class in the Néron–Severi space are independent of the particular class
chosen.

2. Newton–Okounkov polygons

In this section we recall the description of Newton–Okounkov polygons on surfaces given
by Lazarsfeld–Mustaţă [11] and Küronya–Lozovanu–Maclean [8]. Given a surface S , we
denote NS.S/ its Néron–Severi group (i.e., the group of divisors modulo numerical equi-
valence), a finitely generated abelian group of rank �.S/. When needed, we will consider
Q-divisors and R-divisors with the conventions of [10], and NS.S/R will be the space of
numerical classes of R-divisors endowed with the bilinear form given by the intersection
product.

Fix a smooth surface S , a big divisorD and an admissible flag Y�WS � C � ¹pº on S .
For every real number t , consider the R-divisor Dt D D � tC and, if Dt is effective or
pseudo-effective, denote its Zariski decomposition

Dt D Pt CNt :

Let �D �C .D/ be the coefficient ofC in the negative partN0 of the Zariski decomposition
of D, and let � D �C .D/ D max¹t 2 RjDt is pseudo-effectiveº. Note that D� belongs
to the boundary of the pseudo-effective cone, in particular it is not big (as big classes form
the interior of the pseudo-effective cone). For every t 2 Œ�; ��, define ˛.t/ D .Nt � C/p ,
i.e., the local intersection multiplicity of the negative part of Dt and C at p, and ˇ.t/ D
˛.t/C Pt � C . Lazarsfeld and Mustaţă showed in Section 6.2 of [11] that �Y�.D/ is the
region in the plane .t; s/ defined by the inequalities � � t � �, ˛.t/ � s � ˇ.t/. Note
that ˛ and ˇ are continuous piecewise linear functions in the interval Œ�; ��, respectively
convex and concave.

Observing that Nt increases with t and looking at N�, Küronya–Lozovanu–Maclean
proved in [8] that ˛ is nondecreasing, that the values t 2 .�; �/ where ˛ or ˇ fails to be
linear are exactly those where Dt crosses walls between Zariski chambers [2], and that
there are finitely many such crossed walls, in fact at most as many as components in N�.

Remark 2.1. Let q1; : : : ; qr be the intersection points of N� and C different from p. It
follows immediately from the description above that ˇ.t/DD �C� t C 2�

Pr
iD1.Nt �C/qi .

Our approach to understanding the number of vertices in Newton–Okounkov polygons
is to further analyze the dependence of Nt on t , and from this derive information on
the functions ˛ and ˇ. So, let us briefly recall the proof of polygonality of �Y�.D/ due
to [11] and [8]. Call C1; : : : ; Cn the irreducible components of N�, numbered in order of
appearance in the support of Nt , that is, denoting

ti D inf¹t 2 Œ�; �� jCi in the support of Ntº

for each i 2 ¹1; : : : ; nº, one has t0 WD � � t1 � � � � � tn < tnC1 WD �. We can write

Nt D a1.t/C1 C � � � C an.t/Cn;



On the number of vertices of Newton–Okounkov polygons 1387

where ai .t/ are (continuous) functions Œ�; �� ! R. The equations defining the Zariski
decomposition Dt D Pt C Nt tell us that, for t 2 Œti�1; ti � and 1 � j < i , Pt � Cj D 0,
or equivalently Nt � Cj D Dt � Cj . Therefore aj .t/ are solutions of the linear system of
equations

(2.1)
.a1.t/C1 C � � � C ai�1.t/Ci�1/ � Cj D .D � tC / � Cj ; 1 � j < i;

aj .t/ D 0; i � j � n:

These solutions are unique because the intersection matrix .Ck � Cj /1�k;j<i is nonsingu-
lar. Since the independent terms .D � tC / � Cj are affine linear functions of t , so are the
solutions aj .t/ D aj0 C aj1t , i.e., aj is affine linear on each interval Œti�1; ti �. It follows
then that ˛ and ˇ are continuous affine linear on each interval Œti�1; ti � (which can be
degenerate, if ti D ti�1) so �Y�.D/ is a polygon and the first coordinate of every vertex
equals one of the ti , i 2 ¹0; : : : ; nC 1º.

3. Interior vertices

We keep the notations of the previous section, namely Y�WS � C � ¹pº is an admissible
flag, Dt D D � tC D Pt CNt , and � D �C .D/, � D �C .D/, ˛, ˇ, ti are as above.

The vertices P D .ti ; s/ of �Y�.D/ can be classified as leftmost (if ti D t0 D �),
rightmost (if ti D tnC1 D �) and interior (if � < ti < �). A vertex P is also called upper
if s D ˇ.ti / and lower if s D ˛.ti /. Before proceeding to the determination of the ti for
which�Y�.D/ has upper and lower interior vertices, we recall a result on relative negative
parts of Zariski decompositions, essentially due to Zariski:

Lemma 3.1. Let D be an effective divisor on a smooth surface, let D D P C N be its
Zariski decomposition, and let N D a1C1 C � � � C anCn, ai 2 Q, be the decomposition
into irreducible components. For every subset I � ¹1; : : : ; nº, let bi ; i 2 I , be the solutions
to the system of linear equations�

D �
X
i2I

bi Ci

�
� Cj D 0; j 2 I:

Then bi � ai for each i 2 I .

Proof. First observe that we may assume I ¨ ¹1; : : : ; nº, as otherwise bi D ai and there
is nothing to prove. The presentation of Zariski decomposition given in [1] in terms of
linear algebra will immediately yield that there is J � ¹1; : : : ; nº, I ¨ J , such that the
solutions b0i to the corresponding system of equations�

D �
X
i2J

b0i Ci

�
� Cj D 0; j 2 J;

satisfy bi � b0i for each i 2 I , which applied recursively gives what we need. Indeed,
denote pD ŒD �

P
i2I biCi �, vD ŒD�, and ei D ŒCi �, 1 � i � n, considered as vectors in

NS.S/R. The space hei ii2I is, in the language of [1], a special negative definite subspace
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of the support space of v. So, the hypotheses of Lemma 5.3 in [1] are satisfied, and there-
foreD0 DD �

P
i2I biCi is effective. Since I ¨ ¹1; : : : ; nº, there is at least one curve Cj

among C1; : : : ;Cn such thatD0 �Cj < 0 (otherwise the Zariski decomposition ofD would
not involve all C1; : : : ; Cn); let J be I [ ¹j jD0 � Cj < 0º. Since the intersection form on
heiii2J is negative definite, there is a unique n D

P
i2J aiei with n � ei D p � ei8i 2 J .

Then Lemmas 5.2 and 5.3 in [1] give that n and p� n are effective. The latter effectiveness
gives bi � b0i for each i 2 I , as wanted.

Fix a pair of indices 1 � i � k � n such that ti�1 < ti D � � � D tk < tkC1. This means
that Ci ; : : : ; Ck are the components of the negative part of all NtiC" with " > 0 that are
not components of Nti . Write, for j D 1; : : : ; k,

aj .ti C "/ D

´
aj0 C aj1 " if � 1� " � 0;

aj0 C a
C

j1 " if 0 < "� 1;

where aj0 D 0 and aj1 D 0 for j � i , and aCj1 > 0 for every j � k.

Lemma 3.2. For every j D 1; : : : ; k, the inequality aCj1 � aj1 holds. If Cj � Cj 0 > 0 and
aCj1 > aj1, then aCj 01 > aj 01.

Proof. By definition,�
DtiC" �

kX
jD1

.aj1"C aj0/Cj

�
� Cj 0 D 0 for every " and every j 0 < i:

Therefore, by Lemma 3.1, for every 0 < "� 1 and every j ,

aCj1 "C aj0 � aj1 "C aj0;

whence aCj1 � aj1.
For the second claim, we only need to take care of the case j 0 < i . Then, we have for

every ", �
DtiC" �

i�1X
jD1

.aj1 "C aj0/Cj

�
� Cj 0 D 0;(3.1)

�
DtiC" �

kX
jD1

.aCj1 "C aj0/Cj

�
� Cj 0 D 0:(3.2)

Subtracting both equalities, it results

kX
jD1

.aCj1 � aj1/Cj � Cj 0 D 0; i.e.,
X
j¤j 0

.aCj1 � aj1/Cj � Cj 0 D .aj 01 � a
C

j 01/C
2
j 0 :

All terms on the left-hand side of the last equality are nonnegative, and if Cj � Cj 0 > 0 and
aCj1 > aj1, then at least one of them is positive, so the right-hand side must be positive and
aCj 01 > aj 01, as claimed.
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Proposition 3.3. Let C1; : : : ; Cn be, as above, the irreducible components of N�, and let
ti D inf¹ t jCi in Ntº with � D t0 � t1 � � � � � tmC1 D �. Fix some i; k with ti�1 < ti D
� � � D tk < tkC1.

The Newton–Okounkov body �Y�.D/ has an interior lower vertex with first coordin-
ate ti if and only if, for every " > 0, there is a connected component of NtiC" that goes
through p and contains at least one of the Ci ; : : : ; Ck .

It has an interior upper vertex with first coordinate ti if and only if, for every " > 0,
there is a connected component of NtiC" that intersects C at a point different from p and
contains at least one of the Ci ; : : : ; Ck .

Proof. As above, C1; : : : ; Ck are the irreducible components of NtiC" for 0 < "� 1, and

NtiC" D

kX
jD1

.aCj1 "C aj0/Cj if 0 < "� 1:

Because of the description above of the lower boudary ˛.t/ of �Y�.D/, it is clear that
if no component Ci passes through p then ˛.t/ D 0 for all t 2 .�; ti C "/ for small ",
and there is no lower vertex with first coordinate ti . So assume some component passes
through p, and let J � ¹1; : : : kº be such that

S
j2J Cj is the connected component of

NtiC" that contains p. We have

˛.ti C "/ D

8̂̂<̂
:̂
X
j2J

.aj1 "C aj0/.Cj � C/p if � 1� " � 0;X
j2J

.aCj1 "C aj0/.Cj � C/p if 0 < "� 1;

so there is a lower vertex with first coordinate ti if and only if aCj1 > aj1 for some j
such that Cj passes through p. By Lemma 3.2, this certainly happens if there is some
component Cj , j 2 J , j � i . Conversely, if all components Cj , j 2 J , have j < i , the
equations involving aj1 and aCj1 in (3.1) and (3.2) are equal, so aj1 D aCj1 for all i 2 J ,
and there is no interior lower vertex with first coordinate ti .

The proof of the second claim is entirely analogous, and we will be brief. Because
of Remark 2.1, if no component Cj meets C at a point different from p then ˛.t/ D
D � C � t C 2 for all t 2 .�; ti C "/ for small ", and there is no upper vertex with first
coordinate ti . On the other hand, if some component Cj does meet C at a point different
from p, by Remark 2.1, there is an upper vertex with first coordinate ti if and only if
aCj1 > aj1 for some j such that Cj meets C at a point different from p, and Lemma 3.2
finishes the proof just as in the case of lower vertices.

Corollary 3.4. The number of interior lower (respectively, upper) vertices of �Y�.D/
is bounded above by the number of irreducible components of the connected component
N.p/ of N� that meets C at p (respectively, the number of irreducible components of N�
in some N.q/ for some q 2 C n ¹pº/.
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4. Rightmost vertices

We keep the notation of the previous section, namely D is a big divisor, C an irreducible
curve, p a point on C , Dt D D � tC , � D max¹t jDt pseudo-effectiveº, � D �C .D/,
Dt D Pt CNt the Zariski decomposition for � � t � �, and the irreducible components
of N� are C1; : : : ; Cn.

Lemma 4.1. The subspace

V D hŒD� �; ŒC1�; : : : ; ŒCn�i � NS.S/R

has dimension n C 1, and the intersection form restricted to V is nondegenerate with
signature .1; n/.

Proof. The negative part N� of the Zariski decomposition D� D N� C P� (if nonzero)
satisfies N� � N� and hence is a combination of the Ci . Therefore ŒP� � 2 V . Since D
is big, P� is big and nef, and therefore P 2� > 0. As the intersection matrix of the Ci is
negative definite, and ŒP� � 2 V , it follows that dim V D n C 1 and there is some class
ŒP � 2 V orthogonal to all Ci , which moreover has P 2 > 0.

Proposition 4.2. If the numerical equivalence class ŒC � belongs to the subspace

V D hŒD�; ŒC1�; : : : ; ŒCn�i � NS.S/R;

then �Y�.D/ has 1 rightmost vertex. If ŒC � is ample and does not belong to V , then
�Y�.D/ has 2 rightmost vertices.

Proof. By the previous lemma, there is a divisor P orthogonal to all Ci , with P 2 > 0 and
such that V D hŒP �; ŒC1�; : : : ; ŒCn�i.

If ŒC �2V , then ŒP��D ŒD���ŒC �� ŒN��2V , and sinceP� is orthogonal to allCi , it
must be ŒP��D aŒP � for some a 2R. If a¤ 0, then P 2� D a

2P 2 > 0 and P� would be big,
contradicting the definition of�, so aD 0 and P�D 0. Hence ˛.�/� ˇ.�/DP� �C D 0,
which means that �Y .D/ has a single rightmost vertex.

On the other hand, if ŒC � … V , then ŒP�� D ŒD� � �ŒC � � ŒN�� … V , and in partic-
ular ŒP�� ¤ 0. If moreover ŒC � is ample, and so belongs to the interior of the nef cone,
then its intersection with every nonzero class on the (dual) pseudo-effective cone is posit-
ive. Therefore ˛.�/ � ˇ.�/ D P� � C > 0, which means that �Y .D/ has two rightmost
vertices.

Corollary 4.3. If the negative part N� of the Zariski decomposition D� D P� CN� has
�.S/ � 1 irreducible components, then the polygon �Y�.D/ has exactly one rightmost
vertex.

Proof. By Lemma 4.1, the subspace

V D hŒD�; ŒC1�; : : : ; ŒCn�i � NS.S/R

has dimension equal to �.S/ � 1C 1 and is therefore equal to the whole Néron–Severi
space. The claim then follows from Proposition 4.2.
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5. Counting vertices

Recall from the introduction that for an effective divisorN DC1C � � � CCn with negative
definite intersection matrix,mc.N/ denotes the largest number of irreducible components
of a connected divisor contained in N ,

mv.N/ D

´
nCmc.N/C 4 if n < �.S/ � 1;
nCmc.N/C 3 if n D �.S/ � 1;

and mv.S/ is the maximum of all mv.N/ for N D C1 C � � � C Cn negative definite.
First we prove that mv.S/ is an upper bound for the number of vertices of every

Newton–Okounkov body on S , and then we give a constructive proof that for every ample
divisor class D, every number of vertices allowed by the bound is realized by some flag.

Theorem 5.1. On every smooth projective surface S , for every big divisor D and every
flag Y�, we have that # vertices.�Y�.D// � mv.S/:

Proof. We shall be more precise, showing that if �D �C .D/,�D�C .D/ andN DN�D
a1C1 C � � � C anCn is the negative part of the Zariski decomposition of D� D D � �C ,
then the number of vertices is bounded by mv.N/. By Proposition 3.3, the number of
upper iterior vertices is bounded by n, and the number of lower interior vertices is bounded
by mc.N/; the number of leftmost and rightmost vertices is always at most 2, but if
n D �.S/ � 1, then by Corollary 4.3 there is exactly 1 rightmost vertex, and the bound
follows.

Corollary 5.2. Let S be a smooth projective algebraic surface, D a big divisor and Y D
¹C; pº an admissible flag on S . The polygon �Y�.D/ has at most 2 �.S/C 1 vertices.

For the construction of flags leading to bodies with the desired number of vertices we
shall need the following lemma, which may be of independent interest.

Lemma 5.3. Let N D C1 C � � � C Ck be an effective divisor with negative definite inter-
section matrix (admitting k D 0, in which case N D 0/, and let A be an ample divisor.
There is an irreducible curve C whose class is ample, such that for every t with A � tC
pseudo-effective, the negative part of its Zariski decomposition is supported on N , and
moreover, for every i D 1; : : : ; k,

(1) C intersects Ci in at least two points,

(2) denoting Nt the negative part of the Zariski decomposition of A � tC , sup¹t 2
Q jCi is not contained in Ntº is a finite positive real number ti , and

(3) t1 < � � � < tk .

Moreover, the numerical class of the curve C can be taken in the span hA;C1; : : : ; Cki.

Note that the second condition simply means that the support of Nt is exactly N for t
large enough. Observe that the lemma still holds when N D 0, as the claims in that case
are empty.

Proof. We will prove by induction on k that there are positive rational numbers a1; : : : ; ak
such thatB DA� a1C1 � � � � � akCk is ample, and that every irreducible curveC 2 jmBj
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satisfies the last two desired properties. Since for every ample class B there is a multiple
mB and an irreducible curve C 2 jmBj that intersects each Ci in at least two points, we
shall be done.

If k D 1, choose a positive integer a such that the divisor class B D A � .1=a/C1 is
ample. Then for every C 2 jmBj, A1=m D A � .1=m/C D .m=a/C1 D N1=m, so that

0 < sup¹t 2 Q jC1 is not contained in Ntº < 1=m;

and we are done.
Now assume the claim is true for the divisor C1 C � � � C Ck�1, and let a1; : : : ; ak�1

be positive rational numbers such that B 0 D A � a1C1 � � � � � ak�1Ck�1 is ample and
satisfies the two conditions

(1) denoting N 0t the negative part of the Zariski decomposition of A � tB 0, sup¹t 2
Q jCi is not contained in N 0t º is a finite positive real number t 0i , and

(2) t 01 < � � � < t
0
k�1

.

Of course, this implies the two analogous conditions for A� tC for every C 2 jmB 0j.
Note that for every t 2 Œ0; 1=m�, since At D .1�mt/ACmt.a1C1 C � � � C ak�1Ck�1/,
with .1 �mt/A nef and a1C1 C � � � C ak�1Ck�1 effective, by the extremality properties
of the Zariski decomposition it follows that Nt � tm.a1C1 C � � � C ak�1Ck�1/ (with
equality if and only if t D 1=m). In particular, all components of Nt are among the Ci .

Choose rational numbers si with 0D s0 < t 01 < s1 < t
0
2 < � � �< sk�2 < t

0
k�1

< sk�1 <1.
The choices made guarantee that the irreducible components ofN 0si are exactlyC1; : : : ;Ci ,
and, since for every i < j � k we have N 0tj � Nsi and P 0tj � Cj D 0, it follows that
P 0si � Cj � .t

0
j � si /B

0 � Cj > 0 for all i < j � k. Therefore, by continuity of the Zar-
iski decomposition (see Proposition 1.14 in [2]), there exist "i > 0 such that for all 0 <
ak � "i , the irreducible components of the negative part in the Zariski decomposition of
A � si .B

0 � akCk/ are also exactly C1; : : : ; Ci . Thus it suffices to choose a rational ak
smaller than "0; : : : ; "k�1 and set B D A � a1C1 � � � � � akCk , because clearly N1 D
a1C1 C � � � C akCk and therefore

tk�1 < sk�1 < sup¹t 2 Q jCk is not contained in Ntº < 1;

completing the induction step.
The classB is by construction a combination ofA and theCi , so the class ofC belongs

to hA;C1; : : : ; Cki as claimed.

Lemma 5.4. LetN D C1C � � � CCk be a maximal effective divisor with negative definite
intersection matrix, i.e., such that there exists no curve C 0 distinct from C1; : : : ; Ck with
N C C 0 having negative definite intersection matrix, and let A be an ample divisor. If
k < �.S/ � 1, there is an irreducible curve C satisfying all properties of Lemma 5.3 but
whose numerical class is linearly independent of hA;C1; : : : ; Cki.

Proof. Consider the class B from the proof of Lemma 5.3; we can slightly modify B to
obtain a B 00 which still satisfies the properties and whose numerical class is independent,
as follows. Assuming ti D sup¹t 2Q jCk is not contained in Ntº for i D 1; : : : ;k as above,
choose rational numbers si 2 .ti ; tiC1/ and sk 2 .tk ; 1/. Let Z be an irreducible curve
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whose numerical class is independent of those of C and the Ci . Then Psi � .1� si /A, so
Psi � Z > 0, and by continuity of the Zariski decomposition, there exist "i > 0 such that
for all jbj � "i the Zariski decomposition of A� si .B C bZ/ has exactly the components
C1; : : : ; Ci in its negative part. The fact that N is maximal guarantees that for no t > sk
any other negative curve appears in Nt . Then the desired class is B 00 D B C bZ for some
jbj � "i for every i .

Theorem 5.5. On every smooth projective surface S , for every ample divisorA and every
integer v, 3 � v � mv.S/, there exists a flag Y� such that # vertices.�Y�.A// D v:

Proof. Choose an effective divisor Nmv D C1 C � � � C Ck with negative definite inter-
section matrix, such that mv.S/ D mv.Nmv/, and assume that its components have been
ordered in such a way that for every 1 � i � mc.Nmv/, the divisor C1 C � � � C Ci is con-
nected. By the definition of mv.N/, it is not restrictive to assume that Nmv is maximal,
i.e., there exists no curve C 0 with Nmv C C 0 having negative definite intersection matrix.

If k < �.S/ � 1, for every i � j � k, mv.C1 C � � � C Cj / D mv.Nmv/ � k C j ,
and for 0 � j � i , mv.C1 C � � � C Cj / D mv.Nmv/ � k � i C 2j . On the other hand, if
k D �.S/ � 1, for every i � j < k, mv.C1 C � � � C Cj / D mv.Nmv/ � k C j C 1, and
for 0 � j � i , mv.C1 C � � � C Cj / D mv.Nmv/ � k � i C 2j C 1. In any event,

¹3; : : : ; mv.S/º �
[

N�Nmv

¹mv.N/ � 1;mv.N / � 2º
S
¹mv.Nmv/º:

Therefore, it will be enough to prove that, for every N with negative definite intersection
matrix,

• if N is maximal, there is a flag Y� such that �Y�.A/ has mv.N/ vertices;
• if N is nonzero or has less than �.s/ � 1 components, there is a flag Y� such that
�Y�.A/ has mv.N/ � 1 vertices;

• if N is nonzero and has less than �.s/ � 1 components, there is a flag Y� such that
�Y�.A/ has mv.N/ � 2 vertices.

In the case of a maximalN with less than �.S/� 1 components, choose an irreducible
curve C satisfying the conditions of Lemma 5.4, and let p be one of the intersection points
of C and C1 (unlessN D 0 in which case we choose an arbitrary p 2C ). We claim thatA,
Y�W S � C � ¹pº give a body with mv.N/ vertices. On the one hand, since A is ample,
P0 D A and P0 � C > 0, so � D 0 and �Y�.A/ has two leftmost vertices. Moreover,
Proposition 3.3 ensures that �Y�.A/ has two interior vertices with first coordinate equal
to the number ti given by Lemma 5.4 for i D 1; : : : ;mc.N /, whereas it only has an upper
interior vertex for mc.N/ < i � k. Finally, as the numerical class of C is independent of
those of A; C1; : : : ; Ck , by Proposition 4.2, �Y�.A/ has two rightmost vertices. So, the
total number of vertices is mv.N/.

Now choose C verifying the condtions of Lemma 5.3, so that the class of C belongs
to the span hA;C1; : : : ; Cki. The shape of�Y�.A/ is as before, but with a single rightmost
vertex; if N has �.S/ � 1 components (in particular N is maximal) the total number of
vertices is mv.N/, otherwise it is mv.N/ � 1.

Finally, if N is nonzero we can pick p differently, while keeping the same curve C
that satisfies the condtions of Lemma 5.3. If mc.N/ D 1, we let p be a point of C not
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on N , and ifmc.N/ > 1 then we take p to be one of the intersection points of C with C2.
In this way we obtain one lower point less, so if N has �.S/ � 1 components the total
number of vertices is mv.N/ � 1, otherwise it is mv.N/ � 2.

Corollary 5.6. Given integers v; � with 3 � v � 2 �C 1, there exist a smooth projective
algebraic surface S with Picard number �.S/D �, a big divisorD and an admissible flag
Y D ¹C; pº on S , such that �Y�.D/ has v vertices.

Proof. For �D 1 there is nothing to prove, since Theorem 5.1 shows that every big divisor
and every admissible flag on a surface with Picard number 1 give rise to a triangular
Newton–Okounkov body.

So assume � � 2 and pick a surface S0 with Picard number 1. Construct S by suc-
cessively blowing up points p1; : : : ; p��1, where p1 2 S and for i > 1, pi is a point on
the exceptional divisor of the previous blowup. Then the exceptional divisor of the com-
position S ! S0 is a connected divisor N with � � 1 components and negative definite
intersection matrix, and hence mv.S/ D 2�C 1.

Note that this construction can be made starting from S0 D P2 and selecting each pi
to lie in the strict transform of a fixed line; in that case the resulting surface S is toric (and
the Newton–Okounkov polygons obtained by toric flags have �C 2 vertices, well short of
the 2�C 1 vertices that are attainable with our construction).

6. Slopes and lengths of sides

We keep the notation from previous sections, namelyD is a big divisor,C is an irreducible
curve, p is a point on C , � D �C .D/, Dt D D � tC , � D max¹t jDt pseudo-effectiveº,
Dt D Pt CNt is the Zariski decomposition for 0 � t � �, C1; : : : ; Cn are the irreducible
components in order of appearance, ti D inf¹t 2 Œ�;�� jCi in the support of Ntº, andNt DP
ai .t/Ci .

Proposition 6.1. The slopes of the sides of �Y�.D/ are determined by the intersection
numbers C � Cj and Ci � Cj and the local intersection numbers .C � Cj /p .

Proof. Recall from Section 2 that in the interval Œti�1; ti �, aj .t/ can be written as aj .t/ D
aj0 C aj1.t/ satisfying equations (2.1). By looking at the coefficients of t in (2.1), we see
that

(6.1)
a11C1 � Cj C � � � C ai�1;1Ci�1 � Cj D �C � Cj ; 1 � j < i;

aj1 D 0; i � j � n:

Thus the coefficients aj1 are determined by the intersection numbers C � Cj and Ci � Cj ,
and in the interval Œti�1; ti � we have

˛.t/ D .Nt � C/p D

i�1X
jD1

.aj0 C aj1t /.Cj � C/p;
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i.e., the slope of the corresponding lower side of �Y�.D/ is
P
aj1.Cj � C/p , which is

determined by the intersection numbers C �Cj and Ci �Cj and the local intersection num-
bers .C � Cj /p .

On the other hand,

ˇ.t/ D .Nt � C/p C Pt � C

D

i�1X
jD1

.aj0 C aj1t /.Cj � C/p CD � C �

i�1X
jD1

.aj0 C aj1t /Cj � C;

i.e., the slope of the corresponding upper side of �Y�.D/ isX
aj1 ..Cj � C/p � Cj � C/;

which is determined by the intersection numbers C � Cj and Ci � Cj and the local inter-
section numbers .C � Cj /p .

For a fixed flag Y�WS �C �¹pº and a fixed negative definite configurationC1; : : : ;Cn,
let DC .C1; : : : ; Cn/ stand for the set of big divisors D such that the negative components
of D � �C are exactly the Ci numbered by order of appearance in D � tC . Proposi-
tion 6.1 shows that the bodies �Y�.D/ for D 2 DC .C1; : : : ; Cn/ share the overall shape
(number of vertices and slopes of sides), differing only in the lengths of their sides. These
lengths are determined by intersection numbers as follows.

Proposition 6.2. Fix Y�WS � C � ¹pº and C1; : : : ; Cn. For everyD 2DC .C1; : : : ; Cn/,
the lengths of the sides of �Y�.D/ are determined by � and the intersection numbers
D � Cj , and D � C .

Note that to actually compute the lengths of the sides of �Y�.D/, the intersection
numbers appearing in Proposition 6.1 are needed too. The claim in Proposition 6.2 can be
rephrased saying that the map

DC .C1; : : : ; Cn/! Rm

D 7! .lengths of sides/

factors through

DC .C1; : : : ; Cn/! RnC1

D 7! .D � C1; : : : ;D � Cn;D � C/:

Proof. The length of the leftmost vertical side is P� � C D P0 � C ; since the coefficients
of N0 D �C C a1C1 C � � � C akCk (where k is the maximum index with tk D �) are
determined by

.D �N0/ � C � 0; with equality unless � D 0;(6.2)
.D �N0/ � Ci D 0; i D 1; : : : ; k;(6.3)

it is clear that � is determined by the claimed intersection numbers. Note that k is also
determined by the intersection numbers, as the minimum positive integer such that there
is a solution of the form N0 D �C C a1C1 C � � � C akCk to (6.2) and (6.3) satisfying
.D �N0/ � Cj � 0 for all j > k.
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After Proposition 6.1, the slopes of all sides are determined by the fixed data, thus it is
enough to prove that the values ti are determined by the intersection numbers D � Cj , and
D � C . Let us prove this by induction on i . For i � k, Ci belongs to N� , so ti D �, and we
already showed that k is determined by the intersection numbers. So assume ti > ti�1 � �
and t1; : : : ; ti�1 are determined by D � Cj , and D � C . Then for ti�1 < t � ti�1 C 1,

Nt D

i�1X
jD1

.aj0 C aj1 t /Cj ;

and ti is the infimum of the t such that

D � tC �

i�1X
jD1

.aj0 C aj1 t /Cj

intersect some Cj 0 , j 0 � i , negatively.

Remark 6.3. Note that the methods developed in Section 5 provide information on the
set DC .C1; : : : ; Cn/. For example, if C1 C � � � C Cn is a maximal negative definite con-
figuration and all the ti are distinct, then this set is an open subset of the big cone.
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[9] Łuszcz-Świdecka, P. and Schmitz, D.: Minkowski decomposition of Okounkov bodies on sur-
faces. J. Algebra 414 (2014), 159–174.

[10] Lazarsfeld, R.: Positivity in algebraic geometry. I. Classical setting: line bundles and linear
series. Ergebnisse der Mathematik und ihrer Grenzgebiete 3 Folge 48, Springer-Verlag, Berlin,
2004.
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